
A Comparison Framework and Review of Service
Brokerage Solutions for Cloud Architectures

Frank Fowley1, Claus Pahl1, and Li Zhang2

1 IC4, Dublin City University, Dublin 9, Ireland
2 Northeastern University, Shenyang, China

Abstract. Cloud service brokerage has been identified as a key concern
for future cloud technology development and research. We compare ser-
vice brokerage solutions. A range of specific concerns like architecture,
programming and quality will be looked at. We apply a 2-pronged classi-
fication and comparison framework. We will identify challenges and wider
research objectives based on an identification of cloud broker architec-
ture concerns and technical requirements for service brokerage solutions.
We will discuss complex cloud architecture concerns such as commoditi-
sation and federation of integrated, vertical cloud stacks.

Keywords: Cloud Broker; Service Brokerage; Architecture Patterns;
Cloud Broker Comparison; State-of-the-art Review; Research Challenges

1 Introduction

Several organisations active in the cloud technology area, such as Gartner and
NIST [12, 20], have identified cloud service brokerage as an important architec-
tural challenge. Architecture and programming model concerns are key enabler
of any service brokerage solution that mediates between different providers by
integrating, aggregating and customising services from different providers. We
compare cloud service management and brokerage solutions, i.e. we discuss a
broader classification in terms of components and features of cloud service bro-
kers, specifically looking at architecture, language and quality as technical as-
pects in a refined, more descriptive model. We address challenges based on an
identification of cloud broker architecture patterns for service brokerage solu-
tions. Our key contribution is a discussion of service broker solutions based on
a 2-pronged comparison framework. Such a dedicated framework does not exist
for cloud brokers and goes beyond existing service taxonomies such as [13].

The paper is organised as follows. Cloud service brokerage is introduced in
Section 2. Section 3 discusses wider architectural concerns. In Section 4, we
introduce and apply the comparison framework. These investigations lead into
a broader research challenges discussion in Section 5.

2 Cloud Service Brokerage

Gartner and NIST define Cloud Service Brokerage [12, 20]. They follow a sim-
ilar three-pronged classification. They define a cloud broker as an entity that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/18320575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Frank Fowley, Claus Pahl, Li Zhang

manages the use, performance and delivery of cloud services and negotiates re-
lationships between cloud providers and cloud consumers [11].

In this overview of key concepts, we follow Gartner. Aggregation is actually
singled out by both organisations. NIST intermediation and Gartner customisa-
tion focus on enhancing existing service. NIST arbitration and Gartner integra-
tion have in common a flexible mediation and integration of different systems.

– Aggregation is about delivering two or more services to possibly many con-
sumers, not necessarily providing new functionality, integration or customi-
sation, but offering centralised management of SLAs and security.

– Customisation is about altering or adding capabilities, here to change or
improve and enhance the service function, possibly combined with analytics.

– Integration addresses the challenges of making independent services work
together as a combined offering, which is often integration of a vertical cloud
stack or data/process integration within a layer. Classical techniques such
as transformation, mediation and orchestration are the solutions.

We now look at the possible impact of the different cloud layers IaaS and
PaaS on cloud service broker requirements. Brokers have to deal with various
cloud layer-specific concerns [4], e.g. for IaaS these are:

– The key IaaS need is elasticity. With techniques such as replication, provi-
sioned services can be scaled. Images can be replicated and moved to other,
interoperable offerings and platforms to create a virtual layered environment.

– Problems that arise are that platform engines are often proprietary or do not
replicate fully unless standards like OVF for VMs are used. Also, replicating
an image with data needs bandwidth, which requires optimised solutions.

– Image and data handling aims to minimise replication and manage deletion,
use segmentation for services, differentiate user-data and images/services
to optimise and include intelligent data management such as map-reduce
techniques. Horizontal scaling often requires the full dataset to be replicated.
Vertical scaling can be based on data segmentation and distribution.

This indicates that automation is here of critical importance as the cloud elas-
ticity need is the driver of these techniques. For the PaaS layer:

– Platforms need to facilitate composition and service mashups [10, 3].
– For most applications, base image duplication can suffice, but too many

users per application generally require full replication with customer-specific
data/code. In case base images (e.g. for .NET) are available, we only need
to replicate service instances, but not a full image.

– Further problems arise for composition as QoS is generally not compositional,
e.g. the security of a composition is determined by its weakest link.

Automated management is a key concern. Standardisation in terms of OVF as an
image format or OCCI as an interface for infrastructure-level resource manage-
ment functionality are solutions. Some solutions exist IaaS standards like OCCI
and CIMI cover service lifecycle management, TOSCA addresses portability and



A Comparison Framework for Cloud Service Brokerage Solutions 3

CDMI is about data management. IaaS open-source systems supporting these
standards are Openstack, which is a lifecycle management product in the line
of CIMI and OCCI aims, or the mOSAIC API that supports composition and
mashups at an infrastructure level [19]. PaaS systems include Cloudify, a man-
agement tool for vertical cloud stack integration, and Compatible One, a broker
for horizontal integration [7, 8].

3 Cloud Service Broker Architectures

Cloud brokerage solutions build up on existing virtualisation, cloud platform
and IaaS/PaaS/SaaS offerings. We can single out three architecture patterns:

– Cloud Management: supports the design, deployment, provisioning and mon-
itoring of cloud resources, e.g. through management portals. This is an ex-
tension of the core lifecycle management (LCM), adding monitoring features
or graphical forms of interaction. Rudimentary features for the integration
of compatible services can be provided.
A management layer is often identified in cloud architecture to management
that facilitate efficient and scalable provisioning in a number of the platforms
reviewed below.

– Cloud Broker Platform: supports the broker activity types discussed earlier –
aggregation, customisation, integration – which needs a specific language to
describe services in a uniform way and to define the integration mechanism.
The origin of this is the common broker pattern from software design pat-
terns, applied to a cloud setting.

– Cloud Marketplace: builds up on broker platform to provide a marketplace
to bring providers and customers together. Again, service description for core
and integrated services plays a role for functionality and technical quality
aspects. Trust is the second key element that needs to be facilitated.
Marketplaces for apps are omnipresent and this marketplace pattern is a
reflection of upcoming cloud-specific marketplaces (DT will be mentioned as
a sample case below).

These layers can be put on top of the classical cloud architecture layers SaaS,
PaaS and IaaS. The discussion below will show that a fine-grained character-
isation of cloud brokerage solutions, even beyond these three is necessary to
identify and distinguish specific challenges. We look into open-source solutions
(or solutions provided by publicly funded projects) as these are well-documented.
Open-source solutions can thus be categorised based on the presented scheme:

– Open IaaS: OpenStack, for instance, is a basic IaaS cloud manager that
transforms data-centres to become IaaS clouds [24].

– Open PaaS: OpenShift and CloudFoundry are open PaaS platforms assisting
the cloud app developer by commoditising the software stack [6, 23].

The Open IaaS/PaaS solutions can be differentiated from respective IaaS/PaaS
brokers. In the following, we will try to point out the salient differences between



4 Frank Fowley, Claus Pahl, Li Zhang

Name Category

Cloud 

Layer

Multi 

Cloud API 

Library

IaaS 

Fabric 

Controller

Open 

PaaS 

Solution

Open 

PaaS 

Provider

OpenNebula CLOUD FABRIC CONTROLLER IaaS Y

OpenStack CLOUD FABRIC CONTROLLER IaaS Y

libcloud API LIBRARY PaaS Y

jclouds API LIBRARY PaaS Y

simpleAPI API LIBRARY PaaS Y

DeltaCloud API SERVER PaaS Y

Cloudify CLOUD DEVOPS & LCM PaaS Y Y

Mosaic PAAS PaaS Y Y

Cloud Foundry PAAS PaaS Y Y Y

OpenShift PAAS PaaS Y

CompatibleOne IAAS BROKER PaaS Y

4Caast SERVICE BROKER PaaS

Optimis IAAS BROKER PaaS Y

CATEGORIES and TYPE

Table 1. Open Source Clouds - System Category and Type.

some cloud brokers that go beyond IaaS/PaaS management solutions. Optimis
and CompatibleOne are IaaS-oriented, and only 4CaaSt targets PaaS and to
some extent also the SaaS domain. There is, however, SaaS broker activity in
the commercial space.

An observation here is that the broker pattern receives attention and that
reusable solutions are in development, starting with the IaaS layer, but including
IaaS and PaaS over time. The existence of marketplaces, which are interesting
for the diverse SaaS space, indicates the existence of broker solution. The AppDi-
rect commercial broker is an example. However, a wider range of commoditised,
ready-to-use broker platforms can be expected in the future – to service the
different broker types defined, but also provide a fuller range of features as our
discussion of the open-source solutions indicates.

4 Service Management and Brokerage Comparison

In this section, we compare cloud solutions using a dedicated 2-pronged frame-
work, which we will introduce first.

– The first is a categorisation schema for a basic classification (Tables 1, 2).
– The second is a more detailed, descriptive classification (Tables 3 to 5).

We compare a number of selected solutions, essentially open-source solutions or
publicly funded frameworks.

In Tables 1 and 2, we categorise a number of solutions [6, 7, 9, 15, 17, 22, 19,
23, 24, 33, 1, 8]. We categorise languages in terms of the cloud layer support, but
also specific features or functions each of them provides. We have defined a
comparison framework to categorise solutions along the following concerns:

– System Type: Multi Cloud API Library, IaaS Fabric Controller, Open PaaS
Solution, Open PaaS Provider.

– Distribution Model: Open Source (for all solutions considered).



A Comparison Framework for Cloud Service Brokerage Solutions 5

Name

Multi IaaS 

Support

Multi 

Language / 

Multi 

Framework Multi Stack

Service 

Description 

Language

Native Data 

store

Native 

Message 

Queue

Programming 

Model

Elasticity 

Scalability 

QoS / SLA 

Monitoring 

Service 

Discovery / 

Composition Broker

Market-

Place

OpenNebula

OpenStack Y

libcloud Y

jclouds Y

simpleAPI Y

DeltaCloud Y

Cloudify Y Y Y Y Y Y Y

Mosaic Y Y Y Y Y Y Y Y

Cloud Foundry Y Y Y Y

OpenShift Y Y Y

CompatibleOne Y Y Y Y Y Y Y

4Caast Y Y Y Y Y Y Y

Optimis Y Y Y Y Y Y

CORE FEATURES ADVANCED FEATURESCORE CAPABILITES

Table 2. Open Source Clouds - Core Capabilities and Features/Components.

– Core Capabilities: Multi-IaaS Support, Multi Language / Multi Framework
Support, Multi Stack Support.

– Core Features/Components (development and deployment time): Service De-
scription Language, Native Data Store, Native Message Queue, Program-
ming Model, Elasticity & Scalability, QoS/SLA Monitoring.

– Advanced Features/Components: Service Discovery/Composition, Broker,
Marketplace – towards broker and marketplace features.

We chose these concerns to, firstly, broadly categorise the solution in terms of is
main function (the system type that indicates its target layer and central function
in that layer) and whether it is proprietary or open-source. Secondly, a range
of standard properties and individual components are singled out. Properties
chosen here (the Core Capabilities) refer to necessary capabilities for brokers to
integrate offerings. The two features categories organised a number of system
components into common and more advanced ones.

In the following we review various solutions with respect to three facets: archi-
tecture & interoperability, languages & programming, and quality. This format
allows us to drill down and compare using a more descriptive format. We will not
consider all 13 products initially compare, but only select the most advanced ones
for each aspect. This second, deeper and more descriptive classification schema
is based on three facets.

Architecture and Interoperability. The solution architecture is a key
element in the definition of a broker. Of practical relevance are the existing, typ-
ically lower-layer solutions that the system supports. This is an interoperability
concern. CompatibleOne is OCCI-compatible in its support for VM manage-
ment. For instance, Mosaic assumes a Linux OS, which runs Mosaic App Com-
ponents (called CloudLets). A number of common commercial cloud solutions
are supported by Mosaic, including Amazon and Rackspace products.

In Table 3, a number of PaaS-level solutions are summarised in terms of
these two aspects. Common are the utilisation of configuration management
solutions, such as Chef or GIT. The deployment is managed through consoles



6 Frank Fowley, Claus Pahl, Li Zhang

Cloudify CloudFoundry OpenShift Compatible1 4Caast

Archi-
tecture

- Console for
platform com-
mands. Web
management
console for mon-
itoring.
- Service Man-
ager uses script-
ing (recipe) to
cater for middle-
ware stack
- Cloud Con-
troller is REST
endpoint to
manage app
deployment &
control; injects
agent on VM
to install & or-
chestrate app
deploy/monitor/
scale
- Cloud Driver:
VM templates
for different
IaaS clouds in
configuration.
Triggers host
provisioning

- Console
pushes app to
cloud; deploy-
ment manage-
ment / configu-
ration through
console
- Controller
runs as a cloud
VM on the tar-
get IaaS; con-
trols all Cloud-
ify spawned
cloud VMs.
Does not man-
age IaaS layer
functions. The
IaaS provider
must support
Cloudify. Apps
created using
Cloudify are
deployed to
Cloudify VMs
controlled by a
cloud controller
on Cloudify-
compliant IaaS
clouds.

- Divided into
control plane
(Broker) and
messaging /
application
hosting in-
frastructure
(Nodes).
- Controller is
command CLI
shell, used to
create apps.
GIT for app
management /
deployment.
- Gear is appli-
cation con-
tainer and
a virtual
server/node
accessed via
ssh. Cartridge
service runs on
a Gear. App
LCM scripts
allow for post-
deployment
action hooks to
run on VMs.

- ACCORDS
exposes features
through REST
API.
- Parser val-
idates Man-
ifest against
CORDS schema
and maps ele-
ments to valid
OCCI categories
which are then
instantiated.
- Publisher pro-
vides which end-
point serves
which cate-
gories. Parser
runs and pro-
duces a plan of
OCCI instances
for resolution
(instance can
receive/send
data).
- Broker pro-
cesses plan
and invokes in-
stances.

- Execution
Container REC
runs instances.
- Deployment
Manager maps
deployment
model (service
template, QoS
constraints) to
OVF. Service
Manager de-
ploys images
using Claudia.
- REC includes
an agent (ap-
plication LCM,
control) and a
server (storage,
config data).
Deployment
Server (Chef)
talks to Ser-
vice and REC
Manager. OVF
Manager cre-
ates extended
OVFs from ab-
stract resolved
BluePrints.

Clouds
Sup-
ported
/
Inter-
oper-
ability

Supports Azure,
OpenStack,
CloudStack,
EC2, Rackspace,
Terramark
(buildable
for any of the
jclouds above)

Supports AWS,
vSphere, Open-
stack, Rack-
space. Is hosted
as public PaaS
on Cloudify.
Private cloud is
available.

Uses Delta-
Cloud; app
runs on Red-
Hat certified
public cloud
(needs delta-
cloud support).

OCCI provider
interfaces
(PROCCIs)
for OpenStack,
OpenNebula
and Azure (also
SlapOS and
SlapGrid).

FlexiScale
driver pro-
vided. Open-
Nebula sup-
ported. Generic
IaaS Cloud
API through
Tcloud.

Table 3. Architecture and Interoperability.

or APIs, mapping PaaS-level requests down to IaaS operations. As often many
IaaS solutions are supported, interoperability is a critical concern.

Languages and Programming. Service description plays a key role for in-
teroperability [27]. For selected solutions, we look at the following three aspects:

– service language – the core notation, including the coverage of concerns ver-
tically (PaaS/IaaS integration) and horizontally (full lifecycle management)
and how this is manipulated (format and API).



A Comparison Framework for Cloud Service Brokerage Solutions 7

– programming model – using the language to program brokerage solutions,
linking to SOA principles and other development paradigms.

– service engineering – covering wider design and architecture concerns, in-
cluding monitoring and mashups.

Cloudify, for instance, uses application recipes and resource node templates in
the form of Groovy scripts as the programming model. A service recipe contains
LCM scripts, monitoring probes and IaaS resources requirements. Mosaic uses an
OWL ontology as the notation and a component-based application programming
model for portability of apps across Mosaic-compliant clouds. More solutions
are compared in Table 4. Patterns emerge as solutions to compose, connect and
manage clouds in distributed contexts.

Quality. Scalability and elasticity are specific cloud concerns, and need to
be addressed by the service description notation. Load balancers are typically
used to control elasticity based on monitored key performance indicators (KPIs).
Multi-tenancy, if available, can alleviate elasticity problems. Based on specifica-
tions, these are looked after by configuration management tools to set up probes
and monitoring tools to collect and analyse data. Table 5 covers these concerns.

Summary. We can categorise the open-source solutions based on some of
the central aspects. This summarises a selection of currently available solutions
in terms of their support aims and allows us to identify trends. Developers are
supported in three categories: a) API library: libcloud, Jcloud, deltacloud, b)
Devops: Cloudify and c) Full PaaS: CloudFoundry, OpenShift. A trend goes from
provider-oriented solutions to developer-oriented solutions to end user-oriented
cloud management [2] – 4Caast being an example of the latter.

5 Challenges – Brokers, Markets and Federated Clouds

The need for interoperability becomes apparent in the context of cloud ser-
vice brokerage, where independent actors in the ecosystem integrate, aggre-
gate/compose and customise/adapt existing services [12, 20]. End-to-end person-
alisation becomes achievable. Prosumers create mashups from existing services.

From the above comparison between various cloud solutions, we can note a
difference between the needs of cloud brokerage and cloud marketplaces. We did
already introduce them as different patterns above.

– The brokerage needs to automate as far as possible the process of matching
service requirements with resource capacity and capabilities [32]. The ideal
would be a total commoditisation of IaaS so that any compute resource, be it
from a private OpenStack cloud or a public EC2 instance, could be plugged
into a user’s compute capacity. Therefore, interoperability will remain of im-
portance. In this regard, it is useful to look at new areas of compatibility that
should be considered in matching that are not handled by brokers currently.
For example, none of the three open-source solutions that were assessed con-
sidered data integrity as a matching criterion; however, they all included
performance in their criteria. Security policy is another aspect that has a



8 Frank Fowley, Claus Pahl, Li Zhang

Reservoir Compatible One 4Caast Optimis

Service
Language

Service Defini-
tion Manifest for
metadata; software
stack (OS, middle-
ware, app, config,
data) in a virtual
image; has service
descriptions for
contracts between
service provider SP
and infrastructure
provider IP.
Manifests (OVF)
relate abstract en-
tities and LCM /
operation of ser-
vices. Feedback
between SP and IP
allows IP to scale
and monitor.

Units of Service
Manifest: Image &
Infrastructure. Im-
age: System (base
OS) & Package
(stack config); In-
frastructure: Stor-
age, Compute &
Network. Image is
description of man-
ual app build. Im-
age has agent that
is embedded in VM
& runs on startup.
Agent is script to
run required con-
figuration, set up
monitoring probes,
or download com-
ponents.

Resources and Ser-
vices are described
in a Blueprint BP,
which is an ab-
stract description
of what needs to
be resolved into
infrastructure enti-
ties. BPs are stored
and managed in a
BP repository via a
REST API. A BP
is resolved when all
requirements are
fulfilled by another
BP, via the Reso-
lution Engine (is
service orchestra-
tion feature).

Service Manifest
includes sections
per component per
VM. Service Regis-
ter has sections for
SP requirements
and IP capabilities,
VM abstract de-
scription, TREC
(trust, risk, eco-
efficiency, cost),
elasticity, data pro-
tection. Optimis
also provides a
cloud provider de-
scription schema
for a SP to provide
its capabilities in
an XML Optimis-
compliant format.

Program-
ming
Model

Elasticity is defined
using ECA rules to
scale infrastructure
dynamically based
on application KPI
metrics. Rules in
OCL.

PaaS4Dev: Java
EE services (EE5/6
web profile) & En-
terprise OSGi ser-
vices (http, jndi,
transaction) for
development

Uses Active MQ,
postgresql, jonas,
ow2orchestra,
apache serv bus.
Ontology-based BP
schema using Jena,
SPARQL.

Java schemas, jaxb,
xmlbeans, REST,
monitor; also jax-
ws, cxf, javagat.
IDE is Eclipse with
plugin for Optimis
core classes.

Service
Engi-
neering

Service provision-
ing described in
Deployment De-
scriptor. Service
configuration au-
tomation based on
Xen configuration.
Service Elasticity
is achieved through
mapping Manifest
KPIs with run-time
metrics gathered
by app monitoring
agents.

- Nested manifests
support service
composition.
- COSACS mod-
ule embeds in VM
image mechanisms
to manage lifecy-
cle actions, e.g.
post-creation mon-
itoring setup and
appliance configu-
ration, in conjunc-
tion with image
production module.

- Request Lan-
guage BRL & re-
quest patterns cre-
ate Blueprint BP
service specifica-
tion - mapped to
cloud operations
and cloud mgmt
API calls. Mashup
for composition.
- BP consists of BP
images, contains
functional, KPI &
policy parameters.

Toolkit provides
image mgmt, con-
text manager in-
jects context in-
formation to VMs
and Elasticity En-
gine to add/remove
resources. Service
Deployment Op-
timiser optimises
placement of ser-
vices. Configu-
ration using the
Toolkit IDE.

Table 4. Service Language, Programming Model and Service Engineering.

technical nature, but is also abstract insofar as it can be implemented by a
cloud provider. Data integrity and security policy enforcement, if considered
as criteria when evaluating cloud interoperability, may need to be formalised
using a language to describe common aspects, similar to the languages that
have been created to model other cloud entities.



A Comparison Framework for Cloud Service Brokerage Solutions 9

CloudFoundry OpenShift Compatible1 4Caast Optimis

Elasticity
/ Scala-
bility

Can add/re-
move in-
stances for
scalability
and increase/
decrease CPU
& memory
limits on VMs

- Gears au-
tomatically
added/removed
as load changes
- Multi-tenancy
efficiency using
multi-gears on
same VM

Elasticity
is provided
by the load
balancer
module for
the IaaS
resources.

Not in current
release.

The toolkit in-
cludes an Elas-
ticity Engine to
add / remove
resources.

QoS /
SLA
Monitor-
ing

There is only
a basic log-
ging facility
with Cloud
foundry but
there are
many third-
party Cloud
Foundry mon-
itoring plug-
ins can be
used to pro-
vide applica-
tion monitor-
ing, such as
Hyperic.

The application
scaling, when
automatic, is
based on con-
current appli-
cation request
thresholds. The
amount of re-
sources con-
sumed by an
application can
be monitored
and viewed
from the Con-
sole.

via
COMONS
Monitoring
module.

Monitoring
based on probe
injection on
PICs via REST.
Modified JAS-
MINe frame-
work provides
dynamic probe
deployment &
config. Chef
recipe configs
VM probes to
be used by REC
manager. Mon-
itoring is based
on collectd stats
for forecasting.

Framework uses
REST to get
CPU/disk usage
from monitor-
ing. Monitors
reside on log-
ical/physical
nodes and run
as scripts to feed
data to moni-
tor store. SLA
Manager built
using WSAG4J
is implemen-
tation of OGF
WS-Agreement
standard.

Table 5. Quality: Scalability/Elasticity and SLAs.

– The marketplace will need to additionally focus on the architecture of the
applications as well as the cloud. The appstore model appears to be the de-
facto model of choice for the marketplace, but this seems more an admission
of the success of the Apple initiative rather than any research. There may be
a potential to explore other forms of the online marketplace suitable to cloud
apps and their composition [18, 10]. This could also be pushed to an even
more commodity-based scenario where all services could be registered on a
wide-area multi-marketplace scale facilitating an even greater eco-system.

Commoditisation. The commoditisation of cloud services is an emerging need
from the discussion above – specifically from the language and programming
facet. A trend is to move from the lower IaaS layer to PaaS and onwards to
encompass SaaS, aiming to integrate lower layers – 4CaaSt is an example. To
make this work, services at all layers need to be available for a uniform way of
processing in terms of selection, adaptation, integration and aggregation. Com-
moditisation is the concept to capture this need. Some concrete observations
related to the reviewed three open-source solutions are: fully functional image
and vertical stack building capabilities (CompatibleOne leadership), operational



10 Frank Fowley, Claus Pahl, Li Zhang

support of service composition (4CaaSt leadership) and graphical manipulation
of service abstractions (Optimis leadership). Facilitated can commoditisation be
through a uniform representation through description templates such as recipes,
manifests or blueprints. These need to cover the architecture stack and meet the
language and quality concerns discussed in Section 4. Commercial providers are
equally working on the commoditisation of cloud services as described above.

Commoditisation is an enabler of marketplace functions that sit on top of a
broker. Thus, additional challenges and requirements for marketplaces are:

– Data integration and security enforcement as non-functional requirements.
– Social network functions allow service ratings by the communities.
– SLA management to be integrated, e.g. in terms of monitoring results.

Commoditisation needs to be facilitated through an operational development and
deployment model. It therefore acts as an enabler. Trust is an equally important
concern that more difficult to facilitate technically than commoditisation. A
mechanism is needed for not only vetting individual providers, but also to allow
this to happen in layered, federated and brokered cloud solutions.

In another direction, there has not been a proliferation of cloud capacity
clearing-houses that would operate similar to a spot market to allow clouds to
buy and sell spare cloud capacity on a very short-term basis. It is not clear
what new areas of research would be needed to facilitate such a movement in
the cloud. It seems reasonable that, with the continued commoditisation of the
cloud by brokers and marketplaces, such a trend could be seen eventually.

Federated Clouds. Federation is the second requirement for brokerage solu-
tions [5], i.e. to work across independently managed and provided cloud offerings
of often heterogeneous nature. Challenges and requirements in this context aris-
ing from the architecture and interoperability discussion (the first facet) are:

– Reference architectures – e.g. NIST cloud brokerage reference architecture.
– Scope of control – the management of configuration and deployment based

on integrated and/or standards-based techniques [16].
– Federation and syndication – as forms of distributed cloud architectures [31].

6 Conclusions

We have introduced the main concepts of service brokerage for clouds, using
some concrete systems and platforms to identify current trends and challenges
and compare current, primarily open-source solutions. Brokerage relies on in-
teroperability, quality-of-service and other architectural principles. Brokers and
marketplaces will play a central role for new adopters migrating into the cloud
or between cloud providers [14, 28]. Brokers will act as first points of call.

A 2-pronged comparison framework is the first contribution where we pro-
vided a first categorisation scheme to characterise the solution in terms of type,
common components and features. The second scheme is a more descriptive,
layered taxonomy starting with architecture and interoperability, languages and
programming, and quality as facets.



A Comparison Framework for Cloud Service Brokerage Solutions 11

An observation of our comparison based on the framework is the emergence
of cloud broker solutions on top of cloud management. A further separation of
marketplaces, often in the form of appstores, is necessary. A number of activities
work in this direction. Compatible One is a good example showing how OCCI
is used as an infrastructure foundation and built upon to provider PaaS-level
brokerage. 4CaaSt in a similar vein aims to integrate the layers and move toward
a marketplace solution. Commercial solutions, such as DT and UShareSoft, show
already existing brokerage and marketplace solutions ranging from images to
software services, essentially commoditising the respective cloud resources.

Service description mechanisms discussed in [21, 30, 26] (in the form of mani-
fests, recipes and blueprints) , but also in standards like TOSCA and CloudML,
can serve to abstract, manipulate and compose cloud service offerings in an effort
to commoditise the cloud. These description mechanisms, based on an abstract
model serve two purposes: Firstly, to abstractly capture, present and manipulate
cloud resources. Secondly, to serve as a starting point to link to configuration
and other deployment concerns in federated clouds. Thus, commoditisation and
federation emerge as challenges from our discussion.

Acknowledgments. This research has been supported by the Irish Centre for
Cloud Computing and Commerce, an Irish national Technology Centre funded
by Enterprise Ireland and the Irish Industrial Development Authority.

References

1. 4Caast. 4CaaSt PaaS Cloud Platform. http://4caast.morfeo-project.org/. 2013.

2. T. Benson, A. Akella, S. Sahu, A. Shaikh. Peeking into the Cloud: Toward User-
Driven Cloud Management. CloudS 2010 Conference, Sydney, Australia. 2010.

3. D. Benslimane, S. Dustdar, A. Sheth. Services Mashups: The New Generation of
Web Applications. Internet Computing, vol.12, no.5, pp.13-15, 2008.

4. D. Bernstein, E. Ludvigson, K.Sankar, S. Diamond, M. Morrow Blueprint for the
Inter-cloud: Protocols and Formats for Cloud Computing Interoperability. Intl Conf
Internet and Web Appl and Services. 2009.

5. R. Buyya, R. Ranjan, R.N. Calheiros. Intercloud: Utility-Oriented Federation of
Cloud Computing Environments For Scaling of Application Services. Intl Conf on
Algorithms and Architectures for Parallel Processing , LNCS 6081. 2010.

6. Cloud Foundry. Open Source PaaS Cloud Provider Interface.
http://www.cloudfoundry.org/. 2013.

7. Cloudify. Cloudify Open PaaS Stack. http://www.cloudifysource.org/. 2013.

8. CompatibleOne. Open Source Cloud Broker. http://www.compatibleone.org/. 2013.

9. DeltaCloud. Deltacloud REST cloud abstraction API.
http://deltacloud.apache.org/. 2013.

10. C. Fehling, R. Mietzner. Composite as a Service: Cloud Application Structures,
Provisioning, and Management. Information Technology 53:4, pp. 188-194. 2011.

11. Forrester Research. Cloud Brokers Will Reshape The Cloud. 2012.
http://www.cordys.com/ufc/file2/cordyscms sites/download/09b57cd3eb6474f1fda
1cfd62ddf094d/pu/



12 Frank Fowley, Claus Pahl, Li Zhang

12. Gartner - Cloud Services Brokerage. Gartner Research, 2013.
http://www.gartner.com/it-glossary/cloud-services-brokerage-csb

13. C.N. Höfer, G. Karagiannis. Cloud computing services: taxonomy and comparison.
Journal of Internet Services and Applications, 2(2), 81-94. 2011.

14. P. Jamshidi, A. Ahmad, C. Pahl. Cloud Migration Research: A Systematic Review.
IEEE Transactions on Cloud Computing. 2013.

15. Jclouds. jclouds Java and Clojure Cloud API. http://www.jclouds.org/. 2013.
16. A.V. Konstantinou, T. Eilam, M. Kalantar, A.A. Totok, W. Arnold, E. Sniblel. An

Architecture for Virtual Solution Composition and Deployment in Infrastructure
Clouds. Intl Workshop on Virtualization Technologies in Distr Computing. 2009.

17. Libcloud. Apache Libcloud Python library. http://libcloud.apache.org/. 2013.
18. R. Mietzner, F. Leymann, M. Papazoglou. Defining Composite Configurable SaaS

Application Packages Using SCA, Variability Descriptors and Multi-tenancy Pat-
terns. Intl Conf on Internet and Web Applications and Services. 2008.

19. Mosaic. mOSAIC Multiple Cloud API. http://www.mosaic-cloud.eu/. 2013.
20. NIST. Cloud Computing Reference Architecture.

http://www.nist.gov/customcf/get pdf.cfm?pub id=909505. 2011.
21. D.K. Nguyen, F. Lelli, Y. Taher, M. Parkin, M.P. Papazoglou, W.-J. van den

Heuvel. Blueprint Template Support for Cloud-Based Service Engineering. Proceed-
ings ServiceWave11, Poznan, Poland, October 2011.

22. OpenNebula. OpenNebula - Open Source Data Center Virtualization.
http://opennebula.org/. 2013.

23. OpenShift. Cloud computing platform. https://openshift.redhat.com/. 2013.
24. OpenStack. OpenStack Open Source Cloud Computing Software.

http://www.openstack.org/. 2013.
25. Optimis. Optimis - Optimized Infrastructure Services. http://www.optimis-

project.eu/. 2013.
26. C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-Driven

Architecture. European Conf on Model-Driven Architecture ECMDA2005. 2005.
27. C. Pahl, S. Giesecke and W. Hasselbring. Ontology-based Modelling of Architec-

tural Styles. Information and Software Technology (IST). 1(12): 1739-1749. 2009.
28. C. Pahl, H. Xiong. Migration to PaaS Clouds - Migration Process and Architectural

Concerns. IEEE 7th International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems MESOCA 2013. 2013.

29. C. Pahl, H. Xiong, R. Walshe. A Comparison of On-premise to Cloud Migration
Approaches. Europ Conf on Service-Oriented and Cloud Computing ESOCC. 2013.

30. M.P. Papazoglou, W.J. van den Heuvel. Blueprinting the Cloud. IEEE Internet
Computing, November 2011.

31. A. Paya, D.C. Marinescu. Clustering Algorithms for Scale-free Networks and Ap-
plications to Cloud Resource Management. 2013.

32. L. Rodero-Merino, L.M. Vaquero, V. Gil, F. Galn, J. Fontn, R.S. Montero, I.M.
Llorente. From Infrastructure Delivery to Service Management in Clouds. Future
Generation Computer Systems, vol. 26, pp. 2261240. 2010.

33. simpleAPI. Simple API for XML. http://en.wikipedia.org/wiki/Simple API for XML.
2013.

34. L. Sun, H. Dong, and J. Ashraf. Survey of Service Description Languages and
Their Issues in Cloud Computing . Eighth International Conference on Semantics,
Knowledge and Grids (SKG) 2012. pp. 128-135. IEEE. 2012.


