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FORMAL OBJECT INTERACTION LANGUAGE: 

MODELING AND VERIFICATION OF SEQUENTIAL AND CONCURRENT 
OBJECT-ORIENTED SOFTWARE 

By 

JASON ANDREW PAMPLIN 

Under the Direction of Ying Zhu 

ABSTRACT 

As software systems become larger and more complex, developers require the 

ability to model abstract concepts while ensuring consistency across the entire project.  

The internet has changed the nature of software by increasing the desire for software 

deployment across multiple distributed platforms.  Finally, increased dependence on 

technology requires assurance that designed software will perform its intended function. 

This thesis introduces the Formal Object Interaction Language (FOIL).  FOIL is a 

new object-oriented modeling language specifically designed to address the cumulative 

shortcomings of existing modeling techniques.  FOIL graphically displays software 

structure, sequential and concurrent behavior, process, and interaction in a simple unified 

notation, and has an algebraic representation based on a derivative of the -calculus. 

The thesis documents the technique in which FOIL software models can be 

mathematically verified to anticipate deadlocks, ensure consistency, and determine object 

state reachability.  Scalability is offered through the concept of behavioral inheritance; 



    
and, FOIL s inherent support for modeling concurrent behavior and all known workflow 

patterns is demonstrated.  The concepts of process achievability, process complete 

achievability, and process determinism are introduced with an algorithm for simulating 

the execution of a FOIL object model using a FOIL process model.  Finally, a technique 

for using a FOIL process model as a constraint on FOIL object system execution is 

offered as a method to ensure that object-oriented systems modeled in FOIL will 

complete their processes based activities.  FOIL s capabilities are compared and 

contrasted with an extensive array of current software modeling techniques.  FOIL is 

ideally suited for data-aware, behavior based systems such as interactive or process 

management software. 

   

INDEX WORDS: object-orientation, Formal Object Interaction Language (FOIL), 
concurrency, -calculus, process verification, behavioral 
inheritance,  formal methods 
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1. INTRODUCTION 

The use of computers for information management is still in its infancy.  While many 

advances have been made in the last four decades, it is obvious by looking at the history of other 

sciences that this is not very long.  COBOL was the first widely adopted language developed 

specifically with the intent of managing information, but was mainly centered on the storage, 

access and viewing of data.  A milestone in data management technology occurred in 1970 with 

the advent of the relational database [1] and the entity-relationship diagram offered in 1976 [2].  

Structured query language (SQL) provided the ability to retrieve data from files quickly and 

easily; however, improvements in this form of data storage peaked in the early 1990 s.  The 

addition of new features such as different programming language support and generic drivers, 

while making access and programming to such systems easier, does not really enhance what can 

be done with the technology. 

The limitations of the relational database management system (RDBMS) gave rise to a 

need for even more expressiveness in the data representation mechanism.  Thus, while object-

oriented languages have existed since the 1960 s, their real benefit has not been fully realized.  

The creation and rapid adoption of Java as a programming language shows that developers of 

information management systems can use more expressiveness in their data modeling than a 

relational model could provide.  Recent development and research points toward the adoption, 

over time, of full-fledged object management systems (OMS).  There are already several 

commercially available object management systems. 
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Process modeling has taken a very different development path from that of information 

management.  As a field of study, it is much older.  Ancient civilizations produced amazing 

structures through the method of partitioning work into smaller tasks and forming a project by 

aggregating these pieces in the correct order or sequence.  Modern process improvement and 

management came about during the industrial revolution of the mid-1800 s when automation of 

some tasks by machine could be considered.  The computer, especially the personal computer, is 

a machine that can automate administrative tasks in the same way that manual labor was 

automated in the previous century.  The modeling of processes to be automated by computer 

naturally used the same methods as those used in machine-driven automation.  Since early 

computers lacked the ability to execute anything but a purely procedural model (hence the use of 

procedural programming languages), this was not a serious problem.  Thus, process modeling 

techniques continued to improve, but remained primarily procedural in nature. 

Today, procedural programming languages have largely been abandoned when projects 

require a large amount of code.  Several million lines of procedurally-based code become 

unmanageable because developers lack the ability to memorize the code.  Object-oriented 

software allows developers to model systems like the real world that they already know, thus 

providing easier management and comprehension of large projects.  But, process modeling, 

primarily performed by business analysts, has continued along its procedural-oriented 

trajectory.  As information management progresses toward a purely object-oriented 

architecture, compatible techniques for managing the next layer (i.e. the business layer) must 

be adopted. 
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The Formal Object Interaction Language (FOIL), presented in this thesis, was developed 

with this goal in mind 

 
to provide a comprehensive object-oriented framework for sequential 

and concurrent systems with a formal mathematical representation that can be used for 

verifying corresponding process models.  The following introductory sections summarize the 

current practice, set forth design goals, and define FOIL, concluding with the expected 

contribution of this work.  

1.1 Motivation 

Object-oriented software architecture has become the dominant architecture of choice for 

large software systems [3] over the last half-century.  Modeling of object-oriented systems was 

made easier with the advent of the unified modeling language (UML) class diagram [4] which 

allowed for specification of objects and their relationships to each other in a way that could be 

used to generate code for production.  Thus, UML has offered a significant improvement in 

specifying, documenting, and producing high-quality software.   

UML is not, however, an ideal solution for modeling all software system types. In 

particular, software systems having high behavioral characteristics, as compared with their data 

and data manipulation requirements, become cumbersome and error-prone using UML, 

especially if the behavior of the system has a significant degree of parallelism.  UML requires a 

large number of diagrams to completely specify a system s behavior and generally requires full 

structural specification to be completed first.  Additionally, there is no inherent mechanism to 

ensure that the various diagrams are consistent. 

This problem of diagram consistency is especially poignant when ensuring that the 

business requirements as provided by analysts are consistent with structural and behavioral 
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requirements as provided by developers.  This has relegated many in the field to refer to such 

ability to ensure congruency as art .  Yet, in other engineering disciplines, the artistic aspects of 

design have more to do with solving problems associated with difficult or complex functionality 

while maintaining aesthetic appeal.  The assurance that a design will perform its desired function 

once built is, in other engineering disciplines, decidedly more methodical and computational in 

nature.  

The ability to model an object s behavior is a prime concern as part of ensuring quality 

performance and accuracy during implementation.  Yet, in an age of increasing use of mobile 

and distributed systems, few modeling techniques provide intuitive notations for representing 

concurrent behavior and interaction.  Even fewer have a formal semantic for mathematically 

understanding this concurrent behavior once modeled.  Of the modeling frameworks that do have 

these characteristics, many of them are difficult to read or have limited or no object-orientation. 

In structural modeling, a diagram should show the data requirements as well as the 

relationships between data.  Behavioral modeling must support concurrency to ensure that its 

expressiveness is sufficient.  The model must support a process modeling capability that has the 

ability to be verified against the structural and behavioral aspects of the model. Historically, 

attempts to create a hybrid graphical modeling language have resulted in severe concessions of 

these requirements. 

A detailed review of previous research in this area is given in chapter 2. 

1.2 Design Goals 

On one end of the software modeling spectrum is the Entity-Relationship (E-R) diagram 

[2] from which the UML class diagram is derived [5]. The E-R diagram is the most basic 
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structural software representation, since a database, in its simplest form, does not exhibit 

behavior.  The E-R diagram is easy to read and understand, and has relational algebra as a formal 

underpinning.  These characteristics have made the E-R diagram a proven, time-tested modeling 

notation.  The E-R diagram naturally led to the Unified Modeling Language (UML) class 

diagram.  This transition disposed of any real mathematical basis for the language, but its 

simplicity and ability to specify the concrete and abstract structure of software has made it a 

resounding success.  

On the opposite end of the software modeling spectrum is the Petri-net [6].  The Petri-net 

is presumably the most basic behavioral software representation.  It has no problem modeling 

complex concurrent behavior and has an underlying mathematical foundation to minimize 

modeling errors and verify correctness.  The notation has a small symbol set and is relatively 

easy to comprehend.  These characteristics have made the Petri-net diagram a proven, time-

tested modeling notation.  Due to its ability to model concurrent behavior and general lack of 

structural specification, Petri-nets have been primarily used for process modeling. 

The E-R diagram has no mechanism for modeling a software system s behavior.  The 

Petri-net, on the other hand, is strictly behavioral in its modeling and only accounts for data 

indirectly, meaning that additional data-based decisions in system behavior require extension of 

the model to include new places, transitions and tokens.  Neither diagram is object-oriented, 

making comprehension and scalability of large models difficult.  Object oriented modeling 

techniques such as UML do not inherently support a formal semantic. 

Despite their shortcomings, these major software modeling frameworks have all enjoyed 

extended and wide-spread success.  Based on the success of these modeling frameworks, the 



  
6    

hallmarks of a long-lasting and widely accepted graphical software modeling language would 

be: 

 
ability to model software structure 

 
object-orientation 

 

simple easily-understandable notation 

 

inherent support for concurrency 

 

ability to model system processes 

 

an underlying mathematical basis 

However, if a single uniform modeling language could meet all of these requirements, 

then there are other logical extensions that would follow.  For instance, if behavior and process 

can be modeled then a more refined version of inheritance could be offered that comprises more 

than mere structural conformity. Finally, if the modeling of various aspects of software 

development  structure, behavior, and process  can be either integrated or verified against each 

other, then full software system verification can be performed. 

1.3 Formal Object Interaction Language 

This thesis presents the Formal Object Interaction Language (FOIL).  FOIL graphically 

displays software structure, sequential and concurrent behavior, process, and interaction in a 

simple unified notation, and has an algebraic representation based on a derivative of the -

calculus [7, 8].  This gives FOIL significant practical advantages over other graphical modeling 

languages, particularly for data-aware, behavior-based systems. 

The FOIL notation borrows what is good in the Unified Modeling Language (UML) and 

adds a small set of symbols to allow the modeling of a class s behavior.  Thus, in addition to 
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providing the structural detail of a system s attributes and methods, a FOIL model provides a 

much more expressive picture of an object s: 

 
Instantiation 

 
when, how and under what conditions objects are created at 

runtime; 

 

Behavior 

 

how objects perform their work both internally and in relation to 
other objects; 

 

Collaboration  how objects interact with one another to perform work; and 

 

Constraints  the conditions necessary for object behavior. 

The added behavioral notation in FOIL allows for expressing the internal control flow of 

an object including the splitting and merging of threads of execution.  This ability to model 

concurrent behavior within an object is distinctive, but FOIL s support for concurrent processing 

of multiple instances of objects makes it truly unique.  This behavioral notation allows for a 

more specific type of inheritance where objects are not generalized based on mere interface 

conformity but must also conform in their general behavioral characteristics. 

The concurrent object modeling capability of FOIL has a well-defined mathematical 

representation derived from a well-known and time-tested calculus.  This mathematical 

representation allow for the creation of laws, forms, and operations to be applied to the object 

model.  This allows for the building of complete system expressions.  Based on these 

expressions, certain properties of the object system, such as state reachability, deadlock 

capability and inherent inconsistencies, can be identified.  Additionally, algebraic reductions can 

be done on these expressions during run-time to track full system state in an efficient manner.  

Most importantly, with the addition of some simple rules, the acceptability of certain behavior by 

a system can be determined and enforced to ensure that object systems perform as designed. 
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FOIL also supports a process modeling notation to allow for specifying what work a 

system is designed to perform.  This provides a link between what is modeled in an object-

oriented fashion and what is expected from a procedural standpoint.  The FOIL process modeling 

notation is nearly identical to that used for the structural and behavioral specification of the 

object system.  This makes FOIL the only graphical modeling language to use the exact same 

notational elements to represent the structural, behavioral and procedural aspects of a system.  

Finally, a FOIL process model has an underlying algebraic representation whose 

construction is identical to that of an object model, allowing a single construction algorithm to be 

used for both.  This process expression can be analyzed through a simulation technique to 

determine if a given object model can perform the provided process (achievability).  More 

detailed analysis can show if a process can be determined to always complete (process 

determinism) or whether a process can complete regardless of independent internal control flow 

for a given object model (complete achievability).  Most import, if a process model exhibits 

complete achievability against an object model, the algebraic process expression can be used as 

an enforcement constraint on object system execution to ensure that processes will complete. 

1.4 Contribution and Application 

The Formal Object Interaction Language (FOIL) is designed to be a complete and 

comprehensive graphical modeling language.  FOIL is meant to have a user friendly graphical 

notation while providing more expressive power.  It was intended that FOIL be able to model 

structure, behavior and process with a single notation, and with a common mathematical 

underpinning.  Complete support for behavioral inheritance and concurrency were key design 

goals.  Finally, the ability to verify that a process can be completed by an object model is a 
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unique advantage.  It is likely that there are modeling languages and frameworks that are 

superior to FOIL in one or more of these areas.  This thesis was specifically written to show that 

FOIL is unique in its ability to perform well in ALL of these major design areas. 

It is understandable that attempting to combine the structure, behavior, and process 

aspects of software into a single modeling framework would require trade-offs.  But, most 

attempts to do so have resulted in major concessions in simplicity, expressiveness or formality 

which are the hallmarks of modeling frameworks that have experienced wide-spread acceptance 

and longevity. 

Combining various aspects of a software system s structure, behavior, and process into a 

unified modeling notation have been attempted [9-16], but have had significant difficulties.  One 

of the primary advantages of the UML class diagram is its simplicity [17]; thus, a new notation 

should have a small number of notational elements to maintain this quality.  But, a new notation 

must also be expressive enough to provide for a detailed comprehension of the objects behavior, 

both by humans and the underlying computational system.  The FOIL notation (chapter 3) does 

this while adding only four new symbol types. 

1.4.1 Single Unified Notation 

Efforts have been made to combine various functional aspects of UML modeling 

diagrams, to form a more compact representation of a system. In 1991, shortly after the rise of 

UML, the object behavior diagram [16] was offered as a solution for compact representation, 

essentially combining the class and state diagrams (structural and behavioral aspects). A more 

recent effort was called object charts [12], and combined these two diagrams with more detail.  

The TROLL object-oriented specification language [13] allows for the combination of structure, 
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behavior and process, but this language has been primarily textual with no completely defined 

graphical notation. 

Efforts to combine the process and structure of software have also been offered.  One 

method involved making UML activity diagrams object-oriented [18].  Another attempt at 

improving compactness was the development of object process methodology (OPM) [19], which 

combines the structural and process aspects of a system into a single diagram.  Object 

Connectivity Nets (OCoN) [9] were developed to combine structural, process, and behavioral 

aspects of a system. 

While all of these modeling systems have made progress toward a single-diagram 

notation, they all have significant drawbacks in one of two areas: mathematical basis or 

concurrency.  The Formal Object Interaction Language (FOIL) offers a single-diagram notation 

without sacrificing mathematical basis, concurrency modeling, or object-orientation. 

1.4.2 Concurrency 

In UML, concurrency is supported at the process level through the activity diagram but 

modeling parallel operations on object states in the lower levels of system design requires the 

insertion of written notations. Object behavior [16] and object chart [12, 14] models assume that 

an object is in a single state; thus, these  models do not support concurrency. The OPM [19] also 

has difficulty expressing concurrency.  The Object Petri-net [15] is a successful blending of the 

concurrency modeling notation of Petri-nets with object-oriented design. 

1.4.3 Expressive Power   

A fully-expressive modeling system is able to correctly model all known types of event 

patterns [20], such as those with concurrency and resource dependency.  It is challenging to 

model all patterns without adding additional complexity to the modeling framework. For 
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example, UML models some of the more complex patterns by placing textual annotations on top 

of the graphical model [21]. It is desirable for the modeling framework to have sufficient 

expressive power to model complex patterns without sacrificing usability or formal semantic. 

OCoN [9] models, with their very compact notation, are not suitable for complex 

patterns.  In particular, concurrency is difficult to represent. In practice, all examples of OCoN 

models show sequential patterns.  Object petri-nets [15] have excellent expressive power, 

showing concurrency and resource dependency easily. They have been demonstrated, in 

workflow modeling, to effectively model all known patterns. However, this expressive power 

comes with much complexity, as additional places, transitions and tokens are required for each 

resource dependency. 

In addition to the above modeling systems, there are many others that are expressive 

enough to show all known patterns; many of these also supporting formal methods [22-24]. 

Some of these modeling frameworks lack a simple notation, or they only model process, 

neglecting structure and behavior.  FOIL is based on -calculus which has concurrency as its 

main advantage (chapter 4).  Thus, FOIL easily handles concurrency while maintaining a simple 

object-oriented notation (chapter 5) that models structure, behavior and process (chapter 7).  

FOIL also has the expressive power to model all known workflow patterns (chapter 6). 

1.4.4 Application 

FOIL is a non-activity-centric model.  Developers can work in an environment for 

process modeling that is closest to how they model systems.  But, probably the most important 

aspect of this difference applies to how large organizations develop their processes.  Using FOIL, 

individual groups can define and manage the processes for individual objects under their charge.  

They can respond to events that other groups respond to, but they define and control only their 
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objects when such events are received.  The system can aggregate these actions to events to form 

the typical UML Activity diagram.  This means that a single individual who understands the 

complete process diagram for an entire organization is no longer required.  This has 

profound ramifications to the development, management and maintenance of the FOIL system. 

E-commerce, Enterprise Resources Planning (ERP) and workflow systems are just a few 

examples of software that require data manipulation, have a high behavioral component, are 

distributed and thus require the concept of concurrency, and need to be verifiable. These systems 

are becoming larger and more common.  Yet, there is significant room for improvement in 

modeling data-aware, behavior-based systems that require concurrency.  FOIL offers a complete 

modeling framework that fills the gap left by current modeling approaches.  
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2. BACKGROUND AND RELATED WORK 

Design goals for software modeling languages discussed in section 1.2 include object-

orientation, capability to model process, support for concurrency and a formal mathematical 

basis.  Many software modeling tools have been developed that include some or all of these 

features.  The following sections include a discussion of the best currently available models for 

meeting each of these goals individually.  To conclude this chapter, special attention is given to 

the modeling methods that meet more than one goal.  A thorough review of pertinent literature 

suggests that there is no comprehensive modeling language which adequately meets all of the 

given design goals.  The Formal Object Interaction Language (FOIL), as described beginning in 

chapter 3 has all of these desirable characteristics. 

2.1 Object-Orientation 

Object-oriented systems have been around for nearly 40 years and have been shown to be 

the modeling method of choice for large software systems.  The task of comprehending very 

large systems comprised of nothing but functions quickly becomes overwhelming.  Object-

oriented modeling allows programmers to comprehend software in the same way they 

comprehend everything else.  Objects are created and, once created, they may interact with other 

objects.  The concept of encapsulation is also familiar, as many real world objects have internal 

parts which, when performing as they should, can not be accessed by the average user. 
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2.1.1 The Case for Object-Orientation 

There are multiple reasons to use an object-oriented approach to building software.  

Among them are: 

 

Increased code-reuse through generalization relationships 

 

Simpler code through the use of polymorphism 

 

Developer and user safety provided by encapsulation and data hiding 

 

Well defined application programming interface 

 

Current popularity 

 

Well-studied repository of known design patterns 

The largest advantage of object-oriented design is the concept of real-world modeling.  

Object-oriented design simplifies requirements gathering.  Such gathering is a matter of 

identifying the objects at work and determining their communication to each other.  It is 

understood that there are other methods for software architecture, such as Aspect-Oriented and 

Service-Oriented; however, Object-Oriented (OO) software architecture has become the 

dominant method of choice for large software system development [3] over the last half-century. 

2.1.2 Unified Modeling Language (UML) 

Modeling of object-oriented systems was made easier by the advent of the unified 

modeling language (UML) class diagram which allowed for specification of objects and their 

relationships to each other in a way that could be used to generate code for production.  The 

benefits in the specification improvements as well as the reduction in time spent coding basic 

functionality into software was impressive.   

The history of the UML class diagram, as well as object-oriented programming 

languages, reveals that these techniques are really just layers added to the previously defined 

technology.  This is intuitive since it is clear that a computer simply executes a series of ordered 
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instructions and thus in itself has no concept of an object, class, inheritance, etc.  These are 

merely abstractions built onto an existing functional programming framework.  This is actually 

true of the UML class diagram as well.  The similarities between the UML class diagram and the 

Entity-Relationship diagram are hardly coincidental. 

2.1.3 Modeling Structure 

In 1970, it was proposed that users should not have to know the internal structure of data 

on computer systems in order to access that data in a meaningful way.  Thus, a relational 

abstraction was offered to achieve this purpose [1].  This later resulted in the creation of the 

structured query language (SQL) and the data definition language (DDL).  Its simple grammar 

and easy-to-learn semantic has made it the most widely used programming language in the 

world.  Surprisingly, the diagrammatic representation of this relational model was not offered 

until six years later in the form of the entity-relationship (ER) diagram [2].  The idea of 

abstracting data into an intuitive framework was brilliant and allowed the continued 

improvement of data management architectures without having to worry about whether users of 

such systems would have to keep up. 
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Advances in data storage technology continued with IBM and Oracle as the main players.  

This handled the problem of data complexity to some degree, but application code bases 

continued to grow and organizations increasingly found it difficult to manage them.  Object-

oriented software had been around since 1967 with the creation of Simula-67 but was not in wide 

use.  The introduction of C++ by Bell Labs brought object-oriented programming to the 

mainstream; however, it was not until the mid-80 s that modeling of object-oriented technology 

was offered.  Object-oriented design offered many advantages over the traditional methods, 

despite the fact that there are minor differences in how such modeling is done [4, 25].   

The basic concept of the 

class diagram is very similar to 

that of the ER diagram.  Each class 

is represented by a box that lists 

the class name and the attributes 

that make up that class.  In 

addition, the methods (i.e. 

functions) that can be performed 

by this class are listed.  Different 

font types or colors indicate the 

scope and accessibility of 

attributes and methods in a class.  

 

Figure 2.1  An ER Diagram 
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Connecting lines between classes show the relationship that classes have to one another.  These 

lines have different shapes on the end of them to indicate what type of relationship exists 

between different classes. 

In recent years, the concept of object 

persistence has been studied.  Persistence is the 

permanent writing of an object to disk such that 

this object can be recreated from that data at a later 

time.  It is easy to see that an ER diagram with a 

table existing for all persistent objects could be 

easily constructed.  Likewise, an ER diagram can 

be transformed into an object diagram with 

additional information required.  In fact, there are 

several frameworks that do this.  Thus, for the set of persistent objects in a system, a class 

diagram represents a superset of detail required for an ER diagram [26]. 

The fact that the data relationship can be inferred by the object relationship has resulted 

in the development of pure object management systems.  These systems allow one to define 

objects with attributes, methods and relationships in a DDL-like language called object definition 

language (ODL).  Similarly, one can query this system to retrieve actual instances of objects 

using the object query language (OQL) [27].  Many implementations are built on top of a 

relational database system. 

2.1.4 Modeling Behavior 

The behavior of objects is a determination of what happens to objects as activities are 

performed on them.  Thus, this ties process to objects.  It could be argued that process can be 

 

Figure 2.2  Class Diagram Legend 
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inferred from the recorded changes to object condition.  This is the basis behind the technique of 

process mining [28].  It is safe to assume that the reverse it not true. 

The main method in UML for modeling behavioral changes to objects is the state 

diagram.  The state diagrams in UML are basically comprised of boxes that represent states of an 

object.  In this box is a list of events that cause transitions to other states.  These transitions are 

represented by arrows.  Attached to these arrows may be conditions that are evaluated to 

determine which transition is to be taken.  Figure 2.3 shows an example of a UML state diagram. 

It is interesting to note that the UML state diagram has no formal basis thus making 

correctness difficult to determine.  It should be obvious from this statement that the state diagram 

offered by UML is not the same as that traditionally associated with finite state automata for 

which a well understood formal semantic exists.  Non-determinism is difficult to model in the 

UML-style state diagram.  This means that objects can generally never be in multiple states at 

the same time.  While it is true that any system can be modeled in a deterministic way, it is also 

 

Figure 2.3  UML State Diagram for Elevator 
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true that non-deterministic modeling can offer significant simplification of complex state 

changes.  Since the state diagram (offered as optional for simple objects) is recommended for 

complex object behaviors, it stands to reason that this sort of modeling simplification would be 

needed. 

The limitations of the state diagram have a direct impact on modeling processes 

themselves.  Suppose for instance that three activities must be completed before an object s state 

changes to complete but the order of these activities in unimportant.  From a workflow 

perspective this is a relatively simple pattern consisting of a parallel split followed by a 

synchronizing merge.  However, with no ability to be in multiple states at once, how does one 

determine what has and hasn t been done to the object by looking at its state?  The UML state 

diagram could be modeled to account for this but it would consist of six states.  As the number n 

of prerequisites for completion increase, the number of states required to model this condition 

increases as a factorial of n. 

So, what is the next layer in programming simplification?  It seems that if object-oriented 

(OO) systems are comprised of a series of interactions between various objects, then modeling of 

the behavior of those objects would be beneficial.  This is especially true if one considers the 

number of attributes and methods required in each object simply to store and modify and object s 

state.  There are  OO design patterns that can be used to make the state-based tracking of objects 

easier but the modeling of such abstractions make comprehension of what an object is actually 

doing quite difficult. 

Interactive software systems can be especially hard to model as there are requirements for 

when and how objects can change state.  Interactive systems of this nature are really a form of 
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discrete event system; however, in such a system, the developer does not necessarily have 

control of when events will be received by the software.  Thus, objects must be able to verify that 

they are in the correct state to respond to events.  In addition, the system should be able to verify 

that processing of an event will not put the object or system in an unstable or deadlocked state.  

Thus, a modeling notation that can support an underlying formal semantic is preferable. 

Creating a new notation that shows a class s structure and behavior in a single diagram 

with support for a formal semantic is difficult.  One of the primary advantages of the UML class 

diagram is its simplicity; thus, a new notation must have a limited number of notational elements 

to maintain this quality.  But, a new notation must also be expressive enough to provide for a 

detailed comprehension of the behavior of the objects both by a human and an underlying 

computational system. 

2.2 Process Modeling 

Process modeling is generally associated with an understanding of the dynamic behavior 

of an organization, business or system [29].  This should not be confused with the behavior of an 

individual object or entity within the system.  A process model represents the big picture idea 

of what the business or system is actually accomplishing.  This is highly useful in an 

organizational setting as it allows for analysis of whether or not the organization s goals are 

actually being met by the technology in use.  In fact, it is a common (but not necessarily 

recommended) [18] practice to create a process model after a system is in place and functioning 

in order to determine what it is actually accomplishing. 

The process model, while indispensable in analyzing organizational effectiveness, is not 

sufficient for the complete specification of a software system.  There are several reasons for this.  
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For starters, process models do not, in and of themselves, contain the necessary level of detail 

required to completely specify a system.  This is especially true for systems that are implemented 

in an object-oriented fashion.  This means that the system is a combination of objects which 

communicate with each other in order to perform a particular task.  This detail is generally not 

captured by a process model and, indeed, is not really even desired.  Analysts, in general, are not 

concerned with the underlying implementation details.  Rather they are generally analyzing 

whether organization goals are being met. 

The historical approach to modeling a process or workflow is activity based.  This is 

natural since most definitions of the term workflow deal with the sequencing of tasks (activities) 

for performing a given job.  The terms job , task , activity and process are often used in 

interchangeable and confusing ways.  There are currently two major standards bodies working on 

process modeling.  The object management group manages the standard for the unified modeling 

language (UML) while the Business Process Management Initiative (BPMI) manages the 

business process diagram (BPD) standard.  Both of these groups have similar approaches to 

dealing with workflow modeling but noticeable differences in their notational technique.  Neither 

of these standards can model all of the workflow execution patterns identified by recent research. 

2.2.1 Workflow Patterns 

When most people think of workflow or process they generally think of a sequential set 

of activities performed by one or many individuals in a particular order.   While this is certainly 

accurate in some instances it is an overly simplistic understanding of the problem.  Since 

activities can be performed by one or more individuals, it is logical to assume that greater 

productivity can be gained by having separate individuals perform non-resource dependent 

activities concurrently.  This is indeed the case; however, the complexity can continue to be 
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compounded by the fact that resource dependency is not always predictable.  The result is 

multiple patterns of workflow execution that can be quite complex. 

Valuable and long-term research has been done on the various patterns that emerge in the 

process of modeling actual workflows.  These have been collected and validated over many 

years through the input of people and organizations with actual experience in modeling business 

processes.  These patterns range from simple to complex and offer significant challenges in 

finding a modeling technique with enough expressive power to accommodate all of them.  The 

following list of collected workflow patterns comes directly from 

http://www.workflowpatterns.com

 

[30, 31]. 

2.2.1.1 Basic Control Patterns 

 

Sequence - execute activities in sequence   

 

Parallel Split - execute activities in parallel   

 

Synchronization - synchronize two parallel threads of execution   

 

Exclusive Choice - choose one execution path from many alternatives   

 

Simple Merge - merge two alternative execution paths   

2.2.1.2 Advanced Branching and Synchronization Patterns 

 

Multiple Choice - choose several execution paths from many alternatives   

 

Synchronizing Merge - merge many execution paths. Synchronize if many 
paths are taken. Simple merge if only one execution path is taken   

 

Multiple Merge - merge many execution paths without synchronizing   

 

Discriminator - merge many execution paths without synchronizing. Execute 
the subsequent activity only once  

 

N-out-of-M Join - merge many execution paths. Perform partial 
synchronization and execute subsequent activity only once  

2.2.1.3 Structural Patterns 

 

Arbitrary Cycles - execute workflow graph w/out any structural restriction on 
loops   

http://www.workflowpatterns.com
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Implicit Termination - terminate if there is nothing to be done   

2.2.1.4 Patterns Involving Multiple Instances 

 
MI without synchronization - generate many instances of one activity without 
synchronizing them afterwards  

 

MI with a priori known design time knowledge - generate many instances of 
one activity when the number of instances is known at the design time (with 
synchronization)  

 

MI with a priori known runtime knowledge - generate many instances of one 
activity when a number of instances can be determined at some point during 
the runtime (as in FOR loop but in parallel)   

 

MI with no a priori runtime knowledge - generate many instances of one 
activity when a number of instances cannot be determined (as in WHILE loop 
but in parallel)   

2.2.1.5 State-based patterns 

 

Deferred Choice - execute one of the two alternatives threads. The choice 
which thread is to be executed should be implicit.   

 

Interleaved Parallel Routing - execute two activities in random order, but not 
in parallel.    

 

Milestone - enable an activity until a milestone is reached   

2.2.1.6 Cancellation Patterns 

 

Cancel Activity - cancel (disable) an enabled activity   

 

Cancel Case - cancel (disable) the process 
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2.2.2 Business Process Diagram (BPD) 

The Business Process Management Initiative (BPMI) is a standards body working with 

other organizations such as the Object Management Group (OMG), Workflow Management 

Coalition (WfMC), and Organization for the Advancement of Structured Information Standards 

(OASIS).  Together they collect the best of the 

industry in terms of process management 

practices and augment this with their own 

standards where none exists. These organizations 

have been very instrumental in raising awareness 

of many of the process management issues in the 

industry today. 

BPMI has developed its own graphical 

process modeling notation known as a Business 

Process Diagram (BPD).  This diagramming 

notation is basically activity-centric in its 

approach, combined with various symbols to 

show logical sequencing of activities.  Figure 2.4 

[21] shows three separate notations for modeling 

the parallel split workflow pattern.  While these 

notations have minute differences in meaning, they are essentially the same.  This notation 

struggles at times with over-complexity.  This is also evident in the use of the diamond shape 

with a large number of symbols representing different forms of process splits and joins.  This 

makes the notation difficult to learn and not very intuitive to the novice. 

 

Figure 2.4  Business Process Diagram Notation [21] 
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2.2.3 UML 2.0 Activity Diagram 

The Object Management Group (OMG) is heavily involved in the specification of the 

Unified Modeling Language (UML) as well as the Business Process Diagram (BPD).  UML has 

become the most pervasive modeling framework in use today.  UML has become popular 

because of the major need that it has filled and the language-independent results.  The main 

contribution of UML to business process modeling is the use of the Activity Diagram

 

[32].  

Given the similarities in the UML Activity Diagram notation and the BPD it is reasonable to 

speculate that these notations will eventually be merged into a single specification.   

Figure 2.5 [21] shows the basic parallel split 

workflow pattern as modeled in the UML 2.0 [33] 

Activity Diagram.  The use of the synchronization bar 

makes this notation simpler than its BPD counterpart 

thus eliminating the primary drawback of the BPD.  

However, the notation has no built-in notational support for modeling different split patterns, 

such as a choice, without resorting to simply annotating the lines with conditional expressions.  

Of course, these conditional expressions could result in an exclusive choice, parallel split or 

multiple choice patterns based on how they are written.  Thus, all three patterns have essentially 

the same notation and evaluation of the conditional expressions is involved in order to determine 

which pattern is being modeled. 

2.2.4 Critique of Current Practice 

UML and BPD are the two major business process modeling frameworks in use today.  

While these notations have some significant differences, they suffer from some of the same 

problems.  The problems with these notations are inherent to the underlying framework and 

 

Figure 2.5  UML 2.0 Activity Diagram [21] 
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assumptions that went into them.  These problems are not a result of insufficient thought in 

improving current modeling techniques; the underlying assumptions and intentional limitations 

placed on that thought have limited growth potential.  In fact, while many areas of software 

engineering have made significant improvements in the last decade, the lack of such 

improvement in the area of process modeling suggests that the current approaches have reached 

their upper bound. 

2.2.4.1 Procedural in Nature 

Some would argue that the modeling of the procedural aspects of a business, by 

definition, must also be procedural.  However, all software is basically procedural in nature yet 

current software engineering practices use object-oriented approaches.  As the complexity of 

software increases, the ability to model software in a human-friendly manner allows for the 

organization of these large projects to be more manageable.  It can be argued that the same is 

true with workflow modeling. 

The current approaches use the activity as their central figure.  This approach can be 

merged into an object-oriented framework by using objects as inputs and outputs to these 

activities.  These activities have objects (sometimes many of them) that are manipulated by the 

activities.  In addition, the activity may also produce objects or cause changes to existing objects.  

These changes in object state are not modeled by the either the BPD or UML.  Even with the 

number of different diagrams offered in UML in addition to the activity diagram, no single 

notation exists to correlate the business process with the production, manipulation or 

consumption of the objects modeled in the class diagram.  A complete picture of a business 

process in UML requires a minimum of four diagrams which the developer has to jump between 
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to gain enough information to program the application.  This leads to the second major flaw of 

the approach. 

2.2.4.2 Business Oriented 

Many will argue that the procedural nature of current modeling techniques is inherent to 

the problem.  A common assumption is that business people lack the ability to comprehend 

models designed for developers.  Yet, object-oriented modeling was specifically designed to be a 

natural way of looking at the world.  Humans, in general, think in an object-oriented manner.  

The UML activity diagram and BPD were specifically designed to be easy to understand for 

business analysts, but the sole purpose is undoubtedly to gather requirements for the 

development of software.  Yet the conversion from a procedural process to an object-oriented 

framework is not intuitive and thus requires a great deal of effort to do properly.   

In addition, the lack of expressiveness in the current modeling techniques makes 

converting complex workflow patterns into workable software a complex task, sometimes 

requiring the use of additional objects to control the activity flow.  While current notations are 

useful for specifying procedures for business people, it is of little help to the developer. 

2.2.4.3 Not Standardized 

The ability to accurately model the procedural aspects of a business, organization or 

complex job is of immense value. Currently, there are numerous methods for modeling business 

processes, but no single standardized approach. There is also a large array of products claiming 

to model and implement business workflows. Some of these tools are very sophisticated but lack 

the full expressive power required to model many complex processes. Research on new 

workflow modeling techniques [22, 24, 34-38], which reached its height in the late 1990 s, has 
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slowed considerably in recent years despite the fact that there are many looming problems with 

the current state of the art. 

Conceptual modeling is a core prerequisite for understanding and using a technology to 

the fullest.  There have been attempts to address some of the issues involved with inconsistent 

modeling but they have not gained traction in either academia or industry.  Many attempts to 

improve workflow representation merely attempt to augment or modify the current approach.  

Attempts to use non-procedural notation have resulted in systems with poor flexibility or 

usability.  The poor uniformity and inadequate power of current modeling techniques ripple 

through other areas of the technology, making them less useful. 

2.2.4.4 Complex Distribution Paradigm 

It was not until the introduction of the Internet that large-scale distributed systems could 

be built cheaply.  Unfortunately, the migration from the original single enterprise workflow 

systems to the web-based version has been accomplished by adding layer after layer of 

abstraction onto the existing paradigms [39].  This is why in workflow circles today, the base 

components are processes.  In many implementations, such processes are wrapped as objects in 

an object-oriented system so that they look and behave like objects.  Such band-aids only serve 

to complicate an already complicated process. 

2.2.4.5 No Formal Semantic 

The decision to not have UML tied to a formal language was a conscious one.  It was 

believed that such ties would make the modeling framework too difficult to understand and 

manipulate.  Some efforts to add a formal semantic to UML have been attempted [10, 15, 40-42] 

.  Petri-nets have shown that for some complex applications a simple modeling notation can be 

both easy to understand and tied to a formal semantic.  It could be argued that the lack of a 
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formal semantic makes it harder to model complex systems in much the same way as writing a 

program without a debugger is difficult.  In fact, the very languages that modern UML-based 

modelers generate have a formal semantic.  This is a serious drawback to current business 

process modeling techniques.  

2.2.4.6 Limited Visualization Capability 

Obviously, with no consistency in notation, the visualization of a process varies a great 

deal.  In addition, the current activity-based methods do not express enough detail to be truly 

useful to the software developer.  However, some research has suggested the idea of using 

multiple perspectives to communicate the same model to different users.  Combined with the use 

of modern 3D graphics technology, which is readily available in all new personal computers, 

visualizing a business process from different perspectives can be done in an intuitive and user-

friendly manner.  The addition of this third dimension allows for communication of information 

that is lost using current two-dimensional user interfaces. 

2.3 Concurrency 

Not much attention has been paid to modeling concurrency in the popular modeling 

notations.  Yet, there is much recent research into concurrency support in languages and 

language extensions [43-45].  Moreover, research into code mobility [8, 46] and distributed 

systems [9, 47] shows a clear  need for an object-oriented, graphical modeling language that has 

inherent support for concurrency. 

The problem of concurrency in software modeling has been around for quite some time 

but few attempts have been made to address it.  The introduction of Petri-nets [6] was a great 

milestone in modeling concurrent processes.  The Petri-net s use of tokens allows for intuitive 
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understanding of concurrent actions.  For complex systems, Petri-nets do not scale very well as 

new places must be added for each decision or data point required [48]. 

In UML, concurrency is supported at the process level through the activity diagram but 

modeling parallel operations on object states in the lower levels of system design requires the 

insertion of written notations. In addition, the difficulties in modeling concurrent systems in 

UML are well known [49].  Object behavior [16] and object chart [12, 14] models assume that an 

object is in a single state thus these  models do not support concurrency. The OPM [19] also has 

difficulty expressing concurrency.  The Object Petri-net [15] was a successful attempt to blend 

the concurrency modeling notation of Petri-nets with object-oriented design.  However, this 

modeling framework suffers from the same scalability problems as straight Petri-net models.   

A fully-expressive modeling system is able to correctly model all known types of event 

patterns [30], such as those with concurrency and resource dependency.  It is challenging to 

model all patterns without adding additional complexity to the modeling framework. For 

example, UML models some of the more complex patterns by placing textual annotations on top 

of the graphical model [21]. It is desirable for the modeling framework to have sufficient 

expressive power to model complex patterns without sacrificing usability or formal semantic. 

OCoN [9] models, with their very compact notation, are not suitable for complex 

patterns.  In particular, concurrency is difficult to represent. In practice, all examples of OCoN 

models show sequential patterns.  Object Petri-nets [15] have excellent expressive power, 

showing concurrency and resource dependency easily. They have been demonstrated, in 

workflow modeling, to effectively model all known patterns. However, this expressive power 
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comes with much complexity, as additional places, transitions and tokens are required for each 

resource dependency. 

In addition to the above modeling systems, there are many others that are expressive 

enough to show all known patterns; many of these also supporting formal methods [22-24]. 

Some of these modeling frameworks lack a simple notation, or they only model process, 

neglecting structure and behavior.  FOIL is based on -

calculus which has concurrency as its main advantage.  

Thus, FOIL easily handles concurrency while 

maintaining a simple object-oriented notation that 

models structure, behavior and process. 

2.3.1 Petri-Nets 

This modeling technique was first introduced 

by Carl Petri in 1962 as part of his doctoral thesis.  The 

concept of a Petri-net is quite simple.  There are only two kinds of objects in a Petri-net, a place 

and a transition.  A place is represented by a circle and a transition is represented by a thin 

rectangle.  The Petri-net is primarily concerned with the movement of tokens.  Directional lines 

connect places with transition with other places.  These lines represent the movement of tokens 

in the model called firing.  Each line can optionally have a number representing the number of 

tokens required to enable firing. 

 

Figure 2.6  Example Petri-net [50] 
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Figure 2.6 [50] shows an example Petri-net [48] showing a basic chemical reaction of 

hydrogen and oxygen to form water.  In this example, there are two initial places (markings) with 

two tokens each.  The transition t is enabled when the token conditions represented by the arrows 

is met.  In part (a) of Figure 2.6 this is true since the H2 firing requires two tokens.  Likewise, the 

O2 requires only one token; two tokens exist, so that firing is also enabled.  Thus, if all firings for 

a given transition (in this case t) are enabled then we say that the transition is enabled.  The result 

is shown in part (b) of Figure 2.6.  Notice that there is a remaining token in O2 since only one 

token was consumed by transition t.  Also, notice that the output of transition t is two tokens as 

indicated by the firing despite the fact that three tokens were consumed by transition t. 

A Petri-net, in its essence, is really a weighted digraph with rules for token movement 

and manipulation.  The Petri-net takes care of the non-deterministic way in which flows occur in 

the real world.  Concurrency is inherent to the model.  In fact, if concurrency is removed, what 

remains is a simple state diagram.  Another great advantage is the existence of a formal 

specification, reduction, transformation and comparison framework which is very similar to that 

of basic push-down automata. 

After their introduction in the 60 s, the 1970 s saw a great deal of interest in Europe on 

applying Petri-nets to various problems.  The problems for which the Petri-net has been applied 

are too numerous to list.  Some of the primary ones are workflow modeling, data flow modeling, 

complex state machines, and communication protocols. 

The popularity of Petri-nets and their formal semantic have fostered much research into 

their capabilities.  A Petri-net is characterized by several properties that determine what can be 

done with it.  Some of them are: 
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Boundedness  A Petri-net is bounded if its set of reachable places is finite. 

 
Reachability 

 
this determines whether given an initial marking M0 and 

another marking N, is there a set of firings for which a Petri-net can transition 
from M0 to N. 

 
Liveness 

 
a Petri-net is live if every transition which occurs can always 

occur again.  This was shown to be recursively equivalent to reachability. 

 

Deadlock Free 

 

a Petri-net is deadlock free if every reachable marking 
enables some transition. 

 

Conflict Free 

 

for every place s that has multiple output transitions, every 
output transition of s is also one of its input transitions. 

 

Free Choice 

 

whenever an arc connects a place s to a transition t, then a 
Petri-net is free choice if every transition t is the unique output for s or every 
place s is a unique input for t. 

This does not represent a complete list of all the terms used to describe a particular Petri-

net; however, they are the most important ones and generally determine whether other properties 

are decidable.  For instance, it has been determined that reachability can be computed in 

polynomial time for bounded, conflict-free Petri-nets [51]. 

One of the major downsides of a Petri-net is its inability to account for data in its model.  

Modeling data specific choices into Petri-nets generally requires one or more additional places 

be added to represent that data.   It was found that some applications of the technology were not 

feasible due to the number of places required to model them.  One solution to the problem has 

been the introduction of a number of tools designed to help.  Improvements to how Petri-nets are 

modeled have been offered to help resolve some of these complexity issues.  The concepts of 

coloring and hierarchies allowed for the production of larger models with reduced complexity 

[52, 53].  The combining of these techniques is referred to as a high-level Petri-net [54]. 
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2.4 Formal Methods 

A successful modeling system is supported by formal methods that verify that the model 

does not contradict itself, and that it will function as designed. (That it will function as desired 

requires good design.) The creators of many modeling frameworks have intentionally declined to 

use a formal semantic, because formal methods add complexity to the model. The current 

modeling systems bear this out: the simple models (i.e. UML [4]  and OPM [19]) do not support 

formal methods; while the more complex models (Object Petri-nets [15] and object charts [12]) 

do support formal methods. 

The Object Constraint Language [55] has been offered as a gap-filler in the area of 

formal specification.  This text-based language can be used to augment a UML diagram to 

provide a formal framework.  Thus, the formalizing of UML using OCL or other methods [10, 

42] does not have a strong graphical component.  TROLL [13], which uses temporal logic, also 

suffers from little or no graphical correspondence.  While these modeling languages can be 

viewed graphically, the mathematical underpinnings cannot be viewed in the same way.  Object 

Petri-nets [15]  and object charts [12] are supported by formal methods and have a well-known 

graphical semantic, but suffer from scalability [48] and expressiveness issues [12].  The FOIL 

model can display large, highly expressive models with minimal scalability issues while 

maintaining a mathematical foundation. 

Process Algebra is the mathematical representation of a calculation, communication, or 

message passing system.  Such a representation allows for formal reasoning about the 

equivalence of processes.  Process calculi are not a recent invention, however, different calculi 

are being introduced regularly as scientists customize or refine the principles that go into them. 
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2.4.1 -Calculus 

The -calculus is algebra used to represent sequential processes and can be considered the 

first process algebra.  It was first proposed by Alonzo Church in 1936 as a way to determine 

computability for certain problems [56].  Church s -calculus allowed him to determine that the 

Entscheidungsproblem (English: decision problem) was not calculable.  Incidentally, Alan 

Turing accomplished this same thing in the same year using a different approach which is now 

referred to as the Turing machine. 

-calculus is based on the concept of binding variables, meaning that a defined variable 

may have any value until it is bound.  The operator used to bind variables is  in the form of 

var(expr)arg where var is the variable being bound, expr is the expression for which the 

binding is being applied, and arg is the value, expression or variable being bound to var.  A 

variable is considered free if it is not bound to any particular value or expression.  Thus, for 

example, in the expression x(x+y)z the variable x is a bound variable while y and z are both free 

[57]. 

In the calculus, lower case letters represent variables and uppercase letters are used for 

processes.  The distinction is based on the idea that processes may be defined as a relationship 

between variables in a different definition whereas variables are local in scope.  The definition of 

process is done with the  symbol. Thus, we might define a process P as follows: 

yyPyxxxP )(

 

As with any algebra, its utility relies on the ability to convert a particular statement into 

equivalent statements using defined rules.  In the -calculus the main operation is called a 

reduction.  Actually -reduction is a mixture of 3 separate reduction operations.  -reduction is 
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the operation that does most of the work [58].  -reduction can really be considered a simple 

substitution as can be shown in the following example: 

)()( yzzyxx

 

Thus, -reduction allows for rewriting complex expressions into simpler ones.  Applying 

the -reduction indiscriminately can result in expressions which are not equivalent.  The 

following example demonstrates how a wrong result can be generated if only -reductions are 

applied: 

)()()))((( zzzyyyzyyxyx

 

The reason for the error is that during the x operation the y is a free variable.  Likewise, 

in the inner y the x is a free variable.  This problem is solved through the use of the -reduction.  

The -reduction allows the arbitrary substitution of any free variable.  Using this reduction, the 

proper equivalent expression can be created: 

)()())((()))((( dzzdydzydxdxzyyxyx

 

This -reduction is correct.  The final reduction available is called the -reduction and 

stipulates that for any process P, x(Px) is equivalent to P alone as long as there is no occurrence 

of x in P.  This should be obvious as any -reduction on x regardless of the argument value will 

result in P. 

Of course, the -calculus is not suitable for algebraically modeling a distributed 

workflow system as it only functions in a sequential manner.  Many processes could be 

executing in parallel.  However, the -calculus is the basis from which most modern process 
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algebras are derived.  In particular, the -reduction remains generally unchanged from one 

calculus to another. 

2.4.2 -Calculus 

While the -calculus can be considered the first process algebra, it was not originally 

invented for that purpose.  In fact, the term process algebra is a relatively new term in 

computer science.  The first process algebra to be referred to as such was called Communicating 

Sequential Processes (CSP) in 1984 [59].  This was the first calculus to consider a variable as 

simply a communication.  From a high-level perspective this makes sense.  If you consider that a 

computer must perform some sort of operation in order to access memory to retrieve a variable 

value, then a function, communication or variable are all really the same thing.  CSP as the name 

implies, however, was still sequential in nature and thus not suitable for distributed 

computational modeling. 

In 1982, Robin Milner introduced the Calculus of Communication Systems (CCS) [7].  

This calculus modeled the communication of two distinct entities that could occur in parallel.  

This introduced the concept of parallelism into process algebra.  In 1999, he introduced the -

calculus [8] which added the concept of mobility to the algebra.  The -calculus is based on the 

concept of naming [60].  In other words, everything in the -calculus is a name that represents a 

communication channel.  Thus, when a process passes a variable in -calculus it is really passing 

a communication channel for accessing that variable [61].  Thus, the actual location of that 

variable is not important. 

The notation of the -calculus is somewhat different than the -calculus but uses some of 

the same elements.  Upper case letters still represent processes but lower case letters represent 
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names of a communication channels used to access resources.  The following is a list of the 

constructs used in the -calculus: 

 
P|Q  Process P executes concurrently with Process Q. 

 
P.Q  Process P and Q execute sequentially 

 

x(y).P  wait to receive a communication on channel x, bind the input to y and 
then execute process P. 

 

u.P -- output value of u over channel o then execute P.  It should be noted 
that P will always execute regardless of whether another process receives u or 
not. 

 

!P  execute P one or more times concurrently. 

 

( x)P 

 

create a new communication channel x available to process P only.  
Another way of saying this is, Process P creates a new channel x . 

 

P.0  Execute P and then terminate. 

 

P+Q  Execute either P or Q but not both. 

The -calculus can be used to show that two processes are equivalent through the use of 

reduction rules.  The main reduction rule which demonstrates the ability for processes to 

communicate is: 

zyQPQzxPyx /|).(|.

 

This says that when y is output on channel x then P and Q will execute concurrently with 

z substituted for y in Q.  In other words, a message is received on x which was transmitted as y 

but will be assigned as z, then Q will execute.  Note that P would execute regardless of whether 

any other process received the y sent along channel x; however, Q will not execute until it has 

received something (which it will call z) on channel x.  Additional rules are: 

 

EQEPQP || - concurrent operations can never inhibit computation. 

 

QxPxQP )()( - restrictions on scope can never inhibit computation. 
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QPQQandQPandPP - concurrency is both commutative 

and associative. 

The syntax for various flavors of -calculus may vary, but generally they are the same.  

They always have some representation for actions, sequence, parallel composition, 

synchronizing actions, nondeterministic choice, emission, reception, process, local process, and 

recursive process.  One notation that will be used is the action label notation: 

QP

 

This indicates that P after completion of action  will become Q.  This allows for 

modeling of mobile, distributed event-driven systems.  In fact, -calculus has already been used 

to model many different types of systems, including workflow systems [62]. 

2.5 Synergistic Attempts 

A complete survey of currently proposed frameworks for modeling software is beyond 

the scope of this paper.  The body of knowledge in this area is far too large.  This following is a 

brief survey of models or frameworks which are of significance in designing a new way of 

thinking about workflow and a new approach to modeling them. 

2.5.1 Objects-Rules-Roles 

The best attempt to date at a full-fledged object-oriented approach to modeling workflow 

separates data (objects), flow (rules) and users (roles) [23].  This approach does not offer a visual 

model of the workflow or even a unified conceptual view of a workflow.  The proposed system 

requires the use of inheritance or composition to model a given workflow using abstract 

workflow and data components.  This approach has significant problems and does not even 

supply a modeling or workflow specification language. 
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The reason this framework is notable stems from its attempt to use a purely object-

oriented framework to implement a workflow system.  This is the only system surveyed here that 

is not activity-based.  In fact, activities can be abstracted from rules as to how objects interact 

with each other as would be done in any object-oriented implementation of a workflow.  In 

addition, this model is event-driven rather than activity-driven.  Thus, the performance of 

activities can be done by the workflow system or any other outside system.  Thus, this model and 

SEAM are the only ones to specifically address and cater to workflows performed by computers 

in a heterogeneous environment. 

2.5.2 SEAM  State-Entity-Activity-Model 

A recent attempt to unify models into a design that can take advantage of formal methods 

is called the State-Entity-Activity-Model (SEAM) [22].  This model is based on set theory and 

provides a single view of the workflow pattern rather than many different views used by current 

mainstream techniques. 

SEAM starts by modeling entities.  This process is a good idea as it makes translation to 

an OO framework relatively straightforward for the developer.  Entities can be modeled to have 

attributes but not methods 

 

precluding a complete OO implementation. However, this is still 

easier to translate to OO than mainstream process modeling techniques.  The entity-attribute is 

similar to the standard ER diagram, which makes sense, given that implementation has been on a 

standard RDBMS. 

SEAM also attempts to make the model and language temporal.  This is a good idea as 

workflows are, by their very nature, temporal.  This is done, however, by adding temporal 

components to the language and the corresponding underlying database rather than using an 

inherently temporal database system [63]. 
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Figure 2.7 [22] shows an example 

SEAM.  As can be seen, the model is not 

entirely intuitive and the complexity of the 

language specified is fairly significant.  

Thus, there is quite a large learning curve in 

dealing with this model.  In addition, the 

limitations in the actual flow modeling 

mean that modeling complex patterns is 

either very difficult or completely 

impossible.  In addition, the model 

complexity and learning curve make it unlikely to be used by business professionals. 

SEAM is a good attempt at simplifying workflow modeling for the developer.  This is 

done by having models that can be tested with formal methods as well as having a single view of 

the model which includes both data and process.  It is a non-activity centric model that is very 

scalable.  This model represents the best step in the direction of viewing workflows differently; 

any new attempts at workflow modeling would benefit from becoming familiar with this 

framework. 

2.5.3 Petri-Net Workflow  

Petri-nets are a token-based flow modeling system and have been used in a variety of 

applications such as logistics, controllers and protocols.  They can be tested with formal methods 

and easily deal with difficult resource management, concurrency and data flow complexity 

issues.  Many workflow systems use the concept of tokens, or threads of execution, to delineate 

 

Figure 2.7  SEAM Example Model  
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when processes split or merge in either a synchronous or asynchronous way.  Thus, using Petri-

nets to model workflows is a logical choice.  

Figure 2.8 shows an example of one 

technique for using Petri-nets to model a 

workflow system.  This technique alternates 

the activities of the workflow with Petri-net 

nodes that manage token movement.  With 

this technique, very complex flow patterns 

can be reproduced relatively easily.  Splits 

and joins are easy to manage regardless of 

any outside constraints on token movement.  

Even multiple instance patterns can be 

reproduced with the introduction of new 

tokens into a given activity.  Extending 

Petri-nets to use color and time further add 

to the power of this modeling language to express complex patterns. 

Petri-nets are considered a high-level modeling tool and are generally used for modeling 

processes that have little or no data interdependencies.  This creates difficulties when modeling 

workflow systems which tend to have a many data constraints.  In addition, this approach is still 

essentially activity-based and thus suffers from the same drawbacks as current mainstream 

 

Figure 2.8  Petri-net based Workflow[64] 



  
43    

activity-based modeling approaches.  However, the power of Petri-nets to model complex flows 

makes this an approach that requires serious consideration when developing new techniques. 

2.5.4 YAWL 

 
Yet Another Workflow Language 

This approach starts with the use of Petri-nets and attempts to develop a new language 

which can express all of the currently identified patterns encountered in workflow modeling.  

This approach supports all but 

one of the workflow patterns, is 

easy to understand and has a 

formal semantic.  YAWL 

successfully preserves the 

power of Petri-nets to describe 

process and provides a 

straightforward way of 

expressing some complex patterns in a simpler notation than that of Petri-nets.  The symbols 

offered in this modeling language are very easy to understand and offer the best usability of all 

the approaches surveyed in this paper. 

2.5.5 Object-Process Methodology  

One of the best single-diagram methodologies is called the object-process 

methodology[19, 65].  This notation mixes the OO-based class diagram notation with the 

processes that change their state.  Thus, objects interact with processes, while special notation 

describes how these objects change state as a result of interaction.  Figure 2.10 shows an 

example object-process model that demonstrates some of the finer features of this notation.  The 

circle in the center represents a process that has been expanded to show the details within it.  

 

Figure 2.9  YAWL Diagram 
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This hierarchical structure allows for hiding of unneeded complexity while allowing for detailed 

specification. 

 

Figure 2.10  Object-Process Model 

Notice that composition, inheritance and other OO design patterns can be easily 

represented in this notation.  This is, by far, the most complete unified modeling technique [66].  

The interactions between process and objects are intuitive and simple.  The object-process model 

does not have a formal semantic. 

2.5.6 Object Petri-Nets 

Object Petri-Nets [15, 67-69] (OPN) are currently the best solution for providing a 

concurrent, object-oriented language with a formal semantic while providing high usability.  As 

such, OPNs demand a very detailed analysis of their capabilities and liabilities in order to 

demonstrate the advantages of FOIL. 

Petri-nets [6], on the other hand, exhibit many strengths lacking in UML.  The Petri-net 

easily models complex concurrent behavior and has an underlying mathematical foundation.  



  
45    

The notation has a small symbol set and is relatively easy to comprehend.  These characteristics 

have made the Petri-net diagram a proven, time-tested modeling notation.  The success of the 

Petri-net made it a suitable launching point for an OO modeling language.  Colored Petri-nets 

(CPN) were introduced [53] to blend the process interaction capabilities of Petri-nets with the 

data capabilities of high-level programming languages.  This was shortly followed by adding 

hierarchical support to CPNs (HCPN) [52].  Recent improvements include the adaptation of 

HCPNs for OO design [70] or extension of HCPNs to a fully specified OO language called the 

Object Petri-net (OPN) [15, 67, 68]. 

Object Petri-nets provide support for hierarchy and inheritance by allowing a class to be 

the token of another OPN class.  The outside process model controls the flow of tokens (objects) 

through a common message processing interface.  The internal life-cycle of objects is 

represented using a finite state machine (FSM) that responds to the same messages as the 

encompassing Petri-net model.  Through the use of super-places and super-transitions, a great 

deal of flexibility has been added to the language.  A thorough survey suggests that the OPN is 

the best attempt to date for providing a concurrent OO modeling language with formal 

verification and has been shown to be effective in modeling real world problems [71-73]. 

The problems with OPN mostly arise from its roots as a process language rather than an 

object-oriented one.  While OPN models can be reduced to simple UML class diagrams from a 

structural point of view, the behavioral nature of inheritance is not fully addressed.  The formal 

framework for OPN applies to objects that are already instantiated not to the instantiation process 

itself.  In the literature for OPNs, instantiation is assumed but not explicitly modeled. 
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In addition, OPN requires, in many cases, that objects perform functions that are not 

natural in an OO methodology or that overarching objects be added to perform these processing 

functions.  If one supposes that a major benefit of OO design is modeling software that is 

mapped onto the real world, then such object extensions should be avoided.  A primary example 

of this can be found in [68] where the Table object is charged with determining if  a dining 

philosopher problem is deadlocked.  In the real world, tables do not do much of anything.  The 

position of this thesis is that in OO design, objects, not processes, should interact with one 

another to perform work.   

Finally, CPNs have thorough support for concurrency but the OPN methodology assumes 

an FSM for the object life-cycle and thus concurrency within an object is not considered [68].  

This is unfortunate, as real world modeling might require that such support be present.  For 

instance, in the classic dining philosopher problem, it is generally assumed that a philosopher 

will pick up the left chopstick and then the right, but in reality they would likely pick up both 

concurrently.  One could model each Hand of a Philosopher to achieve such concurrency in 

OPN but this is an unnecessary abstraction which adds complexity to the model. 

2.6 Conclusion 

Of all the modeling languages available today, most of them do not support even three of 

the main design goals outlined in this thesis.  None of the modeling languages surveyed 

successfully implemented all of them.  By far, the most complete framework allowing for 

modeling of structure and behavior, a formal semantic, and concurrency support is the Object 

Petri-net (OPN).  But, as provided by the literature, OPN does not support direct process 

modeling and has no mechanism to verify proper process operation.  OPNs have a few other 
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problems: they deviate from the real-world character of object-orientation; do not account for 

lifecycle concurrency; do not consider object instantiation; and can quickly become very 

complex because of the way objects are extended as tokens or places.  Overall, FOIL provides a 

modeling framework that can meet all of the design goals, including process modeling and 

verification, while maintaining a well-known object-oriented nature. 

This rest of this thesis is organized as follows: Chapter 3: Introduction to the graphical 

elements that make up FOIL;  Chapter 4: Introduction to the FOIL algebraic representation and 

the laws and identities that provide for mathematical manipulation; Chapter 5: Explanation and 

examples of behavioral inheritance, concurrency modeling and model verification; Chapter 6: 

Demonstration of how FOIL can be used to model all known workflow patterns; Chapter 7: 

Detailed explanation of how FOIL can be used to determine the ability of a process to 

accomplish its work, given a FOIL object model; and Chapter 8: Discussion of FOIL s benefits 

and limitations as well as direction for future research. 
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3. FOIL NOTATION 

Formal Object Interaction Language (FOIL) provides a diagrammatic notation designed 

to leverage what is good about the class diagram and provide more information about the 

behavior of objects after instantiation.  Important extensions such as Ports are made to model 

concurrency aspects of an object s behavior.  Also, FOIL explicitly models an object s event 

firing, and uses an event mechanism to expressly show the relationship between multiple objects 

communications and individual objects behaviors.  Such relationships are implicit in UML and 

have to be deduced by designers from multiple diagrams. 

This chapter informally presents the diagrammatic notations of the major components of 

FOIL.  A formal representation of FOIL modeling, especially concurrency modeling, is provided 

in chapter 4. 

3.1 Behavioral Representation 

One of the key features of FOIL is its constraint on the behavior of objects.    Current 

software modeling techniques focus almost exclusively on the structure or interface of an object, 

but not on the behavioral aspects.  While state charts and other devices work to give developers 

an idea of what the behavior of an object should look like, they little information as to what 

behavioral constraints should be applied to an object.  Additionally, inheritance of objects does 

not extend to the behavior [74].  FOIL does both in a single notation, such that inherited objects 

are modeled to perform their interface conforming methods in an consistent manner. 
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3.1.1 States 

Much like state diagrams, FOIL uses states to represent the status or stages in the 

behavior pattern of an object. FOIL differentiates between different types of states (i.e., between 

active and passive states, and between accepting and non-accepting states. Such differentiations 

represented by diagrammatic notations and captured by FOIL algebra, are necessary to increase 

the expressive power of behavior modeling. Meanwhile, the state of an object in FOIL can be 

complicated since FOIL allows for an object to be in multiple states simultaneously in much the 

same way as non-deterministic finite automata.  Figure 3.1 shows three different notational 

element combinations used to indicate the state of an instantiated object. 

A state can be perceived as both an attribute and a method.  It functions as an attribute in 

that it indicates a quality of the object s temporal nature.  It functions as a method in that, upon 

arrival at a state, it may perform a manipulation of the object or system.  States arrived at 

concurrently are assumed to execute their actions 

in a random order (see 3.1.3).  This should be 

considered when modeling a software system as 

there are ways to ensure that states execute in a 

specified order by modeling them sequentially 

(see Firing).  All state execution methods are 

considered to be protected and cannot be 

executed from outside the instantiated object or 

one of its children. 

An active state is one that performs an unspecified action upon arriving and is 

represented by shading the state grey.  This action will always take place after pre-firing events 

 

Figure 3.1  FOIL Object States 
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(see Firing).  A passive state, indicated without shading, acts more like an attribute in that it 

merely indicates the status of the object and does not do any real work.  For an active state, its 

associated action can modify the specifics of any post-firing events including canceling the event 

firing; however, it can never choose to post-fire a different event as this would undermine the 

formal nature of the notation. 

An accepting state is denoted by a single circle and indicates that this object may 

instantiate new objects if requested.  This only holds true if an object instantiation transition 

exists for that object (see 3.1.2).  If an event is received that requires an object to create a new 

instance of a class, the object must be in an accepting state in order to accept the event.  A non-

accepting state is the converse of the accepting state in that any event received that would 

normally instantiate a new object is not eligible .  A state may be accepting or non-accepting 

independent of whether it is active or passive. 

The start state is the initial state of an object after instantiation.  The start state is denoted 

by a black arrow with a start point outside the class definition and pointing to the state.  Thus, an 

active start state can be viewed as a constructor while a passive start state would be analogous to 

an empty or default constructor.  The final state is implicit and need not be explicitly drawn by 

the modeler.  The final state indicates that after completion of the state execution the object has 

nothing left to do.  It is important to consider that some objects may not have a final state as they 

may perpetually loop through states throughout the execution of the system.  Since multiple 

concurrent threads of execution can exist in a model, the completion of a final state does not 

necessarily mean that the object is finished, since other threads may still be in progress. 
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3.1.2 Transitions 

Transitions are the primary means of modeling the behavior of objects.  A transition 

represents a progression from one state to another and is triggered by an event that is either 

internal or external to the object.  In this way, transitions are the behavioral constraints placed on 

an object.  Different from transitions used in traditional state diagrams, the execution of a 

transition depends not only on the triggering event, but also on the event s eligibility determined 

by the object s state. This eligibility can be checked using FOIL algebra and is enforced during 

runtime. This extra eligibility checking is important in modeling asynchronous and concurrent 

behaviors of objects. 

Figure 3.2 shows the various notational 

elements used to represent object transitions.  

Transitions are always represented by a 

directional arrow labeled with the name of the 

event which may cause state change.  The 

passing of data as part of the event mechanism may be additionally specified with parameters.  

A unique transition is one where the target object only expects to receive the event once 

in a given iteration.  Therefore, a looping construct is not limited by the use of unique events.  

The specification of the iterative uniqueness of an event is an important aspect of the modeling 

language as it allows the FOIL algebra to enforce rules about the acceptability of an event based 

on its possible reception in the future.  If the system is aware that an event will only occur once 

per iteration, the system may refuse to accept an occurrence of that event because another object 

that requires it is not ready to receive it.  A reoccurring transition is used to indicate that the 

number of times this event will be received is indeterminate. 

 

Figure 3.2  FOIL Transitions 
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An optional transition is used to show that this transition may or may not occur.  Thus, 

two optional transitions from a single state would need output ports in order for both options to 

be available (see Ports).  An option, which has not been taken, remains available in the model 

until such time as the object flow invalidates that possibility.  For example, if an optional parallel 

split was modeled but only one option had been taken, the second option would remain available 

unless the merge point for the two threads is passed by the first option.  Thus, the second option 

would be invalidated since that thread could never be merged. 

An object instantiation is represented by a standard UML relationship notated with an 

event.  This notation is used to represent the creation of an object by the occurrence of an event.  

This also indicates a relationship between two objects as the source object of the arrow 

represents the object responsible for its instantiation.  Object instantiation can only occur if the 

responsible object is in an accepting-state (see 3.1.1). 

3.1.3 Ports 

Ports are used to model concurrency, both 

asynchronous and synchronous.  Figure 3.3 

shows the notation for the types of ports.  Ports 

may contain numbers within them to indicate a 

quantity.  An empty port is assumed to have a 

quantity of one.  There are two basic types of 

ports: input and output. 

The output port indicates the number of threads of execution required to leave an object 

before the object is no longer in that state, which creates a parallel split.  In Figure 3.3, the output 

ports indicate that there are two transitions required out of state A in order for the object to be 

 

Figure 3.3  FOIL Transition Ports 
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considered NOT in state A.  Extra threads of execution are implicitly created as a result of output 

ports.  Once the object s state transitions out of a port it must create a new thread in order to 

remain available for the other output ports. 

The input port indicates the number of threads of execution required into a state in order 

to allow the object to transition out of that state.  For example, in Figure 3.3 the input port on 

state D means that the object s internal workflow could proceed beyond state D when a single 

thread has transitioned to it.  This is only meaningful when multiple threads are expected such as 

in a parallel split situation.  Multiple threads of execution may be merged without the use of an 

input port; however, such merging will always be synchronous.  Input ports are mainly used to 

allow for asynchronous merging of parallel threads of execution. 

3.1.4 Firing 

Error! Reference source not found. Figure 

3.4 shows the various event firing notations.  So far, 

the interactions between objects have been modeled 

through the fact that independent objects react to the 

same events and that some objects can instantiate 

others.  This is not sufficient to handle all event 

patterns and can result in a model that is difficult to 

understand.  In order to alleviate this problem the idea that an object itself fires events is 

required. 

Pre-firing causes an event to be triggered prior to executing actions required by the target 

state.  In practice, states may have code which they execute as a result of a transition to them.  

The pre-fire ensures that an event is triggered prior to executing that code.  Post-firing is similar, 

 

Figure 3.4  FOIL Event Firing 
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but occurs after executing the state code.  Finally, multi-firing is a post-fire that allows multiple 

instances of an event to be fired.  The determination of how many events to fire occurs within the 

state code at run-time. 

3.1.5 Interleaving 

The final notational element is interleaving.  Interleaving requires that an object exhibit 

multiple behaviors sequentially but in no specified order.  The notation of a dotted box is used to 

indicate that the items in the box should be 

interleaved.  This notation is provided in FOIL for 

purposes of usability.  Since interleaved execution 

can be modeled as a choice among multiple 

sequential possibilities, this pattern can be modeled 

using the notational elements previously outlined.  

However, this would be, in the best case, cumbersome and, in the worse case, completely 

unreasonable.  This is because the number of combinations per sequential choice added to the 

model would grow excessively fast (on the order of n!).  Thus, this notation provides a means to 

model such cases while avoiding this state explosion problem.  How state explosion is handled in 

FOIL algebra will be covered in chapter 4. 

3.1.6 Event Scope 

Events in FOIL cause objects to enact their behaviors; however, what if the intent is to 

enact the behavior in a specific object.  In FOIL, this is accomplished through a mechanism 

referred to as event scope.  When an event is fired, it may be annotated with the object or objects 

for which it applies.  Since each object determines its own reaction to an event, the presence of 

such annotations would cause the object to ensure that it was in the list before reacting to the 

 

Figure 3.5  Interleaved State Routing 
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event.  Likewise, the absence of such annotations would ensure that an object will always react 

to the event.  Typically these annotations are only shown when their presence is of significance 

to overall system operation. 

3.2 Object Modeling 

Given the notation for behavior specification in FOIL, the definition of an object class 

can be modeled that accounts for its structure, as in traditional modeling techniques, but also 

constrains to its behavior.  Since state attributes and method calls have more to do with an 

object s behavior than its structure, the text representation of an object s structure need not 

explicitly define these.  This lends itself to a more graphical representation of an object with 

fewer low detail text elements. 

3.2.1 Basic Object 

Representing an object with the Formal 

Object Interaction Language (FOIL) is 

relatively easy.  Using the notational elements 

outlined above, each object is represented by 

its attributes, method and behavior as shown in 

Figure 3.6.  In this example, a Quote object is defined.  The Quote starts life in the Open state 

and either transitions to Expired or Ordered depending on the input event.  The shading on the 

Open and Ordered states indicate that they are active and thus will perform processing upon the 

object arriving at the state.  The Expired state does not execute any actions. 

Attribute representation is abbreviated in FOIL, as with the Business Object Notation 

(BON) [75], to reduce the number of specifically defined methods.  Since behavior aspects of an 

 

Figure 3.6  Basic Quote Object in FOIL 
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object are clearly defined by the notational elements, most of the remaining methods involve the 

storage and access of data.   

The read-only attribute qualifier (^) is also shown in Figure 5.  The amount would be set 

by object instantiation as indicated by the input parameter for the start state.  It may be required 

that the amount value be retrievable from outside the object.  A class diagram would represent 

this as a private attribute with an accessor method provided.  Methods in FOIL can still be 

specified in the typical manner. 

3.2.2 Instantiation 

Relationships between classes are shown in the same way as in the UML class diagram.  

Thus, FOIL conforms to the traditional forms of object relationship: aggregation, composition, 

association, and generalization.   

Instantiation of objects of one class by another is indicated by using the association 

symbol offered in traditional UML class diagrams with an added event notation.  This means that 

an association that does not have an event is treated as knowledge of one object by the other.  

From a FOIL point of view, this represents a possible communication channel (see 

Communication).  An association with an added event qualifier indicates that an object of the 

class will be instantiated when the event is received and the source object is in an accepting state. 
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The fact that an object must be in an accepting state is a significant difference between 

FOIL and the other attempts at hybrid notations.  Rather than just the behavior of a single object 

being represented, FOIL offers the ability to see how objects are created and what rules are 

required for such creation in a graphical way.  Previous hybrid object-oriented (OO) notations 

neglected the graphical representation of instantiation rules and thus made it difficult to see the 

process overriding the behavior of 

individual classes. 

Figure 3.7 shows an 

example of object instantiation.  In 

this example, the attributes 

associated with the Account class 

are omitted for brevity.  It is clear 

from the notation that a Payment 

object can only be created if the 

account is in the Active or Overdue 

state.  Note that the asterisk (*) on 

the association indicates that more 

than one receivedPayment event is 

expected.  This could also be done 

with multiplicity values for the 

relationship. 

 

Figure 3.7  Basic Payment Process in FOIL 
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3.2.3 Inheritance 

One of the hallmarks of object-oriented development is the concept of object inheritance.  

This inheritance is informally referred to as an is a relationship.  Thus, if a class Salmon 

inherits from class Fish, it is because a Salmon is a Fish.   

The main problem with inheritance as implemented in common modeling frameworks 

and programming languages is that it is solely concerned with structural conformity.  It might be 

said that if class Salmon or Trout look like a Fish and acts like a Fish then it is a Fish.  But, if 

inheritance only ensures structural conformity by definition a child s wind-up fish toy (class 

WindupFish) could actually be a Fish.  Indeed, it looks like a Fish (attributes: fins, tail, etc.) and 

acts like a Fish (methods: swim, catch, etc.).  But WindupFish is not a Fish primarily because the 

way in which it implements its methods is decidedly different. 

FOIL reintroduces the concept of behavioral inheritance [74] where inheritance is 

defined by the structural and behavioral conformity of an object.  Since, FOIL allows for the 

detailed modeling of the behavior of individual objects, it can be determined if the behavior of 

one class represents a subset of behavior of another.  The formal details of how this works will 

be explained in section 5.2.  Therefore, WindupFish class could not extend from Fish since the 

internal behavior of Fish would not be a subset of the behavior of WindupFish.  On the other 

hand, a Salmon could definitely inherit from Fish.  While the nuances of how a Salmon and a 

Trout swim could differ slightly; in general, the mechanism for swimming in a Trout and a 

Salmon are fundamentally the same because they both look, act and function internally like a 

Fish.  

An example of inheritance in FOIL is represented in Figure 3.7.  In this case, the 

Payment class is abstract but defines that every payment should have two states and should 
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accept an amount for instantiation.  The deposited state is active and thus performs some action, 

but this action is not abstract.  The abstract nature of this class is that the transition between the 

received and deposited states is undefined.  By modeling the abstract class, the designer is stating 

that there are two states, received and deposited, and there is a transition between them.  The 

concrete details are left to the subclass.  Thus, each subclass must have these two states and must 

have a transition between them. 

3.2.4 Communication 

FOIL can be used to model distributed systems with a centralized event manager.  This 

does not change the fact that communication between classes must be done through defined 

relationships.  In an object-oriented environment, communication between objects occurs when 

an event is fired by one object and received by another.  This is analogous to a method call. 

Figure 3.8 shows an example of a 

communication sent by the Elevator object to 

the Door.  The reachedFloor event is 

propagated down the composition relationship.  

A light dotted line can be used to indicate the 

relationships that an event uses for 

communication.  This example can therefore be 

interpreted to mean that the Elevator object 

calls the reachedFloor method of the Door 

object.  The dotted line connecting a firing with 

a relationship is optional but is helpful in correlating events and affected transitions. 

 

Figure 3.8  Simple Object Communication 
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3.3 Process Modeling 

FOIL not only allows for the modeling of objects and their behavior, but it also provides 

a simple notation similar to the object notation for modeling high-level processes as well.  A 

FOIL process can be checked, using FOIL algebra, against the object model to determine 

whether the given object model will, in fact, perform the defined process.  The exact details of 

how this is accomplished described in chapter 7. 

3.3.1 Process as Object 

FOIL takes the approach that a process is an object of an abstract process engine.  Since 

objects can be modeled with arbitrary levels of abstractions, it is reasonable that a process is an 

abstraction of a process execution engine.  However, this means that a process in FOIL exists 

outside of the main object model and thus does not behave exactly like what would be expected 

of a modeled object.  FOIL considers it important that, in a pure object-oriented framework, 

only objects in the model perform real work.  The entire execution of process in FOIL is 

performed by the objects and their corresponding communications with each other and are 

moderated and controlled completely by the algebraic expressions they represent.  The concept 

of objects performing process rather than process using

 

or regulating objects, while not 

unique to FOIL, is an underlying principal of the language. 

In order to maintain this fundamental nature of objects in FOIL, a FOIL process must 

comply with the following rules: 

1. States in a FOIL process cannot perform work.  Instead, active states in a process 

model represent a sub-process. 

2. States in a FOIL process do not correspond to states in the object model since they are 

part of a totally different system: the process engine. 
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3. All Events both fired and received must exist in the object model.  Object scope 

qualifiers in the process model may be used. 

If these rules are followed, an object 

modeled can be checked to ensure that it will 

execute a given process.  Figure 3.9 shows an 

example of a FOIL process P that can be used to 

verify that the system modeled by objects X and Y 

will perform work as expected.  The firing of event 

p guarantees that object Y will be instantiated.  Once 

this occurs, unique event s can not be accepted by 

the system until object Y transitions to state H.   

Thus, event q must always be received first, after p 

is fired, but before r is fired and s is received.  This analysis clearly demonstrates that process P 

can be accomplished with this object system. 

3.3.2 Process Nesting 

Processes in FOIL can be arbitrarily nested.  In FOIL, process nesting refers to the 

sequential replacement of a process state by another FOIL process.  The notation for this nesting 

is done by marking a state in the process as active.  An active state in a FOIL process diagram, as 

mentioned earlier, represents a sub-process.  The term active here refers to the fact that another 

activity must be performed before this process may continue.   

 

Figure 3.9  Simple FOIL Process Model 
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Figure 3.10 shows an example of how 

process nesting is represented in FOIL.  Process 

P1 has B marked as an active state.  Thus, when 

arriving at state B, the process B will be verified 

with the object model by straight sequential 

substitution.  Process P2 is logically equivalent. 

3.3.3 Process Spawning  

In addition to nesting processes, FOIL 

supports the concept of process spawning.  A 

process is spawned when an event occurs that 

will cause a new process to start.  These two processes (the calling process and the new process) 

will then continue concurrently.  Since a FOIL process model is primarily used for verification, 

this spawning allows objects to perhaps 

communicate in different ways while still performed 

their core process.  Thus, concurrency in process 

modeling allows for more flexibility in the object 

model. 

Figure 3.11 shows an example of how 

process spawning is modeled in FOIL.  When 

process P3 transitions to state B an r event is 

triggered.  This event causes the creation of process 

B3 which will continue concurrently with process P3.  

At this point, either an s or a t event would be valid allowing the underlying object model to fire 

 

Figure 3.10  Process Nesting Equivalence 

 

Figure 3.11  Process Spawning Equivalence 
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or receive these events in an arbitrary order.  This is not true of object P1 in Figure 3.10.  In 

general, process spawning is a much looser validation of the underlying object model than 

process nesting.  Process P4 in Figure 3.11 is logically equivalent to the process system create by 

the interaction of process P3 and process B3. 

3.4 Simple Elevator System 

A simple elevator system is modeled below in both the Formal Object Interaction 

Language (FOIL) and the Unified Modeling Language (UML).  As UML is both popular and 

familiar, this should aid in understanding the distinctive qualities of the FOIL model. 

Figure 3.12 shows a simple elevator system as modeled with the Formal Object 

Interaction Language (FOIL).  The relationships used in the model are the same as those used in 

the standard UML class diagram.  However, in UML the communication between objects as a 

result of these relationships is unclear.  The FOIL notation makes the communication 

requirements clear.  This is an example of the behavioral information implicit in a FOIL model.  

Notice in Figure 3.12 how the elevator Door can be stopped by a Passenger, resulting in the 

Door reopening.  The loop in the ElevatorController causes the Door to attempt to close again. 

The MasterController in this diagram shows how concurrency is modeled.  In this case, 

the master controller is a continuous listening object that will spawn a new thread of execution 

for every request received by the buttons.  The next available ElevatorController sends a 

nextFloor event to the MasterController.  The logic for which floor the controller will dispatch 

the elevator is determined by the active state Queued.  In object-oriented implementation, the go 

event is really a method call that has a floor parameter.  This is optional in the FOIL notation but 

is shown in the go event definition in the ElevatorController object. 
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Figure 3.12  FOIL Elevator Example 
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The FOIL notation supports all of the relationships in the UML class diagram.  

Inheritance is extended to include behavioral inheritance, as can be shown by the abstract 

Button class.  In this case, a button has a dim and a lit state and the press event will always cause 

transition from dim to lit regardless of the type of button.  The implementation of the active state 

lit is not specified and must be implemented by the subclasses of Button.  This is denoted by the 

lit state in italics.  

The FOIL model can also be augmented with a reference help called the Event-Object 

Schedule.  Figure 3.13 shows the schedule for the elevator example in Figure 3.12.  In this 

schedule, straight arrows indicate that the event is fired and the curved arrows indicate that the 

object accepts that event.  This is a beneficial reference when trying to determine which objects 

are involved in event production and reaction.  
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Figure 3.13  FOIL Diagram Event-Object Schedule 
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Finally, Figure 3.14 shows the FOIL process diagram for the elevator model in Figure 

3.12.  This process model is composed of two processes that run concurrently: Pick up 

Passenger and Drop off Passenger.  Each one is triggered by the Passenger pressing the 

appropriate button.  Every time a Passenger presses a FloorButton, a new Pick Up Passenger 

process is created.  The Drop off Passenger process is created whenever a Passenger presses an 

ElevatorButton and the Pick up Passenger process is in the Loading state.  It should be relatively 

easy to see that the process as modeled in Figure 3.14 can be accomplished by the FOIL object 

model previously given in Figure 3.12.    

 

Figure 3.14  FOIL Elevator Process 
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3.4.1 UML Equivalent  

A simple FOIL model can be converted to a standard UML model.  As more of the 

concurrency features of FOIL are used, the converted UML model becomes quite large as 

individual thread of execution must be explicitly modeled in UML.  Figure 3.15 shows the UML 

class diagram of the equivalent model from Figure 3.12.  Each active state in the FOIL model 

becomes a private method in a standard UML model.  Likewise, any event which can be received 

becomes a public method.  Read-only attributes are converted to private attributes with an 

 

Figure 3.15  UML Class Diagram of Elevator 
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appropriate accessor method.  Public attributes 

 
of which there are none in this model 

 
can be 

converted as standard public attributes or private attributes with the appropriate get/set methods. 

The detail in the equivalent class diagram is far less than the FOIL model as there is no 

indication as to the behavior of individual methods nor is there any indication as to how the 

objects interact.  In UML this requires a separate diagram, of which there are several varieties.  

Figure 3.16 represents an equivalent sequence diagram for standard elevator operation as 

modeled by the FOIL diagram in Figure 3.12.  The diagram in Figure 3.16 models an expected 

operation of a single elevator. 

It should be noted that a sequence diagram is rarely suitable for specifying multiple 

scenarios.  Modeling of the behavior of the MasterController or the scenario of an elevator door 

impediment would each require an additional diagram.  Even after diagramming each scenario, 

additional UML state or collaboration diagrams would be required to specify the complete 

interaction between objects.  Thus, this simple system would require approximately eight 

diagrams to display the same information as contained in the single FOIL model. 
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Figure 3.16  UML Sequence Diagram Equivalent 
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A UML activity diagram for this elevator example is hardly worth modeling.  The 

process performed by an elevator is extremely simple and thus a UML activity diagram would 

consist of two boxes with a line between them.  Additional notations may be made to the 

diagram.  The FOIL process diagram actually presents the expected sequence of events when in 

operation.  This could be done by creating a UML activity diagram with a very low process 

granularity where, for example, the door closing and opening would each be considered 

activities.  In addition, the low level nature of such an activity diagram would totally defeat the 

purpose of an activity diagram which is to model what work the system is to perform from a high 

level perspective.  

Finally, matching such a UML activity diagram with the class and sequence diagrams 

would be a manual process to be done by the designer.  Part of this problem is caused by having 

multiple dissimilar diagrammatic notations to display the behavior of the objects and the system.  

This is exacerbated if UML state or collaboration diagrams are needed.  Additionally, there is no 

formal or even standard mechanism, in place, for reconciling these multiple diagrams.  FOIL 

uses a single notation to model the system structure, individual object behavior, object 

interaction, and high-level process.  More importantly, the FOIL algebra provides a way to 

mathematically verify that the individual object behaviors are internally consistent and that high-

level processes will reliably perform the desired work.  
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4. FOIL ALGEBRA 

In addition to the graphical notation, the Formal Object Interaction Language (FOIL) has 

a direct representation as an algebraic expression called FOIL Algebra.  This algebra gives FOIL 

a robust mechanism for ensuring model correctness both at design-time and run-time.  FOIL 

algebra is a variant of the -calculus originally designed by Robin Milner [7, 8] with additional 

axioms and theorems for manipulating object-oriented system execution.  The -calculus as a 

process algebra is solely concerned with names and as such it is overly abstract for the purposes 

of FOIL thus specific name types (such as events and states) have been added to the algebra for 

clarity.  While every system in FOIL algebra can be abstracted into a pure -calculus definition, 

the constraints placed on FOIL algebraic construction, manipulation, and reduction are in terms 

of the more specific FOIL naming semantics. 

This chapter provides a theoretical discussion of the application of process algebra to the 

FOIL graphical model.  First, algebraic expression for a system is constructed by converting each 

graphical element into individual terms and combining them.  Second, the various algebraic laws 

and identities are discussed to enable manipulation of system expressions for use in model 

verification and run-time execution.  Next, the system expressions are reduced using algebraic 

reduction with eligibility constraints.  This chapter concludes with a demonstration of 

construction, manipulation and reduction of a sufficiently complex workflow pattern.  This 

chapter is necessarily abstract; however, the following chapters will contain more real world 

examples. 
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4.1 Construction  

Each notational element in FOIL has an algebraic equivalent; therefore, a system 

comprised solely of FOIL notational elements can be completely expressed using these algebraic 

equivalents.  Through a process of substitution an expression for a complete system can be 

created. 

4.1.1 Events and Operators 

An event in FOIL represents a name in a -calculus system that functions to change the 

state of the system.  In a FOIL model, the primary unit of work is an Active State.  The algebraic 

definition of a FOIL model is not concerned with the specific work being done, only the events 

required to start or end the performance of that work.  The system definition must include all 

possible options for the sequence of events that are acceptable while allowing independent event 

sequences to carry on concurrently.  As a convention, events are represented by a lower case 

letter. 

Figure 4.1 shows the difference in algebraic 

notation for consuming or receiving an event verses 

producing or triggering an event.  The bar notation 

over the t event indicates that it is fired not received. 

State G is defined as transitioning upon the receipt of a t event while state H is defined as 

triggering a t event (post-trigger).  FOIL uses these simple event expressions to represent 

complex system behaviors by using operators to define the temporal relationships between 

events. 

 

Figure 4.1  Algebraic Event Construction 
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There are only three operators in the FOIL algebra: sequential, concurrent, and choice 

(see Figure 4.2).  The sequential operator, represented by a dot or period, denotes two or more 

events which occur in a specified and sequential order.  The concurrent operator, represented by 

a pipe, denotes two or more events which occur simultaneously.  The choice operator, 

represented by a plus, denotes a choice among two or more events.  All possible combinations of 

system operations as specified in FOIL can be completely expressed using these operators. 

4.1.2 Object Qualifiers 

There is some debate as to whether the use of object identifiers limits the flexibility in 

modeling object-oriented systems.  However, in the case of FOIL, objects need to be able to 

respond to events that may be specifically designed for them.  Without a mechanism for 

addressing a specific event to a specific object, this would not be possible.  Thus, despite some 

drawbacks to this approach, it was decided that FOIL would use object identifiers.  These 

identifiers can be prepended to an event term in the FOIL algebra to offer event specificity. 

CqpA
CqBandBpA

..
.. CqBpA ..CqBpA .|.

 

Figure 4.2  Algebraic Operators 
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Figure 4.3 shows an example of a class X 

that is defined with a specific event s and a global 

event p.  The X qualifier to the s event means that 

this s event is specific to an object instance of class 

X.  Thus, when an X object is instantiated the 

expression is 

EXsXpFXX 1111 ..

 

The convention for this paper will be to sequentially number each instance of an object as 

its identifier but any object identifier scheme may be used.  

4.1.3 State Representation 

Each state of an object has an algebraic expression that represents its behavior.  In that 

regard, state expressions are the building blocks of system definitions.  The representation of 

passive states is rather trivial.  As such, it has already been presented previously without much 

explanation.  The expressions take on a 

fair amount of complexity, however, 

when active states are involved. 

Figure 4.4 shows two examples 

that contain active states.  There are two 

main problems in the algebraic 

representation of active states 

 

Figure 4.3  Object Qualifier 

 

Figure 4.4  Active State Examples 
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demonstrated in these examples: 1) ensuring that the p event does not fire until the actions of E 

are complete, and 2) determining when the actions of E should begin.  It is easy to see that 

neither of these problems have any consequence if state E is passive in either class.  In order for 

the algebra to be robust and complete, there must be an event representation for handling active 

states. 

Figure 4.5 shows the 

behavior in FOIL notation for the 

active state E in both objects in 

Figure 4.4.  Of course, the FOIL notation could be drawn to show this behavior explicitly and, 

indeed, a diagramming tool could have this option.  However, the simple shading of an active 

state retains simplicity in the overall diagram which could easily grow cumbersome if such 

behavior was explicit.  The impact on the algebra of this substitution is significant.  For instance, 

object X would now have the expression: 

GppEEEEXsX

GppEEEEEEXsFFX

......̀.̀
......̀`.

 

This complexity is stark when compared to the expression for Object X if state E were 

passive: 

GppXsX

GppEEXsFFX

...
...

 

Likewise, object Y with its concurrency takes on a new character as well: 

GppEEEEYtGppEEEEYsY

GppEEEEEEYtEYsFFY

......̀.̀|......̀.̀
......̀`.|.

  

Figure 4.5  Active State Event Flow 
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The extra events fired and received with these expressions may seem rather redundant; 

however, the utility of this representation will become apparent later during the discussion of 

reductions on these expressions.  In addition, it should be noted that the diagram of Figure 4.5 is 

only one representation of how active state behavior could be modeled.  In this case, active states 

will only execute their actions when all threads of execution synchronize onto it (unless an input 

port is used).  Additionally, no pre-firing events will fire until all threads have synchronized to 

the active state.  By replacing the behavior of active states with a different state flow, the system 

as a whole would treat such situations differently.  For example, an action could fire when the 

first thread reaches the state rather than waiting until synchronization occurs.  For the remainder 

of this thesis, active states will be assumed to follow the behavior of Figure 4.5. 

It may be necessary for an executable modeling system based on FOIL to know what 

state an object is in.  This can be done through the use of a state event.  This is a simple 

mechanism of firing an event when an object reaches a given state.  It requires no additional 

notation but is implicit.  With state events object X of Figure 4.4 would have the expression: 

GppEEEEEXsFX

GppEEEEEEXsFFX

.......̀.̀.
......̀`.

 

The addition of the F, E and G events serve to inform the system that object X has 

reached a those states.  The E event occurs within the active state flow meaning that all pre-firing 

events must be accepted prior to being considered by the system as arriving at this state. 

The firing of state events is completely optional.  It is easy to see that such event firing 

does not inhibit the work of the system since no transition is dependent on such an event.  It is 

conceivable that such events could be used by other objects to trigger additional transitions but 
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this behavior can be modeled without such mechanisms.  Additionally, it should be noted that 

without this mechanism, state G in object X and Y of Figure 4.4 has no expression unless 

termination is denoted by a 0

 
as is common in the standard -calculus.  It will be the convention 

of this thesis not to substitute states that have no expression. 

4.1.4 Object Definition 

Creating a FOIL algebraic expression of an object is a matter of substituting state 

expressions.  This substitution of state terms is relatively trivial and has already been shown by 

the expressions created for Figure 4.4 and Figure 4.5.  These simple cases did not have any 

iteration or loops.  It is important that substitution only occur up to any loops or iteration.  The 

reason for this restriction will become clear during the discussion on how these expressions are 

used during run-time operation of a system (i.e. reductions) and how models are verified.  In 

addition, it is intuitive that if looping constructs are 

to be allowed (which they are) then substitution of 

terms would be infinite without at least an arbitrary 

stopping point.  By having a clearly defined 

substitution stopping point, we maintain some 

qualities of the model which are useful. 

Figure 4.6 shows an example of a class definition that contains an iterative behavior.  

Terms are substituted in a depth-first manner using a simple depth-first search algorithm on the 

connected graph [76] represented by the behavior diagram.  Substitution will cease whenever a 

back-edge is encountered thus eliminating any looping.  The following shows the steps for 

building the expression for Figure 4.6: 

 

Figure 4.6  Object with Iteration 
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stopDsubstituteBsrqpX
CsubstituteDrqpX
BsubstituteCqpX
AsubstituteBpX

sexpressionstateBsDDrCCqBBpAAX

.....5
....4

...3
..2

.....1

 

In a depth-first search of the graph represented by object X, the event s transition would 

be a back-edge.  Thus, no substitutions take place beyond that transition until it is required in 

order to continue after a reduction.  

This does not mean that the same 

state will not be substituted twice.  

Figure 4.7 shows an example of 

where repeated substitution of the 

same state may occur. 

againDsubstituteEtrqEtspX
CsubstituteDrqEtspX
DsubstituteCqEtspX
BsubstituteCqDspX
AsubstituteBpX

sexpressionstateEtDDrCCqDsBBpAAX

)......(.6
).....(.5

)....(.4
)...(.3

..2
......1

  

State D in Figure 4.7 gets substituted twice during object expression construction.  This 

is because the s event transition does not represent a back-edge during depth-first traversal (it is a 

cross-edge) and thus substitution should continue normally until a back-edge is encountered or 

no transitions are available (state E). 

 

Figure 4.7  Repeated Substitution with No Loops 
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4.1.5 System Definition 

The final step to construction of a system using FOIL algebra is the substitution of object 

expressions for the creation of a unified system expression.  The substitution of object 

expressions generally occurs at run-time and directly correlates with object instantiation.  

Consider that an object-oriented program when 

first executed has no objects.  Thus, the initial 

algebraic expression for a system would consist of 

the events that cause object instantiation from an 

outside source.  Whether this outside source is a 

function, user or other system is unimportant. 

Figure 4.8 shows an example of a complete 

system composed of two objects, neither of which exists prior to execution.  Only when a t or u 

event is generated by the system will these objects be instantiated.  Thus, this initial algebraic 

expression for this system is: 

YuXtsystem .|.

 

Since, objects X and Y have not been instantiated no substitution for these variables takes 

place.  Only when an object term reaches the front of a concurrent expression during reduction 

will the substitution take place.  However, the class expressions for objects X and Y can be 

predetermined prior to run-time to improve performance during object expression substitution. 

4.2 Manipulation 

The expressions created by the construction of a model using FOIL algebra are not very 

useful as created.  Run-time execution and model verification place rules on the reductions that 

 

Figure 4.8  System Object Instantiation 
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are allowed on a given system s expression.  These rules would be overly complex and difficult 

to automate on raw expressions.  Given this, expressions need to be rearranged such that they are 

more suitable for reduction operations and model verification. 

4.2.1  Algebraic Identities 

The identities associated with process algebra are fairly well known; however, FOIL 

takes a loose approach to equivalence.  In addition, it is helpful to see how the identities function 

in FOIL algebraic notation rather than assuming that such notations are common knowledge.  

These identities are provided as axioms rather than providing rigorous proof since justification 

for these laws is fairly intuitive. 

4.2.1.1 Distributive Law of Choice 

Events fired or received before or after a choice can be distributed into the choice.  Figure 

4.9 shows a FOIL model of this law.  Object X and Y have an equivalent behavior.  In English, 

Object X would read, Accept event p and then accept 

event q or accept event r.  Object Y, on the other 

hand, reads, Accept event p and then accept event q 

or accept event p and then accept event r.  The logical 

equivalency of these two statements should be fairly 

intuitive.  Object Y displays something akin to a 

differed choice, where two threads exist until a choice 

is actually made.  However, since the destination of 

the deferred choice (state B) is the same, only a 

single thread need be produced during execution.  This 

logical equivalence produces the axiomatic identity: 

 

Figure 4.9  Distributive Law of Choice 
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DrpCqpDrCqp

thenYXif

DrpCqpY

DrBandCqBandBpBpAandAY

DrCqpX

DrCqBandBpAandAX

....)...(
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)...(
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2121

 

4.2.1.2 Distributive Law of Concurrency 

Sequential conditions required for the 

spawning of concurrent threads can be distributed to 

multiple threads.  This identity is very similar to that 

for choice.  Figure 4.10 shows an example of this 

Law.  In English, object X would read, Accept 

event p and then concurrently accept events q and 

r.  Object Y, on the other hand, would read, 

Accept event p and then q and concurrently accept 

event p and then r.  Once again, the equivalence of 

these two statements should be intuitive.  This 

produces the axiomatic identity:  

DrpCqpDrCqp

thenYXif

DrpCqpY

DrBandCqBandBpBpAandAY

DrCqpX

DrCqBandBpAandAX

..|..).|..(

..|..

...|.

).|..(

.|..

2121

  

Figure 4.10  Distributive Law of Concurrency 
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4.2.1.3 Law of Redundancy 

A choice between two identical sequential event expressions is not a choice.  Likewise, a 

concurrency between two identical sequential event expressions is a single thread.  It should be 

clear that to, accept p and then r or accept p and then r, is completely redundant and while it is 

worded as a choice between two actions there is really no choice at all.  The same law holds true 

for concurrent relationships between event sequences. 

rprprp

rprprp

..|.

...

 

4.2.1.4 Law of Concurrent Subsequence 

If a sequential term in a concurrent expression is the order subsequence of another term 

in that same concurrent expression, then the first term may be eliminated.  This law is closely 

connected to the reduction eligibility rule to be discussed later in this chapter.  An example of 

this law is as follows: 

vutsrqpusqvutsrqp ........|......

 

4.2.1.5 Law of Nullability 

If a sequential term of a concurrent expression begins with a non-event, then that 

expression is eliminated.  If after construction or through the course of execution, all the terms of 

a concurrent expression begin with an event NOT being received, then that expression has no 

chance of execution.  This particular law is based on the assumption that NOT making a choice 

is a passive event and would not be explicitly fired by the system.  As such, an expression 

starting with such terms will never be reduced. 
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srqpqpsrqpsrqpsrqp .|...|..|!.!.|!.

 
4.2.1.6 Law of Contradiction 

Two concurrent terms where any two events 

are sequentially transposed can be eliminated.  Figure 

4.11 shows an example of a simple contradiction.  

Since events p and q are unique, they can only be 

accepted once per iteration and thus to accept p would 

invalidate the bottom thread and likewise, to accept q would invalidate the top thread.  This is an 

inherent contradiction.  Such contradictions can be easily found by scanning the concurrent terms 

for transposed events, as in this example: 

0.|. pqqp 

4.2.2 Algebraic Form 

Using the algebraic identities described 

above, FOIL expressions can be rearranged to 

produce equivalent expressions that are useful for 

run-time execution and verification. 

4.2.2.1 Choice-Action Form (CAF) 

Any FOIL expression can be placed into a 

form where every possible sequence of events is 

handled.  In effect, an expression in Choice-Action 

Form (CAF) is a choice among concurrent events.  CAF is accomplished by fully distributing 

concurrency and choices using the distributive laws.  Figure 4.12 shows an example of a simple 

 

Figure 4.11  Law of Contradiction 

 

Figure 4.12  Algebraic Forms 
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object model which both concurrency and choices.  The algebraic construction and manipulation 

to CAF is: 

DrpCqpDrtpJvutp
CqtpJvutpDrtpHustpCqtpHustpX

DrCqDrtJvutCqtJvutDrtHustCqtHustpX
DrCqDrtCqtJvutHustpX
DrCqDrCqtJvuHustpX

onconstructiSystemDrCqDrCqJvuHustpX
onconstructiYJvuHusY
onconstructiXDrCqDrCqYtpX

statesYJvGHuFGuFsEEY
statesXDrCqDrCqYtBBpAAX

CAF

.......|....
...|.......|.......|....

)....|.....|.....|.....|....(
)..)....|).......(
)..)...(|).....(.(
)..))..(|).....((.(

....
)..))..(|.(.(

....
..))..(|.(.

 

In this example, it is not necessary to substitute for object Y until a t event has been fired 

but doing so does not affect the execution of 

the model and serves to show the utility of 

CAF.  The final expression in CAF is a 

complete list of all the possible concurrent 

outcomes for this system.  In this form, it is 

extremely easy to use the remaining laws to 

eliminate terms.  Additionally, CAF is used 

to determine whether two modeled objects 

are logically equivalent. 

The simple merge pattern allows for 

the construction of an interesting equivalency.  Figure 4.13 shows two object behaviors that are 

equivalent.  Object X1 uses a deferred choice followed by a simple merge while object X2 uses a 

parallel split followed by a synchronous merge.  In both cases, states B, C and D are reached.  

 

Figure 4.13  Choice-Concurrent Equivalence 
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The difference is that object X1 is waiting to determine where the single thread of execution 

exists while object X2 has three separate threads of execution.  Upon an s, t, or u event both 

behaviors will transition to state E once and only once.  Object X1 makes its choice while object 

X2 merges its three threads into one.  Algebraically, it can be shown that the two flows are the 

same. 

12

2

2

2

2

1

1

.........

.)....(.)..(
.)..(|)..(|.)..(

.).(,,.|.|.)||.(
.........

.......

XX
FvupFvtpFvspX

FvuptpspFvutspX
FvutspvFutspFvutspX

FvEEutsDCBDpCpBpDCBpX
FvupFvtpFvspX

FvEEuDEtCEsBDpCpBpX

CAF

CAF

 

The main drawback to CAF is that it exhibits the state explosion problem. For each 

optional choice used the number of possible action sequences increases by a factor of two.  Thus, 

the growth rate of the algebraic expression is O(2n) where n is the number of options.  In object-

oriented models that exhibit low coupling the size of the expressions are manageable since it is 

expected that the expression of any single object would be relatively small.  However, in some 

models the size of the system expression would make run-time verification intractable. 

4.2.2.2 Choice-Compressed Form (CCF) 

The Choice-Compressed Form (CCF) is achieved by distributing all concurrent and 

sequential actions but delaying the distribution of choices until necessary for subsequent 

reductions.  While CCF is not as easy to reduce as CAF, it does not exhibit the exponential 

growth rate.  This means that CCF expressions will never grow too large for state-based analysis 
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and run-time reductions.  The Algebraic construction and manipulation into CCF of the system 

in Figure 4.12 is: 

DrpCqpDrtpCqtpJvutpHustpX

DrpCqpDrtCqtpJvutHustpX
DrCqDrtCqtJvutHustpX

onconstructiSystemDrCqDrCqJvuHustpX

CCF

....)......(|)........(

....).....(|).......(
)..)....(|).......((

)..))..(|).....((.(

 

4.3 Reduction 

Once any event is sent or an eligible event is received there is no reason to continue to 

denote it in the expression.  The process of removing these terms is called a reduction.  A FOIL 

algebraic expression is changed at run-time as a result of such reductions.  The reduction process 

is as follows: 

1. Determine Reduction Eligibility 

2. Reduce the Expression 

3. Fire Additional Events 

4.3.1 Determine Reduction Eligibility 

The first step in performing algebraic reductions is to determine whether or not the given 

event received is eligible.  The following definition is provided with respect to FOIL algebra: 

Eligibility 

 

The system is in a state such that it is ready to process the event and 

the processing of said event will not place the system in a state from which it can 

no longer complete its work. 

As an example, take the following expression: 

tpsrqpX ..|..
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This expression represents a system that is performing two concurrent threads.  It is clear 

that events q, r, and t are not eligible since the system is not in a state that is ready to receive 

them.  It may not be so obvious that event p is also not eligible.  The reason for this is that if 

unique event p were processed then the second concurrent term would be deadlocked since it 

also expects that same event p in the future.  Another way of describing eligibility would be, all 

concurrent actions that expect the event are ready to receive that event.  Given this 

understanding, it is clear that the only eligible event is s. 

Eligibility Rule: Given a system definition in Choice-Action Form (CAF) and the 

receiving of an event b, a choice is not eligible for reduction if event b exists 

anywhere other than the beginning of a concurrent expression.  Event b is not 

eligible if there are no eligible choices. 

Determining eligibility is easiest when 

a FOIL expression is placed in CAF.  The 

diagram in Figure 4.14 shows an example of a 

multiple choice pattern for the state flow of 

Object X.  Note in this case, that the receiving 

of event q before receiving event p will mean 

that p is no longer an option.  The FOIL 

algebra expression for Object X in CAF is: 

)...!...(|)...!...(|)...!...(

..).!(|..).!(|..).!(

FvtrFvtrFvtqFvtqFvqpFvqpX

ChoiceofLawveDistributiby

FvtrrFvtqqFvqppX

  

Figure 4.14  Multiple Choice Eligibility 
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FvtrFvtqFvqpFvtrFvtqFvqp

FvtrFvtqFvqpFvtrFvtqFvqp

FvtrFvtqFvqpFvtrFvtqFvqp

FvtrFvtqFvqpFvtrFvtqFvqpX

FvtrFvtrFvtqFvqp

FvtqFvqpFvtqFvqpFvtqFvqpX

FvtrFvtrFvtqFvqp

FvtqFvqpFvtqFvqpFvtqFvqpX

yConcurrencofLawveDistributiby

CAF

...|!...|!...!...|!...|!...

...|!...|...!...|!...|...

...|...|!...!...|...|!...

...|...|...!...|...|...

)...!...(|)...|!...!

...|!......|...!...|...(

)...!...(|)...|!...!

...|!......|...!...|...(

 

FvqpFvtqFvtqFvqpFvtr
FvtrFvqpFvtrFvtqFvtrFvtqFvqpX

yNullabilitofLawby
CAF

.........|......
...|......|......|...|...

 

Determining whether an event is ready to be accepted by the system is a simple matter of 

scanning the events at the beginning of each sequential term providing the set: {p,q,r}.  After 

this, it can be determined whether each event in this set occurs anywhere other than in a 

concurrent term.  In the first choice above, event q is not eligible since it occurs in the sequential 

expression p.q.v.F.  Since event q is not in the front then this choice is ineligible.  However, the 

event q remains an eligible event since there are other choices in the expression for which this 

event is eligible. 

This example, however, clearly illustrates the state explosion problem created by using 

CAF.  In this case, the initial construction of object X is already in CCF: 

choicesthroughdistributenotdo
FvtrrFvtqqFvqppX

CCF

..).!(|..).!(|..).!(
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If the same eligibility rule outlined above is used on this expression in CCF, it would 

seem that event q is not eligible.  The front terms of each expression will still indicate that events 

{p,q,r} are ready but modification of the rule to support CCF is required. 

Eligibility Rule:  Given a system definition in Choice-Compressed Form (CCF) 

and the receiving of an event b, a choice is not eligible if event b occurs anywhere 

other than the beginning of a concurrent expression and participates in any choice 

that does not contain a non-event. Event b is not eligible if there are no eligible 

choices. 

Given this rule for CCF expressions, event q above is clearly eligible.  It occurs 

downstream of a concurrent expression but does NOT participate in any choice that does not 

contain a non-event.  It participates in the (p+!p) choice, but this contains a non-event.  Thus, 

event q is eligible.  It should be noted that the eligibility rules for CAF and CCF will always 

result in the same set of eligible events. 

4.3.2 Reduce the Expression 

Once an event is determined to be eligible, it is processed.  This processing from an 

algebraic sense means that the system is no longer waiting on this event to occur.  Thus, there is 

no longer any reason to denote this in the expression.  In addition, while the event may have been 

eligible, individual choices within the system expression may not have been.  Thus, these choices 

(having not been chosen) may be removed from the expression.  Continuing with the example of 

Figure 4.14, the processing of the eligible event p on the expression in CAF would be: 

FvqFvtqFvqFvtrFvqFvtrFvtqFvqX
FvqpFvtqFvtqFvqpFvtr

FvtrFvqpFvtrFvtqFvtrFvtqFvqpX

p

CAF

.....|.....|.....|...|..
.........|......

...|......|......|...|...
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Note that of the seven choices represented by the expression, only four of them were 

eligible for processing event p.  The final expression for object X has removed event p from the 

front of each sequential term that participated in an eligible choice and eliminated all ineligible 

choices.  The same object would reduce differently if event q were received: 

FvtFvtrFvtrFvtX
FvqpFvtqFvtqFvqpFvtr

FvtrFvqpFvtrFvtqFvtrFvtqFvqpX

q

CAF

........|..
.........|......

...|......|......|...|...

 

In this reduction, there are only three eligible terms.  The reduction eligibility rule 

eliminates the first and fifth choices even though these choices have a term that begins with this 

event. 

Performing reductions in CCF is more difficult in that rather than eliminating whole 

terms, analysis can result in eliminating a portion of expressions. 

FvtrrFvtqqFvqX
FvtrrFvtqqFvqppX

p

CCF

..).!(|..).!(|..
..).!(|..).!(|..).!(

 

Processing event p results in reduction of the entire choice.  Since, it is determined that 

indeed, one of those choices was reduced, the other choices were not and thus they can be 

eliminated as well.  Processing of event q is even more complex: 

FvtrrFvtX
FvtrrFvtqqFvqppX

q

CCF

..).!(|..
..).!(|..).!(|..).!(
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To understand this result, consider that event q was previously determined to be eligible 

by the CCF eligibility rule; however, if event q is accepted then none of the concurrent choices 

of the first term are eligible.  This leads to the following CCF elimination rule: 

Elimination Rule:  Given a system definition in Choice-Compressed Form (CCF) 

and the receiving of an event b, if in a concurrent term event b is eligible merely 

because it participates in a non-event choice, then that concurrent term may be 

eliminated. 

Object X in CCF has only one choice of three concurrent terms; however, this choice is 

only eligible to received event q because the first concurrent term, while having a downstream q 

event participates in a non-event choice.  Thus, this term can be eliminated when the q event 

reduction is performed. 

A reduction operation may mean that an object is created or that a loop has occurred.  

This is obvious during reduction when a state or object variable reaches the front of a term.  

Referring back to Figure 4.6, which shows a simple looping construct for object X.  The 

execution of this system using FOIL algebraic reductions is: 

BsrqX
substitutesofronttheatisB

BBsBsrBsrqBsrqpX

srqp

srqp
CAF

...

..........

,,,

 

It may be convenient to number the iterations of events; this can be done with simple 

subscripts: 

3222
,,,

221211211121111

...

..........

BsrqX
substitutesofronttheatisB

BBsBsrBsrqBsrqpX

srqp

srqp
CAF
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The event subscripts should not be confused with object identifiers that also use 

subscripts.  Substitution of object variables, which occurs when one object instantiates another, is 

done in the same manner as state variables and is presented in the example at the end of this 

chapter.  After substitution of variables it may be necessary to place the expression into CAF or 

CCF again. 

4.3.3 Fire Additional Events 

After completing the reduction operation, it may be that event firings move to the front of 

terms in the expression.  If this is true, then they are immediately processed.  Thus, event firings 

are always immediately removed from the terms.  If multiple events reach the front 

simultaneously, this is only because they are participating in concurrent actions and thus the 

order of the event firings is unimportant.  A simple queue is used to handle these multiple events.  

Optionally, any events fired that are ineligible can be moved to the back of the queue until only 

ineligible events remain.  This can be used to ensure that events are not ineligible simply due to 

the order for which simultaneous events were fired.  This option can present additional problems 

thus it may not be preferable.  Such difficulties can be eliminated through better design of the 

model. 

Figure 4.15 shows an example of a 

simple state flow for Object Y.  In this example, 

events p and q are performed concurrently, thus 

q is eligible from the beginning; however, the 

system wants to guarantee that if event p is 

received first that event q is immediately fired.   

Algebraically, if event p is received first: 

 

Figure 4.15  Event Firing Reduction 
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EsDrX
EsqDrEsqDrqX

EsqDrqpX

q

p

CAF

.|.
..|...|..

..|...

 
This example shows each step of the operation.  It is permissible to simply show: 

EsDrX
EsqDrqpX

p

CAF

.|.
..|...

 

It is important to note that event firings do not affect the eligibility of a choice and thus 

do not affect the eligibility of an event.  While there is a q event firing in the first concurrent 

term, it does not make q ineligible, but the later firing of event q in this example would be: 

ineligibleEsDrEsDrqEsDrqpX

EsqDrqpX
qpq

CAF

.|..|...|...
..|... 

The ineligibility of a fired event does not 

make the originating event ineligible.  An event firing 

is always immediately reduced.  The result of the 

event on the system is immaterial to the eligibility of 

prior operations. 

4.4 Example 

Figure 4.16 shows an example of a system 

modeled in FOIL.  Object X is initially in state A.  

Because A is an accepting state object X can accept both p and t events.  The p event will cause 

object X to transition to state B.  The t event will cause object X to instantiate a new Y object 

 

Figure 4.16  Object-Event Synchronization 
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which can subsequently begin accepting events.  The asterisk indicates that multiple Y objects 

can be created by multiple t events being received as long as object X is in an accepting state. 

 The diagram in Figure 4.16 models a workflow pattern known as multiple instance with 

no a priori runtime knowledge [30].  This is one of the more complicated patterns in workflow 

management.  The system does not know how many instances of object Y there will be.  But, it 

has to make sure that all of those copies are in state E before accepting the q event.  For example, 

the event sequence (t,Yr,q) would be undesirable as object X  would still be in state A.  Thus, 

while object Y is ready to receive the q event, object X is not ready.  The problem could likewise 

be reversed with a sequence like (t,p,q).  To complicate matters, the problem could be extended 

with an event sequence such as (t1,Y1r,t2,p,q).  In this case, there are two instances of Y but only 

one of them is prepared to accept the q event. 

The following demonstrates the algebraic construction of the system in Figure 4.16 with 

object identifiers: 

YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

YtAtYBCqtCqptYBCqtpCqpX
YAYBCqtCqptYBCqtCqpX

YABXptBXpX
YBCqtCqBXYABXptBXpAX

CAF

inninn

.|.|...|...|.........|..|.....

.|.|))||..(..(.)||..(...
)||))||..(..(.())||..(..(

)||..(.
)||..(.)||..(.

1121212112221

112121

2121

1111

 

  If instance number 1 of an X object received an p event, the following reduction would 

take place: 

YtBtCqtCq
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

p

CAF

.|.|...
.|.|...|...|.........|..|.....

222

1121212112221
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Note that two choices were completely removed because the t event was not received and 

these choices were eliminated.  The remaining expressions were reduced by eliminating the p 

events from the remaining applicable expressions.  The final definition now represents the state 

of the system after receiving event p.  Some interesting things to note from this current definition 

are: 

 

Receiving an event q will now completely eliminate event t from the 
definition.  This is logical since, if q is received, then any new Y object will 
never complete since q has already processed.   

 

Receiving an event t would place B at the front of a term.  This would be 
expanded and the definition again placed into choice-action form (CAF). 

As discussed earlier, if the system received and accepts the events (t, Y1r, q) the system 

would be hung since the X1 object is not in a state that can accept the q event even though the Y1 

instance is ready.  Reduction of these events yields: 

YAYtpBtpCqtpCqp
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

t

CAF

||..|..|.....
.|.|...|...|.........|..|.....

222

1121212112221

 

This triggers the instantiation of object Y.  Anytime a name reaches the front of a 

concurrent action and does not have a defined subscript, it is assumed that new object creation 

has occurred and the subscript is replaced with the next iteration of the object instance.  

Continuing with the reductions: 
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choiceseligibleno
FYqYtAtYtptBtptCqtpt

FYqCqptFYqYtpBtpCqtpFYqCqp
FYqrYYtAtYtptBtptCqtpt

FYqrYCqptFYqrYYtpBtpCqtpFYqrYCqp

FYqrYYtAtYtptBtptCqtptCqptYtpBtpCqtpCqp
Asubstitute

FYqrYA
Yobjectcreate

YAYtpBtpCqtpCqp
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

q

rY

CAF

t

CAF

111212121

1112221

1111212121

1111122211

11112121211222

11

222

1121212112221

.|.|.|...|...|....
.|....|..|..|....|..

..|.|.|...|...|....
..|.....|..|..|.....|..

..|).|.|...|...|.........|..|.....(

..|

||..|..|.....
.|.|...|...|.........|..|.....

1 

A look at the final reduction demonstrates the utility of the eligibility rule.  All four of the 

concurrent choices are ready to accept a q event and without the rule the reduction would 

proceed normally; however, all four choices have a q embedded in one of their concurrent 

components.  The eligibility rule states that a choice is not eligible if the event occurs anywhere 

other than the beginning of a concurrent component.  Based on this, none of these action choices 

are eligible and thus the event is not accepted.  Correctly receiving a p event will make one of the 

concurrent terms q eligible, as follows: 

FYC
FYqYtBtCqtFYqCq

FYqYtAtYtptBtptCqtpt
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The following example demonstrates that it does not matter whether the Y1r event or the 

p event is received first as long as both of them are received before the q. 
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As a final example, if two instances of object Y are created by two separate t events, the 

eligibility rule ensures that all instances are synchronized before continuing. 

FYFYCFYC
YtBtCqtFYqFYqCqFYqFYqCqFYqCq

eligiblenotstill
YtBtCqtFYqFYqrYCqFYqFYqrYCqFYqCq

eligiblenot
YtBtCqtFYqrYFYqrYCqFYqrYFYqrYCqFYqrYCq

FYqrYYtBtCqtFYqrYCq
FYqrYYtAtYtptBtptCqtpt

FYqrYCqptFYqrYYtpBtpCqtpFYqrYCqp
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

q

rY

q

rY

q

t

p

t

CAF

121

33312121

3331221221

3331122112211

1122211

1111212121

1111122211

1121212112221

|||
.|.|..|.|.|..|.|..|.

.|.|..|.|..|..|..|..|.

.|.|..|..|..|...|..|...|.
..|.|.|....|.

..|.|.|...|...|....
..|.....|..|..|.....|..

.|.|...|...|.........|..|.....

2

1

 



  
98    

5. CONCURRENCY, INHERITANCE, AND MODEL VERIFICATION 

The Formal Object Interaction Language (FOIL) shows its utility most effectively when 

used to model complex systems.  In addition to its inherent support for concurrency and its 

conformity to an object-oriented paradigm, it can be used to verify certain attributes of a 

complete system, and to analyze individual objects and states.   

5.1 Concurrency 

The ability to model systems that can perform concurrent actions is becoming more 

important in an age of distributed systems.  FOIL has a method for modeling such simultaneous 

actions through the mechanism of thread spawning.  As the notation and algebra of FOIL have 

already been explained, an understanding of how 

some concurrent patterns are modeled will aid in 

the understanding of the expressive power of the 

FOIL model. 

5.1.1 Spawning Threads 

Spawning multiple threads of execution is 

done, primarily, by the use of the output port 

notational element.  The output port indicates 

that the object will remain in its initial state until all output ports are satisfied.  Figure 5.1 shows 

an example of a simple case where object X1 will remain in state A until both a p and a q event 

are received.  After the p event, object X1 will be in state {A, B}.  After the q event, object X1 will 

 

Figure 5.1  FOIL Thread Spawning 
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be in state {B, C}.  Thus, object X1 begins its life in a single state but ends life in multiple states 

due to the thread spawning effect of the output ports. 

Initially, this sounds like an easy concept, but there are many ways to model thread 

spawning, and in some of them the number of output transitions required for completing a state 

is either unknown or infinite.  FOIL can handle all of these cases both by notation and by 

algebra. 

Object X3 in Figure 9 shows an example of a case where the number of output transitions 

to complete state A is unknown.  In this case, any one of three events can be received while in 

state A but they are all optional.  In this model, we must receive one of the events for the object 

to progress but we may receive multiple events which must be processed.  Thus, the number of 

threads spawned is unknown at design-time.  In fact, the number of threads required is not even 

known at run-time until the E state is reached by one or more threads.  Thus, only when the E

 

event is received and all threads which have left A have reached E, will the object complete 

transition out of state A.  The algebra clearly handles this case: 

ActionsEventNotmove
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Another case involves the concept that an object will never completely transition from a 

given state.  This pattern can be used to model listening devices or objects that will infinitely 

react to events and process them.  Object X2 of Figure 5.1 shows an example of such a pattern.  

In this case, object X2 will never fully transition out of state A.  As each event p is received a new 

state B is created and processing continues.  Thus, the initial state of object X2 is {A}; after a p 

event, it becomes {A, B1}; after another p event, it becomes {A, B1, B2} and so on.  The algebraic 

construction and operation clearly shows this behavior: 
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The MasterController object in Figure 3.12 of the elevator system is an example of this 

pattern in practical use. 

5.1.2 Merging Threads 

Perhaps an even more complicated situation that arises from modeling concurrency is 

how to merge multiple threads of execution.  In some cases, Petri-nets fall short when it comes to 
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this problem.  For example, whether threads merge synchronously or asynchronously must be 

considered.  Additionally, one must distinguish between a model merging and a thread merging. 

Figure 5.2 shows three 

examples of identical object thread 

spawning; however, all of these cases 

merge differently.  Object X1 shows a 

standard synchronous merge; meaning 

that an object of type X1 will not accept 

a t event unless both threads 

completely reach state D.  Note that 

there is no specific notation for a 

synchronous merging of two 

behavioral threads.  This is because the 

reduction eligibility rule automatically 

enforces this constraint. 
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Figure 5.2  FOIL Thread Merging 
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Object X2, on the other hand, models an asynchronous merge.  In this case, the first thread 

reaching state D will be allowed to continue on with execution.  The second thread will merge 

when it reaches state D regardless of the state of the first thread.  The action of state E will not be 

executed twice even though it may be executed before both threads reach state D. 
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Class X3 is not a thread merging at all.  It represents a model or multi merge.  In this case, 

the two threads remain independent.  This would be the same as having two state D s and two 

state E s.  Thus, state D and E will each be executed twice, once by each thread.  In order to 

distinguish them in the calculus, subscripts are used to represent different state instances in the 

instantiated object. 
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5.1.3 Active State Interrupt 

To complete the representation of concurrency in FOIL, it is important to understand how 

active states perform their work.  When a thread of execution arrives at an active state, all pre-
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fire events are transmitted (i.e. method calls are made) in a concurrent manner.  This means that 

method calls in FOIL are assumed to run in their own thread on a sequential system.  They are 

merely transmitted asynchronously in a distributed system.  Once this is complete, the active 

state is free to perform its active state code. 

The execution of the state s actions must also be performed in its own thread.  The main 

thread will wait on this process while continuing to listen for events that may cause a transition 

to occur.  Thus, the reception of an eligible 

event will result in immediate suspension of 

active state processing. 

Figure 5.3, a model of the Door object 

used by an elevator system (see Figure 3.12), is 

an example of how this mechanism is 

understood in FOIL.  Object X starts in state A.  

Upon receiving a p event it will transition to B and begin executing B s active state code.  Upon 

completion of B s code (B ), it will fire a q event, which will cause it to transition to state C.  

However, if B receives a t event prior to completion of its code, it will transition to D and event q 

will never be fired.  This is completely determined by the implied representation of active states.  

The behavior of active states as outlined here is based on the underlying representation outlined 

in 4.1.3 and the assumption that active state execution is current with other system operations.  

Given these assumptions the following reductions demonstrate the active state interrupt behavior 

of the model in Figure 5.3: 

 

Figure 5.3  FOIL Active State Interrupt 
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AstsDDDtqBAsrqsDDDrqqB
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If event t is received before B completes: 

AssDqBt .|.|.

 

Active State B finishes but q is no longer eligible: 

AssDB .|.

 

In this example, B does actually complete processing even though the t event is received.  

Post-firings of the active state may still be processed.  It is completely possible that by making 

different assumptions with regard to how active states behave that the system would perform 

differently.  Likewise, if a constraint was made that events can only be accepted following 

completion of active state processing (i.e. sequential), then the t event would not be eligible until 

after the B

 

event is received.  The following shows the algebra for the same sequence of events 

and the same active state representation but with the assumption of sequential process of 

interrupt events: 

eligiblenot
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The decision on how active states are treated could be made on an object or event a state 

level; however, FOIL currently has no notational variant to denote such treatment. 
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5.2 Inheritance 

It is safe to say that FOIL could not be considered a truly object-oriented (OO) modeling 

language if it did not support inheritance.  The code saving attribute of inheritance is one of the 

hallmarks of OO development.  Two of the other attributes of OO development, abstraction and 

encapsulation, do not deviate from the traditional sense when expressed using FOIL.  The other 

major attribute of OO programming is polymorphism and is primarily an implementation issue 

and does not impact the modeling of such systems in a specific way.  Therefore, the specific 

mechanisms of polymorphism are not discussed in this thesis.  It is safe to assume that, if it can 

be successfully demonstrated that inheritance is supported, the implementation of polymorphism 

is a programming-language-specific function and can be accomplished in a meaningful way 

when represented by a FOIL model. 

5.2.1 Structural Inheritance 

In typical object-oriented (OO) development, the term inheritance deals with the is a 

relationship of one object to another.  For instance, a sparrow is a bird.  While this relationship 

is intuitive, it may not be obvious that from a programming perspective, this inheritance 

relationship 

 

sometimes referred to as generalization 

 

only applies to the structural definition, 

or interface, of a class or object.  FOIL does not contradict this notion. 

Figure 5.4 is a more detailed FOIL model of the simple inheritance model of Figure 3.7.  

In order to demonstrate that FOIL models exhibit interface conformity, as in the typical 

definition of inheritance in OO development, the approach will be to convert the classes of this 

diagram into typical OO class definitions.  This will prove that a FOIL model exhibits structural 

inheritance if: 
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The conversion process is generic and repeatable for all such models. 

 

The conversion does not in any way add additional information to the model. 

 

The resulting conversion, while being less expressive than the original FOIL 
diagram, results in a valid OO class diagram. 

The conversion of a FOIL model to a typical UML class diagram is relatively simple.  

Since FOIL offers additional information to a typical OO model, we simply extract from the 

FOIL model those methods and attributes which comprise the subset of information contained in 

the entire object.  For example, FOIL implicitly tracks the state of the object and state tracking is 

 

Figure 5.4  Structural and Behavioral Inheritance Example 
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non-deterministic and thus a state collection would have to be maintained in a typical OO 

language.  However, since every such object in FOIL would have such a condition this would not 

aid in proving inheritance. 

Every event in a FOIL model is 

received by the system as a whole and 

distributed to the object by some 

mechanism.  This could be a distributed 

event service or an object to object call as 

is the case in OO development.  Thus, each 

event could be viewed as a public method.  

Likewise, each active state performs work 

specific to that object and thus could be 

considered a protected method.  A 

conversion of the read-only attributes as 

specified in FOIL to the appropriate 

protected attribute with a getter method for 

access would also have to be done.   

Combining the methods from these 

steps with the attributes and methods specified by FOIL in the traditional UML manner would 

result in the simple class diagram of Figure 5.5.  It is evident that this resulting UML diagram is 

valid and since the method described above can be performed on any FOIL diagram then FOIL 

does conform to the industry-standard definition of inheritance.  

 

Figure 5.5  OO Equivalent of FOIL Inheritance 
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In addition to proving that FOIL does provide for structural object-oriented inheritance, 

the resulting UML diagram provides proof that a FOIL diagram is far more expressive than its 

UML counterpart.  In UML, the modeling required to provide the same level of behavioral detail 

would require numerous diagrams.  In addition, this conversion process provides evidence 

regarding the intuitive nature of FOIL diagrams as compared with UML.  While this evidence 

certainly does not constitute proof, it does suggest that such a claim may be plausible. 

5.2.2 Behavioral Inheritance 

While FOIL complies with the traditional notion of inheritance, it is difficult to see how 

this idea of inheritance makes implementation of polymorphism intuitive.  Polymorphism means 

that one object can act like another and, in as far as one object can do all the things of another, 

this definition is completely satisfied by the concept of interface conformity.  However, if the 

notion of polymorphism included that the object must behave the same way, then the concept of 

behavioral inheritance must be introduced. 

Behavioral inheritance is not a new concept [70, 74]. It is easy to expand the idea of an 

is a relationship as being one where one object can do all the things that another can AND 

must do so in the same manner.  Obviously, if an object does exactly the same thing in exactly 

the same way as another than those two objects are equivalent and there is no need for 

inheritance.  However, an extension or override of behavior is allowed in the same was as an 

extension or override of an interface. 

Given the fact that a class can extend or override the behavior of another, behavioral 

inheritance as a concept must be clearly defined.  In FOIL, the informal definition of behavioral 

inheritance is: 
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Object X is said to be inherited from object Y, if it conforms to the same interface 

AND for all states in Y there are corresponding states in X such that the receipt of 

any event in Y will result in the same transition as that of X.  

Formally, the behavior of an object is represented by a tuple: 

,,, FRSO

 

Where S is the set of states in O, R is the set of events received by O, F is the set of 

events fired by O, and 

 

is the set of transition functions performed by O.  Formally, an object X 

inherits from Y if: 

xy

 

Referring back to the example of Figure 5.4 extension of behavior can occur in one of 

three ways: sequential extension, concurrent extension, and choice extension.  The Check class 

shows an example of sequential extension.  The Payment class behavior is basically untouched in 

the Check class but where the Payment class would end the Check class has been extended to add 

additional states and transitions.  The Cash class shows an example of concurrent extension.  In 

this case, the terminating states of the parent class (Payment) remain the terminating states of the 

child but there are additional terminating states by way of concurrent actions.  These two 

methods can be combined in the same object like the CreditCard class which is both a 

concurrent and sequential extension on the Payment behavior.  Choice extension while not 

demonstrated in Figure 5.4 is similar to concurrent extension but is comprised of choices. 
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From a polymorphic perspective, 

choice and sequential extension provide 

some interesting side effects.  For 

instance, if an object is treated as its 

inherited parent, some states in the object 

may not exist in the parent.  In this case, 

the object is considered to be in the last 

state it was in that is in the set of states of 

the parent.  For instance, if the Check 

object above is in the cleared state, then if 

it were treated as a generic Payment, it 

would be in the deposited state. 

Ensuring proper behavioral 

inheritance notation is quit simple.  

Copying the behavioral specification of an 

object to another and then extending the 

behavior, adding concurrent actions or 

adding additional choices will result in a second object that can be said to inherit the behavior of 

the first.  Figure 5.6 shows an optional way to denote the commonalities that may aid in clearly 

communicating this relationship. 

The behavioral inheritance characteristic of FOIL can also be verified algebraically.  This 

follows from the formal definition given previously. 

 

Figure 5.6  Alternate Behavioral Inheritance Notation 
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An object X exhibits behavioral inheritance with respect to object Y, if for each 

sequential term of the FOIL algebraic expression for Y there is a corresponding 

expression in X that is a sequential superset. 

As an example, consider again Figure 5.4.  If the first letter of each state and event is 

used as an algebraic term, then the Payment class would be expressed as: 

VVVVcRDDDDuRPayment ...̀.̀....̀.̀.

 

The inherited class Cash would be: 

VVVVcRCCCmRDDDDuRCash ...̀.̀...̀.̀.|...̀.̀.

 

It should be obvious that 

each sequential term in the 

expression for the Payment object 

is contained within a selected term 

of the Cash object. 

It should be clear at this 

point, that the behavioral 

inheritance concept adds an additional constraint to an object in FOIL before it can be considered 

to be inherited from another.  Figure 5.7 shows an example of an class which complies with the 

requirement of interface conformity as demonstrated by its corresponding UML class 

specification.  Note that all of the attributes and methods of this Trade class do exist in the 

Payment class.  Thus, by traditional thinking; the Trade class could be inherited from Payment 

class; however, from a FOIL perspective, it should be obvious that the behavioral specification 

of Trade does not match that of Payment.  The algebra also bears this out: 

 

Figure 5.7  Structural Inheritance Only 
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VVVVcRDDDDuSSSSsRTrade

VVVVcRDDDDuRPayment

...̀.̀....̀.̀....̀.̀.
...̀.̀....̀.̀.

 
While the second term of these expressions match, the first terms do not.  In addition, the 

first term of the Payment expression can not be found embedded in any term in the Trade 

expression.  There is a common subsequence between these terms but this is not sufficient to 

fulfill the requirements for behavioral inheritance.  This should be clear from the fact that in 

order for Trade to be inherited from Payment, the receipt of an updateAccount event while in 

state Received should result in a transition to state deposited, but clearly it does not. 

5.3 Model Verification 

Obviously, one of the major benefits of the Formal Object Interaction Language (FOIL) 

is the ability to validate models formally.  This is done by a special form of state-based analysis 

using the FOIL algebra.  Simple analysis of a FOIL system expression can reveal characteristics 

about the system as designed or the system during execution.  While the extent of what can be 

learned using this method is less than that of other modeling approaches (such as Petri-nets), the 

information gleaned is consistent with that required for information system analysis. 

5.3.1 Inherent Inconsistency  

A simple sequential pattern can be 

used to represent an object behavior that is 

inconsistent.  Figure 5.8 shows an object 

behavior that is inconsistent.  This 

inconsistency is mainly derived from the fact that this model does not denote the p event as 

occurring multiple times.  The system can not accept a p event since it will require it later but it 

 

Figure 5.8  Inconsistent Sequential Behavior 
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can not get to the C state which requires it without accepting a p event.  Thus, there is a 

contradiction.  The simple algebraic representation for this system is: 

DpqpX
CAF

...

  

Clearly based on the Reduction Eligibility Rule, the only term in this expression is 

eliminated since it begins with a p event but has a p event embedded in it as well.  This leaves 

object X with no valid events for which it may perform its behavior.  Thus, object X can be said 

to have no behavior and thus it is no use as modeled.  The term used in FOIL to describe this 

condition is Inherently Inconsistent . 

Figure 5.9 shows an example of the same 

X object but with the added notation that event p 

is allowed to occur multiple times.  The 

algebraic construction now becomes: 

DpqpX
CAF

... 21

 

Each starred event is numbered upon expansive construction.  Now it is clear that a p 

event will be processed if the occurrence of that valid event is numbered.  Since event p1 does 

not appear in the downstream sequence the Reduction Eligibility Rule is not violated.  Thus, the 

behavior of object X expressed in Figure 5.9 is consistent. 

5.3.2 Deadlocks 

The ability to identify inherent inconsistencies in a model also allows for the detection 

simple deadlocks.  Figure 5.10 shows an example of a simple deadlock.  In this case, object X 

must be in state C before a p event will be accepted but it must be in state B before a q event will 

 

Figure 5.9  Sequential with Plural Events 
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be accepted.  Therefore, a deadlock condition exists.  Algebraically Figure 5.10 would be 

constructed as: 

EpqDqpA

EpCandDqB

CqBpA

..|..

..

.|.

 

It is easy to see that there are no eligible terms for reduction since all starting events are 

embedded in other concurrent action 

sequences.  Thus, when an object is 

represented such that no eligible events 

exist, the algebra inherently detects the 

deadlock condition. 

5.3.2.1 Deadlock Possibility 

Figure 5.11 shows a deadlock scenario where object W and object X are sharing access to 

objects Y and Z.  The algebraic expression for Figure 5.11 without state flow is: 

KsrIqpEXsXqXpXrAWqWsWrWpS
CAF

..|..|....|....

 

FOIL algebra can be used to 

find possible deadlocks.  This is done 

by placing the model in CAF with 

only global event scope and 

determining what global events are 

eligible.  Removing event scope in S 

produces: 

 

Figure 5.10  Simple Synchronization Deadlock 

 

Figure 5.11  Deadlock Example 
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KsrIqpEsqprAqsrpS
GCAF

..|..|....|....

 
An attempt to determine the eligible events will result in an empty set since both p and r 

are embedded in other concurrent terms.  Thus, this system can result in a deadlock. 

5.3.2.2 Deadlock Occurrence 

FOIL algebra also provides a mechanism to determine if a system is deadlocked.  This is 

done similarly to deadlock avoidance but during the runtime reduction of events.  It is easy to see 

in Figure 5.11 that a deadlock will result if a local p event is received for W and a local r event is 

received for X.  The following reductions show this process: 

LrsJpqFXrXsXqXpBWpWqWsWr
KsrJpqEXsXqXpXrBWpWqWsWrS

Xr

Wp

..|..|....|....
..|..|....|....

 

Once again, an attempt to determine eligible events will result in an empty set meaning 

that the system can no longer accept any events.  The system is deadlocked. 

5.3.3 Reachability 

Determining whether states are reachable after design or during run-time is nearly as 

simple as deadlock detection.  Figure 5.12 shows an example of an object that has an 

unreachable state as designed as well as the potential for an unreachable state during execution.  

The algebraic expression for this object with partial state flow is: 

FFtDDrCCsEEsBBpGGDrDrCCsEEsBBp

FFtDDrCCsFFtDDqBBpGGDrDrCCsFFtDDqBBp

FFtDDrCCsGGrDDqBBpGGDrDrCCsGGrDDqBBpX

FFtGGrDDrCCsEEsFFtGGrDDqBBpX
CAF

........|............|.....
........|...............|........
........|...............|........

).....(.....|)..).....(...(..

 

Removing inherently inconsistent terms produces: 
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FFtDDrCCsEEsBBpFFtDDrCCsFFtDDqBBpX ........|.............|........

 
There are only two 

concurrent terms remaining and 

states A and G are missing.  State A 

is the current state of the object, 

thus state G, from the outset, is 

unreachable.  This can be done 

during runtime as well.  If the 

above system were to receive an s event, the reduction would be: 

FFtDDrFFtDDqBBpX s .....|........

 

Since the second term was ineligible, that choice was eliminated and only the single term 

remains.  In addition, states A, G, and E (the system is currently in state C) are no longer in the 

expression, thus they are all unreachable as this point in execution. 

 

Figure 5.12  Reachability Analysis 
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5.4 Russian Philosopher Problem  

One of the most popular problems in computer science, the Dining Philosopher Problem, 

is used to teach and demonstrate the problem of concurrency and resource dependency in 

computer systems.  The problem poses that there are five philosophers sitting around a circular 

table.  Each philosopher has a bowl of rice and a chopstick on their left.  In order to eat the rice, 

each philosopher must pick up the chopstick on their left and their neighbors

 

chopstick on their 

right.  Each philosopher is thinking 

independently and when he is done thinking 

he will eat.  The goal is to design a system 

where no philosopher starves. 

A typical solution to this problem is 

to have each philosopher, when done 

thinking, pick up the chopstick on his left, 

then pick up the chopstick on his right, and 

then eat.  When finished, he will put down 

his left and then his right chopstick 

sequentially and start thinking again.  If the philosopher can not pick up a chopstick because it is 

being used by another, then he must wait until the chopstick become available.  The problem 

with this scenario occurs if all philosophers begin to eat at the same time.  Each one picks up his 

left chopstick and thus there is no right chopstick for any of them.  Thus, they all wait.  There are 

several solutions available to solve this problem but it is not the goal of this paper to explore 

them.  

 

Figure 5.13  Dining Philosopher Problem 
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Figure 5.14 shows a FOIL model for the Dining Philosopher problem.  Immediately, it should 

be obvious that this model is different from traditional solutions.  Since FOIL has support for 

concurrency, the picking up of chopsticks has been modeled as a concurrent action.  To reiterate, 

if one of the benefits of OO modeling is that it most closely resembles the real world, then this 

 

Figure 5.14  FOIL Dining Philosopher Model 
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model is more accurate, as most would agree that picking up both chopsticks at the same time is 

most likely how a person would do it.  This deviation from the traditional model does not 

actually solve the deadlock problem; it merely makes it less likely.   

 

Figure 5.15  FOIL Russian Philosopher 
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The Russian Philosopher Problem is an extension of the classic Dining Philosopher 

Problem.  This extension is used to add a level of hierarchy to the model.  In the Russian 

Philosopher Problem each Russian philosopher is thinking of a Dining Philosopher problem.  

A Russian Philosopher eats only when the Dining Philosopher table deadlocks.  It is simple to 

see that a Russian Philosopher is a Dining Philosopher.  Figure 5.15 shows the Russian 

Philosopher class as modeled in FOIL.  There are two places where concurrent extension is used 

to ensure both structural and behavioral inheritance: the newProblem event was added to fire 

concurrently when the RussianPhilopher is doneEating and complete transition to Hungry will 

not occur until both the doneThinking and deadlock events are received.  
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6. WORKFLOW PATTERNS 

The Formal Object Interaction Language (FOIL) can model any system that can be 

modeled in UML, while providing more information about object behavior.  In addition, it 

supports concurrency, resource dependency, and structural and behavioral inheritance.  These 

models are verifiable through the FOIL algebra providing a formal underpinning much like Petri-

nets.  This makes FOIL a powerful modeling tool for object-oriented software development. 

FOIL can also be used to model high-level processes.  These processes can be verified 

using FOIL algebra to ensure that the underlying object model can perform the overarching 

process (see Chapter 7).  However, modeling from an object or process perspective requires that 

any underlying framework be complete.  The term complete refers to the ability to represent all 

known process or workflow patterns.  The composition of a list of patterns is a well studied 

problem [31] and the current list of these patterns is generally considered to be complete.  All 

complex processes or workflows can be composed of one or more patterns from this list. 

This chapter outlines how every workflow pattern can be represented in FOIL both 

graphically and algebraically.  When certain interesting run-time situations are presented by 

these patterns, an additional demonstration of how FOIL algebra handles such occurrences may 

be provided.  All of the patterns shown use non-active states, unless the fact that states perform 

code, has an effect execution of the pattern.  In some cases, the algebraic reductions will include 

the state indicators while, for simplicity, others may not. 
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6.1 Basic Control Patterns 

The simplest class of patterns found for processing work deal with simple control.  The 

basic control patterns address simple issues such as task processing in series or parallel and 

making choices about which tasks will be performed.  Parallel processing in the basic sense is 

always considered to be synchronous. 

6.1.1 Sequence 

The simplest pattern found in standard workflow implementation is the sequence.  In a 

sequence, the object proceeds from one state to another in a sequential fashion.  In this case, an 

object will never be in multiple states and thus it is completely deterministic in nature. 

Figure 6.1 shows an example of 

the sequence pattern.  When object X is 

instantiated, it begins in state A.  Upon 

the receipt of a p event designated for the 

X object, it will transition to state B.  

Upon the receipt of a designated q event, the X object will transition to state C.  Once arriving at 

state C, no further behavior can be performed on the object making it eligible for deletion. 

As might be expected the algebra for this pattern as well as the execution of the events 

outlined above is simple: 

c
q

B
p

A

X
CqX

CqBpX
.

... 

  
Figure 6.1  Sequence Pattern 
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6.1.2 Parallel Split 

In order to adequately express the behavior of an object, multiple threads of execution 

may be required.  The parallel split represents a simple situation where multiple threads of 

execution are enacted.  Thus, an object after a parallel split may be in multiple states 

simultaneously.  This is analogous to non-deterministic finite automata. 

Figure 6.2 shows the simplest example of the 

parallel split pattern.  The output port ensures that 

object X will remain in state A until both a p and a q 

event have been received.  Thus, when a p event is 

received object X will be in two states, that being 

state A and state B, simultaneously.  If the threads 

were to continue from state B and C then each thread would execute concurrently. 

The following is the object X expression construction: 

CqBpX A .|.

 

Thus, there are two concurrent action sequences that must be followed before the entire 

flow is complete.  Note that a reduction upon receipt of event p would result in: 

CqBX p
A .|

 

6.1.3 Synchronization 

Synchronization refers to the idea that one thread of execution must wait for a parallel 

process to reach a proper state before accepting the next event.  This should not be confused with 

a merge (see 6.2.2) as in this case both threads of execution will continue independently.  It 

merely suggests that each thread must be in a certain state before either thread can continue. 

 

Figure 6.2  Parallel Split 
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Figure 6.3 shows a diagrammatic example of an object behavior which requires 

synchronization.  Note that event q 

shows up twice in the diagram.  If 

these occurrences had been 

represented by a q* then no 

synchronization would be required 

since multiple q events would be 

expected.  However, this was not done and thus only a single q event is expected.  When an 

event q is received it is expected that object X will transition from state B to state D and 

concurrently transition from state A to state C; however, object X must be in state B already.  

Thus, an event q is not eligible unless an event p has already been received. 

This demonstrates the robustness of the FOIL algebra and the utility of the reduction 

eligibility rule.  Inherently, events that are assumed to occur once must be synchronized.  This 

unique event synchronization is automatically enforced by the algebra.  Figure 6.3 can be 

constructed as follows: 

ErCqDqBpX

ErCDqBCqBpA
CAF

A ...|...

...|.

 

According to the reduction eligibility rule the only term in the expression for object X 

that is eligible for reduction is p.B.q.D since while the second concurrent action starts with a q it 

also appears embedded in the other concurrent action.  It is rather simple to see that the q event 

does become eligible after a p event is received. 

ErCqDqXX BA
p

A ...|.|

  

Figure 6.3  Synchronization Pattern 
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Now, the q event is eligible for reduction.  Thus, the algebra by way of the reduction 

eligibility rule, enforces synchronization among unique events. 

6.1.4 Exclusive Choice 

This pattern represents a single choice between one or more transitions.  This pattern can 

also be viewed as directing a particular thread of execution.  No new threads of execution are 

produced during the execution of this pattern. 

Figure 6.4 shows an example of the exclusive 

choice pattern.  Note the absence of the output ports 

which result in additional threads of execution.  

Without output ports only the single thread that started 

object X in state A will be executed upon either a p or 

a q event.  It is also important to understand that 

object completion does not require that all final states 

be reached.  In the case of Figure 6.4, either state B or state C will be reached but not both; and, 

in either case, the object has finished its behavior. 

C
q

A

B
p

A

A

XX
XX

CqBpX .. 

6.1.5 Simple Merge 

The simple merge pattern represents the merging of one or more alternate paths.  This 

should not be confused with the merging of threads of execution.  In the case of the simple 

merge, there is only one thread of execution; however, the path of that execution merges with 

another alternate path. 

 

Figure 6.4  Exclusive Choice Pattern 
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Figure 6.5 shows an example of the simple merge pattern.  The choice made at state A 

causes a single thread to move 

to either state B or C.  

Regardless of this choice, the 

path of the behavior will merge 

at state D.  Once again, merging 

in this context does not indicate 

the joining of two concurrent threads of execution but merely refers to the merging of the path 

for a single thread. 

The algebra for the simple merge is implicit in its construction and is straightforward. 

D
sq

A

D
rp

A

A

XX
XX

EtDsCqEtDrBpX
EtDDsCDrBCqBpA

.

.

..........
.....

 

The distributive law of choice can be applied to show that states D and E are only 

executed once. 

EtDsCqrBpX A ..).....(

 

6.2 Advanced Branching and Synchronization 

The power of a modeling language is composed of its ability to model complex patterns 

while maintaining model simplicity.  Many of the patterns in common use in object and process 

modeling can be composed of series of simple patterns; however, such compositions can grow 

exponentially resulting in a completely unusable model.  Thus, it becomes necessary to ensure 

that there are simpler notations for more complex patterns. 

 

Figure 6.5  Simple Merge Pattern 
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6.2.1 Multiple Choice 

The multiple choice pattern allows for the optional spawning of multiple threads of 

execution.  In other words, it allows for choosing several execution paths from many 

alternatives. 

Figure 6.6 shows an example of 

the multiple choice pattern along with 

its associated path merging.  In this 

case, events p, q and r will all spawn a 

thread of execution but are optional.  In 

this figure, object X will remain in state 

A as long as one of the events has not 

been received.  Thus, Figure 6.6 will not complete unless all of the optional events are received.  

This can be overcome by adding a synchronizing event that will result in completion without 

receiving all events (see 6.2.3). 

It is interesting to note that if all events are received this pattern is the same as the parallel 

split while if only one event is received it is the same as the exclusive choice.  Thus, this 

construct allows for the range of possibilities between those two patterns inclusively.  

Additionally, the use of output ports for the transitions out of state A are optional since such ports 

would not change the behavior in any way.  Thus, output ports may be added if the spawning of 

threads from this pattern is not clear. 

It is relatively clear that the dotted line represents the possibility that an event may be 

received.  Thus, it is necessary to have an annotation for not receiving an event.  While p 

represents the occurrence of the p event, a !p represents the lack of a p event.  In the algebra, this 

 

Figure 6.6  Multiple Choice Pattern 



  
128    

functions as a placeholder for manipulating the expressions since it is understood that a !p event 

will never be received.  However, some implementations could send a !p event explicitly if it is 

determined that a p event will never be received.  The algebra will handle this case as well. 

Using this notation, the basic definition for the p event option of state A in is: 

pBpA !.

 

This is read simply as: A is defined as receiving an event p and acting like B or not 

receiving an event p at all.  Understanding this, the complete definition of X is: 

)!...(|)!...(|)!...(
...)!.(|)!.(|)!.(

rEuDrqEtCqpEsBpX
EuDEtCEsBrDrqCqpBpA

A

 

Through the application of the distributive laws, this definition can be converted to 

choice-action form. 

rqprEtCqprqEsBprEtCqEsBp
EuDrqpEuDrEtCqpEuDrqEsBpEuDrEtCqEsBpX

rEuDrqpEtCqpqEsBpEtCqEsBpX
rEuDrqEtCqpEsBpX

CAF

A

A

A

|!|!!|!...|!|!|!...|!...|...
...||!!...|...|!...||!......|...|...

)!...(|)|!!...|!|!......|...(
)!...(|)!...(|)!...(

 

This algebra clearly shows the 

state explosion problem that can be a 

result of the placing expressions in 

CAF.  In implementation, the 

underlying system would be better off 

to place this expression in choice-

compressed form (CCF) (see 4.2.2.2).  

Note that the last choice allows for no events to be received but this case must be executed 

 

Figure 6.7  No options chosen but continue 
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explicitly by the firing of events: !p, !q, and !r.  This makes sense because the absence of 

information is not sufficient for the object to determine that it should continue.  Also, the final 

option will result in termination but will not result in arriving at state E as may be desired.  In 

order to accomplish this, an additional option may be necessary as shown in Figure 6.7.  In this 

case, the algebra becomes: 

ErEqEprEtCqprqEsBprEtCqEsBp
EuDrqpEuDrEtCqpEuDrqEsBpEuDrEtCqEsBpX

CAF

A

.|!.|!.!|!...|!|!|!...|!...|...
...||!!...|...|!...||!......|...|...

 

This allows for transition to state E if the system explicitly indicates that no choices will 

be made. 

6.2.2 Synchronizing Merge  

In this pattern multiple 

threads of execution are 

synchronized and then merged into 

a single thread of execution.  This 

is distinguished from the simple 

merge pattern (see 6.1.5), where the 

paths are merged but only one 

thread exists, and the discriminator 

(see 6.2.4), where the threads of execution are merged but are not synchronized. 

 

Figure 6.8  Synchronizing Merge Pattern 
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Figure 6.8 shows an example of the synchronizing merge.  State A is a parallel split that 

causes multiple concurrent threads of execution to be spawned.  No explicit diagrammatic 

notations are required to show the synchronous nature of the merge as the synchronizing of the 

threads occurs implicitly at state D.  Since only one t event is expected, the system implicitly 

understands that all threads must reach state D prior to allowing that event. 

The algebraic representation of Figure 6.8 is not much different than what has already 

been presented in the other patterns. 

EtDsCqEtDrBpX

EtDDsCDrBCqBpA
CAF

A .....|.....

....|.

 

The main mechanism for synchronous merging is the reduction eligibility rule.  As an 

example, note how the following events affect the expression. 

finishedE
EtEtEt

termeligibleannot
EtDsEt

termeligibleannot
EtDsCqEt

EtDsCqEtDr
EtDsCqEtDrBpX

t

s

t

q

t

r

p
A

..|.

...|.

.....|.
.....|...

.....|..... 
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Thus, the reduction eligibility rule enforces synchronization.  It is also interesting to note 

that the algebra without 

modification handles a situation 

where synchronization is optionally 

required.  Figure 6.9 shows an 

example diagram of such a 

situation.  In this case, a 

synchronizing merge will be required at state D until a choice is made at state B.  If an event t is 

received prior to passing state B then it is assumed that u is the only valid event to transition out 

of state B.  The following algebra, without state identifiers, demonstrates this property: 

EtEtrEtEvu
EtsEtrEtsEvu

EtsEtrpEtsEvup
EtsqEtrpEtsqEvupX

EtsqEtrEvupX
EvFEtDDsCDrFuBCqBpA

s

p

q

CAF

A

A

.|...|..
..|....|..

..|.....|...
...|......|...

...|).....(
......|.

 

At this point a decision 

will be made on the next valid 

event.  If an event u or t is 

received then the first choice will 

be used.  If an r event is received 

then the second choice will be 

used.  This makes sense because 

the acceptance of the t event prior to synchronization precludes r as a valid choice out of state B.  

 

Figure 6.9  Optional Synchronizing Merge 

  

Figure 6.10  Forced Synchronizing Merge 
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If it is desirable to have the thread wait at state D until a choice is made at B, a simple use of the 

synchronization pattern can achieve this as shown in Figure 6.10.  In this instance, E and D 

require the same event in order to merge at F.  Thus, if state C transitions to D by event s, an 

event t will still be unaccepted until the thread through state B has made a choice and 

transitioned to either state E, where the synchronizing merge will occur at F, or state D where the 

synchronizing merge occurs right away.  The algebra handles this case without modification and 

is not shown here. 

6.2.3 Multiple Merge 

This pattern means that many execution paths are merged without synchronization and 

multiple threads continue to exist.  This does not represent a merging of execution threads but a 

merging of the path multiple threads will follow.  For this reason, this pattern is often referred to 

as a Path merge. 

Figure 6.11 shows an 

example of the multiple-merge 

pattern.  This diagram looks 

identical to that of the 

synchronous merge with the 

exception of the asterisk notation on states D and E and on event t.  This asterisk is a multiplicity 

indicator.  Thus, a state marked with an asterisk refers to the fact multiple instances of this state 

may exist.  Likewise, an event marked with an asterisk means that multiple events of this type 

may be expected.   

 

Figure 6.11  Multiple Merge Pattern 
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Thus, Figure 6.12 

indicates that the multiple 

threads of execution spawned at 

state A will continue even after 

their paths have merged at state 

D.  Since there are multiple 

state Ds and the expectation that multiple t events will be received then the threads of execution 

are independent and thus no synchronization is necessary.  Figure 6.12 shows another way of 

looking at the same pattern that may make the function of the asterisks clear.  This version of the 

pattern makes it clear that multiple threads will continue to exist independently but that the same 

path will be followed by both threads. 

During the construction of the algebraic representation of the model in Figure 6.11, each 

starred item is numbered sequentially as each instance in encountered during expansion.  Thus, 

the algebra for Figure 6.11 is: 

2211

22211121

...|...
.....|.

EtsqEtrpX
EtDEtDDsCDrBCqBpA

A

 

It is important when using this notation to remember that the numbers do not represent 

any relation to the actual sequence that these states or events will be reached or received.  If 

either the t1 and t2 reductions are eligible when a t event arrives a reduction will occur on that 

instance.  If both are eligible then only one of the instances will be reduced, the choice of which 

is unimportant.  The following sequence of events demonstrates this point. 

 

Figure 6.12  Multiple Merge Pattern Alternate Look 
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211

2211
,

2211

2211

|..
.|..

...|..
...|...

EEtr
EtEtr

EtsqEtr
EtsqEtrpX

t

sq

p
A

 

The t event in this example results in reduction of the second concurrent term despite the 

fact that this is the first t event received but the second term is marked with a subscript of two.  

The subscript notation is important because, without it, the t event would not be accepted at all as 

it would violate the reduction eligibility rule.  Thus, the proper construction of the algebraic 

notation using subscripts for the starred items results in an expression which can be reduced 

without any modification to the reduction rules.  While it is encouraged that the numbering of 

starred items be sequential, in actuality the numbering carries no semantic meaning and thus 

could be arbitrary as long as no two instances have the same subscript. 

6.2.4  Discriminator  

This pattern is the merging of threads of execution, not a merging of paths.  Thus, 

multiple threads become one thread of execution.  The difference is that this merging can be 

done asynchronously.  Therefore, execution of states after the merge is not stopped until the 

other thread catches up. 

Figure 6.13 shows an 

example of the discriminator 

pattern.  In this example, if a p 

and r event is received, the 

subsequent receipt of event t will 

still be accepted event though the 

 

Figure 6.13  Discriminator Pattern 
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other thread of execution never even reached state C. 

Algebraically the function of the input port is similar to that of the optional transitions as 

shown in Figure 6.8.  Each one represents a possibility.  Thus, state B would be represented as: 

0.. rDrB

 

The use of the .0 term is introduced to explicitly show that a thread will terminate.  It is 

not always necessary to show these, as all final states implicitly have this element.  Thus state D 

in Figure 6.13 could really be shown as t.0 or possibly t.E.0, but such explicitness in the algebra 

would only serve to raise the complexity without improving comprehension.  However, in this 

instance, it is desirable to show the termination since it is not at a final state.  Thus, this 

expression can be read as, B is defined as the receiving of event r and then acting like D or 

receiving of an event r and then terminating.  Given this understanding, the full definition of 

object X in choice-action form is: 

0..|0.....|0..0..|......|...

)0.....(|)0.....()0....(|)0....(
)0..()0..(..|.

sqrpEtsqrpsqEtrpEtsqEtrpX

sqEtsqrpEtrpsEtsqrEtrpX
sDsCrDrBEtDCqBpA

CAF

A

A

 

The final term in this definition was dropped since it is completely encompassed by the 

other terms.  Thus, there is no option to accept events p, r and events q, s and then terminate 

completely as other choices have yet to be resolved.  The following demonstrates the behavior 

with events p, q, s, and t: 
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Er
EtrEtEtr

EtsrsEtrEtsEtr
EtsqrsqEtrEtsqEtr

EtsqrpsqEtrpEtsqEtrpX

t

s

q

p

CAF

A

|0.
.|0..|..

..|0.0.|....|..
...|0.0..|.....|..

...|0..0..|......|...

 

The reductions of events p and q are trivial.  The reduction for event s is also trivial 

except to note that the second term loses one of its terms since the terminating .0 is reached and 

the remaining concurrent action can be dropped by the Law of Redundancy (see 4.2.1.3).  The 

most interesting reduction is the t event.  The first choice has a t embedded in its first concurrent 

action so it violates the reduction eligibility rule.  The only acceptable choice is the second term.  

After reduction it is clear that state E has been reached but that completion of the behavior can 

not occur until the r event has been received.  Thus, an asynchronous merge has occurred 

assuring that state E will not be executed twice. 

6.2.5 N-out-of-M Join 

An alternate way of modeling the discriminator pattern of Figure 6.13 is to treat an input 

port as a form of sequential interleaving.  In the case of Figure 6.13, state B would be interpreted 

as having a simple transition to state D, since it has an input port.  It then becomes the 

responsibility of state D to ensure that the input port is satisfied.  Thus, the algebra of Figure 6.13 

would have a construction of: 

0..|0..0..|......|0.....|...

)0.....(|)0.....(

)0..(.|)0..(.

0....|.

sqrpsqEtrpEtsqrpEtsqEtrpX

sqEtsqrpEtrpX

EtsqEtrpX

EtDDsCDrBCqBpA

CAF
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Since this alternate representation is logically equivalent, it is no surprise that the final 

CAF expression is identical.  This is not the preferred way of modeling the discriminator pattern 

because it looks backward into 

the model, which is not done on 

any other occasions. 

This is the only way, 

however, of handling the N out of 

M join pattern.  Figure 6.14 

shows a simple example of this 

pattern.  This example models the situation where event v is not to be accepted until at least two 

of the three threads have transitioned to state D.  This pattern can be viewed logically as a 

complex discriminator with an interleaved condition required for thread continuation.  In order to 

combine these ideas, the alternate form of the discriminator algebra is to be used: 

0..|0..|0..

0..|0..|....0..|0..|....0..|....|0..

0..|....|....0..|....|....0..|....|0..

0..|....|........|0..|0......|0..|....

....|0..|........|....|0......|0..|0..

....|0..|........|....|0......|....|0..

)0.......(.|)0..

.....(.|)0.......(.

)0.)..((.|)0.)..((.|)0.)..((.

0.).(....|.|.

urtqsp

urtqFvuspurtqFvtspurFvutqsp

urFvutqFvuspurFvutqFvtspurFvstqsp

urFvstqFvuspFvturtqspFvturtqFvusp

FvturtqFvtspFvturFvstqspFvsurtqsp

FvsurtqFvtspFvsurFvutqspFvsurFvstqspX

FvuFvtFvsurFvu
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FvutsEEuDEtCEsBDrCqBpA

CAF

  

Figure 6.14  N out of M Join 
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The expression (s+t+u) at the beginning of state E is repeated n-1 times, where n is the 

number represented in the input port notation.  Thus, if the input port were to have no number or 

an explicit one in its notation, then this term would be omitted; or, the construction for the 

discriminator pattern could be used (see 6.2.4).  If the input port notation contained an asterisk, 

then it would have to wait for all thread to converge before continuing, which is a synchronous 

join (see 6.2.2).  Thus, this pattern covers the range of possibilities between these two patterns.       

The following algebraic reductions demonstrate how this pattern would function during 

run-time: 

0..|

0..0..|..0..|.0..|..0..|..|..0..|..

0..|0.0..|0.|..0..|0.|..0..|...0..|...|..

0..|...|......|0.....|0.|......|0.|..
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0..|....0..|....|..0..|....|..

....|0......|0..|......|0..|..
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6.3 Structural Patterns 

These patterns involve the structural aspects of process control flow, not the structural 

aspects of objects.  As such, it is similar to control flow statements or activities found in modern 

programming languages.  FOIL has little trouble representing these patterns. 
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6.3.1 Arbitrary Cycles  

This is a basic looping construct.  

This pattern is primarily supported by the 

manner in which the expression is 

constructed in FOIL.  Recall that a 

unique event is defined as occurring only 

once per iteration.  Thus, by looping a unique event can occur multiple times.  Figure 6.15 shows 

an example of an arbitrary cycle.  Event p is a unique event and thus occurs only once per 

iteration.  Iteration, in this example, is triggered by an event r while in state B.  Algebraically, the 

fact that substitution of terms is done only when unexpanded state terms reach the front of an 

expression is what allows for this behavior:  

ArBpCqBpX
ArCqX

ArBpCqBpX

ArCqpX
ArCqBBpA

A
r

B
p

CAF

A

A

......
..

......

)...(
...

  

Figure 6.15  Arbitrary Cycle 
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6.3.2  Implicit Termination  

This pattern represents a system, process or 

object implicitly terminating when there is nothing left to 

do.  This pattern is so intuitive that is have been used 

throughout this these with little explanation.  Figure 6.16 

shows two examples of this pattern.  Analytically, an 

object or process is said to terminate when all remaining 

states are unreachable (see 5.3.3).  Algebraically, implicit 

termination can be explicitly represented:  

terminated0
0..

0.

B
p

A

BA

X
BpX

XBpX 

This explicitness is usually not necessary but can be helpful in understanding the 

behavior.  For example, note that termination of an object does not necessarily mean that all 

states have been touched or all final states have been reached: 

terminated0
0..0..

00..

C
r

A

CBA

X
CrBpY

XXCrBpY 

Finally, implicit termination does not just refer to a process or object but could refer to a 

single thread of execution.  Algebraically, such representation will always be explicit while 

graphically it may not.  For an example of this refer the discriminator pattern (see 6.2.4). 

 

Figure 6.16  Implicit Termination 
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6.4 Patterns Involving Multiple Instances 

An object-oriented modeling language would hardly be useful without the ability to 

create and manage multiple instances.  Interestingly, this same characteristic is used in process 

modeling to denote multiple copies of a process that run concurrently.  With the ability of FOIL 

to model concurrency, objects can be distributed on multiple systems allowing for each copy of 

an object to run independently.  The following is a review of the main workflow patterns 

involving multiple instances. 

6.4.1 MI without Synchronization 

This pattern involves the ability to create multiple instances of objects without requiring 

synchronization at a future time.  In this sense, it is the simplest of the multiple instance patterns.  

The use of asterisks on event handlers provides a notational indicator that an event may be 

received multiple times. When used on a relationship between objects, it indicates that an event 

received by one object will result in the instantiation of another.   

  Figure 6.17 shows an example of this 

pattern.  When an event t is received and 

object X is in an accepting states (states A and 

B), then a new instance of object Y will be 

created.  Since object X and object Y have no 

events in common there is no need for future 

synchronization.  If a global event r was 

received and there were two instance of Y then a synchronization condition might result, but if all 

events for instance of object Y are locally specified, no synchronization will occur in this system.  

The algebraic construction is: 

 

Figure 6.17  MI without Synchronization 
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Note that the receiving of an event t results in expansion of the expression to include Y 

and an iteration of state A of object X: 

FYsYrYXYtXtXqtFYsYrYXXq
YXYtXtXqtYXXqX

FsrY
YYsYYrY

ABCAC

ABCAC
t

FFEED

111222111

222

..||.|.|....||.
||.|.|..||.

..
0..

 

The expansion of XA will result in redundancies which can be eliminated based on 

previous laws; however, this expansion is not shown here as it is a long and relatively trivial 

exercise. 

6.4.2 MI with Priori Design Time Knowledge 

This pattern involves the creation of 

multiple instances where the number of 

objects created is known at design time.  

FOIL allows, in addition to the asterisk, the 

placement of a number to represent the 

number of times that an event is 

acceptable.  Figure 6.18 shows an example 

of this pattern.  The relationship between class X and class Y indicates that exactly two instances 

of object Y will be instantiated.  Since, all of the states in object X are accepting, the exact time 

of their creation is unknown. 

 

Figure 6.18  MI with Priori Design Time Knowledge 
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The algebraic construction requires that all event t results be pre-expanded the specified 

number of times.  The creation of an arbitrary loop resulting from a t event would allow for an 

unbounded number of Y objects (see 6.4.1), which is clearly not the intent.  Given this, the 

algebraic construction for each state is: 

)..|)...(.()...(
)..|.|)..|..(.()..|..(.
)..|.|)..|..(.()..|..(.

111222211111

111222211111

111222211111

FYsYrYFYsYrYttFYsYrYtX
FYsYrYXqFYsYrYXqttFYsYrYXqtXqX
FYsYrYXpFYsYrYXpttFYsYrYXptXpX

C

CCCCB

BBBBA

 

Creating full expression and applying the various laws would actually result in: 

FYsYrYtFYsYrYtXqpX C 22221111 ...|...|..

 

This massive reduction in the size of the expression occurs because all states in object X 

are accepting and thus the creation of the two Y objects can occur at any time concurrently with 

normal behavior of object X.  In some cases, this behavior may not be desirable.   

A more complicated case occurs 

when state B is in a non-accepting state.  

Thus, there are two instances of object Y 

required but they must be created in one of 

three ways: both while in state A, both while 

in state C, or one in each of states A and C.  

Figure 6.19 shows an example of such a case.  

The algebra in this case does not simplify as nicely as the previous. 

 

Figure 6.19  MI Creation Restriction 
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Substituting terms and expanding all expressions using the distributive laws: 

FYsYrYtCqptFYsYrYttFYsYrYtCqptCqp
CtFYsYrYtqpCttqpFYsYrYttqpCtqpFYsYrYtqpX

111112222111111

11111212222111111

...|...|.......|.....
.|.....|....|.........|.....

 

The expanded expression in choice-action form has many terms which are inherently 

inconsistent or violate one of laws.  These concurrent terms are eliminated from the expression to 

produce a simplified and final CAF expression.  This final expression shows that there are 

actually five choices, not just the three outlined previously.  While it is true that there are only 

three ways to create the two Y objects, it is clear from the algebra that this system only limits the 

number of Y objects to three.  Inspection of the algebra shows that there is a possibility that zero 

or one event t will be received.  So, in this case, the design-time specification of two acceptable t 

events is merely a constraint on the creation of new Y objects.   

Also, it is obvious from the verbose 

algebra, that there is still not a defined moment 

in which the Y objects will be created.  If it is 

desired to ensure that exactly two Y objects 

will be created and that they will be created at 

a certain time, then a different diagram is 

 

Figure 6.20  MI with Increased Determinism 



  
145    

required, such as Figure 6.20. 

6.4.3 MI with Priori Runtime Knowledge 

The pattern represents a condition 

in which the number of objects that will be 

instantiated for a particular class is not 

known at design time.  In FOIL this 

particular pattern is actually easier to 

model than the design-time scenario.  

Figure 6.21 shows an example of this 

pattern where at some point prior to state B, the number of t events that will be fired after state B 

executes is determined.  This causes the creation of a fixed number of instances of object Y but 

the exact number is known at some time during execution but not at design time. 

YttpXttpCqttpCqtpX

YXCqtCqtpX

CXYXXqtXqtXXpX

B

CAF
B

CBCCBBA

..*.|..*.|...*...*.

)))||..(..(*.(

))||..(..(*.

111

1

1

 

Initially the only eligible event is p, but after reception, an indeterminate number of t 

events will be fired.  It is fairly easy to see that each event will result in a new Y object.  The 

recursion occurs with the substitution of the XB term. 

 

Figure 6.21  MI with Priori Runtime Knowledge 
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6.4.4 MI with no Priori Runtime Knowledge 

This pattern results from the system 

being unaware of exactly how many 

objects will be instantiated both at design-

time and at run-time.  This is most likely 

caused by the system responding to outside 

events.  Since the FOIL modeling language 

is an event driven approach this particular 

pattern is extremely simple.  Figure 6.22 shows a graphical example of this pattern in FOIL.  The 

algebra is likewise relatively simple: 

YtpXtpCqtpCqpX

YXCqtCqpX
CXYXXqtXqXXpX

B

CAF
B

CBCCBBA

..|..|.....

))||..(..(
)||..(..

111

1

1

 

This pattern is frequently used in a context of a listening device that will infinitely 

respond to events.  In fact, this pattern has actually already been previously demonstrated with 

the MasterController class in the elevator example (see 3.4). 

6.5 State-Based Patterns 

This group of patterns is based on the idea that control flow is impacted by system state.  

In other words, if the system is in a particular state it will force or restrict various choices.  Since, 

FOIL is, at its core, a state-driven modeling language, these patterns are not especially 

challenging to implement or follow.  The only exception is, possibly, interleaved routing which 

requires special notation to avoid the model growing to an unusable size. 

 

Figure 6.22  MI with no Priori Runtime Knowledge 
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6.5.1 Deferred Choice 

The pattern represents that ability 

of a system to respond to a choice that may 

not be immediately apparent, but will be 

determined by future events.  FOIL 

actually depends on this truth in order to 

allow for the Distributive Law of Choice 

(see 4.2.1.1).  Class X of Figure 6.23 shows 

a simple example of this pattern.  The p 

event will result in a transition to either 

state B or state C.  The absence of any output ports means that only one path can be chosen but 

the correct transition can not be determined until a subsequent event is received.  If event q is 

received than the path to state B is chosen.  Conversely, state C is chosen if the next eligible 

event received is event r.  In the simple case, the algebra shows that object X would coexist in 

states B or C until another event is received. 

ErDqXX
ErCpDqBpX

ErCXDqBXXpXpX

CB
p

A

CAF
CBCBA

..
......

......

 

This particular situation creates difficulties algebraically if state B and/or C is an active 

state.  While it may be desirable to have both states execute their code and have one thread 

terminate, this is usually not the intended behavior.  Object Y of Figure 6.23 shows such an 

example.  In this case, a simple rule can be applied to prevent such occurrences.  It is logical to 

assume that the state execution can not be started by two different choices; hence the algebra can 

 

Figure 6.23  Deferred Choice 
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be converted to bring the next event forward in the expression to allow for that choice to be made 

first. 

ErCCCCDqBBBBX
ErCCCCpDqBBBBpY

ErCCCCYDqBBBBYYpYpY

p
A

CAF
CBCBA

.....̀`.....̀`

.....̀.̀.....̀.̀

.....̀`.....̀`..

 

Since each choice is supposed to fire an execution event to start processing this would 

result in a race condition as the first event to be received would eliminate the remaining term.  In 

addition to being total unacceptable, it is not logical for concurrent events to fire when no 

concurrency is warranted.  Thus, by moving the next eligible term to the front of each offending 

expression the decision is postponed. 

ECCCCrDBBBBqX p
A ....̀.̀....̀.̀

 

6.5.2  Interleaved Routing 

This pattern is concerned with 

sequential operation of multiple control 

flows, but in no predetermined order.  In 

other words, two or more flows need to 

be executed but they can not be executed 

at the same time.  The order of execution 

is unimportant.  Figure 6.24 shows a 

FOIL diagram of a simple interleaved 

routing situation.  Once object X receives 

 

Figure 6.24  Interleaved Routing 
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an event p, then either the q or r events will be exclusively allowed.  The algebra constructed by 

a series of sequential choices where the interleaved construct is considered its own state I: 

DsCrBqpDsBqCrpX

DsCrCrpDsCrBqpDsBqCrpDsBqBqpX
DsCrBqCrBqpX

DsCrBqCrBqIIpA

CAF

............

........................
.)...).(...(

.)...).(..(.

 

Substitution of state B or C in the above example can be expanded to include any 

independent flow.  If the control flows cross in any way, or if they have a dependency on one 

another, then the algebraic expression would completely cancel out.  This would indicate that 

such a pattern would not function.  Object Y in the above figure demonstrates a slightly more 

complicated object control flow with some notational variations. 

A transition without an event could be considered to be an automatic transition.  In most 

cases, this is not desirable as such a construct just adds notational complexity without adding any 

meaning.  Object Y in Figure 6.24, however, would like to execute two independent sequences 

one at a time but does not need a starting event to indicate that it wishes to start such a process.  

In this case, transitioning into or out of an interleaved construct is implicit as the algebra 

indicates: 

DGurFtqDGurEsqDFtqGurDEsqGurY

DGurDFtqDEsqGurFtqEsqY
DGurFtEsqGurFtEsqY

GuCFtEsBDCrBqCrBqIIA
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........................

).........).(......(
)...)...().(..)...((

...)...).(..(
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6.5.3 Milestone 

The milestone pattern involves other objects or processes waiting until another has 

reached a particular event has occurred.  Synchronization of objects or processes may or may not 

occur with this pattern.  This is because if all flows are, in fact, waiting on the milestone to be 

reached, then it is logical to say that when the milestone is reached the flows will be 

synchronized.  If, however, the milestone is reached before affected flows are waiting then no 

synchronization occurs. 

Figure 6.25 shows an example of 

this pattern.  In this example, the 

assumption is that objects X, Y, and Z are 

all instantiated and currently in their 

starting states.  The milestone occurs at 

state B of object X.  Object Y is not 

allowed to proceed past state F and 

object Z is not allowed to proceed past 

state J until an event x has been received.  

This event is immediately fired by object 

X upon arriving at state B.  The use of a concurrent thread in modeling this pattern ensures that 

synchronization has to occur at YF and ZJ respectively, but that event x may be received at any 

time.  This example does not prohibit x from being fired from outside object X, however, such 

constraints can be applied through the use of event scope if desired. 

The following is the algebraic construction with state notation of the system in Figure 

6.25: 

 

Figure 6.25  Milestone 



  
151    

KwJxHJvIuHZGtFxDGtFsErDYCqBxpAX
CAFCAFCAF

....|........|...........

 
Since these objects each execute independently, the system expression would be: 

KwJxHJvIuHGtFxDGtFsErDCqBxpAS
CAF

....|....|....|......|.....

 

The following demonstrates this pattern during run-time: 

KwJxJvIuGtFxGtFCqBxp
KwJxJvIuGtFxGtFsCqBxp

KwJxJvIuGtFxGtFsErCqBxpS
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At this point during execution, object Y can not completely arrive at state F since there is 

still a state F term in a concurrent expression.  It is clear that object Y can not continue until an x 

is received.  This will move the remaining F state to the front of its concurrent term making it 

eligible for reduction.  Once object X arrives at state B all restrictions on the objects are removed. 

KwJJvIuGtCqB
KwJxJvIuGtFxGtFCqBx

x

p

..|...|.|..
...|...|...|..|...

 

When x is fired, object Y arrives at state F and can continue with processing.  Object Z 

was practically unaffected by the receipt of event x.  It no longer has to synchronize with object 

X.  Thus, in this scenario, object Y synchronizes at the milestone and object Z never does. 

6.6 Cancellation Patterns 

These patterns, while important, are among the simplest in workflow processing.  These 

patterns involve causing a process or series of processes to stop execution.   
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6.6.1  Cancel Activity 

The cancel activity pattern is simply ensuring that the 

receipt of an event will cause all processing of an object to 

cease.  It is simple to see how FOIL could implement such a 

pattern.  Figure 6.26 shows an example of this pattern using 

an optional notation to indicate that the thread terminates.  There is no need to actually label the 

destination state for cancellation; however, in practice this would likely be desired to give an 

underlying implementation an indication of what state an object is in.  Obviously, the modeling 

must ensure that a cancellation event terminates all concurrent threads of an object regardless of 

what state the object is in.  This concept, while logically simple, can result in a very busy 

diagram.  An alternate notation indicating that all states in the diagram have a choice to transition 

to the cancelled state could be used but is not provided here. 

6.6.2 Cancel Case 

This pattern is really just an extension on the previous pattern and ensures that a 

cancellation causes a group of related objects or processes to all terminate concurrently.  Once 

again, this pattern is no challenge to the FOIL algebra; however, it may be a notational challenge 

if explicitly modeled, since every state of every object or process involved would require a 

transition to a cancelled state.  In addition, the ability to restart a canceled case can be easy or 

difficult depending on whether the modeler wants to always restart at the beginning of a process 

or, instead, desires a restart from the previous object state. 

 

Figure 6.26  Cancel Activity 
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7. PROCESS ANALYSIS 

The Formal Object Interaction Language (FOIL), as has already been discussed is 

capable of modeling process flows as well as object diagrams.  FOIL does this using primarily 

the same notational elements for both models.  In addition, both models have a common 

underlying mathematical representation.  Given that two models have an algebraic 

representation, it is logical that if there exists any intersection in the events received by these 

models, certain mathematical operations may offer insight into their interaction. 

7.1 Process Achievability 

The concept of process achievability is centered on the idea that a process can be 

completed given a particular object model.  This does not indicate that a process will be 

completed.  Since any FOIL object model can be effectively canceled at any time, it can be 

argued that there is never any guaranty that a process will complete; however, this is not 

considered as part of the definition: 

A process is said to be achievable if during the pursuit of local completion of 

object workflow on a corresponding object model, a given process has the 

potential to complete. 

Determining the achievability of a process is a useful metric.  It can be used to reject 

object models that can not perform a certain process.  In addition, if it is desirable to ensure that 

a process will always complete, achievability metrics can be used to determine the 

modifications to the object model that are necessary. 



  
154    

The technique for determining achievability involves a look-ahead simulation of a 

process on the object model.  Figure 7.1 shows a simple FOIL object model (objects X and Y) 

and a corresponding FOIL process model (processes M and N).  The algebraic representation of 

objects X and Y in choice-action form are: 

LyJwIKxJwIY

HvCqAYzBpABzBpAGuFrzBpA
HvCqAYzBpABzBpAEtDszBpA
HvCqAGuFrBpAHvCqAEtDsBpAX
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i

ii

CAF

........

....|....|....|.......
....|....|....|.......
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The algebraic representation of processes M and N in choice-action form are: 

SuRxN

NvQwONvPrOM
CAF

CAF

...

....|.... 11

 

The algorithm for determining achievability uses a simple backtracking technique applied 

to the process and object expressions.  Each eligible process event is placed in a process event 

 

Figure 7.1  Process Achievability 
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stack U.  The first event is removed from the stack and a search is done to determine which 

choice terms in the object expression have the event.  This event is referred to as the search 

event.  Each eligible term in the object expression is assigned a weight proportional to the depth 

at which the search event occurs and pushed onto a choice stack V in descending order.  The 

term with the lowest weight is then simulated by popping stack V and firing events up to and 

including the search event.  Then, all eligible process events are placed in the stack U and the 

process is repeated.  If after each iteration, the process expression is reduced to 0 then the 

process is achievable.  If the both stacks U and V become empty prior reducing the process 

expression to 0, then the process is not achievable. 

Using the example of Figure 7.1, the following demonstration is given to determine if the 

process of M and N is achievable with the object X and Y: 

11

11

...|...
....|....

NvQwNvPrM
NvQwONvPrOM

start

CAF

 

At this point in process M the eligible events are r and w.  These are pushed onto the 

stack Z. 

},{ rwU

 

Event w is popped from the stack and a search is done on the object expression X to 

determine which choice contains an event w.  This is intuitive since in order for the process to 

complete, an event w must be accepted at some time during the object model workflow. 

{}Xw
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The search for an event w in the object event model results in an empty set of terms.  

Thus, event w is not a valid choice and the next term is popped from the stack, in this case r. 

}5:....|....|....|.......
,4:....|......{

HvCqAYzBpABzBpAGuFrzBpA
HvCqAGuFrBpAV

i

 

The search for event r in the object expression results in a set of two possible choices for 

execution.  These choices are assigned a weight based on the first appearance of event r in their 

expressions.  In this example, there are two choices eligible.  The first choice has event r 

appearing as the fourth term, while in the second expression event r is the fifth term.  A 

simulation is then run on the object expression by reducing the expression with all events 

necessary to reduce event r starting with the lowest weight choice. 
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After the reductions, the process expression is reduced with event r as follows: 

11 ...|. NvQwNvM

 

The next eligible events are pushed onto stack U.  Event V violates the eligibility rule and 

thus is not pushed onto stack U. 

}{wU
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It is clear that event w in stack U can not be processed with the object expression in its 

current state.  Thus, stack U becomes empty and stack V must be popped to attempt the second 

choice. 
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As before, the next eligible process events are placed on the stack: 

}{wU

 

Event w appears in every choice in exactly the same place, so the order in which these 

choices are pushed onto stack V is unimportant. 
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The process expression is now: 
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This process continues as follows: 
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For simplicity, stack V is not shown in these last steps; however, it should be noted that 

stack V will continue to grow with each step. 
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The process expression M completes 

and thus this process is achievable with the 

object model given by X and Y.  The same 

process which is achievable with the object 

model of Figure 7.1 can be non-achievable 

with a different object model.  Figure 7.2 

shows an example of an object model that 

would not be achievable with the previously 

defined process model M and N.  While it may 

not be obvious at first glance, intuitively it is 

simple to see that events r and u are mutually 

exclusive in object X.  Thus, since the 

 

Figure 7.2  Defunct Object Model  
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combined process of M and N required both events, this object model can not be used to achieve 

the process.  This is referred to as a defunct object model. 

7.2 Process Determinism 

Another concept of importance related to that of achievability is that of determinism.  A 

process is said to be deterministic if for every conceivable event sequence that results in object 

model workflow completion, the process is guaranteed to complete.  Recall that achievability 

says that a process can complete given a specific object model.  Determinism means that a 

process will complete.  The proof that a process is deterministic is two fold.  First, prove that 

the process is completely achievable.  Second, prove that for every control flow path in the 

object model the sequence of events is in keeping with that in the process model. 

7.2.1 Determining Complete Achievability 

A process P is said to have complete achievability with respect to an object 

model O if for every path to completion in O, process P is achievable. 

A slight modification of the object model in Figure 7.1 is shown in Figure 7.3.  It is not 

completely obvious that with this object model, the process of M and N of Figure 7.1 can be 

completed regardless of the path.  Classification of a process as wholly achievable is done by 

performing the achievability algorithm as described in 7.1 with two modifications: 1) Record all 

choices that lead to an achievable result and place in a set , and 2) do not discontinue the 

algorithm when achievability is proven, but instead continue until all stacks are empty. 
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Given an object model O and a 

process model P, let S be the set of all paths 

through the object system O and let 

 
be the 

set of all eligible paths through the object 

model O that achieve the process P.  Thus, 

process P is said to be achievable if: 

{}andS 

Process P is said to be completely 

achievable if: 

{}SandSS

 

Thus, after full completion of the 

achievability algorithm, if the total set of 

eligible choices that will result in completion of the process is the same as the set of all choices 

to complete the object model, then the process is completely achievable.  The logic is simple: if 

all choices can complete the process, then there are no choices that can not complete the 

process.  Thus, the process can always be completed. 

 

Figure 7.3  Completely Achievable Process 
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7.2.2 Determining Process Determinism 

This still does not prove that a 

process model is deterministic.  In order 

to complete the proof, it must be shown 

that the process is completely achievable 

and that for every eligible sequence of 

events the process will be completed.  

While the model in Figure 7.3 is 

completely achievable with respect to the 

process model of Figure 7.1, it is not 

deterministic.  While every path can result 

in completing the process of Figure 7.1, 

note that the process model requires that 

event w be received prior to event v.  The 

object model does not enforce this 

constraint.  Thus, if an event v were received before event w, the object model would continue 

reductions normally but the process would no longer be valid. 

Figure 7.4 shows a further modification of the object model to ensure determinism.  

Performing the achievability algorithm would indicate that this object model is completely 

achievable.  The second step in proving that this process is deterministic resides in the fact that 

during the achievability algorithm backtracking in stack V only occurs as a result of completing 

the process. 

 

Figure 7.4   Process Determinism 
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Recall that during the achievability algorithm, if a process could not be completed given 

a certain choice, this processing was abandoned and the next choice in stack V was tried.  In the 

process of determining complete achievability, stack V is popped when either a path is 

abandoned or a process is completed.  If stack V is exhausted only because all paths resulted in 

completion of the process, then the process is guaranteed to complete regardless of the path 

chosen.  Thus, the process is deterministic. 
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}...|..........|........
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This example demonstrates that all terms in the object model can be followed to complete 

the process.  Since the set of all choices S is equal to the final set of all achievable choices , the 

process model is completely achievable using this object model.  In addition, during the 

achievability algorithm, every choice placed in stack V was achievable and thus this process is 

also deterministic. 

7.3 Process Enforcement 

The previous example of process determinism shows that creating a object model that 

guarantees the completion of a given process is possible and can be verified; however, it can be 

quite difficult with large models to create such models.  An alternative to this approach is to use 

a process model as a constraint on an object model.  This provides a simpler mechanism of 

guaranteeing completion of a process.  The method for constraining the object model is by 

ensuring that any event received during execution of the object model that also exists in the 

process model must be eligible in both models. 

In order for this to function properly, a process must be completely achievable on a given 

object model.  The reason for this is quite simple.  If there are paths which may be followed in 

the workflow of an object model that do not result in process completion it is likely because 

these paths do not contain events that exist in the process model.  Figure 7.1 shows a process 
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model that is achievable with respect to the object model.  If the process model is used as a 

constraint against the object model, it does not guaranty completion. 

MineligiblenotisbutMinexistsvX
processinexistnotdoessNvQwNvPrM

HvCqEtX
processinexistnotdoespNvQwNvPrM
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Thus, two things can occur when attempting to constrain an object model with a 

incompletely achievable process: deadlock or object completion with no corresponding process 

completion.  In this example, a deadlock resulted as event v is constrained by the process but 

enabling events r and w no longer exist in the object model.  It is a trivial exercise to create a 

model where a path in the object model contains no constraining events in the process model.  

Thus, the object workflow would complete without the process even starting. 

Using a completely achievable process model does not have this problem, as all paths can 

result in completion of the process.  Recall that the only thing preventing a completely 

achievable process from being completed is the correct events occurring in the wrong order.  

However, if the process model is used to constrain the order of events, then the process model is 

guaranteed to complete. 

As shown earlier, the process model of Figure 7.1 is completely achievable with respect 

to the object model in Figure 7.3 but is not deterministic.  The main problem reason this model is 

not deterministic is that the process must receive event v before event x but this is required in the 

corresponding object model.  The following demonstrates how the process model is used to 

ensure proper sequence of received events. 
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At this point in execution, it is clear that event v is eligible in the object model but it is 

not in the process model.  Thus, a receipt of an event v will be rejected since the process 

modeling is enforcing sequence in the object model.  The only other eligible events in the object 

model are events r, s, and w.  These are completely eligible since events r and w are eligible in 

the process model and event s is not constrained by it.  Continuing with execution: 
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Now in addition to event v, the u event is eligible in the object model but is not in the 

process model.  Thus, events u and v are ineligible. 
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This demonstrates the ability for a process to be used as a constraint on an object model.  

This is obviously unnecessary if the process is already deterministic, but it offers another 

alternative to creating and refining a deterministic model that, in practice, can be quite difficult. 

7.4 Document Management Example 

The Formal Object Interaction Language (FOIL) object diagrams can be used to model 

complex systems.  In FOIL, the process and object models use the same notational elements and 

algebraic constructs.  By the algorithm described in this chapter, the object model can be 

simulated to determine if it can perform the work of the process model (achievability).  More 

importantly, if the object model is built correctly, the process model can be used as a constraint 

on execution during run-time. 

7.4.1 Object Model 

Consider a document management system in which there are multiple documents and 

multiple logons.  A System User initiates a Session with the application and authenticates.  There 

are two types of logons: a User logon and an Editor logon.  There only difference between these 

two types of users is that the Editor can edit a Document while the user can merely open and 

close a Document.  Multiple Users can open a Document at the same time, but no User may open 

a Document that is being edited.  An Editor may not edit a Document that is open but must wait 

until all Users have closed the Document.  To avoid resource starvation, if an Editor requests to 

edit a Document that is currently open then no other User may open that Document until the 

Editor completes the changes.  Figure 7.5 shows the FOIL object model for such a system.  
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Figure 7.5  FOIL Document Management Object Model 
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This model is very concise, containing 

all of the necessary components to ensure all 

of the constraints listed previously.  For 

instance, the locking property of an Editor 

request as discussed is an important aspect of 

this system.  This behavior is completely 

specified in the Document object.   

Figure 7.6 shows the Document object 

in this example.  When an s event is received the document is created and is immediately opened 

by the submitting User.  After the submitting User closes the document then other Users may 

open it.   

Each state and event is replaced with a letter in order to demonstrate the locking behavior 

with FOIL algebra.  The following shows the construction of the Document object expression: 

FrlaaceooFrlaaecooFocooVocoo
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WeooFcoo
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In order to keep this expression simple for demonstration purposes, there is no specific 

object instance qualifier and state markers are not used.  In addition, the behavior of active states 

is abbreviated for state A and is not shown in state V.  These simplifications can be made because 

they do not impact the result in this case.  The following demonstrates the algebra for two Users 

opening a Document and then an Editor requesting to edit the document. 

 

Figure 7.6  FOIL Document Object 
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Lines 1 and 2 show the initial submission of the document.  The initial creation reduces 

the expression such that an o event is fired.  Thus, the document is open immediately upon 

submission by a user.  Line 3 shows that the document was closed by the submitter.  Lines 4 and 

5 show that a user opened the document.  This reduces the expression and substitution is 

performed.  Lines 6 and 7 show that an additional user has opened the document and that 

substitution of terms has again been performed.  Line 8 shows the reduction that occurs when an 

editor requests to edit the document.  This results in an immediate transmission of event a, to 

indicate the starting of the active state code, but only one term is in a state to receive this event 

(line 9).  Thus, in line 10, it can be clearly seen that no one may open a document (event o) until 

the users close the document (events c1 and c2) and the editor releases the document (event r). 
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7.4.2 Process Model 

Thus, the algebra constrains the system to prevent problems.  In the example of Figure 

7.5, users must be authenticated in order to perform any task.  Behavioral inheritance is 

demonstrated as an editor is a type of user but can also edit document.  This completely 

conforms to the concept of inheritance as discussed in section 5.2.2.  Despite this concise object 

model complete with inheritance, concurrency and resource management, it does not guaranty 

that it will perform its desired function.  

Figure 7.7 shows a FOIL model for a process that is desired to be performed using the 

FOIL object model in Figure 7.5.  This process is composed of two activities.  First a document 

is submitted by a user; then it is desired that two editors make changes to the document.  The 

editing steps to this process can be performed concurrently.  Note the use of behavioral 

 

Figure 7.7  FOIL Document Management Process Model 
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inheritance with respect to these to activities.  This could be referred to as process inheritance but 

it does not significantly differ from that discussed for objects in section 5.2.2. 

7.4.3 Achievability 

The remainder of this section is devoted to demonstrating the concepts of this chapter as 

they apply to determining whether the process in Figure 7.7 is achievable with the object model 

of Figure 7.5.  While this section contains a large amount of algebra, it is necessary to 

demonstrate the usefulness of the process validation feature of FOIL.  For simplicity, state 

markers are shown in the initial construction but are removed during the validation process.  

Since this example involves multiple classes and multiple instances of the same class, object 

qualifiers are required.  These are not shown during initial class construction but are added 

during object instantiation.  Stack V during the achievability algorithm is not shown as its 

function in this example is trivial.  The following two diagrams are identical to the previous 

models but have had their events and states substituted with letters for algebraic representation. 

 

Figure 7.8  FOIL Document Management Process Algebra 
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Figure 7.9  FOIL Document Management Object Model 
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7.4.3.1 Object Model Construction 

The following show the construction of each object in the object model: 
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Session Object (S) 

IyyxrzuuppxazuuppxUuuppx

rzddppxazddppxEddppxrzppxazppxS

IyyAx

rCzuuVppAxaCzuuVppAxUuuVppAx

rCzddVppAxaCzddVppAxEddVppAx

rCzVppAxaCzVppAxS

CzuuUuuCzddEddCzV

raCCzUuCzEdCzduV

IyVpypAAxI

CAF

CAF

CAF

.........|......|.....
......|......|.........|....

....
.........|.........|.......
.........|.........|.......

.......|.......

...|.....|...

)|()).|.().|.(.).((
)..).((.

 

System Expression ( )

 

.|.)|.( qSqSq i

CAF

i

 

7.4.3.2 Process Model Construction 
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7.4.4 Achievability Algorithm 

Iteration 1 
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Iteration 3 
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Step 5 

Note that the process model allows for an edit event, this is not a problem as the object 

model does not allow U1D1e. 
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Iteration 7 
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Iteration 8 
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Iteration 9 

ElEeEpSxSqrEP

qSqrSzSaSzSIErErSzSaSzSVUoU

IUDUDUDUcUoUADUeDU

IUDUDUDUcUoUFDUoDUcDUoDU

qqlEU

lE

i

lE

.....|

.|.|.|.|.|.|.|.

|'..`.`..|.

|'..`.`..|..|

},,{

333322

2222221111111

111111111111

1111111111111111111

2

2

2

 

Iteration 10 
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For brevity, the algorithm is terminated at this point because it is clear that the system 

state is similar to that of iteration 6 and the only remaining term in the process equation is also 

the same as that of iteration 6.  Thus, in this case, it is not necessary to show the final steps.  The 

anticipated completion of the process simulation demonstrates that, indeed, this process can be 

performed by the object model.  A complete execution of the algorithm showing stack V and 

emptying state V would also demonstrate that this model is also completely achievable.  Thus, 

the process model of Figure 7.7 can be used to enforce event eligibility on the object model of 

Figure 7.5 during run-time to guaranty that this process will complete. 
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8. CONCLUSION AND FUTURE WORK 

The Formal Object Interaction Language (FOIL), as presented in this thesis, is a complete 

modeling language that can model software structure, behavior and process using a single unified 

notation.  All aspects are reflected algebraically for analysis and verification.  In this thesis, there 

have been three examples given of systems modeled using FOIL.  These examples demonstrate 

all the major features and benefits of FOIL and provide a significant range of complexity.   

While not addressed in this thesis, the complexity of modeling a system in FOIL is not 

substantially more difficult than standard Unified Modeling Language (UML) and likely to be 

simpler than Object Petri-nets (OPN).  Experience in using FOIL for the examples in this thesis 

suggests that FOIL requires more abstract thinking than simpler languages, but with some 

practice is suitable for real-world applications.  A cursory overview of FOIL suggests that it is 

ideally suited for an executable modeling language.  At a minimum, FOIL is a springboard to 

spur renewed interests in formal graphical modeling languages. 

8.1 Benefits and Limitations 

The Formal Object Interaction Language (FOIL) is designed to be a complete and 

comprehensive graphical modeling language.  FOIL is meant to have a user friendly graphical 

notation while providing more expressive power.  It was intended that FOIL be able to model 

structure, behavior and process with a single notation, and with a common mathematical 

underpinning.  Complete support for behavioral inheritance and concurrency were key design 

goals.  Finally, the ability to verify that a process can be completed by an object model is a 
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unique advantage.  It is likely that there are modeling languages and frameworks that are 

superior to FOIL in one or more of these areas.  This thesis was specifically written to show that 

FOIL is unique in its ability to perform well in ALL of these major design areas. 

8.1.1 Graphical Notation 

Graphically, the Formal Object Interaction Language (FOIL) is comprised of what has 

worked well in current modeling practices.  The basic structure of the class diagram, as provided 

by UML, has remained effectively unchanged in FOIL.  Many of the attributes and methods 

required in standard UML are not necessary in FOIL.  The reason for this is that many of the 

attributes and methods in the UML notation are used to implement object behavior.  Since FOIL 

represents behavior graphically (where the UML class diagram does not), many of these 

attributes and methods are specified in the behavioral portion of the class notation.  Additionally, 

as used in the Business Object Notation (BON), attributes can be specified as read-only, while 

UML requires an attribute and method to accomplish this feature.  The focus on FOIL structural 

modeling was to follow the example of UML but simplify the notation to avoid redundancies and 

allow room for behavioral specification without making the diagram overly complex. 

The behavioral specification of classes in FOIL is a completely new notation but should 

look familiar, as a hybrid of simple state diagrams and Petri-nets.  The choice to use ports to 

model variations of concurrent behavior stems from the desire to remove the token

 

concept 

from Petri-nets.  In the Object Petri-net (OPN) notation, a class can basically function as a 

process or a token.  This requires that the modeler know which function a class is performing in 

the model.  The idea with FOIL was to keep the structure of a typical UML class diagram, where 

such distinctions are not necessary, while still providing complete support for concurrent 

behavior within and between objects. 
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Many of the notations for behavioral modeling were designed specifically to prevent the 

system diagram from becoming overly large or complex.  This problem is well-known in other 

modeling languages, such as Petri-nets, but have had solutions offered by other languages such 

as YAWL and BON.  Specifically, FOIL uses the concept of optional events (represented by a 

dotted line), that would require significantly more diagrammatic elements to represent with basic 

notations.  Also, the notation for interleaving could be modeled as a serious of sequential steps 

encompassing all known possibilities but this quickly becomes incomprehensible as the number 

of sequential steps grows beyond three (see 8.2.1). 

The focus of FOIL process modeling was to ensure a consistency with the FOIL 

modeling notation for structure and behavior.  As such, the process model, from a high-level, 

flows much like many of the process modeling notations in current practice such as UML 

activity diagrams, YAWL, SEAM, and Business Process Diagram Notation.  However, the 

internal behavior of processes can be represented by more complex specifications than most of 

these languages.  This behavioral specification of processes in FOIL is done in the same way as 

that of objects.  The goal, again, was to maintain similarity with current methods, where such 

features did not inhibit the ability of FOIL to model all know workflow patterns or ruin the 

ability of FOIL to be used for mathematical analysis and verification. 

Finally, the behavioral notation of both classes and processes in FOIL was designed to 

ensure that the construction of the mathematical expressions could be done on a state-by-state 

basis.  By maintaining this notational property, the mathematical construction assures that a 

system expression is the combination of all class or process expressions and that these 
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expressions are a combination of their individual state expressions.  This is critical in the 

scalability of the modeling language both graphically and mathematically. 

8.1.2 Algebra 

The FOIL algebra is heavily modeled after -calculus.  Since, some of the features in -

calculus, such as scoping, are not necessary, the process algebra expressions in FOIL are 

simplified.  The algebraic construction of a system is done in a bottom-up fashion allowing for 

progressively more complex models to be built while assuring that, if graphical conventions are 

followed, there is always a corresponding algebraic representation. 

The elements that truly make FOIL useful for mathematical verification are graphically 

implicit.  This allows for fairly complex analysis of a FOIL model without adding significantly 

complex graphical constructs.  The concept of event scope is added to ensure that mathematical 

reductions can have sufficient granularity and selectivity in their response to the system.  The 

added concepts of unique and non-unique events are used to ensure that a reduction eligibility 

rule could be provided to ensure run-time and design-time verification of system state.  Finally, 

the concept of non-events is given to allow for an externally responsive system where certain 

actions are optional without requiring excessively large graphical representation. 

The construction of FOIL algebraic representations is done on a state-by-state basis.  

After construction, the various laws and identities offered for the FOIL algebra allow for the 

manipulation of the algebraic expressions for use by the system during run-time.  The main 

purpose for providing these mathematical processes is to make construction, manipulation and 

verification simple to perform either manually or by a computer system. 

Finally, the reductions performed during run-time have a predictable algorithm and have 

strong performance characteristics.  The reduction eligibility rule is checked prior to reduction to 
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ensure system stability during run-time.  All of the algorithms given for algebraic construction, 

manipulation, execution and verification make FOIL suitable as a directly executable modeling 

language. 

8.1.3 Behavioral Inheritance 

Inheritance is a concept that allows a large system to grow without the need to recode 

elements that exhibit common structure.  Inheritance is a well-known and studied concept in 

object-oriented design and development; however, most research and implementation centers on 

the concept of interface conformity.  FOIL allows for an optionally more strict interpretation of 

inheritance to ensure both structural (interface) and behavioral conformity.  Thus, with this new 

stricter interpretation of inheritance, the code savings involved in inheriting classes from more 

generalized classes are much larger.  Extending a class both structurally and behaviorally means 

that code for interaction of the class with the encompassing system and internal control flow of 

actions within the object are already specified.  Ensuring behavioral inheritance is a simple 

algorithm done on the FOIL algebraic expressions, once again, making this feature suitable for 

enforcement by any underlying executable system. 

8.1.4 Concurrency 

Because the behavior notation is derived from Petri-nets and the algebraic representation 

is derived from -calculus, FOIL is built on previous advances that have, as one of their key 

features, support for concurrency.  Thus, it is not surprising that FOIL has inherent support for 

concurrency.  This concurrency support makes FOIL suitable for modeling complex distributed 

systems.  The literature review performed for this thesis indicates that FOIL is likely to be the 

only modeling language which can be used to generate multi-threaded source code without 

explicit thread modeling. 
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Concurrency modeling is useful beyond simple distributed systems.  By modeling the 

internal behavior of active states, certain choices about how software handles concurrent events 

and processing can be made.  In this thesis, most examples involve sequentially processed events 

with responsive behavior from concurrent threads; however, active state modeling provides a 

clear mechanism for responding to concurrent events on single threads.   

FOIL concurrency modeling does not implicitly enforce resource dependency or race 

conditions.  These must be considered when modeling any system using FOIL.  In addition, 

concurrency is graphically represented in-line with other system features whereas other 

languages have chosen to do this outside of basic structural diagramming.  As such, FOIL does 

require more abstract thinking on the part of the modeler than those modeling languages without 

concurrency support. 

Finally, FOIL s inherent support for concurrency gives it the ability to model all known 

and studied workflow patterns.  While there are many process languages that have support for 

these patterns, many of them do not have a formal semantic or object-orientation.  FOIL s ability 

to do all of these things makes it truly unique among modeling languages. 

8.1.5 Model Analysis and Verification 

The underlying algebraic representation of a FOIL model, combined with the various 

mathematical laws and identities, allows for broad analysis of systems prior to implementation.  

This thesis presents the basic ideas of object state reachability, inherent inconsistency, and 

deadlock potential, as design-time analyses which can be performed on a FOIL object system.  

Reachability and inconsistency can be determined during run-time as well.  Thus, with FOIL, a 

system could be designed to avoid these undesirable conditions.  Additionally, the occurrence of 
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a deadlock can be detected using FOIL allowing run-time events to be rejected if they are found 

to result in a deadlock condition. 

More impressive is the ability of FOIL to respond algebraically to events as part of a 

simulation.  This simulation capability was shown to be useful in performing analysis on 

processes as they relate to an object model.  Using the algorithm provided in this thesis, FOIL 

can determine process achievability, complete achievability, and determinism.  If a process is 

determined to be completely achievable then this thesis showed that such a process can be 

used as a run-time constraint on an object model to ensure that a process will always complete. 

8.1.6 Limitations 

The intended purpose of the Formal Object Interaction Language (FOIL) is to simplify 

and enhance the design and implementation of software. Other areas of software engineering, 

such as requirements gathering and analysis, hardware infrastructure design, and software 

deployment are not addressed by the FOIL model. 

FOIL is ideally suited for interactive or reactive systems that are object-oriented or 

service-oriented in nature.  This covers a large segment of the software being developed today.  

FOIL is very expressive and if the details of active states are specified, it can be used to fully 

generate application or executable code.  The initial basis for the development of FOIL was as a 

formal object-oriented language as the foundation for a workflow management system [77] and 

thus, it is well suited for this purpose. 

FOIL is not a requirements gathering or system deployment notation and thus is not 

suitable for those purposes.  Good design of software would dictate the use of UML Use Case 

diagrams for requirements modeling, while package, system and deployment diagrams would 

still be used for their independent purposes.  The FOIL diagram can take advantage of 
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requirements specifications as demonstrated by the passenger actor in Figure 3.12.  FOIL is 

primarily suited for the design and implementation of the software once the requirements have 

been determined. 

FOIL may not be the modeling notation of choice for some applications.  FOIL s 

abbreviated notation for attributes and their access make it less suitable for applications without a 

significant behavior component.  Thus, if the main feature of an application is the storage and 

retrieval of objects, attributes or data, the FOIL notation offers little advantages over other 

options.  However, a system which would require one or more UML sequence or state diagrams 

to specify behavior would benefit from the FOIL notation. 

Mathematically, FOIL is not temporal as are other languages [13, 34, 63] and thus would 

not be suitable for real-time or discrete event systems that must have an inherent mathematical 

concept of time.  However, it is possible that FOIL could be extended to support a temporal 

semantic. 

8.2 Future Work 

While this thesis has attempted to present a complete picture of the Formal Object 

Interact Language (FOIL) and provide sufficient depth so as to appreciate its benefits and uses, 

the subject of software modeling, in general, is very broad.  The successful blending of structure, 

behavior, and process in a graphical and formal manner has raised potential issues that need to be 

addressed, uses that need to be attempted, and extensions that need to be explored. 

8.2.1 State Explosion 

One of the primary issues related to using state-based analysis of systems is the state 

explosion problem.  It should be relatively easy to surmise that the algebraic manipulations 
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performed during reductions as well as the application of the reduction eligibility rule during 

run-time are really just a form of state-based analysis.  The main problem with state-based 

analysis is that the number of state options grows exponentially resulting in some tractability 

problems involved with analytical algorithms.  State explosion is a known problem with process 

algebra [78] but is not unique to FOIL.  Solutions have been offered for other modeling 

languages such as Petri-nets [79]. 

Most of the examples in this thesis use the choice-action form (CAF) as the basic 

mathematical form for run-time execution and analysis.  However, this form grows exponentially 

for certain control flow patterns.  Specifically, interleaved routing and multiple choices are two 

patterns that exhibit this problem early in the mathematical process.  FOIL has some notations 

designed to eliminate this problem from a graphical standpoint; however, these notations do little 

to minimize the growth rate of the underlying algebraic expressions. 

It was briefly mentioned in this thesis, that an alternate algebraic form can be used to 

prevent the state explosion problem.  This form, called the choice-compressed form (CCF), 

delays the expansion of choices until the last possible moment.  Preliminary work suggests that 

reductions can be done on expressions in CCF, but that such rules are far more complicated than 

their CAF counterparts.  While it seems logical that such rules could be proven and codified, this 

has only been done on a very basic level. Additionally, the research on using CCF is incomplete.  

For instance, while basic reductions and analyses have been explored using CCF, the 

achievability algorithm has not been attempted.   

8.2.2  Process Metrics 

The ability for FOIL to determine whether a given process is achievable with a given 

object system is a distinctive feature of FOIL.  A thorough survey suggests that there is no 
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modeling language offered today with this capability.  The FOIL achievability algorithm shows 

that there is a coupling between an object model and the processes it is designed to achieve.  

With other modeling languages this coupling is implicit or inferred; while in FOIL, it is explicit 

and verifiable. 

The FOIL achievability algorithm performs its work by executing a simulation of events 

in the system based on expected process results.  Many of the events simulated, however, do not 

actually show up in the process model.  In other words, it may be that in order to determine that a 

given process is achievable; the assumption of an event sequence of n length is required.  Yet a 

more detailed process model may be determined to be achievable with the same object model 

with only n-3 event assumptions. 

Another possible metric is to complete the achievability algorithm even after 

achievability is determined.  If the process model is determined to be achievable but not 

completely achievable, then there is the possibility of placing a coined achievability index to the 

system.  This would represent the number or magnitude of internal control flow paths inside the 

object model that do not lead to achievability.  This could be represented as a number or a 

percentage of the total number or magnitude of control flow paths. 

These two possible metrics are merely given as a suggestion or beginning on what may 

be possible with future research into this area.  Likely, further contemplation would reveal many 

more possible measurements that could be performed on system models created with FOIL.  The 

main focus of this thesis has been on model production, execution, and verification with little 

attention given to model optimization.    The formulation and understanding of such metrics 
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derived with FOIL models would open a whole avenue of research into FOIL model 

optimization.  

8.2.3 Process Mining 

Process mining is a technique used to generate a process model from the transaction logs 

of existing systems.  These systems are usually transactional and procedural in nature.  The 

problem of process mining is not an easy one, as all systems show variations in their logging 

capability, and methods for computer analysis of such logs are necessarily complex.  Despite 

this, process mining holds much promise, as a tool for business analysis, to reduce the time 

required to model as-is business processes.  Also, mining techniques can be used to determine if 

the operations of a system correspond with the designed intent. 

There has been a fair amount of research into mining process logs.  EMiT is a low-level 

process mining tool that can be used to read event logs and determine the workflow structure of 

the underlying system [80].  One of the notable advancements offered by this tool is the use of an 

intermediate XML log format to which logs from various applications are converted. The EMiT 

system was made part of a larger workflow mining tool called TeamLog [81].  The InWoLvE 

workflow mining processor uses a more inductive approach and essentially solves the problem of 

task-oriented workflow mining in two steps[82].  First it derives a stochastic activity graph 

(SAG) from a given log and then combines repeated activities at the end. 

The Process Miner was a product whose theoretical foundation and program 

implementation ware done almost exclusively by Guido Schimm.  The first iteration of the 

product [83] was based on his ideas presented in 2000 [84].  It differs from other approaches in 

that it extracts an exact model of the workflow based on the logs.  It also presents its model in a 



  
192    

block-oriented fashion.  Using this model type, a process model will have an algebra that has 

distributive, associative and commutative properties [85] much like FOIL algebra. 

Since a FOIL object model is an event driven system, it is easy to contemplate how a 

workflow or process analyzer could be implemented.  As each event is received, the associated 

reductions in the algebraic expressions are recorded.  Then such event reductions could be mined 

to determine the probabilities of various event sequences.  Based on this idea, a FOIL process 

model could be created.  A FOIL process which is determined to be achievable may still have 

other processes that are more prevalent.  This generated process model would be useful as an 

informational tool to determine what work is actually being done by a given FOIL object model.  

Additionally a generated process model might serve as an aid to process and object model 

designers. 

8.2.4 Distribution 

There have been a large number of techniques introduced to provide scalable, distributed 

workflow services.  These solutions range from purely event-driven models [86] to grid 

computing architectures [87].  One of the motivations for FOIL was in creating an object-

oriented workflow management system.  As such, system distribution has been a concern during 

development of FOIL but has not been fully addressed. 

8.2.4.1 WfMC Reference Model  

In 1993, the Workflow Management Coalition (www.wfmc.org) was formed to help 

standardize the industry with respect to workflow management systems.  Their efforts have been 

only partially successful, but they have introduced modeling structures for building workflow 

systems to support scalability and interoperability.  Figure 8.1 shows a diagram of the proposed 

http://www.wfmc.org
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reference model for workflow systems [88].  This model suggests that interfaces be standardized 

to allow for connections between different systems. 

Distribution through this basic model is realized through the interaction (Interface 4) of a 

workflow engine with other existing workflow engines in addition to the ability to invoke outside 

applications (Interface 3) from within the engine.  This model is very basic and does not take into 

account some of the more complex issues with distribution.  For example, this model assumes 

that the Workflow Client Application will always be connected to a central workflow engine.  In 

large scale implementations, the client may not be aware of the location of the closest workflow 

engine.  Additionally, whether invocation of remote applications is synchronous or asynchronous 

and how these decisions affect the engine is unspecified. 

 

Figure 8.1  WfMC Reference Model [88] 
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8.2.4.2 Physical-Logical Separation 

One of the key issues in interoperability is the desire to abstract the interface to a system 

away from its underlying platform implementations.  This was the intent of the first WfMC 

model; however, this approach is rather simplistic dealing with just mere interoperability without 

regard for redundancy, load-balancing and geographic scalability. 

One approach involved the use of assignment servers [89, 90].  An assignment server is a 

separate machine or program which has knowledge of the location and physical requirements of 

multiple workflow servers.  When a client requests needs to perform a task, the message is sent 

to an assignment server which will then pass on the request to the appropriate workflow server.  

Thus, the assignment server functions as a translator for the target machine making the platform 

issues with interfacing with the server transparent to the client. One similar approach was to 

create workflow repositories that serve the same function as the assignment server but also stores 

the interfaces for each workflow[91, 92]. 

 

Figure 8.2  Event-Driven WFMS using CORBA [86] 
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Figure 8.2 [86] shows the basic setup of this idea within a CORBA framework.  Each 

process registers with a central event channel as to which events it listens for.  In addition, it 

registers which events it provides.  Thus, each process is both a consumer and producer of 

events.  The event channel has filters which ensure that events are only sent to those processes 

for which it is applicable.  This extends beyond just mere registry but the event channel will also 

take into account the sequence and data involved in the event in determining applicability.  To 

some degree, the event channel with its associated filters acts as a workflow engine, making 

decisions on behalf of the processes under its charge.  However, the work is performed 

completely by the target objects and the event channel is completely unaware of the logic, data 

manipulation, implementation or platform of the processes. 

Each object as modeled in FOIL can be decoupled with a central event controller as 

offered by CORBA  or other workflow-based systems [88].  This decoupling allows for 

distributed or mobile objects to interact under a defined service-based interface.  Additionally, 

the security services that enforce the interaction between objects can be more strictly specified 

than in typical object-oriented implementation.  For example, in Figure 3.12, it may be necessary 

to ensure that a reachedFloor event can only be fired by the elevator and no other object.  In 

typical object-oriented design, the reachedFloor method is public and thus accessible to all 

objects.  FOIL with its decoupling capability and inherent support for concurrency is an ideal 

candidate to be considered for distributed system design in the future. 
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