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FORMAL OBJECT INTERACTION LANGUAGE:
MODELING AND VERIFICATION OF SEQUENTIAL AND CONCURRENT
OBJECT-ORIENTED SOFTWARE

By

JASON ANDREW PAMPLIN

Under the Direction of Ying Zhu

ABSTRACT

As software systems become larger and more complex, developers require the
ability to model abstract concepts while ensuring consistency across the entire project.
The internet has changed the nature of software by increasing the desire for software
deployment across multiple distributed platforms. Finally, increased dependence on
technology requires assurance that designed software will perform itsintended function.

This thesis introduces the Formal Object Interaction Language (FOIL). FOIL isa
new object-oriented modeling language specifically designed to address the cumulative
shortcomings of existing modeling techniques. FOIL graphically displays software
structure, sequential and concurrent behavior, process, and interaction in a ssmple unified
notation, and has an algebraic representation based on a derivative of the n-calculus.

The thesis documents the technique in which FOIL software models can be
mathematically verified to anticipate deadlocks, ensure consistency, and determine object

state reachability. Scalability is offered through the concept of behavioral inheritance;



and, FOIL’s inherent support for modeling concurrent behavior and all known workflow
patterns is demonstrated. The concepts of process achievability, process complete
achievability, and process determinism are introduced with an algorithm for simulating
the execution of a FOIL object model using a FOIL process model. Finally, a technique
for using a FOIL process model as a constraint on FOIL object system execution is
offered as a method to ensure that object-oriented systems modeled in FOIL will
complete their processes based activities. FOIL’s capabilities are compared and
contrasted with an extensive array of current software modeling techniques. FOIL is
ideally suited for data-aware, behavior based systems such as interactive or process

management software.

INDEX WORDS:  object-orientation, Formal Object Interaction Language (FOIL),
concurrency, n-calculus, process verification, behavioral
inheritance, formal methods
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1. INTRODUCTION

The use of computers for information management is still in its infancy. While many
advances have been made in the last four decades, it is obvious by looking at the history of other
sciences that this is not very long. COBOL was the first widely adopted language developed
specificaly with the intent of managing information, but was mainly centered on the storage,
access and viewing of data. A milestone in data management technology occurred in 1970 with
the advent of the relational database [1] and the entity-relationship diagram offered in 1976 [2].
Structured query language (SQL) provided the ability to retrieve data from files quickly and
easily; however, improvements in this form of data storage peaked in the early 1990’s. The
addition of new features such as different programming language support and generic drivers,
while making access and programming to such systems easier, does not really enhance what can
be done with the technology.

The limitations of the relational database management system (RDBMS) gave rise to a
need for even more expressiveness in the data representation mechanism. Thus, while object-
oriented languages have existed since the 1960’s, their real benefit has not been fully realized.
The creation and rapid adoption of Java as a programming language shows that developers of
information management systems can use more expressiveness in their data modeling than a
relational model could provide. Recent development and research points toward the adoption,
over time, of full-fledged object management systems (OMS). There are aready severa

commercially available object management systems.



Process modeling has taken a very different development path from that of information
management. As a field of study, it is much older. Ancient civilizations produced amazing
structures through the method of partitioning work into smaller tasks and forming a project by
aggregating these pieces in the correct order or sequence. Modern process improvement and
management came about during the industrial revolution of the mid-1800’s when automation of
some tasks by machine could be considered. The computer, especially the personal computer, is
a machine that can automate administrative tasks in the same way that manual labor was
automated in the previous century. The modeling of processes to be automated by computer
naturally used the same methods as those used in machine-driven automation. Since early
computers lacked the ability to execute anything but a purely procedural model (hence the use of
procedural programming languages), this was not a serious problem. Thus, process modeling
technigques continued to improve, but remained primarily procedural in nature.

Today, procedural programming languages have largely been abandoned when projects
require a large amount of code. Several million lines of procedurally-based code become
unmanageable because developers lack the ability to memorize the code. Object-oriented
software allows developers to model systems like the real world that they aready know, thus
providing easier management and comprehension of large projects. But, process modeling,
primarily performed by business analysts, has continued along its procedural-oriented
trajectory. As information management progresses toward a purely object-oriented
architecture, compatible techniques for managing the next layer (i.e. the business layer) must

be adopted.



The Formal Object Interaction Language (FOIL), presented in this thesis, was devel oped
with this goal in mind — to provide a comprehensive object-oriented framework for sequential
and concurrent systems with a formal mathematical representation that can be used for
verifying corresponding process models. The following introductory sections summarize the
current practice, set forth design goals, and define FOIL, concluding with the expected

contribution of thiswork.

1.1 Motivation

Object-oriented software architecture has become the dominant architecture of choice for
large software systems [3] over the last half-century. Modeling of object-oriented systems was
made easier with the advent of the unified modeling language (UML) class diagram [4] which
allowed for specification of objects and their relationships to each other in a way that could be
used to generate code for production. Thus, UML has offered a significant improvement in
specifying, documenting, and producing high-quality software.

UML is not, however, an ideal solution for modeling all software system types. In
particular, software systems having high behavioral characteristics, as compared with their data
and data manipulation requirements, become cumbersome and error-prone using UML,
especialy if the behavior of the system has a significant degree of paralelism. UML requires a
large number of diagrams to completely specify a system’s behavior and generally requires full
structural specification to be completed first. Additionally, there is no inherent mechanism to
ensure that the various diagrams are consistent.

This problem of diagram consistency is especially poignant when ensuring that the

business requirements as provided by analysts are consistent with structural and behavioral



requirements as provided by developers. This has relegated many in the field to refer to such
ability to ensure congruency as “art”. Yet, in other engineering disciplines, the artistic aspects of
design have more to do with solving problems associated with difficult or complex functionality
while maintaining aesthetic appeal. The assurance that adesign will perform its desired function
once built is, in other engineering disciplines, decidedly more methodical and computational in
nature.

The ability to model an object’s behavior isa prime concern as part of ensuring quality
performance and accuracy during implementation. Yet, in an age of increasing use of mobile
and distributed systems, few modeling techniques provide intuitive notations for representing
concurrent behavior and interaction. Even fewer have a formal semantic for mathematically
understanding this concurrent behavior once modeled. Of the modeling frameworks that do have
these characteristics, many of them are difficult to read or have limited or no object-orientation.

In structural modeling, a diagram should show the data requirements as well as the
relationships between data. Behavioral modeling must support concurrency to ensure that its
expressiveness is sufficient. The model must support a process modeling capability that has the
ability to be verified against the structural and behavioral aspects of the model. Historically,
attempts to create a hybrid graphical modeling language have resulted in severe concessions of
these requirements.

A detailed review of previous research in this areais given in chapter 2.

1.2 Design Goals

On one end of the software modeling spectrum is the Entity-Relationship (E-R) diagram

[2] from which the UML class diagram is derived [5]. The E-R diagram is the most basic



structural software representation, since a database, in its simplest form, does not exhibit
behavior. The E-R diagram is easy to read and understand, and has relational algebra as aformal
underpinning. These characteristics have made the E-R diagram a proven, time-tested modeling
notation. The E-R diagram naturally led to the Unified Modeling Language (UML) class
diagram. This transition disposed of any rea mathematical basis for the language, but its
simplicity and ability to specify the concrete and abstract structure of software has made it a
resounding success.

On the opposite end of the software modeling spectrum is the Petri-net [6]. The Petri-net
is presumably the most basic behavioral software representation. It has no problem modeling
complex concurrent behavior and has an underlying mathematical foundation to minimize
modeling errors and verify correctness. The notation has a small symbol set and is relatively
easy to comprehend. These characteristics have made the Petri-net diagram a proven, time-
tested modeling notation. Due to its ability to model concurrent behavior and general lack of
structural specification, Petri-nets have been primarily used for process modeling.

The E-R diagram has no mechanism for modeling a software system’s behavior. The
Petri-net, on the other hand, is strictly behavioral in its modeling and only accounts for data
indirectly, meaning that additional data-based decisions in system behavior require extension of
the model to include new places, transitions and tokens. Neither diagram is object-oriented,
making comprehension and scalability of large models difficult. Object oriented modeling
techniques such as UML do not inherently support aformal semantic.

Despite their shortcomings, these major software modeling frameworks have all enjoyed

extended and wide-spread success. Based on the success of these modeling frameworks, the



hallmarks of a long-lasting and widely accepted graphical software modeling language would

be:

e ability to model software structure

e object-orientation

e simple easily-understandabl e notation

e inherent support for concurrency

e ahbility to model system processes

e an underlying mathematical basis

However, if a single uniform modeling language could meet all of these requirements,

then there are other logical extensions that would follow. For instance, if behavior and process
can be modeled then a more refined version of inheritance could be offered that comprises more
than mere structural conformity. Finally, if the modeling of various aspects of software
development — structure, behavior, and process — can be either integrated or verified against each

other, then full software system verification can be performed.

1.3 Formal Object Interaction Language

This thesis presents the Formal Object Interaction Language (FOIL). FOIL graphically
displays software structure, sequential and concurrent behavior, process, and interaction in a
simple unified notation, and has an algebraic representation based on a derivative of the z-
calculus[7, 8]. Thisgives FOIL significant practical advantages over other graphical modeling
languages, particularly for data-aware, behavior-based systems.

The FOIL notation borrows what is good in the Unified Modeling Language (UML) and

adds a small set of symbols to allow the modeling of a class’s behavior. Thus, in addition to



providing the structural detail of a system’s attributes and methods, a FOIL model provides a

much more expressive picture of an object’s:

e Instantiation — when, how and under what conditions objects are created at
runtime;

e Behavior — how objects perform their work both internally and in relation to
other objects;

e Collaboration — how objects interact with one another to perform work; and
e Constraints— the conditions necessary for object behavior.
The added behavioral notation in FOIL allows for expressing the internal control flow of

an object including the splitting and merging of threads of execution. This ability to model
concurrent behavior within an object is distinctive, but FOIL’s support for concurrent processing
of multiple instances of objects makes it truly unique. This behavioral notation alows for a
more specific type of inheritance where objects are not generalized based on mere interface
conformity but must also conform in their general behavioral characteristics.

The concurrent object modeling capability of FOIL has a well-defined mathematical
representation derived from a well-known and time-tested calculus. This mathematical
representation allow for the creation of laws, forms, and operations to be applied to the object
model. This allows for the building of complete system expressions. Based on these
expressions, certain properties of the object system, such as state reachability, deadlock
capability and inherent inconsistencies, can be identified. Additionally, algebraic reductions can
be done on these expressions during run-time to track full system state in an efficient manner.
Most importantly, with the addition of some simple rules, the acceptability of certain behavior by

a system can be determined and enforced to ensure that object systems perform as designed.



FOIL also supports a process modeling notation to allow for specifying what work a
system is designed to perform. This provides a link between what is modeled in an object-
oriented fashion and what is expected from a procedural standpoint. The FOIL process modeling
notation is nearly identical to that used for the structural and behavioral specification of the
object system. This makes FOIL the only graphical modeling language to use the exact same
notational elements to represent the structural, behavioral and procedural aspects of a system.

Finaly, a FOIL process model has an underlying algebraic representation whose
construction isidentical to that of an object model, allowing a single construction algorithm to be
used for both. This process expression can be analyzed through a simulation technique to
determine if a given object model can perform the provided process (achievability). More
detailed analysis can show if a process can be determined to always complete (process
determinism) or whether a process can complete regardiess of independent internal control flow
for a given object model (complete achievability). Most import, if a process model exhibits
complete achievability against an object model, the algebraic process expression can be used as

an enforcement constraint on object system execution to ensure that processes will complete.

1.4  Contribution and Application

The Formal Object Interaction Language (FOIL) is designed to be a complete and
comprehensive graphica modeling language. FOIL is meant to have a user friendly graphical
notation while providing more expressive power. It was intended that FOIL be able to model
structure, behavior and process with a single notation, and with a common mathematical
underpinning. Complete support for behaviora inheritance and concurrency were key design

goals. Finally, the ability to verify that a process can be completed by an object model is a



unique advantage. It is likely that there are modeling languages and frameworks that are
superior to FOIL in one or more of these areas. This thesis was specifically written to show that
FOIL isuniqueinits ability to perform well in ALL of these major design areas.

It is understandable that attempting to combine the structure, behavior, and process
aspects of software into a single modeling framework would require trade-offs. But, most
attempts to do so have resulted in major concessions in simplicity, expressiveness or formality
which are the hallmarks of modeling frameworks that have experienced wide-spread acceptance
and longevity.

Combining various aspects of a software system’s structure, behavior, and process into a
unified modeling notation have been attempted [9-16], but have had significant difficulties. One
of the primary advantages of the UML class diagram is its simplicity [17]; thus, a new notation
should have a small number of notational elements to maintain this quality. But, a new notation
must also be expressive enough to provide for a detailed comprehension of the objects’ behavior,
both by humans and the underlying computational system. The FOIL notation (chapter 3) does
this while adding only four new symbol types.

1.4.1 Single Unified Notation

Efforts have been made to combine various functional aspects of UML modeling
diagrams, to form a more compact representation of a system. In 1991, shortly after the rise of
UML, the object behavior diagram [16] was offered as a solution for compact representation,
essentially combining the class and state diagrams (structural and behavioral aspects). A more
recent effort was called object charts [12], and combined these two diagrams with more detail.

The TROLL object-oriented specification language [13] allows for the combination of structure,
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behavior and process, but this language has been primarily textual with no completely defined
graphical notation.

Efforts to combine the process and structure of software have also been offered. One
method involved making UML activity diagrams object-oriented [18]. Another attempt at
improving compactness was the development of object process methodology (OPM) [19], which
combines the structural and process aspects of a system into a single diagram. Object
Connectivity Nets (OCoN) [9] were developed to combine structural, process, and behavioral
aspects of a system.

While all of these modeling systems have made progress toward a single-diagram
notation, they all have significant drawbacks in one of two areas. mathematical basis or
concurrency. The Formal Object Interaction Language (FOIL) offers a single-diagram notation
without sacrificing mathematical basis, concurrency modeling, or object-orientation.

1.4.2 Concurrency

In UML, concurrency is supported at the process level through the activity diagram but
modeling parallel operations on object states in the lower levels of system design requires the
insertion of written notations. Object behavior [16] and object chart [12, 14] models assume that
an object isin asingle state; thus, these models do not support concurrency. The OPM [19] aso
has difficulty expressing concurrency. The Object Petri-net [15] is a successful blending of the
concurrency modeling notation of Petri-nets with object-oriented design.

1.4.3 Expressive Power

A fully-expressive modeling system is able to correctly model al known types of event
patterns [20], such as those with concurrency and resource dependency. It is chalenging to

model all patterns without adding additional complexity to the modeling framework. For
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example, UML models some of the more complex patterns by placing textual annotations on top
of the graphical model [21]. It is desirable for the modeling framework to have sufficient
expressive power to model complex patterns without sacrificing usability or formal semantic.

OCoN [9] models, with their very compact notation, are not suitable for complex
patterns. In particular, concurrency is difficult to represent. In practice, all examples of OCoN
models show sequential patterns. Object petri-nets [15] have excellent expressive power,
showing concurrency and resource dependency easily. They have been demonstrated, in
workflow modeling, to effectively model all known patterns. However, this expressive power
comes with much complexity, as additional places, transitions and tokens are required for each
resource dependency.

In addition to the above modeling systems, there are many others that are expressive
enough to show all known patterns, many of these aso supporting forma methods [22-24].
Some of these modeling frameworks lack a simple notation, or they only model process,
neglecting structure and behavior. FOIL is based on =-calculus which has concurrency as its
main advantage (chapter 4). Thus, FOIL easily handles concurrency while maintaining a simple
object-oriented notation (chapter 5) that models structure, behavior and process (chapter 7).
FOIL aso has the expressive power to model all known workflow patterns (chapter 6).

1.4.4 Application

FOIL is a non-activity-centric model. Developers can work in an environment for
process modeling that is closest to how they model systems. But, probably the most important
aspect of this difference applies to how large organizations develop their processes. Using FOIL,
individual groups can define and manage the processes for individual objects under their charge.

They can respond to events that other groups respond to, but they define and control only their
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objects when such events are received. The system can aggregate these actions to events to form
the typical UML Activity diagram. This meansthat a single individual who under stands the
complete process diagram for an entire organization is no longer required. This has
profound ramifications to the devel opment, management and maintenance of the FOIL system.
E-commerce, Enterprise Resources Planning (ERP) and workflow systems are just a few
examples of software that require data manipulation, have a high behavioral component, are
distributed and thus require the concept of concurrency, and need to be verifiable. These systems
are becoming larger and more common. Yet, there is significant room for improvement in
modeling data-aware, behavior-based systems that require concurrency. FOIL offers a complete

modeling framework that fills the gap left by current modeling approaches.
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2. BACKGROUND AND RELATED WORK

Design goals for software modeling languages discussed in section 1.2 include object-
orientation, capability to model process, support for concurrency and a formal mathematical
basis. Many software modeling tools have been developed that include some or all of these
features. The following sections include a discussion of the best currently available models for
meeting each of these goals individually. To conclude this chapter, special attention is given to
the modeling methods that meet more than one goal. A thorough review of pertinent literature
suggests that there is no comprehensive modeling language which adequately meets all of the
given design goals. The Formal Object Interaction Language (FOIL), as described beginning in

chapter 3 has al of these desirable characteristics.

2.1  Object-Orientation

Object-oriented systems have been around for nearly 40 years and have been shown to be
the modeling method of choice for large software systems. The task of comprehending very
large systems comprised of nothing but functions quickly becomes overwhelming. Object-
oriented modeling alows programmers to comprehend software in the same way they
comprehend everything else. Objects are created and, once created, they may interact with other
objects. The concept of encapsulation is also familiar, as many real world objects have internal

parts which, when performing as they should, can not be accessed by the average user.
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2.1.1 The Case for Object-Orientation

There are multiple reasons to use an object-oriented approach to building software.

Among them are:

e Increased code-reuse through generalization relationships

e Simpler code through the use of polymorphism

e Developer and user safety provided by encapsulation and data hiding

e Well defined application programming interface

e Current popularity

e Waell-studied repository of known design patterns

The largest advantage of object-oriented design is the concept of real-world modeling.

Object-oriented design simplifies requirements gathering. Such gathering is a matter of
identifying the objects at work and determining their communication to each other. It is
understood that there are other methods for software architecture, such as Aspect-Oriented and
Service-Oriented; however, Object-Oriented (OO) software architecture has become the
dominant method of choice for large software system development [3] over the last half-century.

2.1.2 Unified Modeling Language (UML)

Modeling of object-oriented systems was made easier by the advent of the unified
modeling language (UML) class diagram which allowed for specification of objects and their
relationships to each other in a way that could be used to generate code for production. The
benefits in the specification improvements as well as the reduction in time spent coding basic
functionality into software was impressive.

The history of the UML class diagram, as well as object-oriented programming
languages, revedls that these techniques are really just layers added to the previoudy defined

technology. Thisisintuitive sinceit is clear that a computer simply executes a series of ordered
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instructions and thus in itself has no concept of an object, class, inheritance, etc. These are
merely abstractions built onto an existing functional programming framework. This is actualy
true of the UML class diagram aswell. The similarities between the UML class diagram and the
Entity-Relationship diagram are hardly coincidental.

2.1.3 Modeling Structure

In 1970, it was proposed that users should not have to know the internal structure of data
on computer systems in order to access that data in a meaningful way. Thus, a relational
abstraction was offered to achieve this purpose [1]. This later resulted in the creation of the
structured query language (SQL) and the data definition language (DDL). Its simple grammar
and easy-to-learn semantic has made it the most widely used programming language in the
world. Surprisingly, the diagrammatic representation of this relational model was not offered
until six years later in the form of the entity-relationship (ER) diagram [2]. The idea of
abstracting data into an intuitive framework was brilliant and alowed the continued
improvement of data management architectures without having to worry about whether users of

such systems would have to keep up.
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Advances in data storage technology continued with IBM and Oracle as the main players.
This handled the problem of data complexity to some degree, but application code bases
continued to grow and organizations increasingly found it difficult to manage them. Object-
oriented software had been around since 1967 with the creation of Simula-67 but was not in wide
use. The introduction of C++ by Bell Labs brought object-oriented programming to the
mainstream; however, it was not until the mid-80’s that modeling of object-oriented technol ogy
was offered. Object-oriented design offered many advantages over the traditional methods,
despite the fact that there are minor differences in how such modeling is done [4, 25].

The basic concept of the
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Connecting lines between classes show the relationship that classes have to one another. These
lines have different shapes on the end of them to indicate what type of relationship exists
between different classes.

In recent years, the concept of object

Class1

persistence has been studied. Persistence is the

permanent writing of an object to disk such that

this object can be recreated from that data at a later Association Generalization
time. It is easy to see that an ER diagram with a

table existing for al persistent objects could be Aggregation Implementation
easily constructed. Likewise, an ER diagram can

Composition Dependency

be transformed into an object diagram with _’ ........... >
additional information required. In fact, there are Figure2.2 Class Diagram L egend

several frameworks that do this. Thus, for the set of persistent objects in a system, a class
diagram represents a superset of detail required for an ER diagram [26].

The fact that the data relationship can be inferred by the object relationship has resulted
in the development of pure object management systems. These systems allow one to define
objects with attributes, methods and relationshipsin a DDL-like language called object definition
language (ODL). Similarly, one can query this system to retrieve actual instances of objects
using the object query language (OQL) [27]. Many implementations are built on top of a
relational database system.

2.1.4 Modeling Behavior

The behavior of objects is a determination of what happens to objects as activities are

performed on them. Thus, this ties process to objects. It could be argued that process can be
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inferred from the recorded changes to object condition. Thisis the basis behind the technique of

process mining [28]. It is safe to assume that the reverse it not true.
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reached Floor timeout floor button pressed
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Figure 2.3 UML State Diagram for Elevator

The main method in UML for modeling behavioral changes to objects is the state
diagram. The state diagramsin UML are basically comprised of boxes that represent states of an
object. Inthisbox isalist of events that cause transitions to other states. These transitions are
represented by arrows. Attached to these arrows may be conditions that are evaluated to
determine which transition is to be taken. Figure 2.3 shows an example of a UML state diagram.

It is interesting to note that the UML state diagram has no formal basis thus making
correctness difficult to determine. It should be obvious from this statement that the state diagram
offered by UML is not the same as that traditionally associated with finite state automata for
which a well understood formal semantic exists. Non-determinism is difficult to model in the
UML-style state diagram. This means that objects can generally never be in multiple states at

the same time. While it is true that any system can be modeled in a deterministic way, it is aso
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true that non-deterministic modeling can offer significant simplification of complex state
changes. Since the state diagram (offered as optional for simple objects) is recommended for
complex object behaviors, it stands to reason that this sort of modeling simplification would be
needed.

The limitations of the state diagram have a direct impact on modeling processes
themselves. Suppose for instance that three activities must be completed before an object’s state
changes to complete but the order of these activities in unimportant. From a workflow
perspective this is a relatively simple pattern consisting of a parallel split followed by a
synchronizing merge. However, with no ability to be in multiple states at once, how does one
determine what has and hasn’t been done to the object by looking at its state? The UML state
diagram could be modeled to account for this but it would consist of six states. Asthe number n
of prerequisites for completion increase, the number of states required to model this condition
increases as afactorial of n.

So, what is the next layer in programming simplification? It seemsthat if object-oriented
(O0) systems are comprised of a series of interactions between various objects, then modeling of
the behavior of those objects would be beneficial. This is especialy true if one considers the
number of attributes and methods required in each object smply to store and modify and object’s
state. There are OO design patterns that can be used to make the state-based tracking of objects
easier but the modeling of such abstractions make comprehension of what an object is actually
doing quite difficult.

Interactive software systems can be especialy hard to model as there are requirements for

when and how objects can change state. Interactive systems of this nature are really a form of
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discrete event system; however, in such a system, the developer does not necessarily have
control of when events will be received by the software. Thus, objects must be able to verify that
they are in the correct state to respond to events. In addition, the system should be able to verify
that processing of an event will not put the object or system in an unstable or deadlocked state.
Thus, a modeling notation that can support an underlying formal semantic is preferable.

Creating a new notation that shows a class’s structure and behavior in a single diagram
with support for aformal semantic is difficult. One of the primary advantages of the UML class
diagram isits simplicity; thus, a new notation must have alimited number of notational elements
to maintain this quality. But, a new notation must also be expressive enough to provide for a
detailed comprehension of the behavior of the objects both by a human and an underlying

computational system.

2.2  Process Modeling

Process modeling is generally associated with an understanding of the dynamic behavior
of an organization, business or system [29]. This should not be confused with the behavior of an
individual object or entity within the system. A process model represents the “big picture” idea
of what the business or system is actualy accomplishing. This is highly useful in an
organizational setting as it allows for analysis of whether or not the organization’s goals are
actualy being met by the technology in use. In fact, it is a common (but not necessarily
recommended) [18] practice to create a process model after a system is in place and functioning
in order to determine what it is actually accomplishing.

The process model, while indispensable in analyzing organizational effectiveness, is not

sufficient for the compl ete specification of a software system. There are severa reasons for this.
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For starters, process models do not, in and of themselves, contain the necessary level of detail
required to completely specify asystem. Thisis especially true for systems that are implemented
in an object-oriented fashion. This means that the system is a combination of objects which
communicate with each other in order to perform a particular task. This detail is generally not
captured by a process model and, indeed, is not really even desired. Analysts, in general, are not
concerned with the underlying implementation details. Rather they are generally anayzing
whether organization goals are being met.

The historical approach to modeling a process or workflow is “activity” based. Thisis
natural since most definitions of the term workflow deal with the sequencing of tasks (activities)
for performing a given job. The terms “job”, “task”, “activity” and “process” are often used in
interchangeable and confusing ways. There are currently two major standards bodies working on
process modeling. The object management group manages the standard for the unified modeling
language (UML) while the Business Process Management Initiative (BPMI) manages the
business process diagram (BPD) standard. Both of these groups have similar approaches to
dealing with workflow modeling but noticeable differencesin their notational technique. Neither
of these standards can model all of the workflow execution patterns identified by recent research.

2.2.1 Workflow Patterns

When most people think of workflow or process they generaly think of a sequential set
of activities performed by one or many individuals in a particular order. While thisis certainly
accurate in some instances it is an overly simplistic understanding of the problem. Since
activities can be performed by one or more individuals, it is logical to assume that greater
productivity can be gained by having separate individuals perform non-resource dependent

activities concurrently. This is indeed the case; however, the complexity can continue to be
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compounded by the fact that resource dependency is not always predictable. The result is
multiple patterns of workflow execution that can be quite complex.

Valuable and long-term research has been done on the various patterns that emerge in the
process of modeling actual workflows. These have been collected and validated over many
years through the input of people and organizations with actual experience in modeling business
processes. These patterns range from simple to complex and offer significant challenges in
finding a modeling technique with enough expressive power to accommodate all of them. The

following list of collected workflow patterns  comes  directly from

2.2.1.1 Basic Control Patterns

e Sequence - execute activities in sequence
o Parallel Split - execute activitiesin parallel
e Synchronization - synchronize two parallel threads of execution
e Exclusive Choice - choose one execution path from many alternatives
e Simple Merge - merge two alternative execution paths
2.2.1.2 Advanced Branching and Synchronization Patterns

e Multiple Choice - choose severa execution paths from many alternatives

e Synchronizing Merge - merge many execution paths. Synchronize if many
paths are taken. Simple merge if only one execution path is taken

e Multiple Merge - merge many execution paths without synchronizing

e Discriminator - merge many execution paths without synchronizing. Execute
the subsequent activity only once

e N-out-of-M Join - merge many execution paths. Perform partia
synchronization and execute subsequent activity only once

2.2.1.3 Structural Patterns

e Arbitrary Cycles - execute workflow graph w/out any structural restriction on
loops
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Implicit Termination - terminate if there is nothing to be done

2.21.4 Patternsinvolving Multiple Instances

M1 without synchronization - generate many instances of one activity without
synchronizing them afterwards

MI with a priori known design time knowledge - generate many instances of
one activity when the number of instances is known at the design time (with
synchronization)

MI with a priori known runtime knowledge - generate many instances of one
activity when a number of instances can be determined at some point during
the runtime (asin FOR loop but in paralel)

MI with no a priori runtime knowledge - generate many instances of one
activity when a number of instances cannot be determined (asin WHILE loop
but in parallel)

2215 State-based patterns

Deferred Choice - execute one of the two alternatives threads. The choice
which thread isto be executed should be implicit.

Interleaved Parallel Routing - execute two activities in random order, but not
inparallel.

Milestone - enable an activity until a milestone is reached

2.2.1.6 Cancellation Patterns

Cancel Activity - cancel (disable) an enabled activity
Cancel Case - cancel (disable) the process
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The Business Process Management Initiative (BPMI) is a standards body working with

other organizations such as the Object Management Group (OMG), Workflow Management

Coalition (WfMC), and Organization for the Advancement of Structured Information Standards

(OASIS). Together they collect the best of the
industry in terms of process management
practices and augment this with their own
standards where none exists. These organizations
have been very instrumental in raising awareness
of many of the process management issues in the
industry today.

BPMI has developed its own graphical
process modeling notation known as a Business
Process Diagram (BPD). This diagramming
notation is basically activity-centric in its
approach, combined with various symbols to
show logical sequencing of activities. Figure 2.4
[21] shows three separate notations for modeling

the paralel split workflow pattern. While these

)

B

——

A

Parallel Split C
Forking
Gateway —

A

Parallel Split
Uncontrolled Flow

Parallel Split
Uncontrolled Flow
Applies to Start

. J

Figure 2.4 Business Process Diagram Notation [21]

notations have minute differences in meaning, they are essentially the same. This notation

struggles at times with over-complexity. This is also evident in the use of the diamond shape

with a large number of symbols representing different forms of process splits and joins. This

makes the notation difficult to learn and not very intuitive to the novice.
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2.2.3 UML 2.0 Activity Diagram

The Object Management Group (OMG) is heavily involved in the specification of the
Unified Modeling Language (UML) as well as the Business Process Diagram (BPD). UML has
become the most pervasive modeling framework in use today. UML has become popular
because of the major need that it has filled and the language-independent results. The main
contribution of UML to business process modeling is the use of the “Activity Diagram” [32].
Given the similarities in the UML Activity Diagram notation and the BPD it is reasonable to

speculate that these notations will eventually be merged into a single specification.

Figure 2.5 [21] shows the basic parale split ( )
B
workflow pattern as modeled in the UML 2.0 [33] R
Activity Diagram. The use of the synchronization bar ( )
C
makes this notation simpler than its BPD counterpart

—

thus eliminating the primary drawback of the BPD.  F'9re25 UML 20Activity Diagram [21]

However, the notation has no built-in notational support for modeling different split patterns,
such as a choice, without resorting to simply annotating the lines with conditional expressions.
Of course, these conditional expressions could result in an exclusive choice, parallel split or
multiple choice patterns based on how they are written. Thus, all three patterns have essentially
the same notation and evaluation of the conditional expressionsisinvolved in order to determine
which pattern is being modeled.

2.2.4 Critique of Current Practice

UML and BPD are the two major business process modeling frameworks in use today.
While these notations have some significant differences, they suffer from some of the same

problems. The problems with these notations are inherent to the underlying framework and
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assumptions that went into them. These problems are not a result of insufficient thought in
improving current modeling techniques; the underlying assumptions and intentiona limitations
placed on that thought have limited growth potential. In fact, while many areas of software
engineering have made significant improvements in the last decade, the lack of such
improvement in the area of process modeling suggests that the current approaches have reached
their upper bound.

2.24.1 Procedural in Nature

Some would argue that the modeling of the procedural aspects of a business, by
definition, must also be procedural. However, all software is basically procedural in nature yet
current software engineering practices use object-oriented approaches. As the complexity of
software increases, the ability to model software in a human-friendly manner alows for the
organization of these large projects to be more manageable. It can be argued that the same is
true with workflow modeling.

The current approaches use the “activity” as their central figure. This approach can be
merged into an object-oriented framework by using objects as inputs and outputs to these
activities. These activities have objects (sometimes many of them) that are manipulated by the
activities. In addition, the activity may also produce objects or cause changes to existing objects.
These changes in object state are not modeled by the either the BPD or UML. Even with the
number of different diagrams offered in UML in addition to the activity diagram, no single
notation exists to correlate the business process with the production, manipulation or
consumption of the objects modeled in the class diagram. A complete picture of a business

process in UML requires a minimum of four diagrams which the developer has to jump between
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to gain enough information to program the application. This leads to the second major flaw of
the approach.

2.24.2 BusnessOriented

Many will argue that the procedural nature of current modeling techniques is inherent to
the problem. A common assumption is that business people lack the ability to comprehend
models designed for developers. Y et, object-oriented modeling was specifically designed to be a
natural way of looking at the world. Humans, in general, think in an object-oriented manner.
The UML activity diagram and BPD were specifically designed to be easy to understand for
business anaysts, but the sole purpose is undoubtedly to gather requirements for the
development of software. Yet the conversion from a procedural process to an object-oriented
framework is not intuitive and thus requires a great deal of effort to do properly.

In addition, the lack of expressiveness in the current modeling techniques makes
converting complex workflow patterns into workable software a complex task, sometimes
requiring the use of additional objects to control the activity flow. While current notations are
useful for specifying procedures for business people, it is of little help to the developer.

2.2.4.3 Not Standardized

The ability to accurately model the procedural aspects of a business, organization or
complex job is of immense value. Currently, there are numerous methods for modeling business
processes, but no single standardized approach. There is aso a large array of products claiming
to model and implement business workflows. Some of these tools are very sophisticated but lack
the full expressive power required to model many complex processes. Research on new

workflow modeling techniques [22, 24, 34-38], which reached its height in the late 1990’s, has
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slowed considerably in recent years despite the fact that there are many looming problems with
the current state of the art.

Conceptual modeling is a core prerequisite for understanding and using a technology to
the fullest. There have been attempts to address some of the issues involved with inconsistent
modeling but they have not gained traction in either academia or industry. Many attempts to
improve workflow representation merely attempt to augment or modify the current approach.
Attempts to use non-procedural notation have resulted in systems with poor flexibility or
usability. The poor uniformity and inadequate power of current modeling techniques ripple
through other areas of the technology, making them less useful.

2244 Complex Distribution Paradigm

It was not until the introduction of the Internet that large-scale distributed systems could
be built cheaply. Unfortunately, the migration from the original single enterprise workflow
systems to the web-based version has been accomplished by adding layer after layer of
abstraction onto the existing paradigms [39]. This is why in workflow circles today, the base
components are processes. In many implementations, such processes are wrapped as objects in
an object-oriented system so that they look and behave like objects. Such band-aids only serve
to complicate an already complicated process.

2.245 No Formal Semantic

The decision to not have UML tied to a formal language was a conscious one. It was
believed that such ties would make the modeling framework too difficult to understand and
manipulate. Some efforts to add a formal semantic to UML have been attempted [10, 15, 40-42]
. Petri-nets have shown that for some complex applications a simple modeling notation can be

both easy to understand and tied to a formal semantic. It could be argued that the lack of a
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formal semantic makes it harder to model complex systems in much the same way as writing a
program without a debugger is difficult. In fact, the very languages that modern UML-based
modelers generate have a formal semantic. This is a serious drawback to current business
process modeling techniques.

2.24.6 Limited Visualization Capability

Obvioudly, with no consistency in notation, the visualization of a process varies a great
deal. In addition, the current activity-based methods do not express enough detail to be truly
useful to the software developer. However, some research has suggested the idea of using
multiple perspectives to communicate the same model to different users. Combined with the use
of modern 3D graphics technology, which is readily available in al new personal computers,
visualizing a business process from different perspectives can be done in an intuitive and user-
friendly manner. The addition of this third dimension allows for communication of information

that islost using current two-dimensional user interfaces.

2.3 Concurrency

Not much attention has been paid to modeling concurrency in the popular modeling
notations. Yet, there is much recent research into concurrency support in languages and
language extensions [43-45]. Moreover, research into code mobility [8, 46] and distributed
systems [9, 47] shows aclear need for an object-oriented, graphical modeling language that has
inherent support for concurrency.

The problem of concurrency in software modeling has been around for quite some time
but few attempts have been made to address it. The introduction of Petri-nets [6] was a great

milestone in modeling concurrent processes. The Petri-net’s use of tokens allows for intuitive
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understanding of concurrent actions. For complex systems, Petri-nets do not scale very well as
new places must be added for each decision or data point required [48].

In UML, concurrency is supported at the process level through the activity diagram but
modeling parallel operations on object states in the lower levels of system design requires the
insertion of written notations. In addition, the difficulties in modeling concurrent systems in
UML are well known [49]. Object behavior [16] and object chart [12, 14] models assume that an
object isin asingle state thus these models do not support concurrency. The OPM [19] also has
difficulty expressing concurrency. The Object Petri-net [15] was a successful attempt to blend
the concurrency modeling notation of Petri-nets with object-oriented design. However, this
modeling framework suffers from the same scalability problems as straight Petri-net models.

A fully-expressive modeling system is able to correctly model all known types of event
patterns [30], such as those with concurrency and resource dependency. It is chalenging to
model all patterns without adding additional complexity to the modeling framework. For
example, UML models some of the more complex patterns by placing textual annotations on top
of the graphical model [21]. It is desirable for the modeling framework to have sufficient
expressive power to model complex patterns without sacrificing usability or formal semantic.

OCoN [9] models, with their very compact notation, are not suitable for complex
patterns. In particular, concurrency is difficult to represent. In practice, al examples of OCoN
models show sequential patterns. Object Petri-nets [15] have excellent expressive power,
showing concurrency and resource dependency easily. They have been demonstrated, in

workflow modeling, to effectively model al known patterns. However, this expressive power
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comes with much complexity, as additional places, transitions and tokens are required for each
resource dependency.

In addition to the above modeling systems, there are many others that are expressive
enough to show al known patterns, many of these also supporting formal methods [22-24].
Some of these modeling frameworks lack a simple notation, or they only model process,
neglecting structure and behavior. FOIL is based on =-
calculus which has concurrency as its main advantage.

Thus, FOIL easily handles concurrency while

maintaining a simple object-oriented notation that
models structure, behavior and process.

2.3.1 Petri-Nets

This modeling technique was first introduced o, ()
by Carl Petri in 1962 as part of his doctoral thesis. The Figure2.6 Example Petri-net [50]

concept of a Petri-net is quite simple. There are only two kinds of objects in a Petri-net, a place
and a transition. A place is represented by a circle and a transition is represented by a thin
rectangle. The Petri-net is primarily concerned with the movement of tokens. Directional lines
connect places with transition with other places. These lines represent the movement of tokens

in the model called firing. Each line can optionally have a number representing the number of

tokens required to enable firing.
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Figure 2.6 [50] shows an example Petri-net [48] showing a basic chemical reaction of
hydrogen and oxygen to form water. In this example, there are two initial places (markings) with
two tokens each. Thetransition t is enabled when the token conditions represented by the arrows
ismet. In part (a) of Figure 2.6 thisistrue since the H; firing requires two tokens. Likewise, the
O, requires only one token; two tokens exist, so that firing isalso enabled. Thus, if al firings for
agiven transition (in this case t) are enabled then we say that the transition is enabled. The result
is shown in part (b) of Figure 2.6. Notice that there is a remaining token in O, since only one
token was consumed by transition t. Also, notice that the output of transition t is two tokens as
indicated by the firing despite the fact that three tokens were consumed by transition t.

A Petri-net, in its essence, is really a weighted digraph with rules for token movement
and manipulation. The Petri-net takes care of the non-deterministic way in which flows occur in
the real world. Concurrency is inherent to the model. In fact, if concurrency is removed, what
remains is a simple state diagram. Another great advantage is the existence of a formal
specification, reduction, transformation and comparison framework which is very similar to that
of basic push-down automata.

After their introduction in the 60’s, the 1970’s saw a great deal of interest in Europe on
applying Petri-nets to various problems. The problems for which the Petri-net has been applied
are too numerousto list. Some of the primary ones are workflow modeling, data flow modeling,
complex state machines, and communication protocols.

The popularity of Petri-nets and their formal semantic have fostered much research into
their capabilities. A Petri-net is characterized by several properties that determine what can be

donewith it. Some of them are:
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e Boundedness— A Petri-net is bounded if its set of reachable placesisfinite.

e Reachability — this determines whether given an initial marking Mo and
another marking N, is there a set of firings for which a Petri-net can transition
from Mg to N.

e Liveness — a Petri-net is live if every transition which occurs can aways
occur again. Thiswas shown to be recursively equivalent to reachability.

e Deadlock Free — a Petri-net is deadlock free if every reachable marking
enables some transition.

e Conflict Free — for every place s that has multiple output transitions, every
output transition of sisalso one of itsinput transitions.

e Free Choice — whenever an arc connects a place s to a transition t, then a
Petri-net is free choice if every transition t is the unique output for s or every
place sisauniqueinput for t.

This does not represent a complete list of al the terms used to describe a particular Petri-
net; however, they are the most important ones and generally determine whether other properties
are decidable. For instance, it has been determined that reachability can be computed in
polynomial time for bounded, conflict-free Petri-nets [51].

One of the major downsides of a Petri-net is its inability to account for datain its model.
Modeling data specific choices into Petri-nets generally requires one or more additional places
be added to represent that data. 1t was found that some applications of the technology were not
feasible due to the number of places required to model them. One solution to the problem has
been the introduction of a number of tools designed to help. Improvements to how Petri-nets are
modeled have been offered to help resolve some of these complexity issues. The concepts of
coloring and hierarchies allowed for the production of larger models with reduced complexity

[52, 53]. The combining of these techniquesisreferred to as a high-level Petri-net [54].
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2.4 Formal Methods

A successful modeling system is supported by formal methods that verify that the model
does not contradict itself, and that it will function as designed. (That it will function as desired
requires good design.) The creators of many modeling frameworks have intentionally declined to
use a formal semantic, because formal methods add complexity to the model. The current
modeling systems bear this out: the smple models (i.e. UML [4] and OPM [19]) do not support
formal methods; while the more complex models (Object Petri-nets [15] and object charts [12])
do support formal methods.

The Object Constraint Language [55] has been offered as a gap-filler in the area of
formal specification. This text-based language can be used to augment a UML diagram to
provide a formal framework. Thus, the formalizing of UML using OCL or other methods [10,
42] does not have a strong graphical component. TROLL [13], which uses temporal logic, aso
suffers from little or no graphical correspondence. While these modeling languages can be
viewed graphically, the mathematical underpinnings cannot be viewed in the same way. Object
Petri-nets [15] and object charts [12] are supported by forma methods and have a well-known
graphical semantic, but suffer from scalability [48] and expressiveness issues [12]. The FOIL
model can display large, highly expressive models with minimal scalability issues while
maintaining a mathematical foundation.

Process Algebra is the mathematical representation of a calculation, communication, or
message passing system. Such a representation alows for formal reasoning about the
equivalence of processes. Process calculi are not a recent invention, however, different calculi

are being introduced regularly as scientists customize or refine the principles that go into them.
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2.4.1 A-Calculus

TheA-calculusis algebra used to represent sequential processes and can be considered the
first process algebra. It was first proposed by Alonzo Church in 1936 as a way to determine
computability for certain problems [56]. Church’s A-calculus alowed him to determine that the
Entscheidungsproblem (English: decision problem) was not calculable. Incidentally, Alan
Turing accomplished this same thing in the same year using a different approach which is now
referred to as the Turing machine.

A-calculus is based on the concept of binding variables, meaning that a defined variable
may have any value until it is bound. The operator used to bind variables is A in the form of
Avar (expr)arg where var is the variable being bound, expr is the expression for which the
binding is being applied, and arg is the value, expression or variable being bound to var. A
variable is considered free if it is not bound to any particular value or expression. Thus, for
example, in the expression Ax(x+Yy)z the variable x is abound variable whiley and z are both free
[57].

In the calculus, lower case letters represent variables and uppercase letters are used for
processes. The distinction is based on the idea that processes may be defined as a relationship
between variablesin a different definition whereas variables are local in scope. The definition of

processis done with the = symbol. Thus, we might define a process P as follows:
P=AX(X+X)=>Py=y+y

As with any algebra, its utility relies on the ability to convert a particular statement into
equivalent statements using defined rules. In the A-calculus the main operation is caled a

reduction. Actually A-reduction is a mixture of 3 separate reduction operations. B-reduction is
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the operation that does most of the work [58]. B-reduction can really be considered a simple

substitution as can be shown in the following example:

IX(xy)z—F—>(zY)

Thus, B-reduction allows for rewriting complex expressions into simpler ones. Applying
the B-reduction indiscriminately can result in expressions which are not equivalent. The

following example demonstrates how a wrong result can be generated if only B-reductions are

applied:
(AX(AY(xY))Y)z—E> Ay(y y) z—E>(22)

The reason for the error is that during the Ax operation they is afree variable. Likewise,
in the inner Ay the x isafree variable. This problem is solved through the use of the a-reduction.
The a-reduction allows the arbitrary substitution of any free variable. Using this reduction, the

proper equivalent expression can be created:

(AX(Ay(x Y))y)z—E—>(Ax(Ad (xd) y) z—E— Ad (yd) z—L—(zd)

This A-reduction is correct. The final reduction available is called the n-reduction and
stipulates that for any process P, Ax(Px) is equivalent to P alone as long as there is no occurrence
of x in P. This should be obvious as any -reduction on x regardless of the argument value will
resultin P.

Of course, the A-calculus is not suitable for algebraically modeling a distributed
workflow system as it only functions in a sequential manner. Many processes could be

executing in parallel. However, the A-calculus is the basis from which most modern process
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algebras are derived. In particular, the B-reduction remains generally unchanged from one
calculus to another.

2.4.2 m-Calculus

While the A-calculus can be considered the first process algebra, it was not originaly
invented for that purpose. In fact, the term “process algebra” is a relatively new term in
computer science. The first process algebra to be referred to as such was called Communicating
Sequential Processes (CSP) in 1984 [59]. This was the first calculus to consider a variable as
simply acommunication. From a high-level perspective this makes sense. If you consider that a
computer must perform some sort of operation in order to access memory to retrieve a variable
value, then afunction, communication or variable are all really the same thing. CSP as the name
implies, however, was still sequential in nature and thus not suitable for distributed
computational modeling.

In 1982, Robin Milner introduced the Calculus of Communication Systems (CCS) [7].
This calculus modeled the communication of two distinct entities that could occur in parallel.
This introduced the concept of paralelism into process algebra. In 1999, he introduced the -
calculus [8] which added the concept of mobility to the algebra. The n-calculus is based on the
concept of naming [60]. In other words, everything in the n-calculus is a name that represents a
communication channel. Thus, when a process passes a variable in n-calculusit isreally passing
a communication channel for accessing that variable [61]. Thus, the actua location of that
variable is not important.

The notation of the n-calculus is somewhat different than the A-calculus but uses some of

the same elements. Upper case letters still represent processes but lower case letters represent
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names of a communication channels used to access resources. The following is a list of the

constructs used in the z-calculus:

e P|Q — Process P executes concurrently with Process Q.
e P.Q - Process P and Q execute sequentially

e X(y).P —wait to receive a communication on channel x, bind the input to y and
then execute process P.

e oU.P -- output value of u over channel o then execute P. It should be noted
that P will always execute regardless of whether another process receives u or
not.

e P —execute P one or more times concurrently.

e (vX)P — create a new communication channel x available to process P only.
Another way of saying thisis, “Process P creates a new channel x”.

e P.0- Execute P and then terminate.
e P+Q — Execute either P or Q but not both.
The n-calculus can be used to show that two processes are equivalent through the use of

reduction rules. The main reduction rule which demonstrates the ability for processes to

communicateis:

xy.P|x(2Q - P|Q[y/Z]
This says that when y is output on channel x then P and Q will execute concurrently with
z substituted for y in Q. In other words, a message is received on x which was transmitted as y
but will be assigned as z, then Q will execute. Note that P would execute regardless of whether
any other process received the y sent along channel x; however, Q will not execute until it has
received something (which it will call z) on channel x. Additional rules are:

e P—>Q=P|E— Q|E- concurrent operations can never inhibit computation.

e P> Q=P — (W)Q- restrictions on scope can never inhibit computation.
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e P=PandP'=QandQ'=Q= P=Q- concurrency is both commutative
and associative.

The syntax for various flavors of n-calculus may vary, but generally they are the same.
They aways have some representation for actions, sequence, paralel composition,
synchronizing actions, nondeterministic choice, emission, reception, process, local process, and

recursive process. One notation that will be used is the action label notation:

P——Q
This indicates that P after completion of action o will become Q. This allows for

modeling of mobile, distributed event-driven systems. In fact, n-calculus has already been used

to model many different types of systems, including workflow systems [62].

2.5 Synergistic Attempts

A complete survey of currently proposed frameworks for modeling software is beyond
the scope of this paper. The body of knowledge in this areais far too large. Thisfollowingisa
brief survey of models or frameworks which are of significance in designing a new way of
thinking about workflow and a new approach to modeling them.

2.5.1 Objects-Rules-Roles

The best attempt to date at a full-fledged object-oriented approach to modeling workflow
separates data (objects), flow (rules) and users (roles) [23]. This approach does not offer avisual
model of the workflow or even a unified conceptual view of a workflow. The proposed system
requires the use of inheritance or composition to model a given workflow using abstract
workflow and data components. This approach has significant problems and does not even

supply a modeling or workflow specification language.



40

The reason this framework is notable stems from its attempt to use a purely object-
oriented framework to implement aworkflow system. Thisisthe only system surveyed here that
IS not activity-based. In fact, activities can be abstracted from rules as to how objects interact
with each other as would be done in any object-oriented implementation of a workflow. In
addition, this model is event-driven rather than activity-driven. Thus, the performance of
activities can be done by the workflow system or any other outside system. Thus, this model and
SEAM are the only ones to specifically address and cater to workflows performed by computers
in a heterogeneous environment.

2.5.2 SEAM - State-Entity-Activity-Model

A recent attempt to unify models into a design that can take advantage of formal methods
is caled the State-Entity-Activity-Model (SEAM) [22]. This model is based on set theory and
provides a single view of the workflow pattern rather than many different views used by current
mainstream techniques.

SEAM starts by modeling entities. This processis a good idea as it makes tranglation to
an OO framework relatively straightforward for the developer. Entities can be modeled to have
attributes but not methods — precluding a complete OO implementation. However, this is still
easier to trandate to OO than mainstream process modeling techniques. The entity-attribute is
similar to the standard ER diagram, which makes sense, given that implementation has been on a
standard RDBMS.

SEAM aso attempts to make the model and language temporal. This is a good idea as
workflows are, by their very nature, temporal. This is done, however, by adding temporal
components to the language and the corresponding underlying database rather than using an

inherently temporal database system [63].
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Figure 2.7 [22] shows an example
SEAM. As can be seen, the model is not

entirely intuitive and the complexity of the

Employees

language specified is fairly significant.
Thus, there is quite alarge learning curvein
dedling with this model. In addition, the
limitations in the actual “flow” modeling
mean that modeling complex patterns is
either very difficult or completely Aetviy 7 s

impossible. In addition, the model Figure 2.7 SEAM Example Model
complexity and learning curve make it unlikely to be used by business professionals.

SEAM is a good attempt at simplifying workflow modeling for the developer. This is
done by having models that can be tested with formal methods as well as having a single view of
the model which includes both data and process. It is a non-activity centric model that is very
scalable. This model represents the best step in the direction of viewing workflows differently;
any new attempts at workflow modeling would benefit from becoming familiar with this

framework.

2.5.3 Petri-Net Workflow

Petri-nets are a token-based flow modeling system and have been used in a variety of
applications such as logistics, controllers and protocols. They can be tested with formal methods
and easily deal with difficult resource management, concurrency and data flow complexity

issues. Many workflow systems use the concept of tokens, or threads of execution, to delineate
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when processes split or merge in either a synchronous or asynchronous way. Thus, using Petri-

nets to model workflowsisalogical choice.

Figure 2.8 shows an example of one

@ begin procedure
technique for using Petri-nets to model a
workflow system. This technique alternates T\t

take blood :
the activities of the workflow with Petri-net Q/ !
nodes that manage token movement. With (P |
this technique, very complex flow patterns i

T

analyse

can be reproduced relatively easily. Splits

and joins are easy to manage regardless of

any outside constraints on token movement.

Even multiple instance patterns can be report

reproduced with the introduction of new  + __________________ . _____
tokens into a given activity. Extending @ ferminate_procedure
Petri-nets to use color and time further add Figure 2.8 Petri-net based Workflow[64]

to the power of this modeling language to express complex patterns.

Petri-nets are considered a high-level modeling tool and are generally used for modeling
processes that have little or no data interdependencies. This creates difficulties when modeling
workflow systems which tend to have a many data constraints. In addition, this approach is still

essentially activity-based and thus suffers from the same drawbacks as current mainstream
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activity-based modeling approaches. However, the power of Petri-nets to model complex flows
makes this an approach that requires serious consideration when developing new techniques.

2.5.4 YAWL - Yet Another Workflow Language

This approach starts with the use of Petri-nets and attempts to develop a new language
which can express al of the currently identified patterns encountered in workflow modeling.

This approach supports all but

one of the workflow patterns, is

.
£,

Y

'

easy to understand and has a

flight

formal  semantic. YAWL ®_, ' >

successfully  preserves  the hotel

register pay

power of Petri-nets to describe '

.

car

process and provides a _ _

Figure2.9 YAWL Diagram
straightforward way of
expressing some complex patterns in a ssmpler notation than that of Petri-nets. The symbols
offered in this modeling language are very easy to understand and offer the best usability of all
the approaches surveyed in this paper.
2.5.5 Object-Process Methodology

One of the best single-diagram methodologies is called the object-process
methodology[19, 65]. This notation mixes the OO-based class diagram notation with the
processes that change their state. Thus, objects interact with processes, while specia notation
describes how these objects change state as a result of interaction. Figure 2.10 shows an
exampl e object-process model that demonstrates some of the finer features of this notation. The

circle in the center represents a process that has been expanded to show the details within it.



This hierarchical structure allows for hiding of unneeded complexity while allowing for detailed

specification.

c Concrete
rane Mixer

House

Raw M aterial

Building

______ Foundations

Constructor

Roof

Figure 2.10 Object-Process M odel

Notice that composition, inheritance and other OO design patterns can be easily
represented in this notation. Thisis, by far, the most complete unified modeling technique [66].
The interactions between process and objects are intuitive and ssmple. The object-process model
does not have aformal semantic.

2.5.6 Object Petri-Nets

Object Petri-Nets [15, 67-69] (OPN) are currently the best solution for providing a
concurrent, object-oriented language with a formal semantic while providing high usability. As
such, OPNs demand a very detailed analysis of their capabilities and liabilities in order to
demonstrate the advantages of FOIL.

Petri-nets [6], on the other hand, exhibit many strengths lacking in UML. The Petri-net

easily models complex concurrent behavior and has an underlying mathematical foundation.
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The notation has a small symbol set and is relatively easy to comprehend. These characteristics
have made the Petri-net diagram a proven, time-tested modeling notation. The success of the
Petri-net made it a suitable launching point for an OO modeling language. Colored Petri-nets
(CPN) were introduced [53] to blend the process interaction capabilities of Petri-nets with the
data capabilities of high-level programming languages. This was shortly followed by adding
hierarchical support to CPNs (HCPN) [52]. Recent improvements include the adaptation of
HCPNs for OO design [70] or extension of HCPNs to a fully specified OO language called the
Object Petri-net (OPN) [15, 67, 68].

Object Petri-nets provide support for hierarchy and inheritance by allowing a class to be
the token of another OPN class. The outside process model controls the flow of tokens (objects)
through a common message processing interface. The internal life-cycle of objects is
represented using a finite state machine (FSM) that responds to the same messages as the
encompassing Petri-net model. Through the use of super-places and super-transitions, a great
deal of flexibility has been added to the language. A thorough survey suggests that the OPN is
the best attempt to date for providing a concurrent OO modeling language with formal
verification and has been shown to be effective in modeling real world problems [71-73].

The problems with OPN mostly arise from its roots as a process language rather than an
object-oriented one. While OPN models can be reduced to smple UML class diagrams from a
structural point of view, the behavioral nature of inheritance is not fully addressed. The formal
framework for OPN applies to objects that are already instantiated not to the instantiation process

itself. Inthe literature for OPNSs, instantiation is assumed but not explicitly modeled.
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In addition, OPN requires, in many cases, that objects perform functions that are not
natural in an OO methodology or that overarching objects be added to perform these processing
functions. If one supposes that a magjor benefit of OO design is modeling software that is
mapped onto the real world, then such object extensions should be avoided. A primary example
of this can be found in [68] where the Table object is charged with determining if a dining
philosopher problem is deadlocked. In the real world, tables do not do much of anything. The
position of this thesis is that in OO design, objects, not processes, should interact with one
another to perform work.

Finally, CPNs have thorough support for concurrency but the OPN methodology assumes
an FSM for the object life-cycle and thus “concurrency within an object is not considered” [68].
This is unfortunate, as real world modeling might require that such support be present. For
instance, in the classic dining philosopher problem, it is generally assumed that a philosopher
will pick up the left chopstick and then the right, but in reality they would likely pick up both
concurrently. One could model each Hand of a Philosopher to achieve such concurrency in

OPN but thisis an unnecessary abstraction which adds complexity to the model.

2.6 Conclusion

Of all the modeling languages available today, most of them do not support even three of
the main design goals outlined in this thesis. None of the modeling languages surveyed
successfully implemented all of them. By far, the most complete framework alowing for
modeling of structure and behavior, a formal semantic, and concurrency support is the Object
Petri-net (OPN). But, as provided by the literature, OPN does not support direct process

modeling and has no mechanism to verify proper process operation. OPNs have a few other
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problems: they deviate from the ‘real-world’ character of object-orientation; do not account for
lifecycle concurrency; do not consider object instantiation; and can quickly become very
complex because of the way objects are extended as tokens or places. Overall, FOIL provides a
modeling framework that can meet all of the design goals, including process modeling and
verification, while maintaining a well-known object-oriented nature.

This rest of this thesis is organized as follows. Chapter 3: Introduction to the graphical
elements that make up FOIL; Chapter 4: Introduction to the FOIL algebraic representation and
the laws and identities that provide for mathematical manipulation; Chapter 5: Explanation and
examples of behavioral inheritance, concurrency modeling and model verification; Chapter 6:
Demonstration of how FOIL can be used to model all known workflow patterns, Chapter 7:
Detailed explanation of how FOIL can be used to determine the ability of a process to
accomplish its work, given a FOIL object model; and Chapter 8: Discussion of FOIL’s benefits

and limitations as well as direction for future research.
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3. FOIL NOTATION

Formal Object Interaction Language (FOIL) provides a diagrammatic notation designed
to leverage what is good about the class diagram and provide more information about the
behavior of objects after instantiation. Important extensions such as Ports are made to model
concurrency aspects of an object’s behavior. Also, FOIL explicitly models an object’s event
firing, and uses an event mechanism to expressly show the relationship between multiple objects’
communications and individual objects’ behaviors. Such relationships are implicit in UML and
have to be deduced by designers from multiple diagrams.

This chapter informally presents the diagrammatic notations of the major components of
FOIL. A formal representation of FOIL modeling, especially concurrency modeling, is provided

in chapter 4.

3.1 Behavioral Representation

One of the key features of FOIL is its constraint on the behavior of objects.  Current
software modeling techniques focus almost exclusively on the structure or interface of an object,
but not on the behavioral aspects. While state charts and other devices work to give developers
an idea of what the behavior of an object should look like, they little information as to what
behavioral constraints should be applied to an object. Additionally, inheritance of objects does
not extend to the behavior [74]. FOIL does both in a single notation, such that inherited objects

are modeled to perform their interface conforming methods in an consistent manner.
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3.1.1 States

Much like state diagrams, FOIL uses states to represent the status or stages in the
behavior pattern of an object. FOIL differentiates between different types of states (i.e., between
active and passive states, and between accepting and non-accepting states. Such differentiations
represented by diagrammatic notations and captured by FOIL algebra, are necessary to increase
the expressive power of behavior modeling. Meanwhile, the state of an object in FOIL can be
complicated since FOIL allows for an object to be in multiple states simultaneously in much the
same way as non-deterministic finite automata. Figure 3.1 shows three different notational
element combinations used to indicate the state of an instantiated object.

A state can be perceived as both an attribute and a method. It functions as an attribute in
that it indicates a quality of the object’s temporal nature. It functions as a method in that, upon
arrival at a state, it may perform a manipulation of the object or system. States arrived at

concurrently are assumed to execute their actions

in a random order (see 3.1.3). This should be | Opject States

considered when modeling a software system as Passive Start State

there are ways to ensure that states execute in a
Active Accepting State

(allow instantiation, processing
code is performed)

specified order by modeling them sequentially

(see Firing). All state execution methods are :
Passive

Non-Accepting State
(disallow instantiation, no
processing code is performed)

considered to be protected and cannot be

©Oc

executed from outside the instantiated object or

Figure3.1 FOIL Object States
one of its children.

An active state is one that performs an unspecified action upon arriving and is

represented by shading the state grey. This action will always take place after pre-firing events
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(see Firing). A passive state, indicated without shading, acts more like an attribute in that it
merely indicates the status of the object and does not do any real work. For an active state, its
associated action can modify the specifics of any post-firing events including canceling the event
firing; however, it can never choose to post-fire a different event as this would undermine the
formal nature of the notation.

An accepting state is denoted by a single circle and indicates that this object may
instantiate new objects if requested. This only holds true if an object instantiation transition
exists for that object (see 3.1.2). If an event is received that requires an object to create a new
instance of a class, the object must be in an accepting state in order to “accept” the event. A non-
accepting state is the converse of the accepting state in that any event received that would
normally instantiate a new object is “not eligible”. A state may be accepting or non-accepting
independent of whether it is active or passive.

The start state is the initial state of an object after instantiation. The start state is denoted
by ablack arrow with a start point outside the class definition and pointing to the state. Thus, an
active start state can be viewed as a constructor while a passive start state would be analogous to
an empty or default constructor. The final state is implicit and need not be explicitly drawn by
the modeler. The final state indicates that after completion of the state execution the object has
nothing left to do. It isimportant to consider that some objects may not have afinal state as they
may perpetually loop through states throughout the execution of the system. Since multiple
concurrent threads of execution can exist in a model, the completion of a final state does not

necessarily mean that the object is finished, since other threads may still be in progress.
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3.1.2 Transitions

Transitions are the primary means of modeling the behavior of objects. A transition
represents a progression from one state to another and is triggered by an event that is either
internal or external to the object. In thisway, transitions are the behavioral constraints placed on
an object. Different from transitions used in traditional state diagrams, the execution of a
transition depends not only on the triggering event, but also on the event’s eligibility determined
by the object’s state. This eligibility can be checked using FOIL algebra and is enforced during

runtime. This extra “eligibility checking” is important in modeling asynchronous and concurrent

behaviors of objects. -
Transitions

Figure 3.2 shows the various notational
~"p A Unique Transition

elements used to represent object transitions.
/p*\l Reoccurring Transition

Transitions are always represented by a o
7 p\t Optional Transition

directional arrow labeled with the name of the

] Figure 3.2 FOIL Transitions
event which may cause state change. The

passing of data as part of the event mechanism may be additionally specified with parameters.

A unique transition is one where the target object only expects to receive the event once
in a given iteration. Therefore, a looping construct is not limited by the use of unique events.
The specification of the iterative uniqueness of an event is an important aspect of the modeling
language as it alows the FOIL algebra to enforce rules about the acceptability of an event based
on its possible reception in the future. If the system is aware that an event will only occur once
per iteration, the system may refuse to accept an occurrence of that event because another object
that requires it is not ready to receive it. A reoccurring transition is used to indicate that the

number of times this event will be received is indeterminate.
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An optional transition is used to show that this transition may or may not occur. Thus,
two optional transitions from a single state would need output ports in order for both options to
be available (see Ports). An option, which has not been taken, remains available in the model
until such time as the object flow invalidates that possibility. For example, if an optional parallel
split was modeled but only one option had been taken, the second option would remain available
unless the merge point for the two threads is passed by the first option. Thus, the second option
would be invalidated since that thread could never be merged.

An object instantiation is represented by a standard UML relationship notated with an
event. Thisnotation is used to represent the creation of an object by the occurrence of an event.
This aso indicates a relationship between two objects as the source object of the arrow
represents the object “responsible” for itsinstantiation. Object instantiation can only occur if the
“responsible” object isin an accepting-state (see 3.1.1).

3.1.3 Ports

Ports are used to model concurrency, both Ports

asynchronous and synchronous.  Figure 3.3 Input Port

(Asynchronous Merge)

shows the notation for the types of ports. Ports

may contain numbers within them to indicate a @ Output Port

(Concurrency)

guantity. An empty port is assumed to have a

. . Figure 3.3 FOIL Transition Ports
quantity of one. There are two basic types of

ports: input and output.
The output port indicates the number of threads of execution required to leave an object
before the object isno longer in that state, which creates a parallel split. In Figure 3.3, the output

ports indicate that there are two transitions required out of state A in order for the object to be
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considered NOT in state A. Extrathreads of execution are implicitly created as aresult of output
ports. Once the object’s state transitions out of a port it must create a new thread in order to
remain available for the other output ports.

The input port indicates the number of threads of execution required into a state in order
to allow the object to transition out of that state. For example, in Figure 3.3 the input port on
state D means that the object’s internal workflow could proceed beyond state D when a single
thread has transitioned to it. Thisis only meaningful when multiple threads are expected such as
in aparalel split situation. Multiple threads of execution may be merged without the use of an
input port; however, such merging will always be synchronous. Input ports are mainly used to

allow for asynchronous merging of parallel threads of execution.

3.1.4 Firing
Error! Reference source not found. Figure
Event Firing
3.4 shows the various event firing notations. So far, Pre-Fire
p (Fire E_vent before
the interactions between objects have been modeled executing state code)

through the fact that independent objects react to the @ o (PFfesEt;Z:tri _

on state code)

same events and that some objects can instantiate . .
. Multiple-Fire
.. L. p (Fire 0 or more events
others. This is not sufficient to handle all event based on state code)

patterns and can result in a model that is difficult to Figure3.4 FOIL Event Firing
understand. In order to alleviate this problem the idea that an object itself fires events is
required.

Pre-firing causes an event to be triggered prior to executing actions required by the target
state. In practice, states may have code which they execute as a result of a transition to them.

The pre-fire ensures that an event is triggered prior to executing that code. Post-firing is similar,



but occurs after executing the state code. Finally, multi-firing is a post-fire that allows multiple
instances of an event to be fired. The determination of how many eventsto fire occurs within the
state code at run-time.

3.1.5 Interleaving

The final notational element is interleaving. Interleaving requires that an object exhibit

multiple behaviors sequentially but in no specified order. The notation of a dotted box is used to

indicate that the items in the box should be Interleaved Routing

interleaved. This notation is provided in FOIL for | Interleaving
| | Each state flow is

purposes of usability. Since interleaved execution process sequentially

| | butinno specified
. . der.
can be modeled as a choice among multiple /I oraer

N — —

sequential possibilities, this pattern can be modeled Figure 35 Interleaved State Routing
using the notational elements previously outlined.

However, this would be, in the best case, cumbersome and, in the worse case, completely
unreasonable. This is because the number of combinations per sequential choice added to the
model would grow excessively fast (on the order of n!). Thus, this notation provides a means to
model such cases while avoiding this state explosion problem. How state explosion is handled in

FOIL algebrawill be covered in chapter 4.

3.1.6 Event Scope

Events in FOIL cause objects to enact their behaviors; however, what if the intent is to
enact the behavior in a specific object. In FOIL, this is accomplished through a mechanism
referred to as event scope. When an event isfired, it may be annotated with the object or objects
for which it applies. Since each object determines its own reaction to an event, the presence of

such annotations would cause the object to ensure that it was in the list before reacting to the
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event. Likewise, the absence of such annotations would ensure that an object will always react
to the event. Typically these annotations are only shown when their presence is of significance

to overal system operation.

3.2 Object Modeling

Given the notation for behavior specification in FOIL, the definition of an object class
can be modeled that accounts for its structure, as in traditional modeling techniques, but also
constrains to its behavior. Since state attributes and method calls have more to do with an
object’s behavior than its structure, the text representation of an object’s structure need not
explicitly define these. This lends itself to a more graphical representation of an object with
fewer low detail text elements.

3.2.1 Basic Object

Representing an object with the Formal / Quote \

"double amount

Object Interaction Language (FOIL) is

bunt)

relatively easy. Using the notational elements ~ (doubleam

outlined above, each object is represented by

its attributes, method and behavior as shown in Figure 3.6 Basic Quote Object in FOIL
Figure 3.6. In this example, a Quote object is defined. The Quote starts life in the Open state
and either transitions to Expired or Ordered depending on the input event. The shading on the
Open and Ordered states indicate that they are active and thus will perform processing upon the
object arriving at the state. The Expired state does not execute any actions.

Attribute representation is abbreviated in FOIL, as with the Business Object Notation

(BON) [75], to reduce the number of specifically defined methods. Since behavior aspects of an
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object are clearly defined by the notational elements, most of the remaining methods involve the
storage and access of data.

The read-only attribute qualifier (*) is aso shown in Figure 5. The amount would be set
by object instantiation as indicated by the input parameter for the start state. It may be required
that the amount value be retrievable from outside the object. A class diagram would represent
this as a private attribute with an accessor method provided. Methods in FOIL can still be
specified in the typical manner.

3.2.2 Instantiation

Relationships between classes are shown in the same way as in the UML class diagram.
Thus, FOIL conforms to the traditional forms of object relationship: aggregation, composition,
association, and generalization.

Instantiation of objects of one class by another is indicated by using the association
symbol offered in traditional UML class diagrams with an added event notation. This means that
an association that does not have an event is treated as knowledge of one object by the other.
From a FOIL point of view, this represents a possible communication channel (see
Communication). An association with an added event qualifier indicates that an object of the

class will be instantiated when the event is received and the source object isin an accepting state.
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The fact that an object must be in an accepting state is a significant difference between

FOIL and the other attempts at hybrid notations. Rather than just the behavior of a single object

being represented, FOIL offers the ability to see how objects are created and what rules are

required for such creation in a graphical way. Previous hybrid object-oriented (OO) notations

neglected the graphical representation of instantiation rules and thus made it difficult to see the

process overriding the behavior of
individual classes.

Figure 3.7 shows an
example of object instantiation. In
this example, the attributes
associated with the Account class
are omitted for brevity. It is clear
from the notation that a Payment
object can only be created if the
account is in the Active or Overdue
state. Note that the asterisk (*) on
the association indicates that more
than one receivedPayment event is
expected. This could aso be done
with multiplicity values for the

relationship.

Account

~

disableAccount

enableAccount

réceivedPayment
(double amount)

Overdue

*receivedPayment
(objectType, amount)

f Payment

f CreditCard \

#"double amount

(dotyible
amdunt;

N

verifiedCard
received deposited

% Cash

Check

makeDeposit

Figure 3.7 Basic Payment Processin FOIL
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3.2.3 Inheritance

One of the hallmarks of object-oriented development is the concept of object inheritance.
This inheritance is informally referred to as an “is & relationship. Thus, if a class Salmon
inherits from class Fish, it is because a Salmon “is &’ Fish.

The main problem with inheritance as implemented in common modeling frameworks
and programming languages is that it is solely concerned with structural conformity. It might be
said that if class Salmon or Trout look like a Fish and acts like a Fish then it “is & Fish. But, if
inheritance only ensures structural conformity by definition a child’s wind-up fish toy (class
WindupFish) could actually be a Fish. Indeed, it looks like a Fish (attributes: fins, tail, etc.) and
acts like a Fish (methods: swim, catch, etc.). But WindupFish is not aFish primarily because the
way in which it implements its methods is decidedly different.

FOIL reintroduces the concept of “behavioral inheritance” [74] where inheritance is
defined by the structural and behavioral conformity of an object. Since, FOIL allows for the
detailed modeling of the behavior of individual objects, it can be determined if the behavior of
one class represents a subset of behavior of another. The formal details of how this works will
be explained in section 5.2. Therefore, WindupFish class could not extend from Fish since the
internal behavior of Fish would not be a subset of the behavior of WindupFish. On the other
hand, a Salmon could definitely inherit from Fish. While the nuances of how a Salmon and a
Trout swim could differ slightly; in general, the mechanism for swimming in a Trout and a
Salmon are fundamentally the same because they both look, act and function internally like a
Fish.

An example of inheritance in FOIL is represented in Figure 3.7. In this case, the

Payment class is abstract but defines that every payment should have two states and should
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accept an amount for instantiation. The deposited state is active and thus performs some action,
but this action is not abstract. The abstract nature of this class is that the transition between the
received and deposited states is undefined. By modeling the abstract class, the designer is stating
that there are two states, recelved and deposited, and there is a transition between them. The
concrete details are |eft to the subclass. Thus, each subclass must have these two states and must
have a transition between them.

3.2.4 Communication

FOIL can be used to model distributed systems with a centralized event manager. This
does not change the fact that communication between classes must be done through defined
relationships. In an object-oriented environment, communication between objects occurs when

an event isfired by one object and received by another. Thisis analogous to a method call.

Figure 3.8 shows an example of a
Elevator
communication sent by the Elevator object to [ \
the Door. The reachedFloor event is rmhedﬂj
propagated down the composition relationship. 11
A light dotted line can be used to indicate the

relationships that an event uses for
communication. This example can therefore be

interpreted to mean that the Elevator object

calls the reachedFloor method of the Door \_ reachedFloor

Figure 3.8 Simple Object Communication

object. The dotted line connecting a firing with

arelationship is optional but is helpful in correlating events and affected transitions.
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3.3 Process Modeling

FOIL not only alows for the modeling of objects and their behavior, but it also provides
a simple notation similar to the object notation for modeling high-level processes as well. A
FOIL process can be checked, using FOIL algebra, against the object model to determine
whether the given object model will, in fact, perform the defined process. The exact details of
how this is accomplished described in chapter 7.

3.3.1 Process as Object

FOIL takes the approach that a process is an object of an abstract process engine. Since
objects can be modeled with arbitrary levels of abstractions, it is reasonable that a processis an
abstraction of a process execution engine. However, this means that a process in FOIL exists
outside of the main object model and thus does not behave exactly like what would be expected
of a modeled object. FOIL considers it important that, in a “pure” object-oriented framework,
only objects in the model perform real work. The entire execution of process in FOIL is
performed by the objects and their corresponding communications with each other and are
moderated and controlled completely by the algebraic expressions they represent. The concept
of objects “performing” process rather than process “using” or “regulating” objects, while not
unique to FOIL, is an underlying principal of the language.

In order to maintain this fundamental nature of objects in FOIL, a FOIL process must
comply with the following rules:

1. Statesin aFOIL process cannot perform work. Instead, active states in a process
model represent a sub-process.
2. Statesin aFOIL process do not correspond to states in the object model since they are

part of atotally different system: the process engine.
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3. All Events both fired and received must exist in the object model. Object scope
gualifiersin the process model may be used.

If these rules are followed, an object

modeled can be checked to ensure that it will

execute a given process. Figure 3.9 shows an

example of a FOIL process P that can be used to f X

verify that the system modeled by objects X and Y ° ;

will perform work as expected. The firing of event

p guarantees that object Y will be instantiated. Once

A S—
this occurs, unique event s can not be accepted by

10410
the system until object Y transitions to state H.

Figure3.9 Simple FOIL Process Model

Thus, event g must always be received first, after p

isfired, but beforer isfired and sisreceived. Thisanalysis clearly demonstrates that process P
can be accomplished with this object system.

3.3.2 Process Nesting

Processes in FOIL can be arbitrarily nested. In FOIL, process nesting refers to the
sequential replacement of a process state by another FOIL process. The notation for this nesting
is done by marking a state in the process as active. An active state in a FOIL process diagram, as
mentioned earlier, represents a sub-process. The term “active” here refersto the fact that another

activity must be performed before this process may continue.



Figure 3.10 shows an example of how
process nesting is represented in FOIL. Process
P1 has B marked as an active state. Thus, when
arriving at state B, the process B will be verified
with the object model by straight sequential

substitution. Process P, islogically equivalent.
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/—1\

OXIONO.

3.3.3 Process Spawning

In addition to nesting processes, FOIL
supports the concept of process spawning. A

process is spawned when an event occurs that

Figure 3.10 Process Nesting Equivalence

will cause a new process to start. These two processes (the calling process and the new process)

will then continue concurrently. Since a FOIL process model is primarily used for verification,

this spawning alows objects to perhaps
communicate in different ways while still performed
their core process. Thus, concurrency in process
modeling allows for more flexibility in the object
model.

Figure 3.11 shows an example of how
process spawning is modeled in FOIL. When
process P; transitions to state B an r event is
triggered. This event causes the creation of process

B3 which will continue concurrently with process Ps.

/—3\

—E—

£

Figure 3.11 Process Spawning Equivalence

At this point, either an sor at event would be valid alowing the underlying object model to fire
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or receive these events in an arbitrary order. This is not true of object P; in Figure 3.10. In
general, process spawning is a much looser validation of the underlying object model than
process nesting. Process P4 in Figure 3.11 islogically equivalent to the process system create by

the interaction of process P; and process Bs.

3.4  Simple Elevator System

A simple elevator system is modeled below in both the Formal Object Interaction
Language (FOIL) and the Unified Modeling Language (UML). As UML is both popular and
familiar, this should aid in understanding the distinctive qualities of the FOIL model.

Figure 3.12 shows a simple elevator system as modeled with the Forma Object
Interaction Language (FOIL). The relationships used in the model are the same as those used in
the standard UML class diagram. However, in UML the communication between objects as a
result of these relationships is unclear. The FOIL notation makes the communication
requirements clear. Thisis an example of the behaviora information implicit in a FOIL model.
Notice in Figure 3.12 how the elevator Door can be stopped by a Passenger, resulting in the
Door reopening. The loop in the Elevator Controller causes the Door to attempt to close again.

The MasterController in this diagram shows how concurrency is modeled. In this case,
the master controller is a continuous listening object that will spawn a new thread of execution
for every request received by the buttons. The next available ElevatorController sends a
nextFloor event to the MasterController. The logic for which floor the controller will dispatch
the elevator is determined by the active state Queued. In object-oriented implementation, the go
event isreally amethod call that has a floor parameter. Thisis optional in the FOIL notation but

is shown in the go event definition in the Elevator Controller object.
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The FOIL notation supports all of the relationships in the UML class diagram.
Inheritance is extended to include “behavioral” inheritance, as can be shown by the abstract
Button class. In this case, abutton hasadimand alit state and the press event will always cause
transition from dimto lit regardless of the type of button. The implementation of the active state

lit is not specified and must be implemented by the subclasses of Button. Thisis denoted by the

lit stateinitalics.
o &
7Y Event Receipt S\QJ \@Q s §§
N
== Event Firing & § o§ ,;90 Q)S QS@
s$/) &)/ 8 S g/ &/ &
g/ &/ &) &) s/ )8/ &) S
ol S Q Q Q9 ) T Q Q9
close —> ="
dim —> N TN
go —> ~y
going A | —>
doorClosed Y —> Y
doorOpen - —>r Yy
move - Y
nextFloor N |=> Yy
open N —=> ¥
press - A HES BES RS |
pressButton - - -
reachedFloor N |y Yy
stop - Yy

Figure 3.13 FOIL Diagram Event-Object Schedule

The FOIL model can also be augmented with a reference help called the Event-Object
Schedule. Figure 3.13 shows the schedule for the elevator example in Figure 3.12. In this
schedule, straight arrows indicate that the event is fired and the curved arrows indicate that the
object accepts that event. Thisis a beneficial reference when trying to determine which objects

areinvolved in event production and reaction.
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Finaly, Figure 3.14 shows the FOIL process diagram for the elevator model in Figure
3.12. This process model is composed of two processes that run concurrently: Pick up
Passenger and Drop off Passenger. Each one is triggered by the Passenger pressing the
appropriate button. Every time a Passenger presses a FloorButton, a new Pick Up Passenger
processis created. The Drop off Passenger process is created whenever a Passenger presses an
Elevator Button and the Pick up Passenger processisin the Loading state. It should be relatively
easy to see that the process as modeled in Figure 3.14 can be accomplished by the FOIL object

model previously givenin Figure 3.12.

[ o®
(FloorButton)press* e -
4 (ElevatorButton)press*
'} oo o -
o®
Passenger

Figure 3.14 FOIL Elevator Process
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3.4.1 UML Equivalent

MasterController
ElevatorController

-destination : int 1.7 “queuedstates : Set

AT 1 [|state : Set = {Listening}
-direction : string
-state : Set = {idle} +pressButton(in button : ElevatorButton)
— — +pressButton(in button : FloorButton)
+getDirection() : string

+go(in floor : int) +going(in elevatorController : ElevatorController)
9 - ' +nextFloor(in elevatorController : ElevatorController)
-preparing()

+reachedFloor() -queued()

+doorOpen() 1 1
+doorClosed()

1 1
1 . -*
1 . ‘*
FloorButton
1 ElevatorButton Tloor - int
-floor : int -direction : bool
Elevator +getFloor() : int +getFloor() : int
-state : Set = {still} +dim() +getDirection() : bool
+move(in floor : int) #iit() +dim()
-moving() #it()
R
1 1
Door Button .
-state : Set = {open} —| >#state - Set = {dim}
+press()
+close() #it()
+open() >
+stop() 1 DoorOpenButton [}
-opening()
-ClOSing() 1 #llt()
+reachedFloor()

Figure 3.15 UML Class Diagram of Elevator

A simple FOIL model can be converted to a standard UML model. As more of the
concurrency features of FOIL are used, the converted UML model becomes quite large as
individual thread of execution must be explicitly modeled in UML. Figure 3.15 shows the UML
class diagram of the equivalent model from Figure 3.12. Each active state in the FOIL model
becomes a private method in a standard UML model. Likewise, any event which can be received

becomes a public method. Read-only attributes are converted to private attributes with an
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appropriate accessor method. Public attributes — of which there are none in this model — can be
converted as standard public attributes or private attributes with the appropriate get/set methods.

The detail in the equivalent class diagram is far less than the FOIL model as there is no
indication as to the behavior of individua methods nor is there any indication as to how the
objects interact. In UML this requires a separate diagram, of which there are several varieties.
Figure 3.16 represents an equivalent sequence diagram for standard elevator operation as
modeled by the FOIL diagram in Figure 3.12. The diagram in Figure 3.16 models an expected
operation of asingle elevator.

It should be noted that a sequence diagram is rarely suitable for specifying multiple
scenarios. Modeling of the behavior of the MasterController or the scenario of an elevator door
impediment would each require an additional diagram. Even after diagramming each scenario,
additional UML state or collaboration diagrams would be required to specify the complete
interaction between objects. Thus, this simple system would require approximately eight

diagramsto display the same information as contained in the single FOIL model.
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A UML activity diagram for this elevator example is hardly worth modeling. The
process performed by an elevator is extremely simple and thus a UML activity diagram would
consist of two boxes with a line between them. Additional notations may be made to the
diagram. The FOIL process diagram actually presents the expected sequence of events when in
operation. This could be done by creating a UML activity diagram with a very low process
granularity where, for example, the door closing and opening would each be considered
activities. In addition, the low level nature of such an activity diagram would totally defeat the
purpose of an activity diagram which isto model what work the system is to perform from ahigh
level perspective.

Finally, matching such a UML activity diagram with the class and sequence diagrams
would be a manual process to be done by the designer. Part of this problem is caused by having
multiple dissimilar diagrammatic notations to display the behavior of the objects and the system.
Thisis exacerbated if UML state or collaboration diagrams are needed. Additionally, thereisno
formal or even standard mechanism, in place, for reconciling these multiple diagrams. FOIL
uses a single notation to model the system structure, individual object behavior, object
interaction, and high-level process. More importantly, the FOIL algebra provides a way to
mathematically verify that the individual object behaviors are internally consistent and that high-

level processes will reliably perform the desired work.
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4. FOIL ALGEBRA

In addition to the graphical notation, the Formal Object Interaction Language (FOIL) has
adirect representation as an algebraic expression called FOIL Algebra. This algebra gives FOIL
a robust mechanism for ensuring model correctness both at design-time and run-time. FOIL
algebra is a variant of the n-calculus originally designed by Robin Milner [7, 8] with additional
axioms and theorems for manipulating object-oriented system execution. The n-calculus as a
process algebra is solely concerned with names and as such it is overly abstract for the purposes
of FOIL thus specific name types (such as events and states) have been added to the algebra for
clarity. While every system in FOIL algebra can be abstracted into a pure n-calculus definition,
the constraints placed on FOIL algebraic construction, manipulation, and reduction are in terms
of the more specific FOIL naming semantics.

This chapter provides a theoretical discussion of the application of process algebra to the
FOIL graphical model. First, algebraic expression for a system is constructed by converting each
graphical element into individual terms and combining them. Second, the various algebraic laws
and identities are discussed to enable manipulation of system expressions for use in model
verification and run-time execution. Next, the system expressions are reduced using algebraic
reduction with eligibility constraints. This chapter concludes with a demonstration of
construction, manipulation and reduction of a sufficiently complex workflow pattern. This
chapter is necessarily abstract; however, the following chapters will contain more real world

examples.
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4.1 Construction

Each notational element in FOIL has an algebraic equivalent; therefore, a system
comprised solely of FOIL notational elements can be completely expressed using these algebraic
equivalents. Through a process of substitution an expression for a complete system can be
created.

4.1.1 Events and Operators

An event in FOIL represents a name in a n-calculus system that functions to change the
state of the system. In a FOIL model, the primary unit of work is an Active State. The algebraic
definition of a FOIL model is not concerned with the specific work being done, only the events
required to start or end the performance of that work. The system definition must include all
possible options for the sequence of events that are acceptable while allowing independent event
sequences to carry on concurrently. As a convention, events are represented by a lower case
etter.

Figure 4.1 shows the difference in algebraic
notation for consuming or receiving an event verses @ t
producing or triggering an event. The bar notation G=1t H=F

over the t event indicates that it is fired not received. Figure4.1 Algebraic Event Construction

State G is defined as transitioning upon the receipt of at event while state H is defined as
triggering a t event (post-trigger). FOIL uses these simple event expressions to represent
complex system behaviors by using operators to define the tempora relationships between

events.
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Sequential Concurrent Choice

A= pBand B=qC A= pB|qC A=pB+qC
= A= pqC

Figure4.2 Algebraic Operators

There are only three operators in the FOIL algebra: sequential, concurrent, and choice
(see Figure 4.2). The sequential operator, represented by a dot or period, denotes two or more
events which occur in a specified and sequential order. The concurrent operator, represented by
a pipe, denotes two or more events which occur simultaneously. The choice operator,
represented by a plus, denotes a choice among two or more events. All possible combinations of
system operations as specified in FOIL can be completely expressed using these operators.

4.1.2 Object Qualifiers

There is some debate as to whether the use of object identifiers limits the flexibility in
modeling object-oriented systems. However, in the case of FOIL, objects need to be able to
respond to events that may be specifically designed for them. Without a mechanism for
addressing a specific event to a specific object, this would not be possible. Thus, despite some
drawbacks to this approach, it was decided that FOIL would use object identifiers. These

identifiers can be prepended to an event term in the FOIL algebrato offer event specificity.
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Figure 4.3 shows an example of a class X

X \\
that is defined with a specific event s and a global

Xs
event p. The X qudlifier to the s event means that ° p

this s event is specific to an object instance of class

. .. . Figure 4.3 Object Qualifier
X.  Thus, when an X object is instantiated the

expression is

X, = X,F = p.X,s.X,E

The convention for this paper will be to sequentially number each instance of an object as

itsidentifier but any object identifier scheme may be used.

4.1.3 State Representation

Each state of an object has an algebraic expression that represents its behavior. In that
regard, state expressions are the building blocks of system definitions. The representation of

passive states is rather trivial. As such, it has already been presented previously without much

X N\
fair amount of complexity, however,

Xs p
when active states are involved. ° P
- Y

explanation. The expressions take on a

Figure 4.4 shows two examples

that contain active states. There are two

$ p
main problems in the algebraic ° p
&,

representation of active  dstates

Figure4.4 Active State Examples
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demonstrated in these examples: 1) ensuring that the p event does not fire until the actions of E
are complete, and 2) determining when the actions of E should begin. It is easy to see that
neither of these problems have any consequence if state E is passive in either class. In order for

the algebra to be robust and complete, there must be an event representation for handling active

states.
Figure 4.5 shows the
IE El
behavior in FOIL notation for the 'E pre E' post
active state E in both objects in Figure4.5 Active State Event Flow

Figure 4.4. Of course, the FOIL notation could be drawn to show this behavior explicitly and,
indeed, a diagramming tool could have this option. However, the ssimple shading of an active
state retains simplicity in the overall diagram which could easily grow cumbersome if such
behavior was explicit. The impact on the algebra of this substitution is significant. For instance,

object X would now have the expression:

This complexity is stark when compared to the expression for Object X if state E were

passive:

X=F F=XsE E=p.pG
X = Xs.p.pG

Likewise, object Y with its concurrency takes on a new character as well:

Y=F F=YsE|W®E E=EEE.E.ppG
Y =YsEEE.E.p.pG| Y E.EE .E p.pG
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The extra events fired and received with these expressions may seem rather redundant;
however, the utility of this representation will become apparent later during the discussion of
reductions on these expressions. In addition, it should be noted that the diagram of Figure 4.5 is
only one representation of how active state behavior could be modeled. In this case, active states
will only execute their actions when all threads of execution synchronize onto it (unless an input
port is used). Additionally, no pre-firing events will fire until all threads have synchronized to
the active state. By replacing the behavior of active states with a different state flow, the system
as a whole would treat such situations differently. For example, an action could fire when the
first thread reaches the state rather than waiting until synchronization occurs. For the remainder
of thisthesis, active states will be assumed to follow the behavior of Figure 4.5.

It may be necessary for an executable modeling system based on FOIL to know what
state an object is in. This can be done through the use of a state event. This is a simple
mechanism of firing an event when an object reaches a given state. It requires no additional

notation but isimplicit. With state events object X of Figure 4.4 would have the expression:

X=F F=XsE E=EEE.E.ppG

X = F.Xs'E_.EEE.E.p.pG
The addition of the F, E and G events serve to inform the system that object X has
reached athose states. The E event occurs within the active state flow meaning that all pre-firing
events must be accepted prior to being considered by the system as “arriving” at this state.
The firing of state events is completely optional. It is easy to see that such event firing
does not inhibit the work of the system since no transition is dependent on such an event. It is

conceivable that such events could be used by other objects to trigger additional transitions but
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this behavior can be modeled without such mechanisms. Additionally, it should be noted that
without this mechanism, state G in object X and Y of Figure 4.4 has no expression unless
termination is denoted by a 0 as is common in the standard n-calculus. It will be the convention
of thisthesis not to substitute states that have no expression.

4.1.4 Object Definition

Creating a FOIL algebraic expression of an object is a matter of substituting state
expressions. This substitution of state terms is relatively trivial and has already been shown by
the expressions created for Figure 4.4 and Figure 4.5. These simple cases did not have any
iteration or loops. It isimportant that substitution only occur up to any loops or iteration. The
reason for this restriction will become clear during the discussion on how these expressions are
used during run-time operation of a system (i.e. reductions) and how models are verified. In

addition, it is intuitive that if looping constructs are

to be alowed (which they are) then substitution of
terms would be infinite without at least an arbitrary

stopping point. By having a clearly defined

substitution stopping point, we maintain some

qualities of the model which are useful. Figure4.6 Object with Iteration

Figure 4.6 shows an example of a class definition that contains an iterative behavior.
Terms are substituted in a depth-first manner using a simple depth-first search algorithm on the
connected graph [76] represented by the behavior diagram. Substitution will cease whenever a
back-edge is encountered thus eliminating any looping. The following shows the steps for

building the expression for Figure 4.6:
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1 X=A A=pB B=gC C=rD D=sB date expressions
2. X =pB substitute A

3. X =pqC substitute B

4. X = pqr.D substituteC

5. X =pgr.sB substituteD  stop

In a depth-first search of the graph represented by object X, the event s transition would

be a back-edge. Thus, no substitutions take place beyond that transition until it is required in

order to continue after a reduction. f

This does not mean that the same

state will not be substituted twice.

Figure 4.7 shows an example of

where repeated substitution of the Figure4.7 Repeated Substitution with No Loops

same state may occur.

1 X=A A=pB B=sD+gC C=rD D=tE state expressions
2. X=pB substitute A
3. X =p.(sD+qC) substitute B
4, X = p.(st.E+qC) substitute D
5. X = p.(st.E+qr.D) substituteC
6. X = p.(st.E+qrt.E) substitute D again

State D in Figure 4.7 gets substituted twice during object expression construction. This
is because the s event transition does not represent a back-edge during depth-first traversal (itisa
cross-edge) and thus substitution should continue normally until a back-edge is encountered or

no transitions are available (state E).
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4.1.5 System Definition

The final step to construction of a system using FOIL algebra is the substitution of object
expressions for the creation of a unified system expression. The substitution of object
expressions generally occurs at run-time and directly correlates with object instantiation.
Consider that an object-oriented program when f X \
first executed has no objects. Thus, the initial Xs p
algebraic expression for a system would consist of 0 @ P @
the events that cause object instantiation from an /t’\

[

outside source. Whether this outside source is a % —u—>
function, user or other system is unimportant. K

system

Figure 4.8 shows an example of acomplete Figure 4.8 System Object Instantiation

system composed of two objects, neither of which exists prior to execution. Only when at or u
event is generated by the system will these objects be instantiated. Thus, this initial algebraic

expression for thissystem is:
system=t.X |u.Y

Since, objects X and Y have not been instantiated no substitution for these variables takes
place. Only when an object term reaches the front of a concurrent expression during reduction
will the substitution take place. However, the class expressions for objects X and Y can be

predetermined prior to run-time to improve performance during object expression substitution.

4.2  Manipulation

The expressions created by the construction of a model using FOIL algebra are not very

useful as created. Run-time execution and model verification place rules on the reductions that
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are allowed on a given system’s expression. These rules would be overly complex and difficult
to automate on raw expressions. Given this, expressions need to be rearranged such that they are
more suitable for reduction operations and model verification.

4.2.1 Algebraic Identities

The identities associated with process algebra are fairly well known; however, FOIL
takes aloose approach to equivalence. In addition, it is helpful to see how the identities function
in FOIL algebraic notation rather than assuming that such notations are common knowledge.
These identities are provided as axioms rather than providing rigorous proof since justification
for these lawsisfairly intuitive.

4211 DistributiveLaw of Choice

Eventsfired or received before or after a choice can be distributed into the choice. Figure
4.9 shows a FOIL model of thislaw. Object X and Y have an equivalent behavior. In English,

Object X would read, “Accept event p and then accept

event q or accept event r.” Object Y, on the other

hand, reads, “Accept event p and then accept event q

or accept event p and then accept event r.” Thelogica

equivalency of these two statements should be fairly

intuitive. Object Y displays something akin to a
differed choice, where two threads exist until a choice

is actualy made. However, since the destination of

the “deferred” choice (state B) is the same, only a \ j

. . . . Figure 4.9 Distributive Law of Choice
single thread need be produced during execution. This

logical equivalence produces the axiomatic identity:
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X=Aand A=pB and B=gC+r.D

= X =p.(qC+r.D)

Y=Aand A=pB +pB, and B,=qC and B,=r.D

=Y =pqgC+pr.D
if X =Y then
p.(qC+r.D) = p.qC+ pr.D

4.2.1.2 Distributive Law of Concurrency

Sequential  conditions required for the
spawning of concurrent threads can be distributed to
multiple threads. Thisidentity isvery similar to that
for choice. Figure 4.10 shows an example of this
Law. In English, object X would read, “Accept
event p and then concurrently accept events q and
r.”  Object Y, on the other hand, would read,
“Accept event p and then g and concurrently accept
event p and then r.” Once again, the equivalence of
these two statements should be intuitive. This

produces the axiomatic identity:

Figure4.10 Distributive Law of Concurrency

X=Aand A=pB and B=qC|r.D

= X =p.(qC|r.D)

Y=Aand A=pB/|pB, and B,=qC and B,=r.D

=Y=pqgC|pr.D
if X=Y then
p.(qC|r.D)= p.qC|pr.D
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4.2.1.3 Law of Redundancy

A choice between two identical sequential event expressions is not a choice. Likewise, a
concurrency between two identical sequential event expressions is a single thread. It should be
clear that to, “accept p and then r or accept p and then r,” is completely redundant and whileit is
worded as a choice between two actions there is really no choice at all. The same law holds true
for concurrent relationships between event sequences.

p.r+ pr=pr
p.r| pr=pr

4.2.1.4 Law of Concurrent Subsequence
If a sequential term in a concurrent expression is the order subsequence of another term
in that same concurrent expression, then the first term may be eliminated. This law is closely
connected to the reduction eligibility rule to be discussed later in this chapter. An example of

thislaw is as follows:

p.g.r.stuv|qg.su= p.gr.stuv

4.2.1.5 Law of Nullability

If a sequential term of a concurrent expression begins with a non-event, then that
expression is eliminated. If after construction or through the course of execution, all the terms of
a concurrent expression begin with an event NOT being received, then that expression has no
chance of execution. This particular law is based on the assumption that NOT making a choice
is a passive event and would not be explicitly fired by the system. As such, an expression

starting with such terms will never be reduced.
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pgl'r.sH pqllr.s+ pg|r.s=p.g+ pglr.s

4216 Law of Contradiction

Two concurrent terms where any two events
are sequentially transposed can be eliminated. Figure
4.11 shows an example of a simple contradiction.

Since events p and g are unique, they can only be

accepted once per iteration and thus to accept p would Figure4.11 Law of Contradiction

invalidate the bottom thread and likewise, to accept g would invalidate the top thread. Thisisan

inherent contradiction. Such contradictions can be easily found by scanning the concurrent terms

for transposed events, as in this example:

palg.p=0
4.2.2 Algebraic Form
Using the algebraic identities described
above, FOIL expressions can be rearranged to
produce equivalent expressions that are useful for
run-time execution and verification.

4221 Choice-Action Form (CAF)

Any FOIL expression can be placed into a
form where every possible sequence of events is

handled. In effect, an expression in Choice-Action

Figure4.12 Algebraic Forms

Form (CAF) is a choice among concurrent events. CAF is accomplished by fully distributing

concurrency and choices using the distributive laws. Figure 4.12 shows an example of a simple
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object model which both concurrency and choices. The algebraic construction and manipulation

to CAFis
X=A A=pB B=t(Y|(qC+r.D)+qC+r.D X states
Y=E E=sF+uG F=uH G=vJ Y states
X=pt(Y](@C+r.D))+gC+r.D) X construction
Y =suH +uvJd Y construction
X =p.(t.((suH +uvd)|(gC+r.D))+qC+r.D) System construction

X = p.(t.(su.H +uvd)|t.(qC+r.D)+qC +r.D)
X = p.(t.suH +tuv.d)|t.gC +tr.D)+q.C +r.D)
X = p.(t.suH |tgC +tsuH |tr.D+tuv.d|t.gC+tuvd|tr.D+qgC+r.D)

CAF

X = ptsuH|ptgC+ ptsuH|ptr.D+ ptuvd]|ptgC
+ptuvd|ptr.D+ p.gC+ pr.D

In this example, it is not necessary to substitute for object Y until at event has been fired

but doing so does not affect the execution of

the model and serves to show the utility of

CAF. The fina expression in CAF is a

complete list of al the possible concurrent

outcomes for this system. In this form, it is

extremely easy to use the remaining laws to
eliminate terms. Additionally, CAF is used

to determine whether two modeled objects

arelogically equivalent.

Figure4.13 Choice-Concurrent Equivalence

The simple merge pattern allows for
the construction of an interesting equivalency. Figure 4.13 shows two object behaviors that are
equivalent. Object X; uses a deferred choice followed by a simple merge while object X, uses a

parallel split followed by a synchronous merge. In both cases, states B, C and D are reached.
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The difference is that object X; is waiting to determine where the single thread of execution
exists while object X, has three separate threads of execution. Upon an s, t, or u event both
behaviors will transition to state E once and only once. Object X; makes its choice while object
Xo merges its three threads into one. Algebraically, it can be shown that the two flows are the

Same.

X,=pB+pC+pD B=sgE C=tE D=uE E=VvF
F

(@]
>

X, = psVv.F + ptv.F + puv.F

p.(B|C|D)=p.B|pC|p.D B,C,D=(s+t+u).E E=VvF
p.(s+t+u)v.F | p.(s+t+u)VvF | p.(s+t+u)v.F

, = p(s+t+u)v.F =(p.s+ pt+ pu)v.F

F
X, = psv.F + ptv.F + puv.F

= X,=X;

2

N

X
X
X

Q]
>

The main drawback to CAF is that it exhibits the state explosion problem. For each
optional choice used the number of possible action sequences increases by a factor of two. Thus,
the growth rate of the algebraic expression is O(2") where n is the number of options. In object-
oriented models that exhibit low coupling the size of the expressions are manageable since it is
expected that the expression of any single object would be relatively small. However, in some
models the size of the system expression would make run-time verification intractable.

4222 Choice-Compressed Form (CCF)

The Choice-Compressed Form (CCF) is achieved by distributing al concurrent and
sequential actions but delaying the distribution of choices until necessary for subsequent
reductions. While CCF is not as easy to reduce as CAF, it does not exhibit the exponential

growth rate. This means that CCF expressions will never grow too large for state-based analysis
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and run-time reductions. The Algebraic construction and manipulation into CCF of the system

inFigure4.12 is.

X = p.(t.((suH +uvd)|(qC+r.D))+qgC+r.D) System construction
X = p.((t.suH +tuv.d) | (t.gC+tr.D)+qgC+r.D)
X = p.(t.suH +tuvd)| p.(t.gC+tr.D)+ p.gC+ pr.D

CCF

X = (ptsuH + ptuvd)|(ptgC+ ptr.D)+ pgC+ pr.D

4.3 Reduction

Once any event is sent or an eligible event is received there is no reason to continue to
denote it in the expression. The process of removing these termsis called a reduction. A FOIL
algebraic expression is changed at run-time as aresult of such reductions. The reduction process
isasfollows:

1. Determine Reduction Eligibility

2. Reduce the Expression

3. Fire Additional Events

4.3.1 Determine Reduction Eligibility

The first step in performing algebraic reductions is to determine whether or not the given

event received iseligible. Thefollowing definition is provided with respect to FOIL algebra

Eligibility — The system isin a state such that it is ready to process the event and
the processing of said event will not place the system in a state from which it can

no longer complete its work.

As an example, take the following expression:

X =pqr|spt
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This expression represents a system that is performing two concurrent threads. It isclear
that events g, r, and t are not eligible since the system is not in a state that is ready to receive
them. It may not be so obvious that event p is also not eligible. The reason for this is that if
unique event p were processed then the second concurrent term would be deadlocked since it
also expects that same event p in the future. Another way of describing eligibility would be, “all
concurrent actions that expect the event are ready to receive that event.” Given this

understanding, it is clear that the only eligible event is s.

Eligibility Rule: Given a system definition in Choice-Action Form (CAF) and the
receiving of an event b, a choice is not eligible for reduction if event b exists
anywhere other than the beginning of a concurrent expression. Event b is not

eligibleif there are no eligible choices.

Determining eligibility is easiest when

a FOIL expression is placed in CAF. The
diagram in Figure 4.14 shows an example of a
multiple choice pattern for the state flow of

Object X. Notein this case, that the receiving

of event g before receiving event p will mean

Figure 4.14 Multiple Choice Eligibility

that p is no longer an option. The FOIL

algebra expression for Object X in CAFis:

X =(p+p).gVv.F | (g+qg)tv.F [ (r+r)tVv.F
by Distributi ve Lawof Choice
X =(p.gVv.F+ p.gVv.F) | (qtv.F+qgtv.F) | (rtv.F+rtv.F)
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by Distributi ve Lawof Concurrency

X =(p.gV.F |gtv.FH p.gV.F |gtv.F + p.gVv.F |lgtVv.F
+ p.gVv.F |'gtv.F) | (rtv.F+Hriv.F)

X =(pgV.F |qtv.F+ p.gv.F |gtv.F + pgVv.F ['qtv.F
+ p.gVv.F |'gtv.F) | (rtv.F+Hrtv.F)

CAF

X = pgV.F |gqtv.F |rtv.FH p.gVv.F |gtv.F |rtv.F +
p.gVv.F |'qtv.F |rtv.FH p.gVv.F |'gtVv.F |rtv.F +
p.qVv.F |gtv.F |'rtv.F+ p.gv.F |gtVv.F |'rtv.F +
p.qVv.F |'gtVv.F |'rtv.F+ pgVv.F ['gtv.F |Irtv.F

by Lawof Nullability

CAF

X = pgv.F |gtv.F |[rtv.F +qtVv.F |rtv.F + pgVv.F |[rtv.F
+rtv.F + pqv.F |qtv.F + gtv.F + p.gv.F

Determining whether an event is ready to be accepted by the system is a simple matter of
scanning the events at the beginning of each sequential term providing the set: {p,q,r}. After
this, it can be determined whether each event in this set occurs anywhere other than in a
concurrent term. In the first choice above, event g is not eigible since it occursin the sequential
expression p.g.v.F. Since event g is not in the front then this choice isineligible. However, the
event g remains an eligible event since there are other choices in the expression for which this
eventiseligible.

This example, however, clearly illustrates the state explosion problem created by using

CAF. Inthiscase, theinitial construction of object X isalready in CCF:

CCF

X =(pHp)gv.F |(g+q)tVv.F |(r+r)tv.F
do not distribute through choices
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If the same €dligibility rule outlined above is used on this expression in CCF, it would
seem that event qisnot eligible. The front terms of each expression will still indicate that events

{p,q,r} areready but modification of the rule to support CCF isrequired.

Eligibility Rule: Given a system definition in Choice-Compressed Form (CCF)
and the receiving of an event b, achoiceisnot eligible if event b occurs anywhere
other than the beginning of a concurrent expression and participates in any choice
that does not contain a non-event. Event b is not eligible if there are no eligible
choices.

Given this rule for CCF expressions, event q above is clearly eligible. It occurs
downstream of a concurrent expression but does NOT participate in any choice that does not
contain a non-event. It participates in the (p+!p) choice, but this contains a non-event. Thus,
event q is eligible. It should be noted that the eligibility rules for CAF and CCF will always
result in the same set of eligible events.

4.3.2 Reduce the Expression

Once an event is determined to be eligible, it is processed. This processing from an
algebraic sense means that the system is no longer waiting on this event to occur. Thus, thereis
no longer any reason to denote thisin the expression. In addition, while the event may have been
eligible, individual choices within the system expression may not have been. Thus, these choices
(having not been chosen) may be removed from the expression. Continuing with the example of

Figure 4.14, the processing of the eligible event p on the expression in CAF would be;

CAF

X = pgV.F |gtv.F |rtv.F + qtv.F |rtv.F + pgVv.F |rtv.F
+rtv.F + p.gv.F |gtv.F + qtv.F + p.gVv.F

X —L—>qv.F |gtv.F |rtv.F +qv.F |rtv.F + qv.F |gtv.F + qv.F
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Note that of the seven choices represented by the expression, only four of them were
eligible for processing event p. The final expression for object X has removed event p from the
front of each sequential term that participated in an eligible choice and eliminated all ineligible

choices. The same object would reduce differently if event q were received:

CAF

X = pgV.F |gtv.F |rtv.F + qtv.F |rtv.F + pgv.F |rtv.F
+rtv.F + p.gv.F |gtv.F + qtv.F + p.gVv.F

X —5tv.F |rtv.F +rtv.F +tv.F

In this reduction, there are only three eligible terms. The reduction digibility rule
eliminates the first and fifth choices even though these choices have a term that begins with this
event.

Performing reductions in CCF is more difficult in that rather than eliminating whole

terms, analysis can result in eliminating a portion of expressions.

CCF
X = (p+ p)gv.F | (g+qg)tVv.F |(r+r)tv.F
X —L>qv.F |(g+g)tv.F |(r+'r)tv.F

Processing event p results in reduction of the entire choice. Since, it is determined that
indeed, one of those choices was reduced, the other choices were not and thus they can be

eliminated aswell. Processing of event g is even more complex:

CCF

X =(pHp).gv.F |(g+q)tVv.F [(r+'r)tv.F
X —5tv.F |(r+'r)tv.F
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To understand this result, consider that event g was previously determined to be eligible
by the CCF dligibility rule; however, if event q is accepted then none of the concurrent choices

of thefirst term are eligible. Thisleads to the following CCF elimination rule:

Elimination Rule: Given a system definition in Choice-Compressed Form (CCF)
and the receiving of an event b, if in a concurrent term event b is eligible merely
because it participates in a non-event choice, then that concurrent term may be

eliminated.

Object X in CCF has only one choice of three concurrent terms; however, this choice is
only eligible to received event q because the first concurrent term, while having a downstream g
event participates in a non-event choice. Thus, this term can be eliminated when the g event
reduction is performed.

A reduction operation may mean that an object is created or that a loop has occurred.
This is obvious during reduction when a state or object variable reaches the front of a term.
Referring back to Figure 4.6, which shows a simple looping construct for object X. The

execution of this system using FOIL algebraic reductionsis.

CAF
X = pgrsB—-»qrsB——>»rsB—/——>sB—-»B

B is at the front so substitute
X —2AL2 5 qr.sB

It may be convenient to number the iterations of events; this can be done with simple
subscripts:

CAF
X = p.q,r,.s.B,——>q,r.s.B,—>r.5.B,—/>s.B, > B,
B is at the front so substitute
X —PAL2 5q,r1,.5,.B;
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The event subscripts should not be confused with object identifiers that also use
subscripts. Substitution of object variables, which occurs when one object instantiates another, is
done in the same manner as state variables and is presented in the example at the end of this
chapter. After substitution of variables it may be necessary to place the expression into CAF or
CCF again.

4.3.3 Fire Additional Events

After completing the reduction operation, it may be that event firings move to the front of
termsin the expression. If thisistrue, then they are immediately processed. Thus, event firings
are always immediately removed from the terms. If multiple events reach the front
simultaneously, this is only because they are participating in concurrent actions and thus the
order of the event firingsis unimportant. A simple queueis used to handle these multiple events.
Optionally, any events fired that are ineligible can be moved to the back of the queue until only
ineligible events remain. This can be used to ensure that events are not ineligible simply due to
the order for which simultaneous events were fired. This option can present additional problems
thus it may not be preferable. Such difficulties can be eliminated through better design of the

model.

Figure 4.15 shows an example of a / Y \

simple state flow for Object Y. In this example,
events p and q are performed concurrently, thus

g is eligible from the beginning; however, the

system wants to guarantee that if event p is

Figure 4.15 Event Firing Reduction

received first that event qisimmediately fired.

Algebraically, if event p isreceived first:
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CAF

X = pqr.D|gsE
X—L>qr.D|gsE=r.D|qgsE
X—1>5r.D|sE

This example shows each step of the operation. It is permissible to simply show:

CAF

X = p.a.r.D|q.sE
X—L>r.D|sE

It is important to note that event firings do not affect the eligibility of a choice and thus
do not affect the eligibility of an event. While there is a q event firing in the first concurrent
term, it does not make q ineligible, but the later firing of event g in this example would be:

cAF

X = p.a.r.D|q.sE
X—>pgr.D|sE—,—>qr.D|sE=r.D|sE——~indigible

The ineligibility of a fired event does not

s X D
make the originating event ineligible. An event firing m
is aways immediately reduced. The result of the K °

event on the system is immaterial to the digibility of \

prior operations. e Y

™
4.4  Example —

Figure 4.16 shows an example of a system

Figure4.16 Object-Event Synchronization

modeled in FOIL. Object X is initialy in state A.
Because A is an accepting state object X can accept both p and t events. The p event will cause

object X to trangition to state B. The t event will cause object X to instantiate a new Y object
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which can subsequently begin accepting events. The asterisk indicates that multiple Y objects
can be created by multiple t events being received as long as object X isin an accepting state.

The diagram in Figure 4.16 models a workflow pattern known as “multiple instance with
no a priori runtime knowledge” [30]. Thisis one of the more complicated patterns in workflow
management. The system does not know how many instances of object Y there will be. But, it
has to make sure that all of those copies are in state E before accepting the g event. For example,
the event sequence (t,Yr,q) would be undesirable as object X would till be in state A. Thus,
while object Y is ready to receive the g event, object X is not ready. The problem could likewise
be reversed with a sequence like (t,p,q). To complicate matters, the problem could be extended
with an event sequence such as (t1,Y1r,t2,p,q). In this case, there are two instances of Y but only
one of them is prepared to accept the q event.

The following demonstrates the algebraic construction of the system in Figure 4.16 with

object identifiers:

X, A=p.X B+t.(p.X,B|A]Y) X,B=qgC+t.(qC|B]Y)

X, = pX;B+t.(p.X,B|A]Y)

X, = p.(aC+1t,.(aC|B[Y))+1.(p.(aC+1,.(aC|B[Y)) | A]Y)
X, =pgC+ pt,.(qC|B|Y)+t.p.(aC+t,.(qC|B|Y)) [t Alt.Y

Al

chzF p.gC+ pt,.qC| pt,.B| pt, Y +t.p.qC+t,.pt,.qC|t.pt,.B|t,.pt, Y |t ALY
If instance number 1 of an X object received an p event, the following reduction would
take place:
cAF

X, = pqC+ pt,.qC| pt,.B| pt,Y +t.pgC+t.pt,.qC|t.pt,.B|t,.pt,.Y |t .Alt.Y
—L5qC+t,.9C|t,.B|t,.Y
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Note that two choices were completely removed because the t event was not received and
these choices were eliminated. The remaining expressions were reduced by eliminating the p
events from the remaining applicable expressions. The fina definition now represents the state
of the system after receiving event p. Some interesting things to note from this current definition

are:

e Receiving an event q will now completely eliminate event t from the
definition. Thisislogical since, if q is received, then any new Y object will
never complete since q has already processed.

e Receiving an event t would place B at the front of a term. This would be
expanded and the definition again placed into choice-action form (CAF).

As discussed earlier, if the system received and accepts the events (t, Yir, q) the system
would be hung since the X; object is not in a state that can accept the g event even though the Y;

instance isready. Reduction of these eventsyields:

CAF
X, = pgC+ pt,.qC| pt,.B| pt,.Y +t,.pgC+t,.pt,.qC|t,.pt,.B|t,. pt, Y |t . Alt.Y
—' 5 pgC+ pt,.qC| pt,.B| pt, Y |AlY

This triggers the instantiation of object Y. Anytime a name reaches the front of a
concurrent action and does not have a defined subscript, it is assumed that new object creation
has occurred and the subscript is replaced with the next iteration of the object instance.

Continuing with the reductions:
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CAF
X, = pqC+ pt,.qC| pt,.B| pt,Y +t,.p.gC+t.pt,.qC |t,.pt,.B|t.pt,.Y |t .Al|t.Y
— > pgC+ pt,.qC| pt,.B| pt,Y | AlY
createobject Y
= AlYr.qYF
substitute A
ng p.g.C+ pt,.qC| pt,.B| pt,.Y +t,.p.gC+1t.pt,.qC |t,.pt,.B|t.pt,.Y [t .A|t.Y)|Yr.aYF
= pgC|Yr.gY,F + pt,.qC| pt,.B| pt,.Y |Y,r.qY,F +t.pqgC|Yr.qY,F +
t.pt,.qC |t.pt,.Blt.pt,.Y |t . Alt.Y |Yr.qYF
— 5 pgC|qY,F + pt,.qC| pt,.B| pt,.Y |qY,F +1.p.qC|qY,F +
t.pt,.qC |t.pt,.Blt.pt,.Y |t.Alt.Y |qYF
—1 > noéeligiblechoices

A look at the final reduction demonstrates the utility of the eligibility rule. All four of the
concurrent choices are ready to accept a g event and without the rule the reduction would
proceed normally; however, al four choices have a q embedded in one of their concurrent
components. The eligibility rule states that a choice is not eligible if the event occurs anywhere
other than the beginning of a concurrent component. Based on this, none of these action choices
are eligible and thus the event is not accepted. Correctly receiving a p event will make one of the

concurrent terms q eligible, asfollows:

CAF

X, = pgC+ pt,.qC| pt,.B| pt,.Y +t.p.qC+1t.pt,.qC |t,.pt,.B|t.pt,.Y |t ALY

— 5 paClYrqY,F + pt,qC| pt,.B| pt,.Y | Y,r.qY,F +t.p.aC|Yr.qY,F +
t,.pt,.qC |t.pt,.B|t.pt,.Y |t At Y |Yr.qYF

—Y¥ 5 pgC|qY,F + pt,.qC| pt,.B| pt,Y |qY,F +t,.p.aC|qY,F +
t,.pt,.0C|t.pt,.B|t.pt,.Y |[t,.A|t.Y |qY,F

—L5qClaqYF +t,.0C|t,.B|t,.Y |qY,F

—15C|Y,F

The following example demonstrates that it does not matter whether the Yir event or the

p event is received first aslong as both of them are received before the q.
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CAF

X, = paC+ pt,.qC| pt,.B| pt,.Y +t.p.qC+1t.pt,.qC |t.pt,.B|t.pt,.Y |t ALY

— 5 paClYrqYF + pt,qC| pt,.B| pt,.Y | Y,r.qY,F +t.p.aC|Yr.qY,F +
t,.pt,.qC |t.pt,.B|t.pt,.Y |t At Y |Yr.qYF

—L 5 qC|YrqY,F +t,.C|t,.B|t, Y |Yr.qY,F

—1 > not eligible

—% 5qC|qY,F +t,.0C|t,.B|t,.Y |qY,F

—95C|YF

As afinal example, if two instances of object Y are created by two separate t events, the

eligibility rule ensures that al instances are synchronized before continuing.

CAF

X, = paC+ pt,.qC| pt,.B| pt,Y +1,.p.qC +t,.pt,.qC |t.pt,.B|t.pt.Y |t ALY
— > paC|YrqY,F + pt,qC| pt,.B| pt,Y | Y,r.qY,F +t.paC|Yr.qY,F +

t.pt,.0C [t.pt,.B|t.pt,Y [t . Alt.Y|Yr.qYF
—L5qC|YraYF +t,.9C|t,.B|t,.Y|Yr.qYF
—>qC|Yr.qY,F +qC|Y,rqY,F |Y,r.qY,F + gC|Y,r.qY,F |Y,r.qY,F |t,.qC |t;.B|t,.Y
—31 > not eligible
— 5 qC|qY,F +qC|Y,r.aY,F |gY,F +qC|Y,rqY,F |qY,F |t,qC |t,.B|t,Y
—1 > dtill not eligible
— 5qC|qY,F +qC|qY,F |qY,F +qC|qY,F |qY,F |t,.qC |t,.B|t,.Y
—A5C|Y,F+C|Y,F |YF
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5. CONCURRENCY, INHERITANCE, AND MODEL VERIFICATION

The Formal Object Interaction Language (FOIL) shows its utility most effectively when
used to model complex systems. In addition to its inherent support for concurrency and its
conformity to an object-oriented paradigm, it can be used to verify certain attributes of a

complete system, and to analyze individual objects and states.

5.1 Concurrency

The ability to model systems that can perform concurrent actions is becoming more
important in an age of distributed systems. FOIL has a method for modeling such simultaneous

actions through the mechanism of thread spawning. As the notation and algebra of FOIL have

already been explained, an understanding of how

some concurrent patterns are modeled will aid in

the understanding of the expressive power of the

FOIL model.

5.1.1 Spawning Threads

Spawning multiple threads of execution is

done, primarily, by the use of the output port

notational element. The output port indicates Figure5.1 FOIL Thread Spawning
that the object will remain initsinitial state until all output ports are satisfied. Figure 5.1 shows
an example of a ssmple case where object X; will remain in state A until both a p and a g event

arereceived. After the p event, object X; will bein state { A, B}. After the g event, object X; will
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bein state { B, C}. Thus, object X; beginsits life in a single state but ends life in multiple states
due to the thread spawning effect of the output ports.

Initially, this sounds like an easy concept, but there are many ways to model thread
spawning, and in some of them the number of output transitions required for completing a state
is either unknown or infinite. FOIL can handle al of these cases both by notation and by
algebra.

Object X3 in Figure 9 shows an example of a case where the number of output transitions
to complete state A is unknown. In this case, any one of three events can be received while in
state A but they are all optional. In this model, we must receive one of the events for the object
to progress but we may receive multiple events which must be processed. Thus, the number of
threads spawned is unknown at design-time. In fact, the number of threads required is not even
known at run-time until the E state is reached by one or more threads. Thus, only when the E’
event is received and all threads which have left A have reached E, will the object complete

transition out of state A. The algebra clearly handles this case:

X =(p+ p)sE'[(g+g)t.E'|(r+r)uE
CAF

X; = psE'|qtE'|ruE+psE'|qgt.E'|'ruE+psE'|'qt.E'|ruE+
psE'|'qtE'|'ru.EH psE'|gt.E'|ruE+ psE'|gt.E'|'r.u.E+
I'psE'|'gt.E'|r.uE+ psE'|'qt.E'|'r.u.E'

Remove Not — Event Actions
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CAF

X; = psE'|gt.E'|ruE+psE'|qt.E+psE'|ruE+
p.sE+qt.E'|r.uE+qt.E+r.u.E
—P 5>sE'|gt.E'|r.u.E+sE'| gt.E+SE'|r.u.E+sE'
—4 > sE'|tE'|r.uE+sE'|t.E
— S E'|t.E'|ru.E+E'|t.E
—E sindigible
— E'|E'|ruE+E'|E'
—= > done
Another case involves the concept that an object will never completely transition from a
given state. This pattern can be used to model listening devices or objects that will infinitely
react to events and process them. Object X, of Figure 5.1 shows an example of such a pattern.
In this case, object X, will never fully transition out of state A. As each event p isreceived anew
state B is created and processing continues. Thus, the initial state of object X, is { A}; after ap
event, it becomes { A, B,}; after another p event, it becomes { A, B1, By} and so on. The algebraic
construction and operation clearly shows this behavior:
X, =p.(B[A
X,=p.B| p-A
— Blll (pz-lel pz-A)
— Blll lel (p3-B3l| p3-A)
L’ Blll (ps-B3'| ps-A)

The MasterController object in Figure 3.12 of the elevator system is an example of this
pattern in practical use.

5.1.2 Merging Threads

Perhaps an even more complicated situation that arises from modeling concurrency is

how to merge multiple threads of execution. In some cases, Petri-nets fall short when it comesto



101

this problem. For example, whether threads merge synchronously or asynchronously must be

considered. Additionally, one must distinguish between a model merging and athread merging.

Figure 5.2 shows three

2 D

examples of identical object thread
spawning; however, all of these cases

merge differently. Object X; shows a

standard synchronous merge; meaning

that an object of type X; will not accept

a t event unless both threads

completely reach state D. Note that

there is no specific notation for a
synchronous  merging of  two

behavioral threads. Thisis because the

reduction eligibility rule automatically

enforces this constraint.

Figure5.2 FOIL Thread Merging

X, = prt.E'|qst.E
—45 prtE'|st.E

— prtE|tE

—indligible
P S rLELE

—indigible

— SLE|tE'=tE

t EI
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Object X,, on the other hand, models an asynchronous merge. In this case, the first thread
reaching state D will be allowed to continue on with execution. The second thread will merge
when it reaches state D regardless of the state of the first thread. The action of state E will not be
executed twice even though it may be executed before both threads reach state D.

X,=A A=pBj|qC

B=rD+r C=sD+s D=tF
X, = p.(rt.E+r)|q.(st.E'+s)

caf

X, = prt.E'|gst.E+prtE'|gs+ pr|gstE+pr|qgs
—4 5 prtE|stE+prt.E'|s+ pr|st.E+pr|s
— > prtE|tE+prt.E+pr|tE+pr
p.r [t.E'is the only eligible term for t
— s pr|E
—LE 1| E
Class Xz isnot athread merging at al. It represents amodel or multi merge. In this case,
the two threads remain independent. This would be the same as having two state D’s and two
state E’s. Thus, state D and E will each be executed twice, once by each thread. In order to
distinguish them in the calculus, subscripts are used to represent different state instances in the
instantiated object.
X;=A A=pB|qC
B=r.D, C=sD, D,=t E/
X;=pri.E'|prt,.E,’

5.1.3 Active State Interrupt

To complete the representation of concurrency in FOIL, it isimportant to understand how

active states perform their work. When a thread of execution arrives at an active state, all pre-
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fire events are transmitted (i.e. method calls are made) in a concurrent manner. This means that
method calls in FOIL are assumed to run in their own thread on a sequential system. They are
merely transmitted asynchronously in a distributed system. Once this is complete, the active
state is free to perform its active state code.

The execution of the state’s actions must also be performed in its own thread. The main
thread will wait on this process while continuing to listen for events that may cause a transition

to occur. Thus, the reception of an eligible

event will result in immediate suspension of
active state processing.

Figure 5.3, a model of the Door object

used by an elevator system (see Figure 3.12), is

an example of how this mechanism is

Figure5.3 FOIL Active State Interrupt

understood in FOIL. Object X startsin state A.

Upon receiving a p event it will transition to B and begin executing B’s active state code. Upon
completion of B’s code (B’), it will fire a q event, which will cause it to transition to state C.
However, if B receives at event prior to completion of its code, it will transition to D and event q
will never be fired. Thisis completely determined by the implied representation of active states.
The behavior of active states as outlined here is based on the underlying representation outlined
in 4.1.3 and the assumption that active state execution is current with other system operations.
Given these assumptions the following reductions demonstrate the active state interrupt behavior

of the model in Figure 5.3:
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A=pB B=BBB.g|(qC+tD) C=rD D=D.D.D's|sA
CAF —

X = p.B.B.B'.a| p.q.r.B.D.D’.§| p.g.r.s.A+ p.ﬁ.B.B’.a| p.t.B.D.D’.§| ptsA
—P 5> B'.q|qr.D.D.D's|qr.sA+B.q|t.D.D.D's|t.sA

If event t isreceived before B completes:
—',Bq|D's|sA
Active State B finishes but g is no longer eligible:
— & ,D's|sA
In this example, B does actually complete processing even though the t event is received.
Post-firings of the active state may still be processed. It is completely possible that by making
different assumptions with regard to how active states behave that the system would perform
differently. Likewise, if a constraint was made that events can only be accepted following
completion of active state processing (i.e. sequential), then the t event would not be eligible until
after the B’ event isreceived. The following shows the algebra for the same sequence of events

and the same active state representation but with the assumption of sequential process of

interrupt events:

A=pB B=BBB.g(qC+tD) C=rD D=D.DD'ssA
CAF —_

X = pBBB.qqr.D.D.D'ssA+ p.BBB.qt.D.D.D'ssA
—P® 5 p.BBB.qqr.D.D.D'ssA+ p.B.B.Bqt.D.D.D'ss.A
—L >not eligible

The decision on how active states are treated could be made on an object or event a state

level; however, FOIL currently has no notational variant to denote such treatment.
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5.2 Inheritance

It is safe to say that FOIL could not be considered a truly object-oriented (OO) modeling
language if it did not support inheritance. The code saving attribute of inheritance is one of the
hallmarks of OO development. Two of the other attributes of OO development, abstraction and
encapsulation, do not deviate from the traditional sense when expressed using FOIL. The other
major attribute of OO programming is polymorphism and is primarily an implementation issue
and does not impact the modeling of such systems in a specific way. Therefore, the specific
mechanisms of polymorphism are not discussed in this thesis. It is safe to assume that, if it can
be successfully demonstrated that inheritance is supported, the implementation of polymorphism
is a programming-language-specific function and can be accomplished in a meaningful way
when represented by a FOIL model.

5.2.1 Structural Inheritance

In typical object-oriented (OO) development, the term inheritance deals with the “is a”
relationship of one object to another. For instance, a sparrow “isa” bird. While this relationship
is intuitive, it may not be obvious that from a programming perspective, this inheritance
relationship — sometimes referred to as generalization — only applies to the structural definition,
or interface, of aclassor object. FOIL does not contradict this notion.

Figure 5.4 is amore detailed FOIL model of the simple inheritance model of Figure 3.7.
In order to demonstrate that FOIL models exhibit interface conformity, as in the typical
definition of inheritance in OO development, the approach will be to convert the classes of this
diagram into typical OO class definitions. This will prove that a FOIL model exhibits structural

inheritanceif:
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2 ki \ a CreditCard I

#Invoice[] invoices +addlnvoice(Invoice)
Afloat amount +removelnvoice(Invoice)

deposited

#Invoice[] invoices +addInvoice(Invoice)
Afloat amount +removelnvoice(lnvoice)

-String creditcardno
deposited
received
authorize

cancel (creditcardno), accepted
Pending

\
a Check N\ a Cash

#Invoice[] invoices +addInvoice(Invoice) flnvmce[] invoices
~float amount +removelnvoice(Invoice) float amount
-int bounceCount -String creditcardno

updateAccount

updateAccount
(amoy

(amour]

.

J

+addInvoice(Invoice)
+removelnvoice(Invoice)

(amount]
(amoy

Figure 5.4 Structural and Behavioral Inheritance Example

e The conversion processis generic and repeatable for all such models.
e The conversion does not in any way add additional information to the model.
[ ]

The resulting conversion, while being less expressive than the original FOIL
diagram, resultsin avalid OO class diagram.

The conversion of a FOIL model to a typical UML class diagram is relatively ssimple.
Since FOIL offers additional information to a typical OO model, we simply extract from the
FOIL model those methods and attributes which comprise the subset of information contained in

the entire object. For example, FOIL implicitly tracks the state of the object and state tracking is
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non-deterministic and thus a state collection would have to be maintained in a typica OO

language. However, since every such object in FOIL would have such a condition this would not

aid in proving inheritance.

Every event in a FOIL mode is
received by the system as a whole and
distributed to the object by some
mechanism. This could be a distributed
event service or an object to object call as
isthe case in OO development. Thus, each
event could be viewed as a public method.
Likewise, each active state performs work
specific to that object and thus could be
considered a protected method. A
conversion of the read-only attributes as
specified in FOIL to the appropriate
protected attribute with a getter method for

access would also have to be done.

Combining the methods from these

/ Payment \

States[] state
#Invoice[] invoices
#float amount

+Payment(amount)
+addInvoice(Invoice)

+getAmount()
+updateAccount()
+cancel()

+CreditCard(amount)
+removelnvoice(lnvoice)m +addlInvoice(Invoice)

#voided()
#deposited()

Check

States[] state
#lnvoice[] invoices
#float amount

-int bounceCount
-String creditcardno

+Check(amount)
+addlnvoice(lnvoice)
+removelnvoice(lnvoice)
+getAmount()
+updateAccount()
+cancel()
+checkBounced()
+checkResub()
+checkCleared()
#voided()
#deposited()

#bounced()
#cleared()

/ CreditCard \

States[] state
#Invoice[] invoices
#float amount
-String creditcardno

+removelnvoice(lnvoice)
+getAmount()
+updateAccount()
+cancel()
+authorize(creditcardno)
+accepted()

+rejected()

#voided()

#deposited()

\ #pending() /

Cash

States[] state
#Invoice[] invoices
#float amount

+Cash(amount)
+addInvoice(Invoice)
+removelnvoice(lnvoice)
+getAmount()
+updateAccount()
+cancel()
+makeChange()
#voided()

#deposited()
#changeMade()

Figure5.5 OO Equivalent of FOIL Inheritance

steps with the attributes and methods specified by FOIL in the traditional UML manner would

result in the simple class diagram of Figure 5.5. It is evident that this resulting UML diagram is

valid and since the method described above can be performed on any FOIL diagram then FOIL

does conform to the industry-standard definition of inheritance.
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In addition to proving that FOIL does provide for structural object-oriented inheritance,
the resulting UML diagram provides proof that a FOIL diagram is far more expressive than its
UML counterpart. In UML, the modeling required to provide the same level of behaviora detall
would require numerous diagrams. In addition, this conversion process provides evidence
regarding the intuitive nature of FOIL diagrams as compared with UML. While this evidence
certainly does not constitute proof, it does suggest that such a claim may be plausible.

5.2.2 Behavioral Inheritance

While FOIL complies with the traditional notion of inheritance, it is difficult to see how
this idea of inheritance makes implementation of polymorphism intuitive. Polymorphism means
that one object can act like another and, in as far as one object can do al the things of another,
this definition is completely satisfied by the concept of interface conformity. However, if the
notion of polymorphism included that the object must behave the same way, then the concept of
behavioral inheritance must be introduced.

Behaviora inheritance is not a new concept [70, 74]. It is easy to expand the idea of an
“is & relationship as being one where one object can do al the things that another can AND
must do so in the same manner. Obviously, if an object does exactly the same thing in exactly
the same way as another than those two objects are equivalent and there is no need for
inheritance. However, an extension or override of behavior is alowed in the same was as an
extension or override of an interface.

Given the fact that a class can extend or override the behavior of another, behavioral
inheritance as a concept must be clearly defined. In FOIL, the informal definition of behavioral

inheritanceis:
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Object X is said to be inherited from object Y, if it conforms to the same interface
AND for all statesin Y there are corresponding states in X such that the receipt of
any event in Y will result in the same transition as that of X.

Formally, the behavior of an object is represented by atuple:
O=(S,RF,6)

Where Siis the set of states in O, R is the set of events received by O, F is the set of
events fired by O, and @ is the set of transition functions performed by O. Formally, an object X

inheritsfrom Y if:

6,6

y €0x

Referring back to the example of Figure 5.4 extension of behavior can occur in one of
three ways. sequential extension, concurrent extension, and choice extension. The Check class
shows an example of sequential extension. The Payment class behavior is basically untouched in
the Check class but where the Payment class would end the Check class has been extended to add
additional states and transitions. The Cash class shows an example of concurrent extension. In
this case, the terminating states of the parent class (Payment) remain the terminating states of the
child but there are additional terminating states by way of concurrent actions. These two
methods can be combined in the same object like the CreditCard class which is both a
concurrent and sequential extension on the Payment behavior. Choice extension while not

demonstrated in Figure 5.4 is similar to concurrent extension but is comprised of choices.



From a polymorphic perspective,
choice and sequential extension provide
some interesting side effects. For
instance, if an object is treated as its
inherited parent, some states in the object
may not exist in the parent. In this case,
the object is considered to be in the last
state it was in that is in the set of states of
the parent. For instance, if the Check
object above isin the cleared state, then if
it were treated as a generic Payment, it
would bein the deposited state.
behavioral

Ensuring proper

inheritance notation is quit simple.
Copying the behavioral specification of an
object to another and then extending the

behavior, adding concurrent actions or
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-

Payment

\

#Invoice[] invoices
~float amount

+addInvoice(Invoice)
+removelnvoice(lnvoice)

(amody
——

updateAccount

deposited

-

Check

\

#Invoice[] invoices
Afloat amount
-int bounceCount

+addInvoice(Invoice)
+removelnvoice(Invoice)
-String creditcardno

(amou

Int)

N

received

cancel

Voided

updateAccount
deposited

chleckResub
checkBoupced

bounced

rejected

rejected

Figure 5.6 Alternate Behavioral Inheritance Notation

adding additional choices will result in a second object that can be said to inherit the behavior of

the first. Figure 5.6 shows an optional way to denote the commonalities that may aid in clearly

communicating this relationship.

The behavioral inheritance characteristic of FOIL can also be verified algebraicaly. This

follows from the formal definition given previously.
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An object X exhibits behavioral inheritance with respect to object Y, if for each
sequential term of the FOIL algebraic expression for Y there is a corresponding
expression in X that is a sequential superset.

As an example, consider again Figure 5.4. If the first letter of each state and event is

used as an algebraic term, then the Payment class would be expressed as.

Payment = Ru.D.D.D'.D + RCV.VV'V

The inherited class Cash would be:

Cash=RuD.D.D'.D|RMC.CC +RcV.VV'V

It should be obvious that /

Trade \ / Trade \

1 H #Invoice[] invoices +addlInvoice(Invoice)
eaCh muentl al term n the Afloat amount +removelnvoice(Invoice) States_[] St?te .
-int quantity #String itemname #Invoice[] invoices

#float amount
#int quantity
-String itemname

expression for the Payment object

+Trade(quantity, name)
+addInvoice(Invoice)
+removelnvoice(lnvoice)
+getAmount()

is contained within a selected term

. +updateAccount()
of the Cash object. +eancel)
sel
#voided()
#deposited()

It should be clear at this

\ #sold() /

Figure5.7 Structural Inheritance Only

point, that the  behaviord
inheritance concept adds an additional constraint to an object in FOIL before it can be considered
to be inherited from another. Figure 5.7 shows an example of an class which complies with the
requirement of interface conformity as demonstrated by its corresponding UML class
specification. Note that all of the attributes and methods of this Trade class do exist in the
Payment class. Thus, by traditional thinking; the Trade class could be inherited from Payment
class; however, from a FOIL perspective, it should be obvious that the behavioral specification

of Trade does not match that of Payment. The algebra also bears this out:
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Payment = Ru.’D.D.D'.D + Rc.V.VV'V
Trade= Rs.’SS.S'.Su..D.D.D'D+RcV.VV'V

While the second term of these expressions match, the first terms do not. In addition, the
first term of the Payment expression can not be found embedded in any term in the Trade
expression. There is a common subsequence between these terms but this is not sufficient to
fulfill the requirements for behavioral inheritance. This should be clear from the fact that in
order for Trade to be inherited from Payment, the receipt of an updateAccount event while in

state Received should result in atransition to state deposited, but clearly it does not.

53 Model Verification

Obvioudly, one of the major benefits of the Formal Object Interaction Language (FOIL)
is the ability to validate models formally. Thisis done by a special form of state-based analysis
using the FOIL algebra. Simple analysis of a FOIL system expression can reveal characteristics
about the system as designed or the system during execution. While the extent of what can be
learned using this method is less than that of other modeling approaches (such as Petri-nets), the
information gleaned is consistent with that required for information system analysis.

5.3.1 Inherent Inconsistency

A simple sequential pattern can be
X

used to represent an object behavior that is

p q p
inconsistent.  Figure 5.8 shows an object ° ° ° Q

behavior that is inconsistent. This Figure5.8 Inconsistent Sequential Behavior

inconsistency is mainly derived from the fact that this model does not denote the p event as

occurring multiple times. The system can not accept a p event since it will require it later but it



113

can not get to the C state which requires it without accepting a p event. Thus, there is a

contradiction. The simple algebraic representation for this systemis:

CAF

X = pg.p.D
Clearly based on the Reduction Eligibility Rule, the only term in this expression is
eliminated since it begins with a p event but has a p event embedded in it as well. This leaves
object X with no valid events for which it may perform its behavior. Thus, object X can be said
to have no behavior and thus it is no use as modeled. The term used in FOIL to describe this

condition is “Inherently Inconsistent”.

Figure 5.9 shows an example of the same / X \

X object but with the added notation that event p ° °

is alowed to occur multiple times. The

Figure5.9 Sequential with Plural Events

algebraic construction now becomes:

CAF

X = p.q.p,.D
Each starred event is numbered upon expansive construction. Now it is clear that a p
event will be processed if the occurrence of that valid event is numbered. Since event p; does
not appear in the downstream sequence the Reduction Eligibility Rule is not violated. Thus, the
behavior of object X expressed in Figure 5.9 is consistent.

5.3.2 Deadlocks

The ability to identify inherent inconsistencies in a model also alows for the detection
simple deadlocks. Figure 5.10 shows an example of a simple deadlock. In this case, object X

must be in state C before a p event will be accepted but it must be in state B before a q event will
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be accepted. Therefore, a deadlock condition exists. Algebraicaly Figure 5.10 would be

constructed as:

A=pB|qgC
B=qgD and C= pE
= A=pqD|ag.pE

It is easy to see that there are no eligible terms for reduction since all starting events are

embedded in other concurrent action

sequences. Thus, when an object is

represented such that no eligible events

exist, the algebra inherently detects the

deadlock condition.

Figure5.10 Simple Synchronization Deadlock

5.3.21 Deadlock Possibility

Figure 5.11 shows a deadlock scenario where object W and object X are sharing access to

objects Y and Z. The algebraic expression for Figure 5.11 without state flow is:

Al

CAF
S = WopWr WsWQO.A | Xr. Xp.Xg.Xs.E| p.g.l |r.sK

FOIL agebra can be used to

A R WA S
find possible deadlocks. Thisis done ° °
by placing the model in CAF with °w ew
/ Y \ / z \

only global event scope and

determining what global events are

eligible. Removing event scope in S

Figure5.11 Deadlock Example

produces:
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GCAF

S = prsgAj|r.pgsE|pagl|rsK

An attempt to determine the eligible events will result in an empty set since both p and r
are embedded in other concurrent terms. Thus, this system can result in a deadlock.
5.3.2.2 Deadlock Occurrence
FOIL algebra also provides a mechanism to determine if a system is deadlocked. Thisis
done similarly to deadlock avoidance but during the runtime reduction of events. It iseasy to see
in Figure 5.11 that a deadlock will result if alocal p event isreceived for Wand alocal r event is

received for X. The following reductions show this process:

S—® 5 Wr WsWgWp.B | Xr. Xp.Xg.XsE | q.p.J |r.sK
— X SWr WsWoWp.B | Xp.Xg. Xs.Xr.F |g.p.J |sr.L

Once again, an attempt to determine eligible events will result in an empty set meaning
that the system can no longer accept any events. The system is deadlocked.
5.3.3 Reachability

Determining whether states are reachable after design or during run-time is nearly as
simple as deadlock detection. Figure 5.12 shows an example of an object that has an
unreachable state as designed as well as the potential for an unreachable state during execution.

The algebraic expression for this object with partial state flow is:

X = p.B.B.(q.D.D.(r.GG+t.F.F)+sE.E)|sC.Cr.D.D.(r GG +t.F.F)

CAF

X = p.B.BgD.D.r.GG|sC.Cr.D.Dr.GG+ p.B.B.gD.Dr.GG|sCCr.D.DLF.F
+ pBBQD.DLFE.F|sCCrD.DrGG+ pBBgD.DLF.F|[sCCrDDLFF
+ pBBSEE|sCCrDDrGG+ pBBSEE|sCCrDDLEF

Removing inherently inconsistent terms produces:
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X = p.B.BqD.DtF.F |sCCr.D.DtF.F + pBBsSE.E|sCCr.D.DLF.F

There ae only two

concurrent terms remaining and
states A and G are missing. State A

is the current state of the object,

thus state G, from the outset, is

unreachable. This can be done

Figure5.12 Reachability Analysis

during runtime as well. If the

above system were to receive an s event, the reduction would be:

X —° 5 p.B.B.g.D.Dt.F.F|r.D.DLtF.F

Since the second term was ineligible, that choice was eliminated and only the single term
remains. In addition, states A, G, and E (the system is currently in state C) are no longer in the

expression, thus they are all unreachable as this point in execution.
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5.4  Russian Philosopher Problem

One of the most popular problemsin computer science, the Dining Philosopher Problem,
is used to teach and demonstrate the problem of concurrency and resource dependency in
computer systems. The problem poses that there are five philosophers sitting around a circular
table. Each philosopher has a bowl of rice and a chopstick on their left. In order to eat therice,
each philosopher must pick up the chopstick on their left and their neighbors’ chopstick on their

right. Each philosopher is thinking

independently and when he is done thinking

he will eat. The goal is to design a system
where no philosopher starves.

A typical solution to this problem is
to have each philosopher, when done

thinking, pick up the chopstick on his left,

then pick up the chopstick on his right, and
then eat. When finished, he will put down
. . . . Figure5.13 Dining Philosopher Problem
his left and then his right chopstick
sequentially and start thinking again. If the philosopher can not pick up a chopstick because it is
being used by another, then he must wait until the chopstick become available. The problem
with this scenario occurs if all philosophers begin to eat at the same time. Each one picks up his
left chopstick and thus there is no right chopstick for any of them. Thus, they all wait. There are

severa solutions available to solve this problem but it is not the goal of this paper to explore

them.
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Figure5.14 FOIL Dining Philosopher Model

Figure 5.14 shows a FOIL model for the Dining Philosopher problem. Immediately, it should

be obvious that this model is different from traditional solutions. Since FOIL has support for

concurrency, the picking up of chopsticks has been modeled as a concurrent action. To reiterate,

if one of the benefits of OO modeling is that it most closely resembles the real world, then this
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model is more accurate, as most would agree that picking up both chopsticks at the same time is
most likely how a person would do it. This deviation from the traditional model does not

actualy solve the deadlock problem; it merely makesit less likely.

a Table I

Aint noOfPlaceSettings = 0

setPlace
set

serveFood

newProblem* setPlace

] I

RussianPhilosopher

-ChopStick* left +void setRight(ChopStick*)
-ChopStick* right

serveFood

left.putDown |
right.putDown|
newProblem
deadlock

done
Thinking
right.pickUp

right.pickUp

left.pickUp |
right.pickUp
left.pickUp

left.putDown

left.pickUp
\ left.pickup /

Figure5.15 FOIL Russian Philosopher
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The Russian Philosopher Problem is an extension of the classic Dining Philosopher
Problem. This extension is used to add a level of hierarchy to the model. In the Russian
Philosopher Problem each “Russian” philosopher is thinking of a Dining Philosopher problem.
A Russian Philosopher eats only when the Dining Philosopher table deadlocks. It is simple to
see that a Russian Philosopher “is @ Dining Philosopher. Figure 5.15 shows the Russian
Philosopher class as modeled in FOIL. There are two places where concurrent extension is used
to ensure both structural and behavioral inheritance: the newProblem event was added to fire
concurrently when the RussianPhilopher is doneEating and complete transition to Hungry will

not occur until both the doneThinking and deadlock events are received.
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6. WORKFLOW PATTERNS

The Formal Object Interaction Language (FOIL) can model any system that can be
modeled in UML, while providing more information about object behavior. In addition, it
supports concurrency, resource dependency, and structural and behavioral inheritance. These
models are verifiable through the FOIL algebra providing aformal underpinning much like Petri-
nets. This makes FOIL a powerful modeling tool for object-oriented software devel opment.

FOIL can aso be used to model high-level processes. These processes can be verified
using FOIL algebra to ensure that the underlying object model can perform the overarching
process (see Chapter 7). However, modeling from an object or process perspective requires that
any underlying framework be complete. The term “complete” refers to the ability to represent all
known process or workflow patterns. The composition of a list of patterns is a well studied
problem [31] and the current list of these patterns is generally considered to be complete. All
complex processes or workflows can be composed of one or more patterns from this list.

This chapter outlines how every workflow pattern can be represented in FOIL both
graphically and algebraically. When certain interesting run-time situations are presented by
these patterns, an additional demonstration of how FOIL agebra handles such occurrences may
be provided. All of the patterns shown use non-active states, unless the fact that states perform
code, has an effect execution of the pattern. In some cases, the algebraic reductions will include

the state indicators while, for smplicity, others may not.
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6.1 Basic Control Patterns

The simplest class of patterns found for processing work deal with ssmple control. The
basic control patterns address simple issues such as task processing in series or paralel and
making choices about which tasks will be performed. Parallel processing in the basic sense is
always considered to be synchronous.

6.1.1 Sequence

The simplest pattern found in standard workflow implementation is the sequence. In a
sequence, the object proceeds from one state to another in a sequential fashion. In this case, an

object will never be in multiple states and thus it is completely deterministic in nature.

the sequence pattern. When object X is

instantiated, it begins in state A. Upon ° P ° q °
the receipt of a p event designated for the \

X object, it will transition to state B. Figure 6.1 Sequence Pattern

Figure 6.1 shows an example of

Upon the receipt of a designated q event, the X object will transition to state C. Once arriving at
state C, no further behavior can be performed on the object making it eligible for deletion.
As might be expected the algebra for this pattern as well as the execution of the events

outlined above issimple:

X,=pBagC
—L 5 X, =qC
— X
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6.1.2 Parallel Split

In order to adequately express the behavior of an object, multiple threads of execution
may be required. The parallel split represents a simple situation where multiple threads of
execution are enacted. Thus, an object after a paralel split may be in multiple states
simultaneously. Thisis analogous to non-deterministic finite automata.

Figure 6.2 shows the simplest example of the

parallel split pattern. The output port ensures that

object X will remain in state A until bothap and aq P B
event have been received. Thus, when a p event is A

received object X will be in two states, that being \ 2 ¢ J
state A and state B, ssimultaneously. If the threads Figure 6.2 Parallel Split

were to continue from state B and C then each thread would execute concurrently.

The following is the object X expression construction:
X,=pB|qgC

Thus, there are two concurrent action sequences that must be followed before the entire

flow iscomplete. Note that a reduction upon receipt of event p would result in:
X,——>B|qC
6.1.3 Synchronization
Synchronization refers to the idea that one thread of execution must wait for a paralel
process to reach a proper state before accepting the next event. This should not be confused with

a merge (see 6.2.2) as in this case both threads of execution will continue independently. It

merely suggests that each thread must be in a certain state before either thread can continue.
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Figure 6.3 shows a diagrammatic example of an object behavior which requires

synchronization. Note that event g /
X I
shows up twice in the diagram. If

these occurrences had been

represented by a g* then no

E
synchronization would be required \ r /

Figure 6.3 Synchronization Pattern

since multiple q events would be
expected. However, this was not done and thus only a single g event is expected. When an
event q is received it is expected that object X will transition from state B to state D and
concurrently transition from state A to state C; however, object X must be in state B already.
Thus, an event g is not eligible unless an event p has already been received.

This demonstrates the robustness of the FOIL algebra and the utility of the reduction
eigibility rule. Inherently, events that are assumed to occur once must be synchronized. This
unique event synchronization is automatically enforced by the algebra. Figure 6.3 can be

constructed as follows:

A=pB|gC B=gD C=rE
CAF

X, = pBagD|qgCr.E

According to the reduction eligibility rule the only term in the expression for object X
that is eligible for reduction is p.B.q.D since while the second concurrent action starts with aq it
also appears embedded in the other concurrent action. It is rather simple to see that the q event
does become eligible after ap event is received.

X, —E> X

e =0D|9CrE
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Now, the g event is eligible for reduction. Thus, the algebra by way of the reduction
eligibility rule, enforces synchronization among unique events.

6.1.4 Exclusive Choice

This pattern represents a single choice between one or more transitions. This pattern can
also be viewed as directing a particular thread of execution. No new threads of execution are
produced during the execution of this pattern.

Figure 6.4 shows an example of the exclusive

choice pattern. Note the absence of the output ports / X \

which result in additional threads of execution.

Without output ports only the single thread that started

object X in state A will be executed upon either ap or

a q event. It is aso important to understand that

Figure 6.4 Exclusive Choice Pattern

object completion does not require that all final states
be reached. In the case of Figure 6.4, either state B or state C will be reached but not both; and,

in either case, the object has finished its behavior.

X,=pB+qgC
X,—2> X,
X,—1 X,

6.1.5 Simple Merge

The simple merge pattern represents the merging of one or more alternate paths. This
should not be confused with the merging of threads of execution. In the case of the simple
merge, there is only one thread of execution; however, the path of that execution merges with

another alternate path.
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Figure 6.5 shows an example of the smple merge pattern. The choice made at state A

causes a single thread to move

to ether sate B or C.

Regardless of this choice, the

path of the behavior will merge

at state D. Once again, merging

Figure 6.5 Simple Merge Pattern

in this context does not indicate
the joining of two concurrent threads of execution but merely refers to the merging of the path
for asingle thread.

The algebra for the simple merge isimplicit in its construction and is straightforward.

A=pB+gC B=rD C=sD D-=tE
X,=pBr.DtE+gCsDtE

X,—2— X,

X,—5 X,

The distributive law of choice can be applied to show that states D and E are only

executed once.

X,=(pBr+qC.s).DtE

6.2 Advanced Branching and Synchronization

The power of a modeling language is composed of its ability to model complex patterns
while maintaining model ssimplicity. Many of the patterns in common use in object and process
modeling can be composed of series of simple patterns; however, such compositions can grow
exponentialy resulting in a completely unusable model. Thus, it becomes necessary to ensure

that there are smpler notations for more complex patterns.
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6.2.1 Multiple Choice

The multiple choice pattern allows for the optional spawning of multiple threads of
execution. In other words, it alows for choosing several execution paths from many
aternatives.

Figure 6.6 shows an example of

the multiple choice pattern along with

"7

its associated path merging. In this _@
. ~=49

\

\

~

case, events p, g and r will all spawn a

thread of execution but are optional. In ~r

this figure, object X will remain in state K
Figure 6.6 Multiple Choice Pattern

A as long as one of the events has not

been received. Thus, Figure 6.6 will not complete unless all of the optional events are received.
This can be overcome by adding a synchronizing event that will result in completion without
receiving al events (see 6.2.3).

It isinteresting to note that if all events are received this pattern is the same as the parallel
split while if only one event is received it is the same as the exclusive choice. Thus, this
construct alows for the range of possibilities between those two patterns inclusively.
Additionally, the use of output ports for the transitions out of state A are optional since such ports
would not change the behavior in any way. Thus, output ports may be added if the spawning of
threads from this pattern is not clear.

It is relatively clear that the dotted line represents the possibility that an event may be
received. Thus, it is necessary to have an annotation for not receiving an event. While p

represents the occurrence of the p event, a!p represents the lack of ap event. Inthe algebra, this
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functions as a placeholder for manipulating the expressions since it is understood that a !p event
will never be received. However, some implementations could send a !p event explicitly if it is
determined that a p event will never bereceived. The algebrawill handle this case aswell.

Using this notation, the basic definition for the p event option of state Ainis:
A= pB+p

This is read simply as. A is defined as receiving an event p and acting like B or not

receiving an event p at all. Understanding this, the complete definition of Xis:

A= (p.B+p)|(qCHQ)|(r.D+Hr) B=sE C=tE D=uE
X,=(p.BsE+ p)|(qCt.E+Qq)|(r.D.u.E+T)

Through the application of the distributive laws, this definition can be converted to

choice-action form.

X,=(p.BSE+ p)|(qCtE+ Q)| (r.D.UuE+T)
X,=(p.BsE|qCtE+ pBsE|lgH p|gCtEH p|'q)|(r.D.u.E+T)

CAF

X, = pBsE|qCtE|r.D.UuE+ pBsE|q|r.DUEHp|gCtE|r.DuE+plq|r.D.UE+
p.BsE|qCtE|'r + pBsE|'q|'ir+p|gqCLE|'rHpl|ig]r

This agebra clearly shows the

state explosion problem that can be a
result of the placing expressions in
CAF. In implementation, the

underlying system would be better off

to place this expression in choice-

Figure 6.7 No options chosen but continue

compressed form (CCF) (see 4.2.2.2).

Note that the last choice allows for no events to be received but this case must be executed
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explicitly by the firing of events: !p, !g, and !r. This makes sense because the absence of
information is not sufficient for the object to determine that it should continue. Also, the final
option will result in termination but will not result in arriving at state E as may be desired. In
order to accomplish this, an additional option may be necessary as shown in Figure 6.7. In this

case, the algebra becomes:

CAF

X, = pBsE|qCtE|r.DUE+ pBsE|'q|r.DuUuE+ p|gCtE|r.DUE+ p|q|r.D.UE+
p.BsSE|qCtE]|'r+ p.BsE|'qlr+'p|gCLE|'r+ p.E|'qE]|'r.E

This allows for transition to state E if the system explicitly indicates that no choices will

be made.

6.2.2 Synchronizing Merge

In this pattern multiple
threads of execution are

synchronized and then merged into

a single thread of execution. This / Y

is distinguished from the simple

merge pattern (see 6.1.5), where the

paths are merged but only one

Figure 6.8 Synchronizing Merge Pattern

thread exists, and the discriminator

(see 6.2.4), where the threads of execution are merged but are not synchronized.
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Figure 6.8 shows an example of the synchronizing merge. State A is a parallel split that
causes multiple concurrent threads of execution to be spawned. No explicit diagrammatic
notations are required to show the synchronous nature of the merge as the synchronizing of the
threads occurs implicitly at state D. Since only one t event is expected, the system implicitly
understands that all threads must reach state D prior to allowing that event.

The algebraic representation of Figure 6.8 is not much different than what has aready

been presented in the other patterns.

A=pB|gC B=rD C=sD D-=tE
CAF

X, = pBr.DtE|qCsDLtE

The main mechanism for synchronous merging is the reduction éigibility rule. As an

example, note how the following events affect the expression.

X,=p.Br.DtE|qCsDLt.E
—P >r.DtE|qCsDtE
——>tE|qCsDtE
—' > not aneligibleterm
9 ,tE|sDtE

—! > not aneligibleterm
—>StE|tE=tE

— 5 E = finished
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Thus, the reduction eligibility rule enforces synchronization. It is also interesting to note

that the agebra  without

modification handles a situation
where synchronization is optionally

required. Figure 6.9 shows an

example diagram of such a

sSituation. In this case, a Figure 6.9 Optional Synchronizing Merge
synchronizing merge will be required at state D until a choiceis made at state B. If aneventtis
received prior to passing state B then it is assumed that u is the only valid event to transition out
of state B. The following algebra, without state identifiers, demonstrates this property:

A=pB|gC B=uF+rD C=sD D=tE F=vE
X,=p.(UV.E+rtE)|qgstE

CAF

X, = puvE|qgst.E+ prt.E|qstE
—1 5 puVv.E|st.E+ prt.E|stE
—L 5 uvE|stE+rtE|stE

— > UuVv.E|tE+TrtE|tE

At this point a decision

will be made on the next valid

event. If an event u or t is

received then the first choice will

be used. If anr event isreceived

then the second choice will be

Figure 6.10 Forced Synchronizing Merge

used. This makes sense because

the acceptance of the t event prior to synchronization precludes r as a valid choice out of state B.



132

If it is desirable to have the thread wait at state D until a choice is made at B, a ssmple use of the
synchronization pattern can achieve this as shown in Figure 6.10. In this instance, E and D
require the same event in order to merge at F. Thus, if state C transitions to D by event s, an
event t will still be unaccepted until the thread through state B has made a choice and
transitioned to either state E, where the synchronizing merge will occur at F, or state D where the
synchronizing merge occurs right away. The algebra handles this case without modification and
is not shown here.

6.2.3 Multiple Merge

This pattern means that many execution paths are merged without synchronization and
multiple threads continue to exist. This does not represent a merging of execution threads but a
merging of the path multiple threads will follow. For this reason, this pattern is often referred to

as a“Path” merge.

Figure 6.11 shows an

example of the multiple-merge

pattern.  This diagram looks

identical to that of the

synchronous merge with the Figure 6.11 Multiple Merge Pattern

exception of the asterisk notation on states D and E and on event t. This asterisk isamultiplicity
indicator. Thus, a state marked with an asterisk refers to the fact multiple instances of this state
may exist. Likewise, an event marked with an asterisk means that multiple events of this type

may be expected.
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Thus, Figure 6.12

indicates that the multiple

threads of execution spawned at

state A will continue even after

their paths have merged at state

Figure 6.12 Multiple Merge Pattern Alternate L ook

D. Since there are multiple
state Ds and the expectation that multiple t events will be received then the threads of execution
are independent and thus no synchronization is necessary. Figure 6.12 shows another way of
looking at the same pattern that may make the function of the asterisks clear. This version of the
pattern makes it clear that multiple threads will continue to exist independently but that the same
path will be followed by both threads.

During the construction of the algebraic representation of the model in Figure 6.11, each
starred item is numbered sequentially as each instance in encountered during expansion. Thus,
the algebrafor Figure 6.11 is:

A=pB|gC B=r.D C=sD, D, =t.E D,=t.E
X,=pri.E |gst,.E,

It is important when using this notation to remember that the numbers do not represent
any relation to the actual sequence that these states or events will be reached or received. If
either the t; and t; reductions are eligible when a t event arrives a reduction will occur on that
instance. If both are eligible then only one of the instances will be reduced, the choice of which

isunimportant. The following sequence of events demonstrates this point.
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X,=prt.E |qgst,.E,
—LP > rt.E |gst,.E,
—22 51t E |t,.E,
—>rt.E |E,

Thet event in this example results in reduction of the second concurrent term despite the
fact that this is the first t event received but the second term is marked with a subscript of two.
The subscript notation is important because, without it, the t event would not be accepted at al as
it would violate the reduction eligibility rule. Thus, the proper construction of the algebraic
notation using subscripts for the starred items results in an expression which can be reduced
without any modification to the reduction rules. While it is encouraged that the numbering of
starred items be sequential, in actuality the numbering carries no semantic meaning and thus
could be arbitrary as long as no two instances have the same subscript.

6.2.4 Discriminator

This pattern is the merging of threads of execution, not a merging of paths. Thus,
multiple threads become one thread of execution. The difference is that this merging can be
done asynchronously. Therefore, execution of states after the merge is not stopped until the

other thread catches up.

Figure 6.13 shows an

example of the discriminator

pattern. In this example, if a p

and r event is received, the

SUbsequent recel pt of event t will Figure 6.13 Discriminator Pattern

still be accepted event though the
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other thread of execution never even reached state C.
Algebraically the function of the input port is similar to that of the optional transitions as

shown in Figure 6.8. Each one represents a possibility. Thus, state B would be represented as:

B=r.D+r.0

The use of the .0 term is introduced to explicitly show that a thread will terminate. It is
not always necessary to show these, as all final states implicitly have this element. Thus state D
in Figure 6.13 could really be shown as t.0 or possibly t.E.O, but such explicitness in the algebra
would only serve to raise the complexity without improving comprehension. However, in this
instance, it is desirable to show the termination since it is not at a fina state. Thus, this
expression can be read as, “B is defined as the receiving of event r and then acting like D or
receiving of an event r and then terminating.” Given this understanding, the full definition of

object X in choice-action formis:

A=pB|qC D=tE B=(r.D+r.0) C=(sD+s.0)
X,=p(rt.E+r.0)|q.(st.E+s0)=(prt.E+ pr.0)|(gst.E+qs0)

CAF

X, = prtE|gstE+ prtE|qsO+ pr.0jgst.E+ pr.0|gsO

The final term in this definition was dropped since it is completely encompassed by the
other terms. Thus, there is no option to accept events p, r and events q, s and then terminate
completely as other choices have yet to be resolved. The following demonstrates the behavior

with eventsp, g, S, and t:



136

CAF

X, = prtE|gstE+ prt.E|gsO+ pr.0|gstE

—P>rtE|qstE+rt.E|gs0+r.0|gstE

— >rt.E|stE+rtE|sO+r.0|stE

—>rtE|tE+r.0|tE

—>r.0|E

The reductions of events p and g are trivial. The reduction for event s is aso trivia
except to note that the second term loses one of its terms since the terminating .0 is reached and
the remaining concurrent action can be dropped by the Law of Redundancy (see 4.2.1.3). The
most interesting reduction isthe t event. The first choice has at embedded in its first concurrent
action so it violates the reduction eligibility rule. The only acceptable choice is the second term.
After reduction it is clear that state E has been reached but that completion of the behavior can
not occur until the r event has been received. Thus, an asynchronous merge has occurred
assuring that state E will not be executed twice.
6.2.5 N-out-of-M Join
An aternate way of modeling the discriminator pattern of Figure 6.13 isto treat an input
port as aform of sequentia interleaving. In the case of Figure 6.13, state B would be interpreted
as having a simple transition to state D, since it has an input port. It then becomes the
responsibility of state D to ensure that the input port is satisfied. Thus, the algebra of Figure 6.13
would have a construction of:
A=pB|gC B=rD C=sD D=tE+0

X =pr.(tE+0)|gs(t.E+0)
X =(prtE+ pr.0)|(gst.E+q.s0)

CAF

X = prtE|qgstE+ pr.0|gst.E+ prt.E|gs0+ pr.0|g.s0
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Since this dternate representation is logically equivalent, it is no surprise that the fina
CAF expression isidentical. Thisis not the preferred way of modeling the discriminator pattern

because it looks backward into

the model, which is not done on

any other occasions.

This is the only way,

however, of handling the N out of

M join pattern.  Figure 6.14

shows a simple example of this Figure6.14 N out of M Jain

pattern. This example models the situation where event v is not to be accepted until at least two
of the three threads have transitioned to state D. This pattern can be viewed logically as a
complex discriminator with an interleaved condition required for thread continuation. In order to

combine these ideas, the alternate form of the discriminator algebrais to be used:

A=pB|qC|rD B=sE C=tE D=uE E=(s+t+u)v.F+0
X =ps((s+t+u)v.F+0)|qt.((s+t+u)v.F +0)|ru.((s+t+u).v.F +0)
X = ps(sv.F +tv.F +uv.F +0) | gt.(sv.F +tv.F +

uv.F +0) |r.u.(sv.F +tVv.F +uVv.F +0)
CAF

X = psO|gtsv.F |rusv.F + psO|gtuv.F |rusv.F + pstv.F |gtO|rusv.F +
p.s0|qgt.0|rusv.F + ps0|gt.sv.F |rutv.F + pstv.F |qt.O|rutv.F +
p.suv.F |gt.0|r.utv.F + ps0|qgt.0|rutv.F + psuv.F |gt.sv.F |ru.0+
p.s.0|gt.sv.F |ru.0+ pstv.F |gtuv.F |[ru0+ psuv.F |gtuv.F |ru.0+
p.s.0|gtuv.F |ru.0+ pstv.F|qtO|ru0+ psuv.F |qt0|r.u0+
p.s.0]|qgt.0|r.u.0
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The expression (st+t+u) at the beginning of state E is repeated n-1 times, where n is the
number represented in the input port notation. Thus, if the input port were to have no number or
an explicit one in its notation, then this term would be omitted; or, the construction for the
discriminator pattern could be used (see 6.2.4). If the input port notation contained an asterisk,
then it would have to wait for al thread to converge before continuing, which is a synchronous
join (see 6.2.2). Thus, this pattern covers the range of possibilities between these two patterns.

The following algebraic reductions demonstrate how this pattern would function during

run-time:

X —L>s0|qgt.sv.F [rusv.F +s0|gtuv.F |[rusv.F + stv.F |gtO|rusv.F +
s0|qgt.0|rusv.F +s0|qgt.sv.F |rutv.F + stv.F |qt.O|rutv.F +
suVv.F |qt.0|rutv.F +s0|qt.0|r.utv.F +
suVv.F |gt.sv.F |r.u.0+s0|gt.sv.F |r.u.0+ stv.F |gtuv.F [ru.0+
SuVv.F |gtuv.F [r.u.0+
sO|qtuVv.F |ru0+stv.F|qt.0|ru0+suv.F|gtO|ru.0+s0|gtO|ru.0

—>tVv.F|qt.0|rutv.F + uv.F |gt.0|rutv.F + qt.0|rutv.F +
tv.F|qtuv.F |ru0+uv.F |gtuv.F |ru0+gtuv.F |ru.0+
tv.F|qt.0ru0+uv.F|qtO|ru0+qtO|r.u0

—I>tv.F |[t.O|rutv.F +uv.F [t.O|rutv.F +t0|rutv.F +tv.F |[tuv.F [ru0+
uv.F |[tuv.F |ru.0+tuv.F [ru0+tv.F |t.O|ru.0+uv.F [t.O|ru0+t.0|ru.0

— SuVv.F |ru0+uv.F |uv.F |ru0+uv.F [ru0+v.F |ru0+uv.F [ru0+ru0

— > F|r.u.0

6.3 Structural Patterns

These patterns involve the structural aspects of process control flow, not the structural
aspects of objects. Assuch, it issimilar to control flow statements or activities found in modern

programming languages. FOIL haslittle trouble representing these patterns.
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6.3.1 Arbitrary Cycles

Thisis a basic looping construct. / X \

This pattern is primarily supported by the

_ q
manner in which the expression is c ° °

constructed in FOIL. Recdl that a

Figure6.15 Arbitrary Cycle
unique event is defined as occurring only

once per iteration. Thus, by looping a unique event can occur multiple times. Figure 6.15 shows
an example of an arbitrary cycle. Event p is a unique event and thus occurs only once per
iteration. Iteration, in this example, istriggered by an event r while in state B. Algebraically, the
fact that substitution of terms is done only when unexpanded state terms reach the front of an

expression iswhat allows for this behavior:

A=pB B=qC+r.A
X,=p.(qC+r.A)

CAF

X, = p.BgC+ pBr.A
—P 5 X;=qC+r.A
—— X, =p.BqC+ p.Br.A
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6.3.2 Implicit Termination

This pattern represents a system, process or

object implicitly terminating when there is nothing left to A B

do. This pattern is so intuitive that is have been used

throughout this these with little explanation. Figure 6.16
shows two examples of this pattern. Analytically, an

object or process is said to terminate when all remaining

states are unreachable (see 5.3.3). Algebraically, implicit

termination can be explicitly represented:

X,=pB X;=0
X, = p.BO
—F 5 X, = 0= terminated

This explicitness is usually not necessary but can be helpful in understanding the
behavior. For example, note that termination of an object does not necessarily mean that all
states have been touched or all fina states have been reached:

Y,=pB+rC X;=0 X.=0
Y, = p.B.0+r.C.O
—— X, = 0= terminated

Finally, implicit termination does not just refer to a process or object but could refer to a

single thread of execution. Algebraically, such representation will always be explicit while

graphically it may not. For an example of thisrefer the discriminator pattern (see 6.2.4).
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6.4  Patterns Involving Multiple Instances

An object-oriented modeling language would hardly be useful without the ability to
create and manage multiple instances. Interestingly, this same characteristic is used in process
modeling to denote multiple copies of a process that run concurrently. With the ability of FOIL
to model concurrency, objects can be distributed on multiple systems allowing for each copy of
an object to run independently. The following is a review of the main workflow patterns
involving multiple instances.

6.4.1 Ml without Synchronization

This pattern involves the ability to create multiple instances of objects without requiring
synchronization at afuture time. Inthissensg, it isthe simplest of the multiple instance patterns.
The use of asterisks on event handlers provides a notational indicator that an event may be
received multiple times. When used on a relationship between objects, it indicates that an event

received by one object will result in the instantiation of another.
pattern. When an event t is received and
— P q
object X is in an accepting states (states A and k ° @
B), then a new instance of object Y will be f

Y N
created. Since object X and object Y have no |

events in common there is no need for future

Figure 6.17 shows an example of this

t*

Figure 6.17 MI without Synchronization
synchronization. If a global event r was

received and there were two instance of Y then a synchronization condition might result, but if all
events for instance of object Y are locally specified, no synchronization will occur in this system.

The algebraic construction is:



142

Xa=PpXg+t(pXg [ X4 Y)  Xg=0Xc +1,.(qXc [ Xg|Y) X =0

X = p(a-Xc +1,.(0-Xc | X5 [Y)) +1.((a-Xc + 60X | X5 [Y) [ XA ]Y)

X =pgXc+ pt,.0.Xe | pt,. Xg | ptY +1.0. X |4 X, [t.Y +

1,0 X [t X [LLY [t X, .Y
Note that the receiving of an event t results in expansion of the expression to include Y
and an iteration of state A of object X:

Yo=rYe Ye=sY: Y. =0
Y=rsF

X —50.Xe [ XA Y +6,.0Xc |6, Xg [LY [ XL Y
= 0. Xc | XA Y YisYiF +1,.0.Xc [t Xg [1,.Y | X, [YrY;sYF

The expansion of Xa will result in redundancies which can be eliminated based on
previous laws; however, this expansion is not shown here as it is a long and relatively trivial

exercise.

6.4.2 Ml with Priori Design Time Knowledge

This pattern involves the creation of / X \

multiple instances where the number of 5

| q
objects created is known at design time. k G e
FOIL allows, in addition to the asterisk, the ~ /~

Y \
placement of a number to represent the

number of times that an event is

t2

. Figure 6.18 MI with Priori Design Time Knowledge
acceptable. Figure 6.18 shows an example

of this pattern. The relationship between class X and class Y indicates that exactly two instances
of object Y will be instantiated. Since, all of the states in object X are accepting, the exact time

of their creation is unknown.
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The algebraic construction requires that all event t results be pre-expanded the specified

number of times. The creation of an arbitrary loop resulting from a t event would allow for an

unbounded number of Y objects (see 6.4.1), which is clearly not the intent. Given this, the

algebraic construction for each state is:

= p.Xg +1.(p-Xg | Y Y,SY,F) +t.(t,.(p.Xg | Yor Y,SY,F) | p.Xg | Yr.Y,SY,F)

1l
—

XA
Xg =0.Xc +1.(9. X | YrYsY,F) +t.(t,.(a. X | Y,r.Y,SY,F) [ 9.X. | Y,r.Y;SY,F)
Xe =t.(rYsY,F) +t.(t,.(Y,r.Y,sY,F) | Y,rYsYF)

Creating full expression and applying the various laws would actually result in:

X = p.g.X; [t Y rY,sY.F |t,.Y,rY,sY,F

This massive reduction in the size of the expression occurs because all states in object X

are accepting and thus the creation of the two Y objects can occur at any time concurrently with

normal behavior of object X. In some cases, this behavior may not be desirable.

A more complicated case occurs
when state B is in a non-accepting state.
Thus, there are two instances of object Y
required but they must be created in one of
three ways. both while in state A, both while
in state C, or one in each of states A and C.

Figure 6.19 shows an example of such a case.

a X

>
_qu

t2

a Y

4
OMONO

Figure 6.19 MI Creation Restriction

The algebrain this case does not simplify as nicely as the previous.
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Xp=pXg +1.(p-Xg | VY, SY,F) +t,.(t.(p. X5 | Y,r.Y,sY,F) | p.Xg | YirY,sYF)
Xg =0.X¢
Xe =t.(YrY;sY,F |C) +t.(t,.(Yor Y,SY,F |C) | YrYsY,F |C)+C

CAF
Xy = pXg+t.p.Xg |tV rY,SY,F +t.t,.p.X; |44, Y Y,SY,F [t.p. X [t.Y,rY,SY,F
CAF

Xg = 0.X¢
Xe =t YrYsY,F |t,.C+t.t,Y,rY,sY,F |tt,C|t.YrYsYF|tC

Substituting terms and expanding all expressions using the distributive laws:

X = pat.YrY;sYF | pgt,.C+ pat, t,.Y,r.Y,sY,F | pgt.t,C| pat YrYsYF|t.C
+p.gC +t.paC |t YrY,sY,F +t.t,Y,rY,sY,F |t.p.qC|t.YrY,SY,F

The expanded expression in choice-action form has many terms which are inherently
inconsistent or violate one of laws. These concurrent terms are eliminated from the expression to
produce a simplified and final CAF expression. This final expression shows that there are
actually five choices, not just the three outlined previoudy. While it is true that there are only
three ways to create the two Y objects, it is clear from the algebra that this system only limits the
number of Y objects to three. Inspection of the algebra shows that there is a possibility that zero
or one event t will bereceived. So, in this case, the design-time specification of two acceptable t

eventsis merely aconstraint on the creation of new Y objects.

algebra, that thereis still not a defined moment

O’ G tz @
in which the Y objects will be created. If it is \
desired to ensure that exactly two Y objects

will be created and that they will be created at _

a certain time, then a different diagram is

Also, it is obvious from the verbose

Figure 6.20 MI with Increased Deter minism
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required, such as Figure 6.20.

6.4.3 Ml with Priori Runtime Knowledge

The pattern represents a condition

in which the number of objects that will be K

X N
p q
instantiated for a particular class is not —k® G t*

known at design time. In FOIL this t*
particular pattern is actually easier to

r s
model than the design-time scenario. k e G
Figure 6.21 shows an example of this Figure 6.21 M1 with Priori Runtime K nowledge

pattern where at some point prior to state B, the number of t events that will be fired after state B
executes is determined. This causes the creation of a fixed number of instances of object Y but
the exact number is known at some time during execution but not at design time.

Xp= p'éB Xg EJ[—*-(q-xc +4.(0Xc [ X [Y)) X =C
X =p.(t*(qC+t.(qC| X;1Y)))

CAF

X = pt*qC+ pt*1,.qC| pt*t, X, | pt*t.Y

Initially the only eligible event is p, but after reception, an indeterminate number of t
events will be fired. It is fairly easy to see that each event will result in a new Y object. The

recursion occurs with the substitution of the Xg term.
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6.4.4 Ml with no Priori Runtime Knowledge

This pattern results from the system K X

being unaware of exactly how many
objects will be instantiated both at design- k °
time and at run-time. This is most likely

- Y N
caused by the system responding to outside |

events. Since the FOIL modeling language

t*

. . ) . Figure6.22 M1 with no Priori Runtime Knowledge
is an event driven approach this particular

pattern is extremely simple. Figure 6.22 shows a graphical example of this patternin FOIL. The

algebraislikewiserelatively simple:

Xa=pXg Xg=0Xc+1.(q X [Xg[Y) X =C
X =p.(qC+1t.(qC| X5 ]Y))

CAF

X = pgC+ pt.gC| pt,.Xg | pt.Y

This pattern is frequently used in a context of a listening device that will infinitely
respond to events. In fact, this pattern has actualy already been previously demonstrated with

the Master Controller class in the elevator example (see 3.4).

6.5 State-Based Patterns

This group of patterns is based on the idea that control flow isimpacted by system state.
In other words, if the system isin a particular state it will force or restrict various choices. Since,
FOIL is, at its core, a state-driven modeling language, these patterns are not especialy
challenging to implement or follow. The only exception is, possibly, interleaved routing which

requires special notation to avoid the model growing to an unusable size.
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6.5.1 Deferred Choice

The pattern represents that ability f X \

of a system to respond to a choice that may

not be immediately apparent, but will be

determined by future events. FOIL

actually depends on this truth in order to

adlow for the Distributive Law of Choice

(see4.2.1.1). Class X of Figure 6.23 shows

a simple example of this pattern. The p

Figure 6.23 Deferred Choice

event will result in a transition to either

state B or state C. The absence of any output ports means that only one path can be chosen but
the correct transition can not be determined until a subsequent event is received. If event qis
received than the path to state B is chosen. Conversely, state C is chosen if the next eligible
event received is event r. In the smple case, the algebra shows that object X would coexist in

states B or C until another event isreceived.

Xa=pXg+pX. Xg=BgD X.=CrkE
CAF

X = p.BgD+ pCr.E
Xy—2> Xg,c =qD+r.E

This particular situation creates difficulties algebraically if state B and/or C is an active
state. While it may be desirable to have both states execute their code and have one thread
terminate, this is usually not the intended behavior. Object Y of Figure 6.23 shows such an
example. In this case, a ssmple rule can be applied to prevent such occurrences. It islogical to

assume that the state execution can not be started by two different choices; hence the algebra can
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be converted to bring the next event forward in the expression to allow for that choice to be made

first.

Y,=pY,+pY. Y,=BBB.BgD Y.=CCCCrE
CAF

Y = pBBB.BgD+pCCC'Cr.E
X,——>BB.B.BgD+CXCC'Cr.E
Since each choice is supposed to fire an execution event to start processing this would
result in arace condition as the first event to be received would eliminate the remaining term. In
addition to being total unacceptable, it is not logical for concurrent events to fire when no
concurrency is warranted. Thus, by moving the next eligible term to the front of each offending

expression the decision is postponed.

X,—*>qBBB.BD+rC.CC'C.E

6.5.2 Interleaved Routing

This pattern is concerned with _——

\
: . : I
sequential operation of multiple control | _»@/p - :/_ s@
I
flows, but in no predetermined order. In r T*@ I
J

N —
other words, two or more flows need to \ /

be executed but they can not be executed

at the same time. The order of execution I o s e |

is unimportant. Figure 6.24 shows a _| *®/—~‘: t
FOIL diagram of a simple interleaved rl_»@u‘@ :
\_ ‘ / J

routing situation. Once object X receives

Figure 6.24 Interleaved Routing
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an event p, then either the g or r events will be exclusively allowed. The algebra constructed by

a series of sequential choices where the interleaved construct is considered its own state |

A=pl 1=(gB+r.C).(qB+r.C)sD
X=p(qB+r.C).(gB+r.C)sD
X = p.g.B.g.BsD + pr.C.g.B.sD + p.gBr.CsD+ pr.Cr.CsD

CAF

X = pr.CgB.sD+ p.g.Br.CsD

Substitution of state B or C in the above example can be expanded to include any
independent flow. If the control flows cross in any way, or if they have a dependency on one
another, then the algebraic expression would completely cancel out. This would indicate that
such a pattern would not function. Object Y in the above figure demonstrates a slightly more
complicated object control flow with some notational variations.

A transition without an event could be considered to be an automatic transition. In most
cases, thisis not desirable as such a construct just adds notational complexity without adding any
meaning. Object Y in Figure 6.24, however, would like to execute two independent sequences
one at a time but does not need a starting event to indicate that it wishes to start such a process.
In this case, transitioning into or out of an interleaved construct is implicit as the algebra
indicates:

A=l |1=(@B+rC).(gB+rC).D B=sE+tF C=uG

Y=(q(sE+tF)+ruG).(q(sE+t.F)+ruG).D
Y =(gsE+qt.F +ruG).(qsE.D +gt.F.D +r.uG.D)

CAF

Y = ruG.qsE.D+ruG.qt.F.D+qgsEruG.D+qt.FruG.D
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6.5.3 Milestone

The milestone pattern involves other objects or processes waiting until another has
reached a particular event has occurred. Synchronization of objects or processes may or may not
occur with this pattern. This is because if al flows are, in fact, waiting on the milestone to be
reached, then it is logical to say that when the milestone is reached the flows will be
synchronized. If, however, the milestone is reached before affected flows are waiting then no

synchronization occurs.

Figure 6.25 shows an example of /

X \
. . p
this pattern.  In this example, the | ° N c q
assumption is that objects X, Y, and Z are K
- v ™
al instantiated and currently in their

starting states. The milestone occurs a8  — 000 t e
@ f&

state B of object X. Object Y is not

\
allowed to proceed past state F and / z \

object Z is not allowed to proceed past _| aﬂa w °
\ 9. °

state J until an event x has been received.

This event is immediately fired by object Figure6.25 Milestone

X upon arriving at state B. The use of a concurrent thread in modeling this pattern ensures that
synchronization has to occur at Yg and Z; respectively, but that event x may be received at any
time. This example does not prohibit x from being fired from outside object X, however, such
constraints can be applied through the use of event scope if desired.

The following is the algebraic construction with state notation of the system in Figure

6.25:
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CAF

X = Ap.;(.B.q.C

Al

CAF
Y = Dr.EsFtG|DxFtG

CAF

Z = HulvJ|HxJwK

Since these objects each execute independently, the system expression would be:

CAF

S = ApxBqgC|D.rEsFtG|DXFtG|H.ulvJ |HxJwK
The following demonstrates this pattern during run-time:
Suop = PXBOC|rESFLG|XF1G|ulVvd|xJwK

— " 5 pxBgC|sF1G|xFtG|ulv.Jd|xJwK
— > pxBgC|FtG|xFtG|ulvd|xJwK

At this point during execution, object Y can not completely arrive at state F since there is
still astate F term in a concurrent expression. It is clear that object Y can not continue until an x
is received. This will move the remaining F state to the front of its concurrent term making it

eligible for reduction. Once object X arrives at state B all restrictions on the objects are removed.

—P 3xBgC|FtG|xF1G|ulvJd|xJwK
— > BgC|tG|ulVvd|JwK

When x is fired, object Y arrives at state F and can continue with processing. Object Z
was practically unaffected by the receipt of event x. It no longer has to synchronize with object

X. Thus, in this scenario, object Y synchronizes at the milestone and object Z never does.
6.6 Cancellation Patterns

These patterns, while important, are among the simplest in workflow processing. These

patterns involve causing a process or series of processes to stop execution.
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6.6.1 Cancel Activity

The cancel activity pattern is simply ensuring that the / X \
receipt of an event will cause all processing of an object to —}@F\A.
cease. It issimple to see how FOIL could implement such a _\
pattern. Figure 6.26 shows an example of this pattern using Figure6.26 Cancel Activity

an optional notation to indicate that the thread terminates. There is no need to actually label the
destination state for cancellation; however, in practice this would likely be desired to give an
underlying implementation an indication of what state an object isin. Obviously, the modeling
must ensure that a cancellation event terminates al concurrent threads of an object regardless of
what state the object is in. This concept, while logically simple, can result in a very busy
diagram. An alternate notation indicating that all states in the diagram have a choice to transition
to the cancelled state could be used but is not provided here.

6.6.2 Cancel Case

This pattern is redly just an extension on the previous pattern and ensures that a
cancellation causes a group of related objects or processes to all terminate concurrently. Once
again, this pattern is no challenge to the FOIL algebra; however, it may be a notational challenge
if explicitly modeled, since every state of every object or process involved would require a
transition to a cancelled state. In addition, the ability to restart a canceled case can be easy or
difficult depending on whether the modeler wants to always restart at the beginning of a process

or, instead, desires a restart from the previous object state.
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7. PROCESS ANALYSIS

The Forma Object Interaction Language (FOIL), as has already been discussed is
capable of modeling process flows as well as object diagrams. FOIL does this using primarily
the same notational elements for both models. In addition, both models have a common
underlying mathematical representation.  Given that two models have an algebraic
representation, it is logical that if there exists any intersection in the events received by these

models, certain mathematical operations may offer insight into their interaction.

7.1 Process Achievability

The concept of process achievability is centered on the idea that a process “can” be
completed given a particular object model. This does not indicate that a process “will” be
completed. Since any FOIL object model can be effectively canceled at any time, it can be
argued that there is never any guaranty that a process will complete; however, this is not

considered as part of the definition:

A process is said to be “achievable” if during the pursuit of local completion of
object workflow on a corresponding object model, a given process has the

potential to complete.

Determining the achievability of a process is a useful metric. It can be used to reject
object models that can not perform a certain process. In addition, if it is desirable to ensure that
a process “will” aways complete, achievability metrics can be used to determine the

modifications to the object model that are necessary.
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Figure 7.1 Process Achievability

The technique for determining achievability involves a look-ahead simulation of a
process on the object model. Figure 7.1 shows a simple FOIL object model (objects X and Y)
and a corresponding FOIL process model (processes M and N). The algebraic representation of

objects X and Y in choice-action form are:

CAF

X = Ap.BsDtE|AqCVvH + Ap.Br.FuG|AqCvH +
ApB.zsDt.E|Ap.BzB |ApB.zY, | AqCV.H +
ApB.zrFuG|ApBzB |ApB.zY|AqCVvH

CAF

Y = lwJXxK+1.wd.yL

The algebraic representation of processes M and N in choice-action form are:

CAF
M = Or.Pv.N, |OwQ.v.N;
CAF

N = xRu.S

The algorithm for determining achievability uses a simple backtracking technique applied

to the process and object expressions. Each eligible process event is placed in a process event
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stack U. The first event is removed from the stack and a search is done to determine which
choice terms in the object expression have the event. This event is referred to as the “search”
event. Each eligible term in the object expression is assigned a weight proportional to the depth
at which the search event occurs and pushed onto a “choice” stack V in descending order. The
term with the lowest weight is then simulated by popping stack V and firing events up to and
including the search event. Then, all eligible process events are placed in the stack U and the
process is repeated. |If after each iteration, the process expression is reduced to O then the
process is achievable. If the both stacks U and V become empty prior reducing the process
expression to 0, then the processis not achievable.

Using the example of Figure 7.1, the following demonstration is given to determine if the

process of M and N is achievable with the object X and Y:

CAF

M = Or.Pv.N, |OwQuV.N,
M — 5 r.PV.N, |WQV.N,

At this point in process M the eligible events are r and w. These are pushed onto the

stack Z.
U>{w,r}

Event w is popped from the stack and a search is done on the object expression X to
determine which choice contains an event w. This is intuitive since in order for the process to

complete, an event w must be accepted at some time during the object model workflow.

w() X ={}
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The search for an event w in the object event model results in an empty set of terms.

Thus, event wis not avalid choice and the next term is popped from the stack, in thiscaser.

Vi {ApBr.FuG|AgCuv.H :4,
ApB.zrFuG|ApB.zB |Ap.B.zY| AqCVvH :5

The search for event r in the object expression results in a set of two possible choices for
execution. These choices are assigned a weight based on the first appearance of event r in their
expressions. In this example, there are two choices eligible. The first choice has event r
appearing as the fourth term, while in the second expression event r is the fifth term. A
simulation is then run on the object expression by reducing the expression with all events

necessary to reduce event r starting with the lowest weight choice.

V>{ApBzrFuG|ApB.zB |ApB.zY | AQCVv.H : 5
choice= Ap.Br.FuG|AqgCvH

X —2&€ 5 pBsDLE|[gqCV.H + pBr.FuG|gCvH +
p.B.zsDt.E| p.B.zB | p.B.zY, |qCVv.H +
p.B.zr.FuG|p.B.zB | p.B.zY |gCVv.H

X—L->sDtE|qCVv.H +r.FuG|qCVvH + zsDt.E|zB | zY, |qCVv.H +
zr.FuG|zB |zY |gCVvH

X——>uG|gCv.H = X,
After the reductions, the process expression is reduced with event r as follows:
M =Vv.N, |wQV.N;

The next eligible events are pushed onto stack U. Event V violates the eligibility rule and

thus is not pushed onto stack U.

U >{w}
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It is clear that event w in stack U can not be processed with the object expression in its

current state. Thus, stack U becomes empty and stack V must be popped to attempt the second

choice.

V>{}
choice= Ap.B.zr.FuG|Ap.B.zB |Ap.B.zY | AqC.v.H

X —22€ 5 pnBsDtE|qCV.H + p.Br.FuG|qCvH +
p.B.zsDt.E|p.B.zB | p.B.zY, |gCVv.H +
p.B.zr.FuG|pB.zB | p.B.zY |qCVH

X—L>sDtE|qCVvH +r.FuG|qCv.H +zsDtE|zB | zY, |qCVv.H +
zr.FuG|zB |zY|gqCVvH

X—>r.FuG|sDtE|wJ.xK|gCVvH +r.FuG|sDtE|wJ.y.L|gC.v.H
+r.FuG|sDtE|wJxK|qCVvH +r.FuG|sDt.E|wJ.yL|gCVvH

X——uG|sDtE|wJxK|qgCVv.H +uG|sDtE|wJ.y.L|qCVH
+uG|sDtE|wJxK|gCVv.H +uG|sDtE|wJd.y.L|gCV.H

As before, the next eligible process events are placed on the stack:

U >{w}

Event w appears in every choice in exactly the same place, so the order in which these

choices are pushed onto stack V is unimportant.

V>{uG|sDtE|wJxK|gCVH :3
uG|sDtE|wJd.yL|qCvV.H :3
uG|sDtE|wJ.xK|gqCv.H :3
uG|sDtE|wJd.yL|qCVv.H:3

X—">uG|sDtE|xK|gCVvH +uG|sDtE]|yL|qCVvH
+uG|sDt.E|xK|gqCVv.H +uG|sDtE|y.L|gCVvH

The process expression is now:

M =v.N, |V.N;
=U>{V}

This process continues as follows:



Vi>{uG|sDLE|xK]|qCV.H :3
uG|sDtLE|xK|gqCvH :3
uG|sDtE|wJ.y.L|qCVH :3

uG|sDtE|wJ.yL|qCV.H:3
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uG|sDtE|yL|qCVv.H:3
uG|sDtE]|yL|gCVvH:3
uG|sDtE|wJ.xK|qCv.H :3

X—* 5uG|sDtE|xK+uG|sDtE|yL+uG|sDLtE|xK+uG|sDtE|y.L

For smplicity, stack V is not shown in these last steps; however, it should be noted that

stack V will continue to grow with each step.

M = xRu.S|xRu.S= xRu.S

Ur{x

X ——>uG|sDtE+uG|sDtE=uG|sDt.E

M =uS

U > {u}

X ——>sDtE

M=0

The process expression M completes

and thus this process is achievable with the
object model given by X and Y. The same
process which is achievable with the object
model of Figure 7.1 can be non-achievable
with a different object model. Figure 7.2
shows an example of an object model that
would not be achievable with the previously
defined process model M and N. While it may
not be obvious at first glance, intuitively it is
simple to see that events r and u are mutually

exclusive in object X. Thus, since the

Figure 7.2 Defunct Object M odel
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combined process of M and N required both events, this object model can not be used to achieve

the process. Thisisreferred to as a “defunct” object model.

7.2 Process Determinism

Another concept of importance related to that of achievability is that of determinism. A
process is said to be deterministic if for every conceivable event sequence that results in object
model workflow completion, the process is guaranteed to complete. Recall that achievability
says that a process “can” complete given a specific object model. Determinism means that a
process “will” complete. The proof that a process is deterministic is two fold. First, prove that
the process is “completely” achievable. Second, prove that for every control flow path in the
object model the sequence of eventsisin keeping with that in the process model.

7.2.1 Determining Complete Achievability

A process P is said to have “complete achievability” with respect to an object

model O if for every path to completion in O, process P is achievable.

A dlight modification of the object model in Figure 7.1 is shown in Figure 7.3. It is not
completely obvious that with this object model, the process of M and N of Figure 7.1 can be
completed regardless of the path. Classification of a process as wholly achievable is done by
performing the achievability algorithm as described in 7.1 with two modifications: 1) Record all
choices that lead to an achievable result and place in a set 6, and 2) do not discontinue the

algorithm when achievability is proven, but instead continue until al stacks are empty.
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Given an object mode O and a / X \

process model P, let Sbe the set of all paths
through the object system O and let 6 be the
set of al eligible paths through the object

model O that achieve the process P. Thus,

process P is said to be achievableif:

6 c Sand 6 ={} 2

Process P is said to be completely

achievableif:

0NS=Sand S={}

Thus, after full completion of the

achievability algorithm, if the total set of Figure 7.3 Completely Achievable Process

eligible choices that will result in completion of the process is the same as the set of al choices
to complete the object model, then the process is completely achievable. The logic is simple: if
all choices “can” complete the process, then there are no choices that “can not” complete the

process. Thus, the process can always be compl eted.



7.2.2 Determining Process Determinism

This still does not prove that a
process model is deterministic. In order
to complete the proof, it must be shown
that the process is completely achievable
and that for every eligible sequence of
events the process will be completed.
While the model in Figure 7.3 is
completely achievable with respect to the
process model of Figure 7.1, it is not
deterministic. While every path can result
in completing the process of Figure 7.1,
note that the process model requires that
event w be received prior to event v. The

object model does not enforce this
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Figure 7.4 Process Determinism

constraint. Thus, if an event v were received before event w, the object model would continue

reductions normally but the process would no longer be valid.

Figure 7.4 shows a further modification of the object model to ensure determinism.

Performing the achievability algorithm would indicate that this object model is completely

achievable. The second step in proving that this process is deterministic resides in the fact that

during the achievability algorithm backtracking in stack V only occurs as a result of completing

the process.
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Recall that during the achievability algorithm, if a process could not be completed given
a certain choice, this processing was abandoned and the next choice in stack V was tried. In the
process of determining “complete” achievability, stack V is popped when either a path is
abandoned or a process is completed. If stack V is exhausted only because al paths resulted in
completion of the process, then the process is guaranteed to complete regardless of the path

chosen. Thus, the processis deterministic.

CAF

X = AzzpBwr.F|AzzrCVv.H.XGUF |AzzY +
AzzpBwsr.F|AzzrCvHXGuUF |AzzY
CAF

Y = lwJxK+Il.wJd.ylL

CAF

M = Or.Pv.N, [O.wQ.V.N;
M —*5r.PV.N, |WwQ.V.N,

U>{w,r}

V >{AzzpBwr.F|AzzrCvHXGUF |AzzY:7,
AzzpBwsr.F|Azzr CvH.XGUF | AzzY : 8

pop Vtoéd

O>{AzzpBwr.F|AzzrCv.H.XGUF | AzzY}

X —oee s nBwr.F |r.Cv.H.XGUF |wJ.xK +
p.B.Vv.r.F |r.Cv.H xGuF |wJ.y.L+
p.B.v_v.s.r.F |r.Cv.HXGUF |wJ.xK +
p.Bwsr.F [r.Cv.H.XGUF |wJ.yL

X —L 5 v.HXGUF | xK +Vv.HXGuUF |y.L

M —EL5v.N, | VN,

U >{v}
X ——>xGuF | xK +xGu.F |yL

M ——x.Ru.S
and soonuntil completion
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pop Vtoéd
Ov>{AzzpBwr.F|AzzrCvHXGuUF |AzzY,
AzzpBwsr.F|AzzrCvHXGuF | AzzY}

X —E3 5 vH.XGuUF | xK +v.H.XGuU.F | y.L

p,S,r

M —2225Vv.N, |V.N;
continueasbefore

This example demonstrates that al terms in the object model can be followed to complete
the process. Since the set of all choices Sis equal to the final set of all achievable choices 6, the
process model is completely achievable using this object model. In addition, during the
achievability algorithm, every choice placed in stack V was achievable and thus this process is

also deterministic.

7.3 Process Enforcement

The previous example of process determinism shows that creating a object model that
guarantees the completion of a given process is possible and can be verified; however, it can be
quite difficult with large models to create such models. An aternative to this approach is to use
a process model as a constraint on an object model. This provides a simpler mechanism of
guaranteeing completion of a process. The method for constraining the object model is by
ensuring that any event received during execution of the object model that also exists in the
process model must be eligible in both models.

In order for this to function properly, a process must be completely achievable on a given
object model. The reason for thisis quite smple. If there are paths which may be followed in
the workflow of an object model that do not result in process completion it is likely because

these paths do not contain events that exist in the process model. Figure 7.1 shows a process
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model that is achievable with respect to the object model. If the process model is used as a

constraint against the object model, it does not guaranty completion.

X—2>sDtE|gCv.H +r.FuG|gCv.H + zsDtE|zB | B.zY, |gCv.H +
zr.FuG|B.zB |B.zY |gCVvH

M —E—>r.Pv.N; |wQv.N, pdoesnotexistin process

X —>t.E|qCV.H

M ——r.Pv.N, [wQv.N, sdoesnotexist in process

X9 50 vexistsinM butisnot eligibleinM

Thus, two things can occur when attempting to constrain an object model with a
incompletely achievable process. deadlock or object completion with no corresponding process
completion. In this example, a deadlock resulted as event v is constrained by the process but
enabling events r and w no longer exist in the object model. It is atrivia exercise to create a
model where a path in the object model contains no constraining events in the process model.
Thus, the object workflow would complete without the process even starting.

Using a completely achievable process model does not have this problem, as all paths can
result in completion of the process. Recall that the only thing preventing a completely
achievable process from being completed is the correct events occurring in the wrong order.
However, if the process model is used to constrain the order of events, then the process model is
guaranteed to complete.

As shown earlier, the process model of Figure 7.1 is completely achievable with respect
to the object model in Figure 7.3 but is not deterministic. The main problem reason this model is
not deterministic is that the process must receive event v before event x but thisisrequired in the
corresponding object model. The following demonstrates how the process model is used to

ensure proper sequence of received events.



165

X—L>5rFuG|wJxK]|gqCVv.H.XG+r.FuG|wJ.yL|gCv.H.XG+
sDr.FuG|wJxK|gCv.H.xG+sD.r.FuG|wJd.yL|gCv.H.XG

M —L5r.PVv.N.XRuS|wQV.N.xRUS pdoesnotexistin process

X—5rFuG|lwJxK]|vHXG+r.FuG|lwJ.yL|vH.XG+
sDrFuG|lwJxK|vH.XG+sDr.FuG|l.wJd.yL|vH.XG

M —i5r.PvN.XRuS|wQV.N.xRUS  gdoesnotexistin process

At this point in execution, it is clear that event v is eligible in the object model but it is
not in the process model. Thus, a receipt of an event v will be reected since the process
modeling is enforcing sequence in the object model. The only other eligible events in the object
model are eventsr, s, and w. These are completely eligible since eventsr and w are eligible in

the process model and event sis not constrained by it. Continuing with execution:

X ——>uG|wJIxK|vHXG+uG|wJ.yL|vH.XG
M ——Vv.N.XRu.S|w.Q.V.N.xRuU.S

Now in addition to event v, the u event is eligible in the object model but is not in the

process model. Thus, eventsu and v areineligible.

X —">uG|xK|vH.XG+uG|y.L]|v.H.xG
M —— Vv.N.XRu.S|v.N.xRu.S

Now event v and y are the only eligible events.

X —>uG|v.H.XG

M ——>v.N.xRuUS|v.N.xRu.S
X ——>uG|xG

M —— xRu.S|xRu.S
X—>uG

M —2>uS|usS

X—-0

M——0
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This demonstrates the ability for a process to be used as a constraint on an object model.
This is obviousy unnecessary if the process is already deterministic, but it offers another

aternative to creating and refining a deterministic model that, in practice, can be quite difficult.

7.4  Document Management Example

The Formal Object Interaction Language (FOIL) object diagrams can be used to model
complex systems. In FOIL, the process and object models use the same notational elements and
algebraic constructs. By the algorithm described in this chapter, the object model can be
simulated to determine if it can perform the work of the process model (achievability). More
importantly, if the object model is built correctly, the process model can be used as a constraint
on execution during run-time.

7.4.1 Object Model

Consider a document management system in which there are multiple documents and
multiple logons. A System User initiates a Session with the application and authenticates. There
are two types of logons. a User logon and an Editor logon. There only difference between these
two types of users is that the Editor can edit a Document while the user can merely open and
close a Document. Multiple Users can open a Document at the same time, but no User may open
a Document that is being edited. An Editor may not edit a Document that is open but must wait
until all Users have closed the Document. To avoid resource starvation, if an Editor requests to
edit a Document that is currently open then no other User may open that Document until the

Editor completes the changes. Figure 7.5 shows the FOIL object model for such a system.
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This model is very concise, containing

al of the necessary components to ensure all
of the constraints listed previously. For
instance, the locking property of an Editor
request as discussed is an important aspect of

this system. This behavior is completely

specified in the Document object.

Figure 7.6 shows the Document object Figure 7.6 FOIL Document Object
in this example. When an s event is received the document is created and isimmediately opened
by the submitting User. After the submitting User closes the document then other Users may
open it.
Each state and event is replaced with aletter in order to demonstrate the locking behavior
with FOIL agebra. The following shows the construction of the Document object expression:
C=o0V, F=o.V,|F)+eA V,=c.F+eW, W, =c.A A=aalrF
—=—> 0.0V,
T>5.O.C1.F + E).o.eV\/1
—F—>6.o.cl.o2 A 6.o.q.02.F + 6.o.cl.e.A+ 0.0eW

—5—0.0.C,0,V, | 00c,.0,.F +00c.eA+00€eC, A
——0.0.,.0,V, |[0.0c.0,.F +00c.eaalr.F +o0ec,aalr.F

In order to keep this expression simple for demonstration purposes, there is no specific
object instance qualifier and state markers are not used. In addition, the behavior of active states
is abbreviated for state A and is not shown in state V. These simplifications can be made because
they do not impact the result in this case. The following demonstrates the algebra for two Users

opening a Document and then an Editor requesting to edit the document.
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——>ooclo \"A |ooclo F+ooc1eaaIrF+ooec aalr.F

—>>c.0,V,|c.0, F+cleaaIrF+ec aalrF

—>0,V,|0,.F + eaalr.F

— >V, |F

WOZCZHOZF|ch+ozeczaaIrF|02F|ch+

ea.aIrF|ch+02c2F|02F|eclaaIrF+
ozecza_aIrF|02F|ec1a,aIrF+eaaIrF|ec1aaIrF

6. —2>C, F|o F|ch+ec aaIrF|F|c1F+c F|F|ec1aaIrF+
ec, aaIrF|F|eclaaIrF

WCZ.F|o303F|o3F|ch+c2F|03ec aaI-rF|03F|ch+czF|e5aI-rF|ch+
eczaalrF|0303F|03F|ch+eczaa,lrF|o3ec3a,aIrF|03F|ch+
eczaaIrF|eaa|rF|ch+c2F|03c3F|03F|eclaaIrF+
czF|o3ec3aaIrF|o3F|eclaalrF+c2F|eaaIrF|eqaalrF+
eczaalrF|03c3F|03F|eclaaIrF+
ec, aaIrF|o ec, aaIrF|o F|ec1aaIrF+
eczaaIrF|eaaIrF|eclaaIrF

8. —>c2F|aaIrF|ch+c2aaIrF|o3c3F|03F|ch+czaaIrF|aaIrF|c1F+
C, F|o C;.F o, F|c1aaIrF+c F|aa|rF|claaIrF+
C, aaIrFlo C;.F |0, F|claaIrF+c aaIrF|aaIrF|c1aaIrF

0. —2>c,.F|r.F|c.F

10 —>c,.F|rF|F=c,F|r.F

UoAwN P

Lines 1 and 2 show the initial submission of the document. The initial creation reduces
the expression such that an o event is fired. Thus, the document is open immediately upon
submission by auser. Line 3 shows that the document was closed by the submitter. Lines 4 and
5 show that a user opened the document. This reduces the expression and substitution is
performed. Lines 6 and 7 show that an additional user has opened the document and that
substitution of terms has again been performed. Line 8 shows the reduction that occurs when an
editor requests to edit the document. This results in an immediate transmission of event a, to
indicate the starting of the active state code, but only one term is in a state to receive this event
(line9). Thus, in line 10, it can be clearly seen that no one may open a document (event o) until

the users close the document (events c; and ¢;) and the editor rel eases the document (event r).
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7.4.2 Process Model

Thus, the algebra constrains the system to prevent problems. In the example of Figure
7.5, users must be authenticated in order to perform any task. Behavioral inheritance is
demonstrated as an editor is a type of user but can also edit document. This completely

conforms to the concept of inheritance as discussed in section 5.2.2. Despite this concise object

that it will perform its desired function.

model complete with inheritance, concurrency and resource management, it does not guaranty
/ UserLogin

Authent- Session
icating Created

/ DocumentSubmission \

logon pass

Authent- Session
-» Start icating Created

/ DocumentEdit \

logon pass
Authent- Session
-» Start icating Created

Edit
Requested

release locked

connect?

N
Start onnect
o

Figure 7.7 FOIL Document Management Process M odel

closed

Figure 7.7 shows a FOIL model for a process that is desired to be performed using the
FOIL object model in Figure 7.5. This process is composed of two activities. First a document
is submitted by a user; then it is desired that two editors make changes to the document. The

editing steps to this process can be performed concurrently. Note the use of behavioral
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inheritance with respect to these to activities. This could be referred to as process inheritance but
it does not significantly differ from that discussed for objectsin section 5.2.2.

7.4.3 Achievability

Figure 7.8 FOIL Document Management Process Algebra

The remainder of this section is devoted to demonstrating the concepts of this chapter as
they apply to determining whether the process in Figure 7.7 is achievable with the object model
of Figure 7.5. While this section contains a large amount of algebra, it is necessary to
demonstrate the usefulness of the process validation feature of FOIL. For simplicity, state
markers are shown in the initial construction but are removed during the validation process.
Since this example involves multiple classes and multiple instances of the same class, object
qualifiers are required. These are not shown during initial class construction but are added
during object instantiation. Stack V during the achievability algorithm is not shown as its
function in this example is trivial. The following two diagrams are identical to the previous

models but have had their events and states substituted with letters for algebraic representation.
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7.43.1 Object Model Construction

The following show the construction of each object in the object model:

Document Object (D)

C=o0V, V=c.F+eW W=c.A
A=1r.F F=0.V,|F)+eA D=C.oo0V,

CAF

D = C.00V,c.F.0V,|CooV,c.F.o.F+CooV,c.FeA+
C.ooV,.eW, c.Alr.F.oV,|CooV,eW..Alr.F.o.F +CooV,eW.c.AlrFeA

CAF _ — — - - - - - -
D = ooc,.0 |00c.0.F +00c.eA+00ec.lr.oV, |ooeclro.F+o00ec.lreA

User Object (U))
| =0V +s(D|oV) V=0.M,|V)+aC +D'l
M=c.D C=c*D'l D=D.D.D.DI

CAF

U = oV.0.M,c. D.D.D.D'I |oV.0V +0V.aC c*Dl +oV.D'"l +
sD, |soV.0.M,c.D.D.D.D'I [soV.o,V +soV.aC.c*D'l +soV.D"l

CAF P P
U = 00,¢.D.D.D'Il |00V +0ac*D'l +oD"l +

sD, |s00,¢, D.D.D'I |s00,V +so0ac*.D'.l +s0.D'l

Editor Object (E)
| =0V +eR+s(D|(oV +eR)) R=I1.E E=rll
V=0o.M,|V)+aC +D'l M=c.D C=c*D'l D=D.D.D.DI

CAF

E = 0V.0.M,c.D.D.D.D'I |oV.qV +oV.aC c*D"l +oV.D'l +eRLEr.l +
sD|soV.0.M, c.D.D.D.D'I |soV.0V +sD|soV.aC .c*D'l +
sD|soV.Dl +sD|seRI.Er.

CAF — R J—
E = 00.c.D.D.D'I |00V +0ac*D'.l +oD'l +elr.l +sD|so00.c.D.D.D'||s00V +

sD| soac*.D'l +sD |so.D'.l +sD|sel.r.l
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Session Object ()

| = XA A=(p+Y).(pV+Vl)
V =Uu+d).(zC+d.(E|]zC)+u.(U |zC)) C=(a|r)

CAF —_ —_ — —
V = zC+d.d.E|d.d.zC+uul |uu.zC

CAF

S = xAp.pV.zCa|xAp.pV.zCr +
X Ap.pV.dd.E|xAp.pV.dd.zCa|xAp.pV.dd.zCr +
X. Af). pVvV uuy | x. AE. pVvV uuzCa | x. Af). pVvV uu.zCr +
x.AS/.y.I

CAF

S = x.p.p.za|x.p.p.zr + x.p.p.d.d.E|x.p.pd.d.za|x.p.p.d.d.zr +
X.p.puulU | X.p.puu.za|x.p.puu.zr + x.y.y.l

System Expression (a)

CAF

a=0(S |a) = 4S |da

7.4.3.2 Process Model Construction

Document Submission (Ps)

B=SxA A=Sp.SU,slU,00U.cC.(q.E |0,.E)
P.=SxASp.SU,;slU,00U.cC.(q.E |q,.E,)

CAF

P, = SxXASp.SU,;slU,00U,cC.q.E | SXAS p.SU;slU,00U,cCuq,.E,
CAF

P, = §xSpU,;sU,0U.cq.E |SxSpU,sU,oU,cq,.E,

Document Edit (Pg)
B=SxA A=SpSEeREIM.Er.F
CAF
P. = SXASpSEeREIM.Er.F

CAF

P. = SxSp.EeEI.Er

Document Process (P)

E =L, E, =L
P=qP,

Al

CAF
P = q.Sx.§pU,sU,0U,cq.SxS p.E,eEl.Er | q.S5xSpU,sU,0U,cq,SxS;p.E;eE]l.Eyr
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7.4.4 Achievability Algorithm

Iteration 1

U>{d

a=0S |ga

a——>§19S [qa
—%XSDSDSZSaISXSDSDSZ%rIQS | qor +
Slxslpslpsld Sd.E Islxslpslpsld Sd. Slzaalslxslpslpsld Sd. SlzslrIQS lga +
%Xﬂ)slpslusluU |SxS p.SpSuSUSzSalSxSp.SpSUSUSZSr|aS [ga+
Sx8§y.§ySl|aS |aa

P—> Sx.S pU,sU,0U,cq,.SxS, p.E,eE,l.E,r | Sx.S pU,sU,0U,cq,.S;xS;p.E;eE,l.E

Iteration 2

U >{Sl><}

SLDSLDSZSaISLDSLDSZSrIQSIqm
Sipslp%dsldEISLpSlp%deSlzslalslpSlpSldSplS@%fIqSIqa+
@SDSUSuU |Sp.SpSuSUSzSalSpSpSuSuSzSr [0S [ga+
SVSVSI 195 | g

SlpU suU,oU coﬂSZXSZpEeEIEHSlpU sU,oU cngx%pEgeEglE

a—>31281a|S_LZSFIQS|qa+Sd51dEI%d%d%ZSLaISd%d%ZSrIQSIqa+
Su.Suy; | SuSu.SzSa|SuSuSzSr|asS |ga

P——>U,sU,0U,cq .S,xS,pEeE|.Er |U;sU0U,cq, SXSpEEIE
—35U, |S28a|SzSr |4 | ga
=U,0U,0U,¢U;DU;DU,D'U,I |U,0U,0,UV | S§2Sa| SzSr | aS |ga +
U0U,aUc*U,D'U,l | SzSa|SzSr |4 |ga +
U,ouU,D’U,l |S@S@|S@§r |0.S |qa +
U,sU,D. |UlsU10.U101.U1q.lJ1_D.U1D.U1D'.U1I |U,sU0U,0UV |SzSa|SzSr|aS |ga+
U,sU,0U,aUc*U,D'U,l | SzSa|SzSr|qS |ga+
U,sU,oU,D'U,l | SzSa|SzSr|qS |qa
P—>" doesnot existin processP




176

Iteration 3
U>{U,s
a—Y 5U.D, |U,0U,0,U,c,U DU, DU,D'U,I |U,0U,0,UV |SzSa|SzSr|aS |ga+
U,oU,aU,c*U,D'U,l |SzSa|S,zSr|aS |qa +
U,0U,D'U,l |SzSa|SzSr |4S |ga
=U,D,0U,D,0U,D,c,U,D,0, |U,D,0U,D,0U,D,c,U,D,0,U,D,F |
U,oU,0,U,c,U, DU, DU,D'U,I | U,0oU,0UV |SzSa|SzSr|aS |qa+
U,D,oU,D,0U,D,c,U,D,eU,D,A|U,0U,0,U,c,U, DU, DU,D'U,I |
U,oU,0U\V | SLZ$'| SLZ§ |a.S [qa+
U,D,oU,D,0U,D,eU,D,c,U,D,IU,D,rU,D,0,U,DV, |
U,D,0U,D,0U,D,eU,D,c, U,D,IU,D,rU,D,0,U,D,F |
U,oU,0,U,c,U, DU, DU,D'U,l |U,0U,0,UV |SzSa|SzSr|qS |ga +
U,D,0U,D,0U,D,eU,D,c,U,D,IU,D,rU,D,eU,D,A|U,0U,0,U,c,U DU, DU,D'U,I |
U,0U,0,UV |S2S2a|S2Sr4S |ga +
U,oU,aU,c*U,D'U,l |S,zSa|SzSr|qS |qa +
U,0U,D'U,l |SzSa|SzSr [4S |ga

P—% ,U,0U,cq,.S,xS,p.E,eE,l.E,r |U,0U,cq,.S,;xS,p.E.eE,l.E
Step 4

a—%2° 5,y D,c,U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U DU, DU,D'U,I |
U,0UV|SzSa|SzSr|as |qa+
U,D,c,U,D,eU,D,A|U,0,U,c,U DU, DU,D'U,l |U,0,UV |SzSa|SzSr|qS |qa+
U,D,oU,D,eU,D,c,U,D,IU,D,rU,D,0,U,DV, |U,D,eU,D,c,U,D,IU,D,rU,D,0,U,D,F |
U,0,U,c,U DU, DU,D'U,l |U,0,UV |SzSa|SzSr|aS |qa+
U,D,eU,D,c,U,D,1U,D,rU,D,eU,D,A|U,0,U,c,U, DU, DU,D'U,I |
U,0UV |SzSa|SzSr|aS |ga+
U,aU,c*U,D'U,l |S,zSa|SzSr |aS |ga+
U,D'U,l |SzS2a|SzSr|aS |ga
P—%2° 5U.cq,.S,xS, p.E,eE,l.E,r |U,cq,.S;xS,p.E,eE,|.E
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Step 5
Note that the process model allows for an edit event, this is not a problem as the object

model does not allow U;D1e.

U >{U,c

a—>**-U,D,0 |U,D,c,U,D,0,U,D,F |U,0U,c U, DUDUDUI|
uU,D,eU,D,AlU,0U,c U DUDU,D'U,I |UoU\V |SzSa|SzSr|qS |qa

P—% 5q,.SxS, p.E,eE,l.Er | q,.SxS,p.E;eE,.E

Iteration 6
U>{q,q}
a—%>U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |
U,D,eU,D,A|U,0,U,c, U, DU, DU,D'U,l |U,0,UV|S,25a|SzSr|S, |«
=U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A|
U,0,U,c,U, DU, DU,D'U,I |
U,0,U\V|S2Sa|SzSr|S,xS,p.S,p.S,25,a|S,xS,p.S, p.S,25,r |0.S | qo +
uU,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A|
U,0,U,c,U, DU, DU,D'U,I |[U,0,UV|SzSa|
S,25r|S,xS,p.S,p.S,d.S,d.E, |S,xS,p.S,p.S,d.S,d.S,2S,a]
S,xS,p.S,p.S,d.S,d.S,25,r |aS |qa +
U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A|
U,0,U,c,U, DU, DU,D'U,I |[U,0,UV |SzSa|
S,25r|S,xS,p.S, p.S,uS,ul, | S,xS, p.S,p.S,u.S,us,2S,a|
S, x.g).s2 p.@.szu.s2 z.g [0S |ga+
U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A|
U,0,U,c,U, DU, DU,D'U,I |U,0,UV |SzSa|
S,25r|5,xS,y.S,V.S,1 [0.S |qa
P—>S,xS,p.E,eE,l.E,r|q,.S;x.S;p.E;eE,l.E
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Iteration 7
U>{S,x,q,q
a—=*5U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U DU, DU,D'U,I |U,D,eU,D,A]
U,0,U,c,U, DU, DU,D'U,I |
U,0,UV|S2zSa|SzSr|S,pS,pS,25a(S,p.S,p.S,25,r [0S |ga +
U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c, U, DU, DU,D'U,l |U,D,eU,D,A|
U,0,U,c,U,; DU, DU,D'U,l |U,0,U.V|S,zSa|
S,z5r1S,p.S,p.S,d.S,dE,|S,p.S,pS,d.s,d.S,zS,a|
S,p.S,p.S,d.5,d.5,25,r |9.S |qa +
U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c, U, DU, DU,D'U,l |U,D,eU,D,A|
U,0,U,c,U,;DU,'DU,D'U,l |U,0,UV|S,zSa|
S,z5r1|S,p.S,p.S,uS,ul, |S,p.S,p.Sus,us,zS,a|
S,p.S,p.SuS,uS,z5,r [g.S |ga +
U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c, U, DU, DU,D'U,l |U,D,eU,D,A|
U,o,U,c,U,; DU, DU,D'U,I |U,0,UV|SzSa]
SizSr1S,yS,yS,1 a8 [ga
P——S,p.E,eE,|l.E,r|q,.S;xS,p.E;eE,lL.LE
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a—=2%' 5y D,o, |U,D,c,U,D,0,U,D,F|U,0,U,c U DU, DU,D'U,I|

U,D,eU,D,A|U,0,U,c, U, DU, DU,D'U,I [U,0,UV|S,zSa|
SzSr|E,|S,zS,a|S,25,r |q.S |ga

=U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,l |U,D,eU,D,A|
U,0,U,c,U, DU, DU,D'U,I |[U,0,U.V|SzSa|
S,zSr | E,0.E,0,.E,c,.E, D.E, D.E,D'E,l |E,0.E,0,.E,V |S,25,a|S,z5,r |g.S |qa +

U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A]
U,0,U,c,U,; DU, DU,D'U,I |[U,0,U.V|SzSa|
S,zSr | E,0E,aE,c*E,D"E,I |S,25,a|S,25,r |0.S |qa +

U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c, U 'DU,'DU,D'U,l |U,D,eU,D,A]|
U,0,U,c,U, DU, DU,D'U,I |U,0,UV|S,zSa]|
S.zSr|E,0E,D"E,! |S,25,3|S,25,1 |4S |qa +

U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U DU, 'DU,D'U,l |U,D,eU,D,A]|
U,0,U,c, U, DU, DU,D'U,I |U,0,UV|S,zSa]|
S,zSr |E,eE,lE,IE,l |S,25,a|S,25,r [9S |qa +

U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A]
U,0,U,c,U, DU, DU,D'U,l |U,0,U.V |S,zSa]
S,zSr | E,SE,D, | E,sE,0.E,0,.E,c,.E,D.E,'D.E,D'E,| |E,SE,0.E,0,.E,V |
S,25,a|S,25,1 |4S |ga +

U,D,o0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A|
U,0,U,c,U,; DU, DU,D'U,I |[U,0,U.V |SzSa|
S,zSr1 | E,SE,D, |E,sE,0E,aE,c*E,D'E,l |S,25,a|S,25,r |95 |qa +

U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c, U 'DU,'DU,D'U,l |U,D,eU,D,A|
U,0,U,c,U, DU, DU,D'U,I |U,0,UV|S,zSa]|
S,zSr |E,sE,D, |E,SE,0E,D'E,I |S,25,a|S,25,r [9S |qa +

U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, 'DU,D'U,l |U,D,eU,D,A]|
U,0,U,c,U, DU, DU,D'U,l |U,0,U.V|S,zSa]
S,zSr |E,SE,D, |E,sE,eE,l.E,IE,l|S,25,a|S,25,r |5 |qa

P—%230 ,F eF,I.E,r|q,.S;xS,p.E,eE,l.E
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Iteration 8
Ur>{E,eq,q
a—E 5U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,I |U,D,eU,D,A|
U,o0,U,c,U, DU, DU,D'U,I |U,0,UV |SzSa|
Slz.§|E2I.E2r.E2I |Szz.§1|822.8_2r|q.8I | 0.
P—E2 5 EILE,r|q,.S,x.S,p.E,eE,lL.E

Iteration 9

U >{E,l,q, 0}
a—E U D0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U DU DU,D'U,I |
U,D,eU,D,A|U,0,U,c,U, DU, DU,D'U,] |
U,0UV |SzSal|SzSr|Er.E,l|S,252a]S,25r | gS |qa
P—5 5 E,r|q,.S,xS,p.E,eElE

Iteration 10
U >{E,r,q,q}
a—5>U,D,0, |U,D,c,U,D,0,U,D,F |U,0,U,c,U, DU, DU,D'U,]I |
U,D,eU,D,A|U,0,U,c, U, DU, DU,D'U,I |
Ulol.U1V|Slz.§a|Slz.§|E2I |Szz.§1|822.8_2r|q.8I | 9.«
P—55q,.S5,xS,p.E,eE,l.E

For brevity, the algorithm is terminated at this point because it is clear that the system
state is similar to that of iteration 6 and the only remaining term in the process equation is also
the same as that of iteration 6. Thus, in this case, it is not necessary to show the final steps. The
anticipated completion of the process simulation demonstrates that, indeed, this process can be
performed by the object model. A complete execution of the algorithm showing stack V and
emptying state V would also demonstrate that this model is also completely achievable. Thus,
the process model of Figure 7.7 can be used to enforce event eligibility on the object model of

Figure 7.5 during run-time to guaranty that this process will complete.
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8. CONCLUSION AND FUTURE WORK

The Formal Object Interaction Language (FOIL), as presented in thisthesis, is a complete
modeling language that can model software structure, behavior and process using a single unified
notation. All aspects are reflected algebraically for analysis and verification. Inthisthess, there
have been three examples given of systems modeled using FOIL. These examples demonstrate
al the major features and benefits of FOIL and provide a significant range of complexity.

While not addressed in this thesis, the complexity of modeling a system in FOIL is not
substantially more difficult than standard Unified Modeling Language (UML) and likely to be
simpler than Object Petri-nets (OPN). Experience in using FOIL for the examples in this thesis
suggests that FOIL requires more abstract thinking than simpler languages, but with some
practice is suitable for real-world applications. A cursory overview of FOIL suggests that it is
ideally suited for an executable modeling language. At a minimum, FOIL is a springboard to

spur renewed interests in formal graphical modeling languages.

8.1 Benefits and Limitations

The Formal Object Interaction Language (FOIL) is designed to be a complete and
comprehensive graphica modeling language. FOIL is meant to have a user friendly graphical
notation while providing more expressive power. It was intended that FOIL be able to model
structure, behavior and process with a single notation, and with a common mathematical
underpinning. Complete support for behavioral inheritance and concurrency were key design

goals. Finally, the ability to verify that a process can be completed by an object model is a
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unique advantage. It is likely that there are modeling languages and frameworks that are
superior to FOIL in one or more of these areas. This thesis was specifically written to show that
FOIL isuniqueinits ability to perform well in ALL of these major design areas.

8.1.1 Graphical Notation

Graphically, the Formal Object Interaction Language (FOIL) is comprised of what has
worked well in current modeling practices. The basic structure of the class diagram, as provided
by UML, has remained effectively unchanged in FOIL. Many of the attributes and methods
required in standard UML are not necessary in FOIL. The reason for this is that many of the
attributes and methods in the UML notation are used to implement object behavior. Since FOIL
represents behavior graphically (where the UML class diagram does not), many of these
attributes and methods are specified in the behavioral portion of the class notation. Additionally,
as used in the Business Object Notation (BON), attributes can be specified as read-only, while
UML requires an attribute and method to accomplish this feature. The focus on FOIL structural
modeling was to follow the example of UML but simplify the notation to avoid redundancies and
allow room for behavioral specification without making the diagram overly complex.

The behavioral specification of classesin FOIL is a completely new notation but should
look familiar, as a hybrid of simple state diagrams and Petri-nets. The choice to use ports to
model variations of concurrent behavior stems from the desire to remove the ‘token’ concept
from Petri-nets. In the Object Petri-net (OPN) notation, a “class’ can basically function as a
process or atoken. This requires that the modeler know which function aclassis performing in
the model. The ideawith FOIL was to keep the structure of atypical UML class diagram, where
such distinctions are not necessary, while still providing complete support for concurrent

behavior within and between objects.
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Many of the notations for behavioral modeling were designed specifically to prevent the
system diagram from becoming overly large or complex. This problem is well-known in other
modeling languages, such as Petri-nets, but have had solutions offered by other languages such
as YAWL and BON. Specifically, FOIL uses the concept of optional events (represented by a
dotted line), that would require significantly more diagrammatic elements to represent with basic
notations. Also, the notation for interleaving could be modeled as a serious of sequential steps
encompassing all known possibilities but this quickly becomes incomprehensible as the number
of sequential steps grows beyond three (see 8.2.1).

The focus of FOIL process modeling was to ensure a consistency with the FOIL
modeling notation for structure and behavior. As such, the process model, from a high-level,
flows much like many of the process modeling notations in current practice such as UML
activity diagrams, YAWL, SEAM, and Business Process Diagram Notation. However, the
internal behavior of processes can be represented by more complex specifications than most of
these languages. This behavioral specification of processes in FOIL is done in the same way as
that of objects. The goal, again, was to maintain similarity with current methods, where such
features did not inhibit the ability of FOIL to model all know workflow patterns or ruin the
ability of FOIL to be used for mathematical analysis and verification.

Finally, the behavioral notation of both classes and processes in FOIL was designed to
ensure that the construction of the mathematical expressions could be done on a state-by-state
basis. By maintaining this notational property, the mathematical construction assures that a

system expression is the combination of all class or process expressions and that these
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expressions are a combination of their individual state expressions. This is critical in the
scalability of the modeling language both graphically and mathematically.

8.1.2 Algebra

The FOIL algebrais heavily modeled after n-calculus. Since, some of the featuresin -
calculus, such as scoping, are not necessary, the process algebra expressions in FOIL are
simplified. The agebraic construction of a system is done in a bottom-up fashion allowing for
progressively more complex models to be built while assuring that, if graphical conventions are
followed, there is always a corresponding algebraic representation.

The elements that truly make FOIL useful for mathematical verification are graphically
implicit. This allows for fairly complex analysis of a FOIL model without adding significantly
complex graphical constructs. The concept of event scope is added to ensure that mathematical
reductions can have sufficient granularity and selectivity in their response to the system. The
added concepts of unique and non-unigque events are used to ensure that a reduction eligibility
rule could be provided to ensure run-time and design-time verification of system state. Finally,
the concept of non-events is given to alow for an externally responsive system where certain
actions are optional without requiring excessively large graphical representation.

The construction of FOIL agebraic representations is done on a state-by-state basis.
After construction, the various laws and identities offered for the FOIL agebra allow for the
manipulation of the algebraic expressions for use by the system during run-time. The main
purpose for providing these mathematical processes is to make construction, manipulation and
verification simple to perform either manually or by a computer system.

Finally, the reductions performed during run-time have a predictable algorithm and have

strong performance characteristics. The reduction eligibility rule is checked prior to reduction to
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ensure system stability during run-time. All of the algorithms given for algebraic construction,
manipulation, execution and verification make FOIL suitable as a directly executable modeling
language.
8.1.3 Behavioral Inheritance

Inheritance is a concept that allows a large system to grow without the need to recode
elements that exhibit common structure. Inheritance is a well-known and studied concept in
object-oriented design and development; however, most research and implementation centers on
the concept of interface conformity. FOIL allows for an optionally more strict interpretation of
inheritance to ensure both structural (interface) and behavioral conformity. Thus, with this new
stricter interpretation of inheritance, the code savings involved in “inheriting” classes from more
generalized classes are much larger. Extending a class both structurally and behaviorally means
that code for interaction of the class with the encompassing system and internal control flow of
actions within the object are aready specified. Ensuring behavioral inheritance is a simple
algorithm done on the FOIL algebraic expressions, once again, making this feature suitable for
enforcement by any underlying executable system.

8.1.4 Concurrency

Because the behavior notation is derived from Petri-nets and the algebraic representation
is derived from n-calculus, FOIL is built on previous advances that have, as one of their key
features, support for concurrency. Thus, it is not surprising that FOIL has inherent support for
concurrency. This concurrency support makes FOIL suitable for modeling complex distributed
systems. The literature review performed for this thesis indicates that FOIL is likely to be the
only modeling language which can be used to generate multi-threaded source code without

explicit thread modeling.
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Concurrency modeling is useful beyond simple distributed systems. By modeling the
internal behavior of active states, certain choices about how software handles concurrent events
and processing can be made. In thisthesis, most examples involve sequentially processed events
with responsive behavior from concurrent threads; however, active state modeling provides a
clear mechanism for responding to concurrent events on single threads.

FOIL concurrency modeling does not implicitly enforce resource dependency or race
conditions. These must be considered when modeling any system using FOIL. In addition,
concurrency is graphically represented in-line with other system features whereas other
languages have chosen to do this outside of basic structural diagramming. As such, FOIL does
require more abstract thinking on the part of the modeler than those modeling languages without
concurrency support.

Finally, FOIL’s inherent support for concurrency gives it the ability to model al known
and studied workflow patterns. While there are many process languages that have support for
these patterns, many of them do not have a formal semantic or object-orientation. FOIL’s ability
to do al of these things makesit truly unique among modeling languages.

8.1.5 Model Analysis and Verification

The underlying algebraic representation of a FOIL model, combined with the various
mathematical laws and identities, allows for broad analysis of systems prior to implementation.
This thesis presents the basic ideas of object state reachability, inherent inconsistency, and
deadlock potential, as design-time analyses which can be performed on a FOIL object system.
Reachability and inconsistency can be determined during run-time as well. Thus, with FOIL, a

system could be designed to avoid these undesirable conditions. Additionally, the occurrence of



187

a deadlock can be detected using FOIL allowing run-time events to be rejected if they are found
to result in adeadlock condition.

More impressive is the ability of FOIL to respond algebraically to events as part of a
simulation. This simulation capability was shown to be useful in performing analysis on
processes as they relate to an object model. Using the algorithm provided in this thesis, FOIL
can determine process achievability, complete achievability, and determinism. If a process is
determined to be “completely achievable” then this thesis showed that such a process can be
used as a run-time constraint on an object model to ensure that a process will always compl ete.

8.1.6 Limitations

The intended purpose of the Formal Object Interaction Language (FOIL) is to simplify
and enhance the design and implementation of software. Other areas of software engineering,
such as requirements gathering and analysis, hardware infrastructure design, and software
deployment are not addressed by the FOIL model.

FOIL is ideally suited for interactive or reactive systems that are object-oriented or
service-oriented in nature. This covers a large segment of the software being developed today.
FOIL is very expressive and if the details of active states are specified, it can be used to fully
generate application or executable code. The initial basis for the development of FOIL was as a
formal object-oriented language as the foundation for a workflow management system [77] and
thus, it iswell suited for this purpose.

FOIL is not a requirements gathering or system deployment notation and thus is not
suitable for those purposes. Good design of software would dictate the use of UML Use Case
diagrams for requirements modeling, while package, system and deployment diagrams would

still be used for their independent purposes. The FOIL diagram can take advantage of
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requirements specifications as demonstrated by the passenger “actor” in Figure 3.12. FOIL is
primarily suited for the design and implementation of the software once the requirements have
been determined.

FOIL may not be the modeling notation of choice for some applications. FOIL’s
abbreviated notation for attributes and their access make it less suitable for applications without a
significant behavior component. Thus, if the main feature of an application is the storage and
retrieval of objects, attributes or data, the FOIL notation offers little advantages over other
options. However, a system which would require one or more UML sequence or state diagrams
to specify behavior would benefit from the FOIL notation.

Mathematically, FOIL is not temporal as are other languages [13, 34, 63] and thus would
not be suitable for real-time or discrete event systems that must have an inherent mathematical
concept of time. However, it is possible that FOIL could be extended to support a temporal

semantic.

8.2 Future Work

While this thesis has attempted to present a complete picture of the Formal Object
Interact Language (FOIL) and provide sufficient depth so as to appreciate its benefits and uses,
the subject of software modeling, in general, isvery broad. The successful blending of structure,
behavior, and process in agraphical and formal manner has raised potential issues that need to be
addressed, uses that need to be attempted, and extensions that need to be explored.

8.2.1 State Explosion

One of the primary issues related to using state-based analysis of systems is the state

explosion problem. It should be relatively easy to surmise that the algebraic manipulations
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performed during reductions as well as the application of the reduction eligibility rule during
run-time are realy just a form of state-based analysis. The main problem with state-based
anaysis is that the number of state options grows exponentially resulting in some tractability
problems involved with analytical algorithms. State explosion is a known problem with process
algebra [78] but is not unique to FOIL. Solutions have been offered for other modeling
languages such as Petri-nets [79].

Most of the examples in this thesis use the choice-action form (CAF) as the basic
mathematical form for run-time execution and analysis. However, thisform grows exponentially
for certain control flow patterns. Specifically, interleaved routing and multiple choices are two
patterns that exhibit this problem early in the mathematical process. FOIL has some notations
designed to eliminate this problem from a graphical standpoint; however, these notations do little
to minimize the growth rate of the underlying algebraic expressions.

It was briefly mentioned in this thesis, that an alternate algebraic form can be used to
prevent the state explosion problem. This form, called the choice-compressed form (CCF),
delays the expansion of choices until the last possible moment. Preliminary work suggests that
reductions can be done on expressions in CCF, but that such rules are far more complicated than
their CAF counterparts. While it seems logical that such rules could be proven and codified, this
has only been done on a very basic level. Additionally, the research on using CCF is incomplete.
For instance, while basic reductions and analyses have been explored using CCF, the
achievability algorithm has not been attempted.

8.2.2 Process Metrics

The ability for FOIL to determine whether a given process is achievable with a given

object system is a distinctive feature of FOIL. A thorough survey suggests that there is no
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modeling language offered today with this capability. The FOIL achievability algorithm shows
that there is a coupling between an object model and the processes it is designed to achieve.
With other modeling languages this coupling is implicit or inferred; while in FOIL, it is explicit
and verifiable.

The FOIL achievability agorithm performs its work by executing a simulation of events
in the system based on expected process results. Many of the events ssmulated, however, do not
actually show up in the process model. In other words, it may be that in order to determine that a
given process is achievable; the assumption of an event sequence of n length is required. Yet a
more detailed process model may be determined to be achievable with the same object model
with only n-3 event assumptions.

Another possible metric is to complete the achievability algorithm even after
achievability is determined. If the process model is determined to be achievable but not
completely achievable, then there is the possibility of placing a coined achievability index to the
system. This would represent the number or magnitude of internal control flow paths inside the
object model that do not lead to achievability. This could be represented as a number or a
percentage of the total number or magnitude of control flow paths.

These two possible metrics are merely given as a suggestion or beginning on what may
be possible with future research into this area. Likely, further contemplation would reveal many
more possible measurements that could be performed on system models created with FOIL. The
main focus of this thesis has been on model production, execution, and verification with little

attention given to model optimization.  The formulation and understanding of such metrics
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derived with FOIL models would open a whole avenue of research into FOIL model
optimization.
8.2.3 Process Mining

Process mining is a technique used to generate a process model from the transaction logs
of existing systems. These systems are usually transactional and procedura in nature. The
problem of process mining is not an easy one, as al systems show variations in their logging
capability, and methods for computer analysis of such logs are necessarily complex. Despite
this, process mining holds much promise, as a tool for business analysis, to reduce the time
required to model as-is business processes. Also, mining techniques can be used to determine if
the operations of a system correspond with the designed intent.

There has been a fair amount of research into mining process logs. EMIT is alow-level
process mining tool that can be used to read event logs and determine the workflow structure of
the underlying system [80]. One of the notable advancements offered by this tool is the use of an
intermediate XML log format to which logs from various applications are converted. The EMIT
system was made part of a larger workflow mining tool called TeamLog [81]. The InWoLVE
workflow mining processor uses a more inductive approach and essentially solves the problem of
task-oriented workflow mining in two steps[82]. First it derives a stochastic activity graph
(SAG) from agiven log and then combines repeated activities at the end.

The Process Miner was a product whose theoretical foundation and program
implementation ware done almost exclusively by Guido Schimm. The first iteration of the
product [83] was based on his ideas presented in 2000 [84]. It differs from other approaches in

that it extracts an exact model of the workflow based on the logs. It aso presentsits model in a
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block-oriented fashion. Using this model type, a process model will have an agebra that has
distributive, associative and commutative properties [85] much like FOIL algebra.

Since a FOIL object model is an event driven system, it is easy to contemplate how a
workflow or process analyzer could be implemented. As each event is received, the associated
reductionsin the algebraic expressions are recorded. Then such event reductions could be mined
to determine the probabilities of various event sequences. Based on this idea, a FOIL process
model could be created. A FOIL process which is determined to be achievable may still have
other processes that are more prevalent. This generated process model would be useful as an
informational tool to determine what work is actually being done by a given FOIL object model.
Additionally a generated process model might serve as an aid to process and object model
designers.

8.2.4 Distribution

There have been a large number of techniques introduced to provide scalable, distributed
workflow services. These solutions range from purely event-driven models [86] to grid
computing architectures [87]. One of the motivations for FOIL was in creating an object-
oriented workflow management system. As such, system distribution has been a concern during
development of FOIL but has not been fully addressed.

8241 WfMC Reference Model

standardize the industry with respect to workflow management systems. Their efforts have been
only partialy successful, but they have introduced modeling structures for building workflow

systems to support scalability and interoperability. Figure 8.1 shows a diagram of the proposed
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reference model for workflow systems [88]. This model suggests that interfaces be standardized
to allow for connections between different systems.

Distribution through this basic model is realized through the interaction (Interface 4) of a
workflow engine with other existing workflow engines in addition to the ability to invoke outside
applications (Interface 3) from within the engine. Thismodel is very basic and does not take into
account some of the more complex issues with distribution. For example, this model assumes

that the Workflow Client Application will always be connected to a central workflow engine. In
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Interface 2 Interface 3

Workflow
Client Invoked

Application

Application

Figure 8.1 WfMC Reference Model [88]
large scale implementations, the client may not be aware of the location of the closest workflow
engine. Additionally, whether invocation of remote applications is synchronous or asynchronous

and how these decisions affect the engine is unspecified.
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8.2.4.2 Physical-Logical Separation

One of the key issues in interoperability is the desire to abstract the interface to a system
away from its underlying platform implementations. This was the intent of the first WIMC
model; however, this approach is rather simplistic dealing with just mere interoperability without
regard for redundancy, load-balancing and geographic scalability.

One approach involved the use of assignment servers[89, 90]. An assignment server isa
separate machine or program which has knowledge of the location and physical requirements of
multiple workflow servers. When a client requests needs to perform a task, the message is sent
to an assignment server which will then pass on the request to the appropriate workflow server.
Thus, the assignment server functions as a trandator for the target machine making the platform
issues with interfacing with the server transparent to the client. One similar approach was to
create workflow repositories that serve the same function as the assignment server but also stores

the interfaces for each workflow[91, 92].
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Figure 8.2 Event-Driven WFM S using CORBA [86]
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Figure 8.2 [86] shows the basic setup of this idea within a CORBA framework. Each
process registers with a central event channel as to which events it listens for. In addition, it
registers which events it provides. Thus, each process is both a consumer and producer of
events. The event channel has filters which ensure that events are only sent to those processes
for which it is applicable. This extends beyond just mere registry but the event channel will aso
take into account the sequence and data involved in the event in determining applicability. To
some degree, the event channel with its associated filters acts as a workflow engine, making
decisions on behalf of the processes under its charge. However, the work is performed
completely by the target objects and the event channel is completely unaware of the logic, data
manipulation, implementation or platform of the processes.

Each object as modeled in FOIL can be decoupled with a central event controller as
offered by CORBA or other workflow-based systems [88]. This decoupling alows for
distributed or mobile objects to interact under a defined service-based interface. Additionally,
the security services that enforce the interaction between objects can be more strictly specified
than in typical object-oriented implementation. For example, in Figure 3.12, it may be necessary
to ensure that a reachedFloor event can only be fired by the elevator and no other object. In
typical object-oriented design, the reachedFloor method is public and thus accessible to all
objects. FOIL with its decoupling capability and inherent support for concurrency is an ideal

candidate to be considered for distributed system design in the future.
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