2,962 research outputs found

    Transformation of UML Behavioral Diagrams to Support Software Model Checking

    Get PDF
    Unified Modeling Language (UML) is currently accepted as the standard for modeling (object-oriented) software, and its use is increasing in the aerospace industry. Verification and Validation of complex software developed according to UML is not trivial due to complexity of the software itself, and the several different UML models/diagrams that can be used to model behavior and structure of the software. This paper presents an approach to transform up to three different UML behavioral diagrams (sequence, behavioral state machines, and activity) into a single Transition System to support Model Checking of software developed in accordance with UML. In our approach, properties are formalized based on use case descriptions. The transformation is done for the NuSMV model checker, but we see the possibility in using other model checkers, such as SPIN. The main contribution of our work is the transformation of a non-formal language (UML) to a formal language (language of the NuSMV model checker) towards a greater adoption in practice of formal methods in software development.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    An Evaluation of Inter-Organizational Workflow Modelling Formalisms

    Get PDF
    This paper evaluates the dynamic aspects of the UML in the context of inter-organizational workflows. Two evaluation methodologies are used. The first one is ontological and is based on the BWW (Bunge-Wand-Weber) models. The second validation is based on prototyping and consists in the development of a workflow management system in the aerospace industry. Both convergent and divergent results are found from the two validations. Possible enhancements to the UML formalism are suggested from the convergent results. On the other hand, the divergent results suggest the need for a contextual specification in the BWW models. Ce travail consiste en une évaluation des aspects dynamiques du language UML dans un contexte de workflow inter-organisationnel. Le choix du language par rapport à d'autres est motivé par sa richesse grammaticale lui offrant une très bonne adaptation à ce contexte. L'évaluation se fait par une validation ontologique basée sur les modèles BWW (Bunge-Wand-Weber) et par la réalisation d'un prototype de système de gestion de workflows inter-organisationnels. À partir des résultats convergents obtenus des deux différentes analyses, des améliorations au formalisme UML sont suggérées. D'un autre coté, les analyses divergentes suggèrent une possibilité de spécifier les modèles BWW à des contextes plus particuliers tels que ceux des workflows et permettent également de suggérer d'autres améliorations possibles au langage.Ontology, Conceptual study, Prototype Validation, UML, IS development methods and tools., Ontologie, étude conceptuelle, validation du prototype, UML, méthodes et outils de développement IS

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Semantics and Verification of UML Activity Diagrams for Workflow Modelling

    Get PDF
    This thesis defines a formal semantics for UML activity diagrams that is suitable for workflow modelling. The semantics allows verification of functional requirements using model checking. Since a workflow specification prescribes how a workflow system behaves, the semantics is defined and motivated in terms of workflow systems. As workflow systems are reactive and coordinate activities, the defined semantics reflects these aspects. In fact, two formal semantics are defined, which are completely different. Both semantics are defined directly in terms of activity diagrams and not by a mapping of activity diagrams to some existing formal notation. The requirements-level semantics, based on the Statemate semantics of statecharts, assumes that workflow systems are infinitely fast w.r.t. their environment and react immediately to input events (this assumption is called the perfect synchrony hypothesis). The implementation-level semantics, based on the UML semantics of statecharts, does not make this assumption. Due to the perfect synchrony hypothesis, the requirements-level semantics is unrealistic, but easy to use for verification. On the other hand, the implementation-level semantics is realistic, but difficult to use for verification. A class of activity diagrams and a class of functional requirements is identified for which the outcome of the verification does not depend upon the particular semantics being used, i.e., both semantics give the same result. For such activity diagrams and such functional requirements, the requirements-level semantics is as realistic as the implementation-level semantics, even though the requirements-level semantics makes the perfect synchrony hypothesis. The requirements-level semantics has been implemented in a verification tool. The tool interfaces with a model checker by translating an activity diagram into an input for a model checker according to the requirements-level semantics. The model checker checks the desired functional requirement against the input model. If the model checker returns a counterexample, the tool translates this counterexample back into the activity diagram by highlighting a path corresponding to the counterexample. The tool supports verification of workflow models that have event-driven behaviour, data, real time, and loops. Only model checkers supporting strong fairness model checking turn out to be useful. The feasibility of the approach is demonstrated by using the tool to verify some real-life workflow models

    Challenges and Directions in Formalizing the Semantics of Modeling Languages

    Get PDF
    Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) for supporting model-driven engineering. Even though these tools facilitate the automation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools

    A software architecture for autonomous maintenance scheduling: Scenarios for UK and European Rail

    Get PDF
    A new era of automation in rail has begun offering developments in the operation and maintenance of industry standard systems. This article documents the development of an architecture and range of scenarios for an autonomous system for rail maintenance planning and scheduling. The Unified Modelling Language (UML) has been utilized to visualize and validate the design of the prototype. A model for information exchange between prototype components and related maintenance planning systems is proposed in this article. Putting forward an architecture and set of usage mode scenarios for the proposed system, this article outlines and validates a viable platform for autonomous planning and scheduling in rail

    Formal Object Interaction Language: Modeling and Verification of Sequential and Concurrent Object-Oriented Software

    Get PDF
    As software systems become larger and more complex, developers require the ability to model abstract concepts while ensuring consistency across the entire project. The internet has changed the nature of software by increasing the desire for software deployment across multiple distributed platforms. Finally, increased dependence on technology requires assurance that designed software will perform its intended function. This thesis introduces the Formal Object Interaction Language (FOIL). FOIL is a new object-oriented modeling language specifically designed to address the cumulative shortcomings of existing modeling techniques. FOIL graphically displays software structure, sequential and concurrent behavior, process, and interaction in a simple unified notation, and has an algebraic representation based on a derivative of the π-calculus. The thesis documents the technique in which FOIL software models can be mathematically verified to anticipate deadlocks, ensure consistency, and determine object state reachability. Scalability is offered through the concept of behavioral inheritance; and, FOIL’s inherent support for modeling concurrent behavior and all known workflow patterns is demonstrated. The concepts of process achievability, process complete achievability, and process determinism are introduced with an algorithm for simulating the execution of a FOIL object model using a FOIL process model. Finally, a technique for using a FOIL process model as a constraint on FOIL object system execution is offered as a method to ensure that object-oriented systems modeled in FOIL will complete their processes based activities. FOIL’s capabilities are compared and contrasted with an extensive array of current software modeling techniques. FOIL is ideally suited for data-aware, behavior based systems such as interactive or process management software
    corecore