
A Template Description Framework for Services as a Utility for Cloud
Brokerage

Li Zhang1, Frank Fowley2, Claus Pahl2
1Northeastern University, Software College, Shenyang, China

2IC4, Dublin City University, Dublin, Ireland
zhangl@swc.neu.edu.cn, [cpahl|ffowley]@computing.dcu.ie

Keywords: Cloud Broker; Service Brokerage; Service Description; Reference Architecture

Abstract: Integration and mediation are two core functions that a cloud service broker needs to perform. The description
of services involved plays a central role in this endeavour to enable services to be considered as commoditised
utilities. We propose a conceptual framework for a cloud service broker based on two parts: a reference
architecture for cloud brokers and a service description template that describes the mediated and integrated
cloud services. Structural aspects of that template will be identified, formalised in an ontology and mapped
onto a set of sublanguages that can be aligned to the cloud development and deployment process.

1 Introduction

Organisations like Gartner and NIST (Gartner,
2012; NIST, 2013) have identified cloud service bro-
kerage as a key concern for future cloud technology
development and research. Cloud brokerage refers
to the customisation, aggregation and integration of
cloud services, possibly by third parties. Here, we in-
vestigate some conceptual problems towards the im-
plementation of a cloud brokerage solution. Integra-
tion and mediation are two core functions that a cloud
broker needs to perform. We propose a conceptual
framework for a cloud broker based on two parts: a
reference architecture for cloud brokers and a service
description template that describes mediated, i.e. cus-
tomised, aggregated or integrated cloud services.

Our conceptual reference architecture will extend
the NIST cloud architecture specification, taking on
board the NIST and Gartner categorisations. The
NIST architecture is not sufficient as a common ref-
erence framework, as it does not detail how integra-
tion between services – horizontally between different
providers and vertically between the different cloud
layers – can be achieved. Equally do current service
modelling and specification approaches (Pahl 2005)
not cover adequately the vertical integration across
the cloud layers infrastructure (IaaS), platform (PaaS)
and software (SaaS) (Konstantinou 2009; Mietzner
2008; Rodero-Merino 2010). We define here a con-
ceptual model for a service description template that
would allow the two dimensions to be covered. Struc-

tural aspects of that template will be identified, for-
malised in an ontology and mapped onto a set of sub-
languages that can be aligned to the cloud develop-
ment and deployment process.

The paper is organised as follows. The next Sec-
tion 2 defines the reference architecture. The follow-
ing Section 3 introduces and defines the service tem-
plate. As this concept plays a crucial role, it will be
investigated in more depth. Furthermore, we outline
a solution architecture for an implementation based
on open-source cloud platforms in Section 4 and also
discuss some trends, before ending with related work
(Section 5) and some conclusions (Section 6).

2 Architecture Framework

As already explained, we propose a conceptual
framework for an automated architecture for a cloud
service broker based on two parts: a reference archi-
tecture for cloud brokers compliant with the NIST
proposal and a service description template model
that describes mediated cloud services. While de-
scriptions for Web services exist in the format of
WSDL, or any semantic extension like SAWSDL or
WSMO, some specific requirements for the cloud
context need to be addressed. Enabling cross-layer
description of concerns and facilitating cloud provi-
sioning and configuration is required (Fehling 2011).
Service description templates (and their instances) are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the core artefacts that are used to describe, select, de-
ploy and manage the different cloud resources, which
are made available as services in an independent way.

2.1 Architecture and Broker Types

Figure 1 describes the high-level architectural setting.
We follow Gartner here in the separation of integra-
tion, customisation and aggregation functions of a
broker. The broker sits between the consumer and a
range of different, independent providers. The role of
the service templates is indicated:

• forming the basis of requests by consumers,

• collected from providers and made available for
customisation, integration, aggregation by broker.

The detailed structure of the templates (operation,
quality, resources, policies as the main description
categories) will be explained on later. Note that while
the structure of the reference architecture might be
easier to agree upon as it brings expected features into
a common framework, requirements for the service
templates are more difficult to establish as they not
only have to describe ’what’ is in the architecture, but
also ’how’ the architectural framework can be con-
verted into an effective solution. Cross-layer support
in a federated context (i.e. vertical and horizontal in-
tegration support) is the critical challenge (Barrett et
al., 2006; Buyya 2010). The reference architecture
thus aims to provide integration in two dimensions:

• Horizontal integration across federated clouds

• Vertical integration across the cloud stack layers
(IaaS, PaaS, SaaS)

We follow Gartner in their terminology. The Gart-
ner categorisation is illustrated in Fig. 1. NIST fol-
lows a similar three-pronged classification. They de-
fine a cloud broker as an entity that manages the use,
performance and delivery of cloud services and ne-
gotiates relationships between cloud providers and
cloud consumers. According to NIST, a cloud broker
can provide services in three categories:

• Service Intermediation: A cloud broker enhances
a given service by improving some specific capa-
bility and providing value-added services to cloud
consumers. The improvement can be managing
access to cloud services, identity management,
performance reporting, enhanced security, etc.

• Service Aggregation: A broker combines and in-
tegrates multiple services into one or more new
services (Benslimane 2008). The broker provides
data integration and ensures secure data transfer
between consumer and multiple providers.

• Service Arbitrage: Service arbitrage is similar to
service aggregation except that the services being
aggregated are not fixed. Arbitrage means a bro-
ker has the flexibility to choose services from mul-
tiple agencies (Benson 2010). The cloud broker,
for example, can use a credit-scoring service to
measure and select an agency with the best score.

2.2 Cloud Broker Interfaces and Access

We envisage the cloud consumer to interact with
the cloud broker in two ways. Firstly, request sub-
mission and cloud service construction: this is pre-
deployment and provisioning. Secondly, service
monitoring and management: this is post-deploying
during the provisioning of the service. Fig. 2 illus-
trates the two layers:

• An Integration Layer allows the construction (ag-
gregation) of a complex or customised cloud ser-
vice based on individual, independent services.
Data and information that is communicated needs
to be integrated through appropriate mediation
and transformation techniques. In addition, the
integration of wider processes is often necessary,
similar to work on document-based service pro-
cess integration in frameworks such as ebXML.

• A Management Layer allows the monitoring and
analysis of broker-provided services. The broker
is often the direct contract partner, resulting in the
need to deal with service-level agreements (SLAs)
and billing/payment issues at that level. Monitor-
ing provides the quality and usage data for both
quality and payments concerns.

2.3 Broker Features and Requirements

In order to clarify the requirements for a service de-
scription notation for cloud service brokerage, we de-
tail the functions we expect to be performed by the
broker across the cloud layers IaaS, PaaS and SaaS
– see Figure 3. For the pre-deployment, the follow-
ing aspects are relevant. Integration, interoperability
and portability are the key concerns to support the
consumer in creating multi-vendor applications and
to move or migrate between vendors (Bernstein 2009;
Pahl 2013a; Pahl 2013b).

• Portability can be supported and automated at
lower layers by adopting OVF or TOSCA – the
latter a standard which specifically supports porta-
bility between public and private clouds.

• Expected workload is a concern that should be
considered at design/built-time, as service selec-
tion and later provisioning need to take this into

Cloud
Consumer

Cloud
Provider

Cloud
Provider

Cloud
Provider

Cloud Services Broker

Service Integration
Agent: systems integrator (SI)
Application: integrated PaaS, horizontal & vertical
Functions: orchestration, mashup, mediation

Service Customisation
Agent: independent software vendor (ISV)
Application: Analytics, monitoring, user interface
Functions: wrapper, adaptivity

Service Aggregation
Agent: distributor
Application: Marketplace, Cloud provisioning
Functions: discovery, billing

API

~~~~~~~~ 
~~~~~ 
~~~~~~~ 
~~~~~~~~ 
~~~~~ 
~~ 

Operation 
 
Quality 
 
Resources 
 
Policies 

Figure 1: High-level Architectural Cloud Broker Setting.

account. This requires workload to be made ex-
plicit at all layers.

• Horizontal interoperability refers to the integra-
tion of services within a cloud layer, requiring
common interfaces. Standards compatibility is a
solution. OCCI is a lifecycle management stan-
dard describing APIs for service management.

• Vertical interoperability requires the integration
of infrastructure, platform and application needs.
Key performance indicators (KPIs) differ across
the layers – while at lower infrastructure lay-
ers network bandwidth and latency are concerns,
further up it is response time or availability per
service. However, higher-level ones need to be
mapped down to lower layers, and vice versa.
Thus, formalised mappings need to be defined.

We see the vertical cloud stack as an implementation
of layering as a SOA principle, resulting in a refer-
ence architecture with applications (SaaS in cloud),
middleware (PaaS in cloud) and infrastructure ser-
vices (IaaS in cloud). Critical is in vertical cloud stack
is the integration of non-functional properties (QoS),
i.e., mappings between the layers. For SaaS and PaaS,
a relevant metric is for instance the service response
time. For IaaS, metrics are based on compute (CPU
load), storage (data size) and network (throughput or
latency). While not covered here in detail, mappings
between layers can be statically fixed. As input, we
can used our work on predicting and deriving e.g.

PaaS-response time from IaaS-metrics like CPU util-
isation or network bandwidth (Zhang, 2013).

For post-deployment management, life cycle sup-
port is crucial, covering the configuration and provi-
sioning as well as on-going monitoring and analytics.

• Resource need to be configured, based usually
on quality requirements such that the resources
match the needs of the consumer. Selection,
matching and configuration support is necessary.

• The user requirements and the resulting abstract
configuration have to be correlated with the avail-
able resources provided at the time of provision-
ing the services. In addition to the configuration
concerns, this requires lower-level input from re-
source managers and workload balancers.

• Monitoring is an essential part of a provisioning
platform. Monitoring solutions are available –
commercial and open-source. However, due to
the requirement of supporting federated clouds,
the need to collect and integrate monitored data
from different sources arises.

• Like monitoring, the analysis of data gath-
ered requires interoperability between monitor-
ing sources and the analysis tool. The require-
ments are similar with respect to standardisation
and compatibility, e.g. SLA-related data.

This discussion provides a first requirements list for
the service template, discussed in the next section.



Monitoring and Analytics 
 
 
 
 
 
 
 

Graphical Request 
Language 
 
 
 
 
 
 

Cloud Services Broker 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Integration Layer 
- Data/Content 
- Processes 

 
 
 
 

Management Layer 
- Routing 
- Portability 
- Capacity 
- Security 

 

Operation 
 
Quality 
 
Resources 
 
Policies 

Cloud Consumer 

Figure 2: Cloud Broker Interfaces and Access to Functions.

3 Service Description Templates –
Structure and Formalisation

A service template is an abstract description of
a service’s capabilities, in terms of functional and
non-functional aspects. Different types of tem-
plates to describe the capabilities of cloud resources
have been proposed, often under a different name
such as Recipes (Chef, Cloudify) (Cloudify, 2012),
Blueprints (4CaaSt) (4Caast, 2013) or Manifests
(OVF, CompatibleOne) (Compatible One, 2013). In
Section 5, see Fig. 7 below, we summarise the lan-
guage definition challenges and requirements pre-
sented in (Pahl et al, 2013). We categorise the service
description languages, such as (CloudFoundry, 2013;
DeltaCloud, 2013; Jclouds, 2013; Libcloud, 2013;
Mosaic, 2013; OpenShift, 2012; Optimis, 2013; sim-
pleAPI, 2013), in terms of the cloud layer support and
specific features they provide. We categorise the so-
lutions along the following concerns, which form re-
quirements for a template solution:

• System Type: Multi Cloud API, IaaS Fabric Con-
troller, Open PaaS Solution, Open PaaS Provider.

• Distribution Model: Open Source (for all solu-
tions considered)

• Core Capabilities: Multi-IaaS Support, Multi
Language/Framework Support, Multi Stack

• Core Features/Components (development and de-
ployment time): Service Description Language,
Native Data Store, Native Message Queue,
Programming Model, Elasticity & Scalability,
QoS/SLA Monitoring.

• Advanced Features/Components: Service Discov-
ery/Composition, Broker, Marketplace – towards

broker and marketplace features.
We can see a trend towards the upper broker and mar-
ketplace solutions (Mietzner 2008; Rodero-Merino
2010). These demonstrate to some extent a multi-
faceted description with functional and quality as-
pects. However, a comprehensive coverage is not
available. A richer description notation is needed, re-
sulting in additional complexity due to the required
multi-layer support, leaving both vertical integration
and comprehensive to be addressed.

3.1 Template Structure

We propose a 4-part structure for the service descrip-
tion template: operation, quality, resources and poli-
cies. The first two cover service-internal aspects – the
functional and non-functional aspects of the service.
The remaining two cover more the service-external
perspective with the resources required and also the
security and compliance requirements. We identify a
4-part hierarchy of concepts, which we will later for-
malise as the core taxonomy of a service description
ontology (Pahl 2007; Papazoglou 2011b).

• Operation – the functional service interface. Its
subconcepts follow WSDL in its structure:

– Service type/interface defines the interface as
an abstract data type

– Operations that provide service functionality
– Messages and Types to communicate data to

and from the service for operation invocations

• Quality – the non-functional properties. Its sub-
concepts are performance-related concerns:

– Availability of the service in question
– Latency/Response Time of service/operations



Federated 
Cloud 

Development 

IaaS 
Infrastructure
-as-a-Service 

PaaS 
Platform-as-a-

Service 

SaaS 
Software-as-

a-Service 

Service Integration 
(Interoperability and 

Portability) 

Service Management 
(Provision, Configure, 

Monitor) 

Service 
Portability 

Workload 
Balancing 

Horizontal 
Interoperability 

Vertical 
Interoperability 

Resource 
Provisioning 

Resource 
Configuration 

Monitoring and 
Reporting 

Analysis and 
Auditing 

Figure 3: Cloud Broker Features and Capabilities.

– Bandwidth as another quality concern

• Resources – deployment requirements. Its sub-
concepts are aspects specific to the provisioning
of a service in a PaaS or IaaS environment:

– Average/peak workload requirements is a typi-
cal example for a configuration requirement

• Policies – the business agreements and con-
straints. Its subconcepts are:

– Security and Privacy concerns in terms of con-
fidentiality, integrity or authenticity

– Compliance and Governance as further rules to
describe to correct alignment of a service to its
execution environment

3.2 Formalisation

We propose to formalise the service template as an
ontology. An ontology is a conceptual model formu-
lated in a formal description language. We utilised in
this context the core of the Semantic Web technology,
the Web Ontology Language OWL. This language is
based on description logics, i.e. has a formal defini-
tion and is supported by various tools including rea-
soners that can even be used at runtime. Using seman-
tic technologies brings us closer to interoperability of
meaningful descriptions in an Internet context.

An ontology is a representation of concepts (or
classes) that are defined in terms of their properties,
i.e. relationships to other concepts. Concepts can be
instantiated into concrete values. Properties can be
object or data valued, depending on whether they re-
fer to another complex object (concept – an exam-
ple is the relationship of a service to another ser-
vice through invocation or inheritance) or data (an ex-
ample is the performance of a service as a numeric

value). Concepts can be arranged into a hierarchy us-
ing a sub/superconcept relationship. This forms the
taxonomy of the ontology. Our ontology has a root
concept, which is ’ServiceTemplate’. Using an ’is-
PartOf’ relationship, the aspects Operation, Quality,
Resources and Policies are connected to ServiceTem-
plate. Individual concerns, such as ServiceType or
Message for Operation or Availability for Quality, are
the subconcepts of the respective four core aspects.
These properties define a basic hierarchy. However,
we need a richer ontology that addresses the require-
ments outlined earlier, see Figure 4.

• In terms of interfaces and operations, we need
to distinguish the different layers – as ontology
subconcepts of the Operation concept. For IaaS-
Operation, we define a service API with the cor-
responding operations that is OCCI-compliant.
While VM image management is relatively uni-
form (thus, OCCI is possible as a standard), at the
PaaS layer, we need to provide for standard tools
like databases or application server. For instance
a Tomcat server could be modelled as an instance
of a Web application server concept. Standardised
solutions in terms of APIs/operations would then
only be specific to a tool category.

• Quality concerns (KPIs for the different layers)
need to be differentiated. We assume each qual-
ity criterion to be qualified by an attribute (data-
valued property) that indicates the relative cloud
layer to which it applies.

• Required resources can be explicitly or abstractly
specified by referring to other templates that cap-
ture the required resource. This is facilitated by
a special resources relationship. The need for for-
mality becomes clear as circular resource relation-



ships cannot be tolerated and need to be detected.

• The Policies part needs to link to a special kind of
entities: rules. We propose to utilise the SWRL
language (Semantic Web Rule Language). The
specified rules can be evaluated at build time and
dynamically verified.

The ontology is meant to be extensible for particular
circumstances. For concrete resources, instances are
attached. This clarifies the definition of a template – a
template is concept-level in terms of the ontology and
can be instantiated by providing instance-level values.

Templates can be generated from other resources
and provide input to further processing. Based on
SLAs or other legal agreements, some operational,
quality, and policy requirements can be derived that
would define a partial template. Service integration
plans need to be generated in many cases where a sin-
gle service will not satisfy the need. A service process
needs to be orchestrated in a classical Web service
manner, associated to an integration process connect-
ing abstract resources.

3.3 Sublanguages

While we have proposed a comprehensive ontology
capturing all conceptual aspects of the service tem-
plate language framework, in order to tailor this to
the needs of different actors and components of the
reference architecture, a facilitation through different
languages would be beneficial. As core technical lan-
guages (Figure 5) we can identify:

• Service Template Definition Language (Operation
and Quality) addresses service internal aspects

• Service Template Configuration/Instantiation
Language (Resources) addresses first type of
external aspects

• Service Template Constraints Language (Policies)
also addresses external aspects, but, as explained,
a rule language rather than an ontology language
needs to be facilitated here.

These core languages can be complemented by
two template manipulation operators – core compo-
sition and non-compositional manipulation (Bensli-
mane 2008), both possibly supported by a graphical
request language:

• Service Template Composition Language (Inte-
gration Processes) is singled out to deal with ser-
vice aggregation by supporting a range of stan-
dard composition operators to allow services to be
orchestrated into a process across different cloud
providers (Pahl 2007).

• Service Template Manipulation Language pro-
vides non-compositional template manipulation.
This could include the refinement/specialisation
of a template, or the merger or restriction.

• Graphical Request Specification Language. Re-
quests for a specific service are expressed by end-
users. To facilitate access for different users with
different degrees of technical knowledge, we sug-
gest a graphical request language visualising the
template structure.

The implementation shall follow the ontology op-
erator calculus for architecture manipulation from
(Pahl 2007) on ontology-based architecture and pat-
tern languages that combine composition and abstrac-
tion mechanisms. The conceptual core of the lan-
guages, particularly for the composition and manipu-
lation language is an operator calculus, including op-
erations such as match/select, merge, restrict, refine,
behaviourally compose, abstract/instantiate, to sup-
port the following core manipulation and composition
activities:

• Refinement, i.e. the derivation of a related ser-
vice description that preserve functional prop-
erties (the scope of the service can be tailored
through restrict and union operations).

• Instantiation, i.e. providing concrete values for an
abstract, concept-level template in order to denote
a concrete service.

• Composition, i.e. the use of aggregation operators
such as sequence, selection and iteration to or-
chestrate a selection of services to form a compos-
ite service process serving a more complex goal.

Operation 
 
Quality 
 
Resources 
 
Policies 

 
Definition 
Language 
 
Configuration 
Language 

Constraints 
Language  

Service Template Ontology Languages 

Rule Language 
 
Composition  Manipulation 
Language  Language 
 

Graphical 
Request 
Language  

 Algebraic Languages 

Graphical 
Language 

Figure 5: Service Template Languages Framework.

4 Architecture and Validation

An implementation architecture for the service
templates is the brokerage test-bed currently devel-
oped at IC4 (a cloud research centre at our univer-
sity), where a combination of OpenStack as the IaaS
solution and CompatibleOne as the core PaaS broker



Service 
Template 

Operation Quality Resources Policies 

IaaS 

OCCI-compl. 
VM Mgmt API 

PaaS 

Database 
Application 

Server 

Tomcat 

Availability 
Response 

Time 

Template 
Reference 

Rules 

Figure 4: Service Template Ontology.

solution is being developed. This serves us as an im-
plementation to investigate the vertical integration of
IaaS, core PaaS and broker layers. While Compat-
ibleOne is a broker, the support implemented does
not satisfy the requirements of our needs here – see
Sections 2.1 for a CompatibleOne review and 2.3 for
a requirements discussion. The following architec-
ture (Fig. 6) describes the architectural setup of Open-
Stack and Compatible One that we propose to be used
as the experimentation environment.

Figure 6: OpenStack and CompatibleOne Architecture

CompatibleOne (Compatible One, 2013) is an
academic and industry consortium that set out to pro-
vide a framework to allow for portability and inter-
operability of cloud software. The project focusses
on producing a broker platform following the Gartner

definition of a cloud broker to provide Intermediation,
Aggregation and Arbitration of cloud services. Such
a broker could allow for cloud service consumers re-
quirements to be mapped to cloud vendors’ resources.
The project is committed to the OCCI standard. To
date, the project has produced the CORDS informa-
tion model and the ACCORDS software platform.
• The CORDS model is as an open, object-oriented,

OCCI-compliant representation of cloud comput-
ing entities and can be used to build complex
cloud middleware.

• The ACCORDS platform is a suite of cloud mid-
dleware programs that provide broker services.
Using ACCORDS, a customer can describe ser-
vice requirements in a CORDS-compliant format.
These can be matched to available provider offer-
ings and then ultimately provisioned at run-time
by interacting with the actual vendor resources.

The model includes representations for service level
agreements, pricing structures and transaction man-
agement for usage billing.

OpenStack (OpenStack, 2012) is a cloud enabling
solution that transforms a physical hardware infras-
tructure into an Infrastructure as a service (IaaS). The
platform is a Cloud Platform or IaaS Cloud Fabric
controller. The platform can be used to run cloud
compute and storage infrastructure. The OpenStack
open source siolution makes its services available
through Amazon EC2/S3 compatible APIs and hence
client tools written for AWS can be used with Open-
Stack clouds. Five main services are exposed by
OpenStack: Compute (Nova), Storage (Swift), Imag-
ing (Glance), Identity (Keystone) and Network man-
agement (Quantum).

The adequacy of the proposed service template
model can be validated by discussing some scenarios
as implementations in the above testbed architecture:



• Customisation, Aggregation, Integration: these
are the three broker types, which need to be sup-
ported by adequate operators.
We have proposed an ontology-based operator
calculus that provides suitable support. Refine-
ment allows customisation. The composition op-
erators that we propose allow aggregation. And
integration is facilitated by allowing semantic in-
tegration through a rich ontology and a rules-
based approach to control the integration into spe-
cific environments. Thus, specifically the ma-
nipulation and composition operators are nec-
essary to fully support service brokerage. An
ontology-based solution helps with integrating
multi-facetted aspects into a coherent manipula-
tion and reasoning framework.

• CORDS and ACCORDS integration: the CORDS
model with its OCCI-based description layer pro-
vides a standards-based platform to enable utilisa-
tion in a concrete OCCI-compliant IaaS solution.
The CORDS model relating to the ACCORDS
platform features can be fully represented in terms
of the service template notation. ACCORDS
services are instantiated service templates. The
OCCI-compliant OpenStack is the execution plat-
form. With CompatibleOne, we have used one of
the most advanced broker platforms available (we
discuss 4CaaSt, another advanced solution, in the
next section) based on our comparison in Fig. 7
earlier. Thus, we can be confident that the verti-
cal layering problem can be addressed for a rich,
multi-facetted description template.

While we have not fully implemented the proposed
service template model as an extension of the CORDS
matching, our experiments with CompatibleOne sup-
port the feasibility of a full integration of the two
cloud solutions. The experiments validate the scope
that a service description template has to cover for
vertical integration as proposed in Section 4.

5 Related Work

We select 13 specification notations here for a
more in-depth description including (CloudFoundry,
2013; DeltaCloud, 2013; Jclouds, 2013; Libcloud,
2013; Mosaic, 2013; ?; OpenShift, 2012; Optimis,
2013; simpleAPI, 2013). Fig. 7 summarises a range
of solutions ordered from bottom to top based on the
focus in the cloud technology stack (from basic IaaS
to advanced SaaS marketplace support). We compare
these in terms of their capabilities and components
as comparison categories as discussed in Section 3.

A more detailed, general discussion can be found in
(Grozev, 2012), which also covers systems like mO-
SAIC or jclouds. Our work here is not specific to any
of the intercloud architecture types identified there.
Our discussion is also more specific to languages and
service description, whereas (Grozev, 2012) covers
wider concerns like location-awareness or pricing.

An ontology-based foundation enables reasoning
support. It also acts as an integration, e.g. via ODM
framework with MOF/UML-style notations and via
the predicate logic link to other logic-based lan-
guages. In this respect, our template approach is
a step ahead compared with e.g. the Blueprint ap-
proach of 4CaaSt or the recipes techniques in Cloud-
ify. Ongoing work in the EU Broker@Cloud project
uses an extension of the RDF-based version of USDL
(Kourtesis, 2013), which demonstrates the relevance
of semantic technologies for integration and reason-
ing across platforms, but here our full OWL goes be-
yond the RDF-based USDL formalisation.

The two most advanced ones in terms of bro-
kerage – 4CaaSt and CompatibleOne – shall be dis-
cussed. The 4CaaSt Blueprint approach (Nguyen
2011; Papazoglou 2011b) supports through its dif-
ferent languages a range of cloud brokerage activi-
ties. Blueprints are initially abstract specifications,
which can be resolved, i.e. mapped to lower cloud
stack layers until the specifications are finally de-
ployed using a standard configuration and deployment
manager. Resources and Services are described in
a Blueprint (BP), which is an abstract description of
what needs to be resolved into infrastructure entities.
BPs are stored and managed in a BP repository via
a REST API. A BP is resolved when all requirements
are fulfilled by another BP, via the Resolution Engine.
This is a service orchestration feature. A number of
XML blueprint languages are supported: BDL De-
scription Language (for cloud operations and capabil-
ities), BCL Constraint Language (for SLA parameters
definition), BML Manipulation Language (for oper-
ations, e.g. service match, merge, compose, delete),
BRL Request Language (for user and developer re-
quest definitions). Blueprints are suitable to support
simple marketplace offering single, isolated services
as a product, but lack the range of brokerage activities
in their toolkit. This entails a further complication –
compositional brokerage needs to be mapped down
the layer, which is non-trivial as particularly quality
aspects are non-compositional in nature.

The CompatibleOne manifests suffer from simi-
lar limitations. The units of a CompatibleOne Ser-
vice Manifest are Image and Infrastructure. An Im-
age consists on a System (the base OS) and a Package
(reflecting the software stack configuration). Infras-



Figure 7: Summary Service Description Comparison.

tructure covers the classical IaaS concerns Storage,
Compute and Network. An Image is a description
of a manual build of an application, used by devel-
opment and configuraton tools (devops, e.g. puppet
or chef). An Image has an agent that is embedded in
a VM and runs on startup. Agent is a script to run
required configurations, set up monitoring probes, or
download required components. Cordscript is pro-
prietary CompatibleOne scripting language for ex-
pressing configuration actions. These support meta-
data handling within VMs, managing required link-
ages between VMs, and setting up monitoring probes
in VMs. Cordscript is a statement-oriented language.
A feature under development in CompatibleOne is
a cloud-implementable graph of OCCI category in-
stances. Particularly well solved is the standards-
compliancy at the lower layer (making it a good
testbed), but the manifests only cover core concerns.

The consumer expresses provisioning require-
ments by creating a CORDS manifest. This con-
tains attributes like ID and name. Key element is
a provisioning plan involving nodes and regions af-
fected. The node configuration topology includes im-
age and infrastructure requirements (compute, stor-
age, network). Actions for configurations and re-
leases can be specified. Other information concerns
a) account, pricing and invoicing and b) security set-
tings. CORDS is configuration, provisioning and de-

ployment oriented, where our template adds qual-
ity beyond security and governance through policies.
The templates can be seen as higher-level (abstract)
specifications on top of e.g. a CORDS manifest.

6 Conclusions

Standards and compatibility are effectively the
only way to make a truly interoperable cloud ser-
vice broker work. We can note a trend towards cloud
marketplaces utilising brokerage facilities. The pro-
posed solution in this paper is a first step in this di-
rection that needs to facilitate language support in
terms of request specification languages and also tem-
plate manipulation operators that will support central
marketplace functions (like matching and selection) –
based on a the reference architecture is the other so-
lution that defines how architectural components in-
teract and how the service templates are processed in
this context. Abstract descriptions of cloud services
are the key to a service brokerage solution allowing
to consider services as commoditised utilities that can
be brokered. We presented a conceptual model for
the service templates. We have defined the core prop-
erties as an ontological model. We have suggested a
range of languages to support this feature.

The proposed OpenStack and CompatibleOne ar-



chitecture should serve as an adequate basis to de-
velop a solution based on the languages for service
templates as broker implementation, which remains
future work. On the theoretical side, the full specifi-
cation of the operator calculus needs to be completed,
but can follow (Pahl 2007) here.

Acknowledgments.

This research has been supported by the Irish Cen-
tre for Cloud Computing and Commerce, an Irish na-
tional Technology Centre funded by Enterprise Ire-
land and the Irish Industrial Development Authority.

REFERENCES

4Caast. 4CaaSt PaaS Cloud Platform. http://4caast.morfeo-
project.org/. 2013.

R. Barrett, L. M. Patcas, C. Pahl and J. Murphy. Model
Driven Distribution Pattern Design for Dynamic Web
Service Compositions. International Conference on
Web Engineering ICWE’06. ACM Press. 2006.

T. Benson, et al. Peeking into the Cloud: Toward User-
Driven Cloud Management. Clouds 2010, 2010.

D. Benslimane, S. Dustdar, A. Sheth. Services Mashups:
The New Generation of Web Applications. Internet
Computing, vol.12, no.5, pp.13-15, 2008.

D. Bernstein et al. Blueprint for the Inter-cloud: Protocols
and Formats for Cloud Computing Interoperability.
Intl Conf Internet and Web Appl and Services. 2009.

R. Buyya, R. Ranjan, R.N. Calheiros. Intercloud: Utility-
Oriented Federation of Cloud Computing Environ-
ments For Scaling of Application Services. Intl Conf
on Alg and Arch for Parallel Processing. 2010.

Cloud Foundry. Open Source PaaS Cloud Provider Inter-
face. http://www.cloudfoundry.org/. 2013.

Cloudify. Cloudify Open PaaS Stack.
http://www.cloudifysource.org/. 2012.

CompatibleOne. Open Source Cloud Broker.
http://www.compatibleone.org/. 2013.

DeltaCloud. Deltacloud REST cloud abstraction API.
http://deltacloud.apache.org/. 2013.

C. Fehling, R. Mietzner. Composite as a Service: Cloud Ap-
plication Structures, Provisioning, and Management.
IT - Information Technology: Vol. 53, No. 4, pp. 188-
194. 2011.

F. Fowley, C. Pahl and L. Zhang. Cloud Brokerage Archi-
tecture – State-of-the-Art and Challenges. Workshop
on Cloud Service Brokerage CSB2013. 2013.

Gartner - Cloud Services Brokerage. Gartner Research.
http://www.gartner.com/technology/research/cloud-
computing/cloud-services-brokerage.jsp. 2012.

N. Grozev and R. Buyya. Inter-Cloud architectures and
application brokering: taxonomy and survey. Softw:
Pract. Exper.. doi: 10.1002/spe.2168. 2012.

Jclouds. jclouds Java and Clojure Cloud API.
http://www.jclouds.org/. 2013.

A. V. Konstantinou et. al. An Architecture for Virtual So-
lution Composition and Deployment in Infrastructure
Clouds. 3rd International Workshop on Virtualization
Technologies in Distributed Computing. June 2009.

D. Kourtesis, K. Bratanis, A. Friesen, Y. Verginadis, A.J.H.
Simons, A. Rossini, A. Schwichtenberg, P. Gouva.
Brokerage for Quality Assurance and Optimisation
of Cloud Services: an Analysis of Key Require-
ments. ICSOC Cloud Service Brokerage Workshop
CSB2013. Springer. 2013.

Libcloud. Apache Libcloud Python library.
http://libcloud.apache.org/. 2013.

R. Mietzner, F. Leymann, M. Papazoglou. Defining Com-
posite Configurable SaaS Application Packages Using
SCA, Variability Descriptors and Multi-tenancy Pat-
terns. 3rd Internet and Web Appl and Services. 2008.

Mosaic. mOSAIC Multiple Cloud API. http://www.mosaic-
cloud.eu/. 2013.

NIST Cloud Computing Reference Architecture. NIST.
http://www.nist.gov/customcf/get pdf.cfm?pub id=
909505. Sept. 2011.

D.K. Nguyen, et al. Blueprint Template Support for Cloud-
Based Service Engineering. In Proceedings of the
Service-Wave’11, Poznan, Poland, October 2011.

3 OpenNebula. OpenNebula - Open Source Data Center
Virtualization. http://opennebula.org/. 2012.

OpenShift. Cloud computing platform as a service.
https://openshift.redhat.com/. 2012.

OpenStack. OpenStack Open Source Cloud Computing
Software. http://www.openstack.org/. 2012.

Optimis. Optimis - Optimized Infrastructure Services.
http://www.optimis-project.eu/. 2013.

P. Jamshidi, A. Ahmad, C. Pahl. Cloud Migration Research:
A Systematic Review IEEE Transactions on Cloud
Computing. 2014.

C. Pahl, S. Giesecke and W. Hasselbring. Ontology-based
Modelling of Architectural Styles. Information and
Software Technology (IST). 1(12): 1739-1749. 2009.

C. Pahl, H. Xiong. Migration to PaaS Clouds - Migration
Process and Architectural Concerns. IEEE 7th Inter-
national Symposium on the Maintenance and Evolu-
tion of Service-Oriented and Cloud-Based Systems
MESOCA 2103. IEEE. 2013

C. Pahl, H. Xiong, R. Walshe. A Comparison of On-premise
to Cloud Migration Approaches. European Confer-
ence on Service-Oriented and Cloud Computing ES-
OCC 2013. Springer LNCS. 2013

M. P. Papazoglou, W.J. van den Heuvel. Blueprinting the
Cloud. IEEE Internet Computing, November 2011.

L. Rodero-Merino et al. From Infrastructure Delivery to
Service Management in Clouds. Future Generation
Computer Systems, vol. 26, pp. 226-240. Oct. 2010.

simpleAPI. Simple API for XML. http://en.wikipedia.org/
wiki/Simple API for XML. 2013.

L. Zhang, B. Zhang, C. Pahl, L. Xu, Z. Zhu. Personalized
Quality Prediction for Dynamic Service Management
based on Invocation Patterns. Intl Conference on Ser-
vice Oriented Computing ICSOC 2013. 2013


