
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

5-3-2007

Formal Object Interaction Language: Modeling
and Verification of Sequential and Concurrent
Object-Oriented Software
Jason Andrew Pamplin

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Pamplin, Jason Andrew, "Formal Object Interaction Language: Modeling and Verification of Sequential and Concurrent Object-
Oriented Software." Dissertation, Georgia State University, 2007.
https://scholarworks.gsu.edu/cs_diss/16

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

FORMAL OBJECT INTERACTION LANGUAGE:

MODELING AND VERIFICATION OF SEQUENTIAL AND CONCURRENT
OBJECT-ORIENTED SOFTWARE

By

JASON ANDREW PAMPLIN

Under the Direction of Ying Zhu

ABSTRACT

As software systems become larger and more complex, developers require the

ability to model abstract concepts while ensuring consistency across the entire project.

The internet has changed the nature of software by increasing the desire for software

deployment across multiple distributed platforms. Finally, increased dependence on

technology requires assurance that designed software will perform its intended function.

This thesis introduces the Formal Object Interaction Language (FOIL). FOIL is a

new object-oriented modeling language specifically designed to address the cumulative

shortcomings of existing modeling techniques. FOIL graphically displays software

structure, sequential and concurrent behavior, process, and interaction in a simple unified

notation, and has an algebraic representation based on a derivative of the -calculus.

The thesis documents the technique in which FOIL software models can be

mathematically verified to anticipate deadlocks, ensure consistency, and determine object

state reachability. Scalability is offered through the concept of behavioral inheritance;

and, FOIL s inherent support for modeling concurrent behavior and all known workflow

patterns is demonstrated. The concepts of process achievability, process complete

achievability, and process determinism are introduced with an algorithm for simulating

the execution of a FOIL object model using a FOIL process model. Finally, a technique

for using a FOIL process model as a constraint on FOIL object system execution is

offered as a method to ensure that object-oriented systems modeled in FOIL will

complete their processes based activities. FOIL s capabilities are compared and

contrasted with an extensive array of current software modeling techniques. FOIL is

ideally suited for data-aware, behavior based systems such as interactive or process

management software.

INDEX WORDS: object-orientation, Formal Object Interaction Language (FOIL),
concurrency, -calculus, process verification, behavioral
inheritance, formal methods

FORMAL OBJECT INTERACTION LANGUAGE:
MODELING AND VERIFICATION OF SEQUENTIAL AND CONCURRENT

OBJECT-ORIENTED SOFTWARE

By

JASON ANDREW PAMPLIN

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2007

© Copyright by Jason Andrew Pamplin

Doctor of Philosophy, 2007

by

JASON ANDREW PAMPLIN

Major Professor: Ying Zhu

Committee: Rajshekhar Sunderraman

Roy Johnson

Geoffrey Hubona

Xiaolin Hu

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2007

iv

ACKNOWLEDGEMENTS

Many people assisted me in the formulation and production of this research. I

would like thank Dr. Raj Sunderraman for spending time with me drinking coffee and

reviewing the initial stages of the FOIL algebra with me. Thanks to my advisor Dr. Ying

Zhu for his investment in me. Thanks to Dr. Roy Johnson for his critical eye for details

and his exuberant moral support. He was most afraid when I took a job, my last year.

His distraught look alone ensured that I would indeed finish. Additional thanks go to Dr.

Hubona for his support even when he wasn t around and for Dr. Hu for asking the hard

questions.

I would like to thank my children for their patience. While they didn t exactly

have a choice, they handled my seemingly endless involvement with school and this

dissertation with grace and support. I am truly blessed. Many thanks to my father, Paul,

who managed to tolerate and support me all through high school. He really should have

executed me but chose to spare my life. Thanks to Walt Lucas and my brother, Jeremy

Pamplin, for putting up with my informal user trials on them.

Not surprisingly I would like to thank my wife, Dawne. Not only did she support

me completely when I decided to quit my well-paying corporate job to pursue my Ph.D.,

but she has also proofread every paper that I have ever submitted EVER including this

one. She has spent long hours pursuing my ambition. Such support is hard to find in

anyone, much less your God-given mate and life-long friend. It is safe to say that nothing

that is presented here would be possible without her.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..IV

LIST OF FIGURES..VIII

CHAPTERS

1. INTRODUCTION ... 1

1.1 Motivation .. 3

1.2 Design Goals .. 4

1.3 Formal Object Interaction Language... 6

1.4 Contribution and Application... 8

2. BACKGROUND AND RELATED WORK .. 13

2.1 Object-Orientation ... 13

2.2 Process Modeling ... 20

2.3 Concurrency ... 29

2.4 Formal Methods ... 34

2.5 Synergistic Attempts ... 39

2.6 Conclusion.. 46

3. FOIL NOTATION... 48

3.1 Behavioral Representation ... 48

vi

3.2 Object Modeling ... 55

3.3 Process Modeling ... 60

3.4 Simple Elevator System .. 63

4. FOIL ALGEBRA .. 71

4.1 Construction ... 72

4.2 Manipulation .. 79

4.3 Reduction.. 86

4.4 Example .. 93

5. CONCURRENCY, INHERITANCE, AND MODEL VERIFICATION 98

5.1 Concurrency ... 98

5.2 Inheritance.. 105

5.3 Model Verification.. 112

5.4 Russian Philosopher Problem .. 117

6. WORKFLOW PATTERNS.. 121

6.1 Basic Control Patterns ... 122

6.2 Advanced Branching and Synchronization... 126

6.3 Structural Patterns ... 138

6.4 Patterns Involving Multiple Instances .. 141

6.5 State-Based Patterns .. 146

6.6 Cancellation Patterns ... 151

vii

7. PROCESS ANALYSIS .. 153

7.1 Process Achievability ... 153

7.2 Process Determinism.. 159

7.3 Process Enforcement .. 163

7.4 Document Management Example ... 166

8. CONCLUSION AND FUTURE WORK .. 181

8.1 Benefits and Limitations ... 181

8.2 Future Work.. 188

REFERENCES .. 196

viii

LIST OF FIGURES

Figure 2.1 An ER Diagram .. 16

Figure 2.2 Class Diagram Legend.. 17

Figure 2.3 UML State Diagram for Elevator ... 18

Figure 2.4 Business Process Diagram Notation [21] ... 24

Figure 2.5 UML 2.0 Activity Diagram [21]... 25

Figure 2.6 Example Petri-net [50].. 31

Figure 2.7 SEAM Example Model... 41

Figure 2.8 Petri-net based Workflow[64] .. 42

Figure 2.9 YAWL Diagram ... 43

Figure 2.10 Object-Process Model... 44

Figure 3.1 FOIL Object States ... 49

Figure 3.2 FOIL Transitions... 51

Figure 3.3 FOIL Transition Ports... 52

Figure 3.4 FOIL Event Firing .. 53

Figure 3.5 Interleaved State Routing.. 54

Figure 3.6 Basic Quote Object in FOIL ... 55

Figure 3.7 Basic Payment Process in FOIL ... 57

Figure 3.8 Simple Object Communication... 59

Figure 3.9 Simple FOIL Process Model... 61

Figure 3.10 Process Nesting Equivalence .. 62

Figure 3.11 Process Spawning Equivalence .. 62

Figure 3.12 FOIL Elevator Example.. 64

Figure 3.13 FOIL Diagram Event-Object Schedule... 65

Figure 3.14 FOIL Elevator Process.. 66

Figure 3.15 UML Class Diagram of Elevator .. 67

Figure 3.16 UML Sequence Diagram Equivalent.. 69

Figure 4.1 Algebraic Event Construction... 72

ix

Figure 4.2 Algebraic Operators.. 73

Figure 4.3 Object Qualifier .. 74

Figure 4.4 Active State Examples .. 74

Figure 4.5 Active State Event Flow ... 75

Figure 4.6 Object with Iteration ... 77

Figure 4.7 Repeated Substitution with No Loops .. 78

Figure 4.8 System Object Instantiation .. 79

Figure 4.9 Distributive Law of Choice... 80

Figure 4.10 Distributive Law of Concurrency ... 81

Figure 4.11 Law of Contradiction .. 83

Figure 4.12 Algebraic Forms ... 83

Figure 4.13 Choice-Concurrent Equivalence ... 84

Figure 4.14 Multiple Choice Eligibility ... 87

Figure 4.15 Event Firing Reduction... 92

Figure 4.16 Object-Event Synchronization.. 93

Figure 5.1 FOIL Thread Spawning .. 98

Figure 5.2 FOIL Thread Merging .. 101

Figure 5.3 FOIL Active State Interrupt.. 103

Figure 5.4 Structural and Behavioral Inheritance Example ... 106

Figure 5.5 OO Equivalent of FOIL Inheritance ... 107

Figure 5.6 Alternate Behavioral Inheritance Notation ... 110

Figure 5.7 Structural Inheritance Only... 111

Figure 5.8 Inconsistent Sequential Behavior.. 112

Figure 5.9 Sequential with Plural Events ... 113

Figure 5.10 Simple Synchronization Deadlock.. 114

Figure 5.11 Deadlock Example.. 114

Figure 5.12 Reachability Analysis ... 116

Figure 5.13 Dining Philosopher Problem... 117

Figure 5.14 FOIL Dining Philosopher Model.. 118

Figure 5.15 FOIL Russian Philosopher.. 119

Figure 6.1 Sequence Pattern... 122

x

Figure 6.2 Parallel Split.. 123

Figure 6.3 Synchronization Pattern.. 124

Figure 6.4 Exclusive Choice Pattern .. 125

Figure 6.5 Simple Merge Pattern ... 126

Figure 6.6 Multiple Choice Pattern .. 127

Figure 6.7 No options chosen but continue.. 128

Figure 6.8 Synchronizing Merge Pattern ... 129

Figure 6.9 Optional Synchronizing Merge... 131

Figure 6.10 Forced Synchronizing Merge.. 131

Figure 6.11 Multiple Merge Pattern... 132

Figure 6.12 Multiple Merge Pattern Alternate Look.. 133

Figure 6.13 Discriminator Pattern.. 134

Figure 6.14 N out of M Join... 137

Figure 6.15 Arbitrary Cycle ... 139

Figure 6.16 Implicit Termination ... 140

Figure 6.17 MI without Synchronization ... 141

Figure 6.18 MI with Priori Design Time Knowledge ... 142

Figure 6.19 MI Creation Restriction .. 143

Figure 6.20 MI with Increased Determinism ... 144

Figure 6.21 MI with Priori Runtime Knowledge .. 145

Figure 6.22 MI with no Priori Runtime Knowledge ... 146

Figure 6.23 Deferred Choice.. 147

Figure 6.24 Interleaved Routing... 148

Figure 6.25 Milestone .. 150

Figure 6.26 Cancel Activity ... 152

Figure 7.1 Process Achievability ... 154

Figure 7.2 Defunct Object Model .. 158

Figure 7.3 Completely Achievable Process ... 160

Figure 7.4 Process Determinism ... 161

Figure 7.5 FOIL Document Management Object Model... 167

Figure 7.6 FOIL Document Object .. 168

xi

Figure 7.7 FOIL Document Management Process Model ... 170

Figure 7.8 FOIL Document Management Process Algebra... 171

Figure 7.9 FOIL Document Management Object Model... 172

Figure 8.1 WfMC Reference Model [88]... 193

Figure 8.2 Event-Driven WFMS using CORBA [92].. 194

1

1. INTRODUCTION

The use of computers for information management is still in its infancy. While many

advances have been made in the last four decades, it is obvious by looking at the history of other

sciences that this is not very long. COBOL was the first widely adopted language developed

specifically with the intent of managing information, but was mainly centered on the storage,

access and viewing of data. A milestone in data management technology occurred in 1970 with

the advent of the relational database [1] and the entity-relationship diagram offered in 1976 [2].

Structured query language (SQL) provided the ability to retrieve data from files quickly and

easily; however, improvements in this form of data storage peaked in the early 1990 s. The

addition of new features such as different programming language support and generic drivers,

while making access and programming to such systems easier, does not really enhance what can

be done with the technology.

The limitations of the relational database management system (RDBMS) gave rise to a

need for even more expressiveness in the data representation mechanism. Thus, while object-

oriented languages have existed since the 1960 s, their real benefit has not been fully realized.

The creation and rapid adoption of Java as a programming language shows that developers of

information management systems can use more expressiveness in their data modeling than a

relational model could provide. Recent development and research points toward the adoption,

over time, of full-fledged object management systems (OMS). There are already several

commercially available object management systems.

2

Process modeling has taken a very different development path from that of information

management. As a field of study, it is much older. Ancient civilizations produced amazing

structures through the method of partitioning work into smaller tasks and forming a project by

aggregating these pieces in the correct order or sequence. Modern process improvement and

management came about during the industrial revolution of the mid-1800 s when automation of

some tasks by machine could be considered. The computer, especially the personal computer, is

a machine that can automate administrative tasks in the same way that manual labor was

automated in the previous century. The modeling of processes to be automated by computer

naturally used the same methods as those used in machine-driven automation. Since early

computers lacked the ability to execute anything but a purely procedural model (hence the use of

procedural programming languages), this was not a serious problem. Thus, process modeling

techniques continued to improve, but remained primarily procedural in nature.

Today, procedural programming languages have largely been abandoned when projects

require a large amount of code. Several million lines of procedurally-based code become

unmanageable because developers lack the ability to memorize the code. Object-oriented

software allows developers to model systems like the real world that they already know, thus

providing easier management and comprehension of large projects. But, process modeling,

primarily performed by business analysts, has continued along its procedural-oriented

trajectory. As information management progresses toward a purely object-oriented

architecture, compatible techniques for managing the next layer (i.e. the business layer) must

be adopted.

3

The Formal Object Interaction Language (FOIL), presented in this thesis, was developed

with this goal in mind

to provide a comprehensive object-oriented framework for sequential

and concurrent systems with a formal mathematical representation that can be used for

verifying corresponding process models. The following introductory sections summarize the

current practice, set forth design goals, and define FOIL, concluding with the expected

contribution of this work.

1.1 Motivation

Object-oriented software architecture has become the dominant architecture of choice for

large software systems [3] over the last half-century. Modeling of object-oriented systems was

made easier with the advent of the unified modeling language (UML) class diagram [4] which

allowed for specification of objects and their relationships to each other in a way that could be

used to generate code for production. Thus, UML has offered a significant improvement in

specifying, documenting, and producing high-quality software.

UML is not, however, an ideal solution for modeling all software system types. In

particular, software systems having high behavioral characteristics, as compared with their data

and data manipulation requirements, become cumbersome and error-prone using UML,

especially if the behavior of the system has a significant degree of parallelism. UML requires a

large number of diagrams to completely specify a system s behavior and generally requires full

structural specification to be completed first. Additionally, there is no inherent mechanism to

ensure that the various diagrams are consistent.

This problem of diagram consistency is especially poignant when ensuring that the

business requirements as provided by analysts are consistent with structural and behavioral

4

requirements as provided by developers. This has relegated many in the field to refer to such

ability to ensure congruency as art . Yet, in other engineering disciplines, the artistic aspects of

design have more to do with solving problems associated with difficult or complex functionality

while maintaining aesthetic appeal. The assurance that a design will perform its desired function

once built is, in other engineering disciplines, decidedly more methodical and computational in

nature.

The ability to model an object s behavior is a prime concern as part of ensuring quality

performance and accuracy during implementation. Yet, in an age of increasing use of mobile

and distributed systems, few modeling techniques provide intuitive notations for representing

concurrent behavior and interaction. Even fewer have a formal semantic for mathematically

understanding this concurrent behavior once modeled. Of the modeling frameworks that do have

these characteristics, many of them are difficult to read or have limited or no object-orientation.

In structural modeling, a diagram should show the data requirements as well as the

relationships between data. Behavioral modeling must support concurrency to ensure that its

expressiveness is sufficient. The model must support a process modeling capability that has the

ability to be verified against the structural and behavioral aspects of the model. Historically,

attempts to create a hybrid graphical modeling language have resulted in severe concessions of

these requirements.

A detailed review of previous research in this area is given in chapter 2.

1.2 Design Goals

On one end of the software modeling spectrum is the Entity-Relationship (E-R) diagram

[2] from which the UML class diagram is derived [5]. The E-R diagram is the most basic

5

structural software representation, since a database, in its simplest form, does not exhibit

behavior. The E-R diagram is easy to read and understand, and has relational algebra as a formal

underpinning. These characteristics have made the E-R diagram a proven, time-tested modeling

notation. The E-R diagram naturally led to the Unified Modeling Language (UML) class

diagram. This transition disposed of any real mathematical basis for the language, but its

simplicity and ability to specify the concrete and abstract structure of software has made it a

resounding success.

On the opposite end of the software modeling spectrum is the Petri-net [6]. The Petri-net

is presumably the most basic behavioral software representation. It has no problem modeling

complex concurrent behavior and has an underlying mathematical foundation to minimize

modeling errors and verify correctness. The notation has a small symbol set and is relatively

easy to comprehend. These characteristics have made the Petri-net diagram a proven, time-

tested modeling notation. Due to its ability to model concurrent behavior and general lack of

structural specification, Petri-nets have been primarily used for process modeling.

The E-R diagram has no mechanism for modeling a software system s behavior. The

Petri-net, on the other hand, is strictly behavioral in its modeling and only accounts for data

indirectly, meaning that additional data-based decisions in system behavior require extension of

the model to include new places, transitions and tokens. Neither diagram is object-oriented,

making comprehension and scalability of large models difficult. Object oriented modeling

techniques such as UML do not inherently support a formal semantic.

Despite their shortcomings, these major software modeling frameworks have all enjoyed

extended and wide-spread success. Based on the success of these modeling frameworks, the

6

hallmarks of a long-lasting and widely accepted graphical software modeling language would

be:

ability to model software structure

object-orientation

simple easily-understandable notation

inherent support for concurrency

ability to model system processes

an underlying mathematical basis

However, if a single uniform modeling language could meet all of these requirements,

then there are other logical extensions that would follow. For instance, if behavior and process

can be modeled then a more refined version of inheritance could be offered that comprises more

than mere structural conformity. Finally, if the modeling of various aspects of software

development structure, behavior, and process can be either integrated or verified against each

other, then full software system verification can be performed.

1.3 Formal Object Interaction Language

This thesis presents the Formal Object Interaction Language (FOIL). FOIL graphically

displays software structure, sequential and concurrent behavior, process, and interaction in a

simple unified notation, and has an algebraic representation based on a derivative of the -

calculus [7, 8]. This gives FOIL significant practical advantages over other graphical modeling

languages, particularly for data-aware, behavior-based systems.

The FOIL notation borrows what is good in the Unified Modeling Language (UML) and

adds a small set of symbols to allow the modeling of a class s behavior. Thus, in addition to

7

providing the structural detail of a system s attributes and methods, a FOIL model provides a

much more expressive picture of an object s:

Instantiation

when, how and under what conditions objects are created at

runtime;

Behavior

how objects perform their work both internally and in relation to
other objects;

Collaboration how objects interact with one another to perform work; and

Constraints the conditions necessary for object behavior.

The added behavioral notation in FOIL allows for expressing the internal control flow of

an object including the splitting and merging of threads of execution. This ability to model

concurrent behavior within an object is distinctive, but FOIL s support for concurrent processing

of multiple instances of objects makes it truly unique. This behavioral notation allows for a

more specific type of inheritance where objects are not generalized based on mere interface

conformity but must also conform in their general behavioral characteristics.

The concurrent object modeling capability of FOIL has a well-defined mathematical

representation derived from a well-known and time-tested calculus. This mathematical

representation allow for the creation of laws, forms, and operations to be applied to the object

model. This allows for the building of complete system expressions. Based on these

expressions, certain properties of the object system, such as state reachability, deadlock

capability and inherent inconsistencies, can be identified. Additionally, algebraic reductions can

be done on these expressions during run-time to track full system state in an efficient manner.

Most importantly, with the addition of some simple rules, the acceptability of certain behavior by

a system can be determined and enforced to ensure that object systems perform as designed.

8

FOIL also supports a process modeling notation to allow for specifying what work a

system is designed to perform. This provides a link between what is modeled in an object-

oriented fashion and what is expected from a procedural standpoint. The FOIL process modeling

notation is nearly identical to that used for the structural and behavioral specification of the

object system. This makes FOIL the only graphical modeling language to use the exact same

notational elements to represent the structural, behavioral and procedural aspects of a system.

Finally, a FOIL process model has an underlying algebraic representation whose

construction is identical to that of an object model, allowing a single construction algorithm to be

used for both. This process expression can be analyzed through a simulation technique to

determine if a given object model can perform the provided process (achievability). More

detailed analysis can show if a process can be determined to always complete (process

determinism) or whether a process can complete regardless of independent internal control flow

for a given object model (complete achievability). Most import, if a process model exhibits

complete achievability against an object model, the algebraic process expression can be used as

an enforcement constraint on object system execution to ensure that processes will complete.

1.4 Contribution and Application

The Formal Object Interaction Language (FOIL) is designed to be a complete and

comprehensive graphical modeling language. FOIL is meant to have a user friendly graphical

notation while providing more expressive power. It was intended that FOIL be able to model

structure, behavior and process with a single notation, and with a common mathematical

underpinning. Complete support for behavioral inheritance and concurrency were key design

goals. Finally, the ability to verify that a process can be completed by an object model is a

9

unique advantage. It is likely that there are modeling languages and frameworks that are

superior to FOIL in one or more of these areas. This thesis was specifically written to show that

FOIL is unique in its ability to perform well in ALL of these major design areas.

It is understandable that attempting to combine the structure, behavior, and process

aspects of software into a single modeling framework would require trade-offs. But, most

attempts to do so have resulted in major concessions in simplicity, expressiveness or formality

which are the hallmarks of modeling frameworks that have experienced wide-spread acceptance

and longevity.

Combining various aspects of a software system s structure, behavior, and process into a

unified modeling notation have been attempted [9-16], but have had significant difficulties. One

of the primary advantages of the UML class diagram is its simplicity [17]; thus, a new notation

should have a small number of notational elements to maintain this quality. But, a new notation

must also be expressive enough to provide for a detailed comprehension of the objects behavior,

both by humans and the underlying computational system. The FOIL notation (chapter 3) does

this while adding only four new symbol types.

1.4.1 Single Unified Notation

Efforts have been made to combine various functional aspects of UML modeling

diagrams, to form a more compact representation of a system. In 1991, shortly after the rise of

UML, the object behavior diagram [16] was offered as a solution for compact representation,

essentially combining the class and state diagrams (structural and behavioral aspects). A more

recent effort was called object charts [12], and combined these two diagrams with more detail.

The TROLL object-oriented specification language [13] allows for the combination of structure,

10

behavior and process, but this language has been primarily textual with no completely defined

graphical notation.

Efforts to combine the process and structure of software have also been offered. One

method involved making UML activity diagrams object-oriented [18]. Another attempt at

improving compactness was the development of object process methodology (OPM) [19], which

combines the structural and process aspects of a system into a single diagram. Object

Connectivity Nets (OCoN) [9] were developed to combine structural, process, and behavioral

aspects of a system.

While all of these modeling systems have made progress toward a single-diagram

notation, they all have significant drawbacks in one of two areas: mathematical basis or

concurrency. The Formal Object Interaction Language (FOIL) offers a single-diagram notation

without sacrificing mathematical basis, concurrency modeling, or object-orientation.

1.4.2 Concurrency

In UML, concurrency is supported at the process level through the activity diagram but

modeling parallel operations on object states in the lower levels of system design requires the

insertion of written notations. Object behavior [16] and object chart [12, 14] models assume that

an object is in a single state; thus, these models do not support concurrency. The OPM [19] also

has difficulty expressing concurrency. The Object Petri-net [15] is a successful blending of the

concurrency modeling notation of Petri-nets with object-oriented design.

1.4.3 Expressive Power

A fully-expressive modeling system is able to correctly model all known types of event

patterns [20], such as those with concurrency and resource dependency. It is challenging to

model all patterns without adding additional complexity to the modeling framework. For

11

example, UML models some of the more complex patterns by placing textual annotations on top

of the graphical model [21]. It is desirable for the modeling framework to have sufficient

expressive power to model complex patterns without sacrificing usability or formal semantic.

OCoN [9] models, with their very compact notation, are not suitable for complex

patterns. In particular, concurrency is difficult to represent. In practice, all examples of OCoN

models show sequential patterns. Object petri-nets [15] have excellent expressive power,

showing concurrency and resource dependency easily. They have been demonstrated, in

workflow modeling, to effectively model all known patterns. However, this expressive power

comes with much complexity, as additional places, transitions and tokens are required for each

resource dependency.

In addition to the above modeling systems, there are many others that are expressive

enough to show all known patterns; many of these also supporting formal methods [22-24].

Some of these modeling frameworks lack a simple notation, or they only model process,

neglecting structure and behavior. FOIL is based on -calculus which has concurrency as its

main advantage (chapter 4). Thus, FOIL easily handles concurrency while maintaining a simple

object-oriented notation (chapter 5) that models structure, behavior and process (chapter 7).

FOIL also has the expressive power to model all known workflow patterns (chapter 6).

1.4.4 Application

FOIL is a non-activity-centric model. Developers can work in an environment for

process modeling that is closest to how they model systems. But, probably the most important

aspect of this difference applies to how large organizations develop their processes. Using FOIL,

individual groups can define and manage the processes for individual objects under their charge.

They can respond to events that other groups respond to, but they define and control only their

12

objects when such events are received. The system can aggregate these actions to events to form

the typical UML Activity diagram. This means that a single individual who understands the

complete process diagram for an entire organization is no longer required. This has

profound ramifications to the development, management and maintenance of the FOIL system.

E-commerce, Enterprise Resources Planning (ERP) and workflow systems are just a few

examples of software that require data manipulation, have a high behavioral component, are

distributed and thus require the concept of concurrency, and need to be verifiable. These systems

are becoming larger and more common. Yet, there is significant room for improvement in

modeling data-aware, behavior-based systems that require concurrency. FOIL offers a complete

modeling framework that fills the gap left by current modeling approaches.

13

2. BACKGROUND AND RELATED WORK

Design goals for software modeling languages discussed in section 1.2 include object-

orientation, capability to model process, support for concurrency and a formal mathematical

basis. Many software modeling tools have been developed that include some or all of these

features. The following sections include a discussion of the best currently available models for

meeting each of these goals individually. To conclude this chapter, special attention is given to

the modeling methods that meet more than one goal. A thorough review of pertinent literature

suggests that there is no comprehensive modeling language which adequately meets all of the

given design goals. The Formal Object Interaction Language (FOIL), as described beginning in

chapter 3 has all of these desirable characteristics.

2.1 Object-Orientation

Object-oriented systems have been around for nearly 40 years and have been shown to be

the modeling method of choice for large software systems. The task of comprehending very

large systems comprised of nothing but functions quickly becomes overwhelming. Object-

oriented modeling allows programmers to comprehend software in the same way they

comprehend everything else. Objects are created and, once created, they may interact with other

objects. The concept of encapsulation is also familiar, as many real world objects have internal

parts which, when performing as they should, can not be accessed by the average user.

14

2.1.1 The Case for Object-Orientation

There are multiple reasons to use an object-oriented approach to building software.

Among them are:

Increased code-reuse through generalization relationships

Simpler code through the use of polymorphism

Developer and user safety provided by encapsulation and data hiding

Well defined application programming interface

Current popularity

Well-studied repository of known design patterns

The largest advantage of object-oriented design is the concept of real-world modeling.

Object-oriented design simplifies requirements gathering. Such gathering is a matter of

identifying the objects at work and determining their communication to each other. It is

understood that there are other methods for software architecture, such as Aspect-Oriented and

Service-Oriented; however, Object-Oriented (OO) software architecture has become the

dominant method of choice for large software system development [3] over the last half-century.

2.1.2 Unified Modeling Language (UML)

Modeling of object-oriented systems was made easier by the advent of the unified

modeling language (UML) class diagram which allowed for specification of objects and their

relationships to each other in a way that could be used to generate code for production. The

benefits in the specification improvements as well as the reduction in time spent coding basic

functionality into software was impressive.

The history of the UML class diagram, as well as object-oriented programming

languages, reveals that these techniques are really just layers added to the previously defined

technology. This is intuitive since it is clear that a computer simply executes a series of ordered

15

instructions and thus in itself has no concept of an object, class, inheritance, etc. These are

merely abstractions built onto an existing functional programming framework. This is actually

true of the UML class diagram as well. The similarities between the UML class diagram and the

Entity-Relationship diagram are hardly coincidental.

2.1.3 Modeling Structure

In 1970, it was proposed that users should not have to know the internal structure of data

on computer systems in order to access that data in a meaningful way. Thus, a relational

abstraction was offered to achieve this purpose [1]. This later resulted in the creation of the

structured query language (SQL) and the data definition language (DDL). Its simple grammar

and easy-to-learn semantic has made it the most widely used programming language in the

world. Surprisingly, the diagrammatic representation of this relational model was not offered

until six years later in the form of the entity-relationship (ER) diagram [2]. The idea of

abstracting data into an intuitive framework was brilliant and allowed the continued

improvement of data management architectures without having to worry about whether users of

such systems would have to keep up.

16

Advances in data storage technology continued with IBM and Oracle as the main players.

This handled the problem of data complexity to some degree, but application code bases

continued to grow and organizations increasingly found it difficult to manage them. Object-

oriented software had been around since 1967 with the creation of Simula-67 but was not in wide

use. The introduction of C++ by Bell Labs brought object-oriented programming to the

mainstream; however, it was not until the mid-80 s that modeling of object-oriented technology

was offered. Object-oriented design offered many advantages over the traditional methods,

despite the fact that there are minor differences in how such modeling is done [4, 25].

The basic concept of the

class diagram is very similar to

that of the ER diagram. Each class

is represented by a box that lists

the class name and the attributes

that make up that class. In

addition, the methods (i.e.

functions) that can be performed

by this class are listed. Different

font types or colors indicate the

scope and accessibility of

attributes and methods in a class.

Figure 2.1 An ER Diagram

17

Connecting lines between classes show the relationship that classes have to one another. These

lines have different shapes on the end of them to indicate what type of relationship exists

between different classes.

In recent years, the concept of object

persistence has been studied. Persistence is the

permanent writing of an object to disk such that

this object can be recreated from that data at a later

time. It is easy to see that an ER diagram with a

table existing for all persistent objects could be

easily constructed. Likewise, an ER diagram can

be transformed into an object diagram with

additional information required. In fact, there are

several frameworks that do this. Thus, for the set of persistent objects in a system, a class

diagram represents a superset of detail required for an ER diagram [26].

The fact that the data relationship can be inferred by the object relationship has resulted

in the development of pure object management systems. These systems allow one to define

objects with attributes, methods and relationships in a DDL-like language called object definition

language (ODL). Similarly, one can query this system to retrieve actual instances of objects

using the object query language (OQL) [27]. Many implementations are built on top of a

relational database system.

2.1.4 Modeling Behavior

The behavior of objects is a determination of what happens to objects as activities are

performed on them. Thus, this ties process to objects. It could be argued that process can be

Figure 2.2 Class Diagram Legend

18

inferred from the recorded changes to object condition. This is the basis behind the technique of

process mining [28]. It is safe to assume that the reverse it not true.

The main method in UML for modeling behavioral changes to objects is the state

diagram. The state diagrams in UML are basically comprised of boxes that represent states of an

object. In this box is a list of events that cause transitions to other states. These transitions are

represented by arrows. Attached to these arrows may be conditions that are evaluated to

determine which transition is to be taken. Figure 2.3 shows an example of a UML state diagram.

It is interesting to note that the UML state diagram has no formal basis thus making

correctness difficult to determine. It should be obvious from this statement that the state diagram

offered by UML is not the same as that traditionally associated with finite state automata for

which a well understood formal semantic exists. Non-determinism is difficult to model in the

UML-style state diagram. This means that objects can generally never be in multiple states at

the same time. While it is true that any system can be modeled in a deterministic way, it is also

Figure 2.3 UML State Diagram for Elevator

19

true that non-deterministic modeling can offer significant simplification of complex state

changes. Since the state diagram (offered as optional for simple objects) is recommended for

complex object behaviors, it stands to reason that this sort of modeling simplification would be

needed.

The limitations of the state diagram have a direct impact on modeling processes

themselves. Suppose for instance that three activities must be completed before an object s state

changes to complete but the order of these activities in unimportant. From a workflow

perspective this is a relatively simple pattern consisting of a parallel split followed by a

synchronizing merge. However, with no ability to be in multiple states at once, how does one

determine what has and hasn t been done to the object by looking at its state? The UML state

diagram could be modeled to account for this but it would consist of six states. As the number n

of prerequisites for completion increase, the number of states required to model this condition

increases as a factorial of n.

So, what is the next layer in programming simplification? It seems that if object-oriented

(OO) systems are comprised of a series of interactions between various objects, then modeling of

the behavior of those objects would be beneficial. This is especially true if one considers the

number of attributes and methods required in each object simply to store and modify and object s

state. There are OO design patterns that can be used to make the state-based tracking of objects

easier but the modeling of such abstractions make comprehension of what an object is actually

doing quite difficult.

Interactive software systems can be especially hard to model as there are requirements for

when and how objects can change state. Interactive systems of this nature are really a form of

20

discrete event system; however, in such a system, the developer does not necessarily have

control of when events will be received by the software. Thus, objects must be able to verify that

they are in the correct state to respond to events. In addition, the system should be able to verify

that processing of an event will not put the object or system in an unstable or deadlocked state.

Thus, a modeling notation that can support an underlying formal semantic is preferable.

Creating a new notation that shows a class s structure and behavior in a single diagram

with support for a formal semantic is difficult. One of the primary advantages of the UML class

diagram is its simplicity; thus, a new notation must have a limited number of notational elements

to maintain this quality. But, a new notation must also be expressive enough to provide for a

detailed comprehension of the behavior of the objects both by a human and an underlying

computational system.

2.2 Process Modeling

Process modeling is generally associated with an understanding of the dynamic behavior

of an organization, business or system [29]. This should not be confused with the behavior of an

individual object or entity within the system. A process model represents the big picture idea

of what the business or system is actually accomplishing. This is highly useful in an

organizational setting as it allows for analysis of whether or not the organization s goals are

actually being met by the technology in use. In fact, it is a common (but not necessarily

recommended) [18] practice to create a process model after a system is in place and functioning

in order to determine what it is actually accomplishing.

The process model, while indispensable in analyzing organizational effectiveness, is not

sufficient for the complete specification of a software system. There are several reasons for this.

21

For starters, process models do not, in and of themselves, contain the necessary level of detail

required to completely specify a system. This is especially true for systems that are implemented

in an object-oriented fashion. This means that the system is a combination of objects which

communicate with each other in order to perform a particular task. This detail is generally not

captured by a process model and, indeed, is not really even desired. Analysts, in general, are not

concerned with the underlying implementation details. Rather they are generally analyzing

whether organization goals are being met.

The historical approach to modeling a process or workflow is activity based. This is

natural since most definitions of the term workflow deal with the sequencing of tasks (activities)

for performing a given job. The terms job , task , activity and process are often used in

interchangeable and confusing ways. There are currently two major standards bodies working on

process modeling. The object management group manages the standard for the unified modeling

language (UML) while the Business Process Management Initiative (BPMI) manages the

business process diagram (BPD) standard. Both of these groups have similar approaches to

dealing with workflow modeling but noticeable differences in their notational technique. Neither

of these standards can model all of the workflow execution patterns identified by recent research.

2.2.1 Workflow Patterns

When most people think of workflow or process they generally think of a sequential set

of activities performed by one or many individuals in a particular order. While this is certainly

accurate in some instances it is an overly simplistic understanding of the problem. Since

activities can be performed by one or more individuals, it is logical to assume that greater

productivity can be gained by having separate individuals perform non-resource dependent

activities concurrently. This is indeed the case; however, the complexity can continue to be

22

compounded by the fact that resource dependency is not always predictable. The result is

multiple patterns of workflow execution that can be quite complex.

Valuable and long-term research has been done on the various patterns that emerge in the

process of modeling actual workflows. These have been collected and validated over many

years through the input of people and organizations with actual experience in modeling business

processes. These patterns range from simple to complex and offer significant challenges in

finding a modeling technique with enough expressive power to accommodate all of them. The

following list of collected workflow patterns comes directly from

http://www.workflowpatterns.com

[30, 31].

2.2.1.1 Basic Control Patterns

Sequence - execute activities in sequence

Parallel Split - execute activities in parallel

Synchronization - synchronize two parallel threads of execution

Exclusive Choice - choose one execution path from many alternatives

Simple Merge - merge two alternative execution paths

2.2.1.2 Advanced Branching and Synchronization Patterns

Multiple Choice - choose several execution paths from many alternatives

Synchronizing Merge - merge many execution paths. Synchronize if many
paths are taken. Simple merge if only one execution path is taken

Multiple Merge - merge many execution paths without synchronizing

Discriminator - merge many execution paths without synchronizing. Execute
the subsequent activity only once

N-out-of-M Join - merge many execution paths. Perform partial
synchronization and execute subsequent activity only once

2.2.1.3 Structural Patterns

Arbitrary Cycles - execute workflow graph w/out any structural restriction on
loops

http://www.workflowpatterns.com

23

Implicit Termination - terminate if there is nothing to be done

2.2.1.4 Patterns Involving Multiple Instances

MI without synchronization - generate many instances of one activity without
synchronizing them afterwards

MI with a priori known design time knowledge - generate many instances of
one activity when the number of instances is known at the design time (with
synchronization)

MI with a priori known runtime knowledge - generate many instances of one
activity when a number of instances can be determined at some point during
the runtime (as in FOR loop but in parallel)

MI with no a priori runtime knowledge - generate many instances of one
activity when a number of instances cannot be determined (as in WHILE loop
but in parallel)

2.2.1.5 State-based patterns

Deferred Choice - execute one of the two alternatives threads. The choice
which thread is to be executed should be implicit.

Interleaved Parallel Routing - execute two activities in random order, but not
in parallel.

Milestone - enable an activity until a milestone is reached

2.2.1.6 Cancellation Patterns

Cancel Activity - cancel (disable) an enabled activity

Cancel Case - cancel (disable) the process

24

2.2.2 Business Process Diagram (BPD)

The Business Process Management Initiative (BPMI) is a standards body working with

other organizations such as the Object Management Group (OMG), Workflow Management

Coalition (WfMC), and Organization for the Advancement of Structured Information Standards

(OASIS). Together they collect the best of the

industry in terms of process management

practices and augment this with their own

standards where none exists. These organizations

have been very instrumental in raising awareness

of many of the process management issues in the

industry today.

BPMI has developed its own graphical

process modeling notation known as a Business

Process Diagram (BPD). This diagramming

notation is basically activity-centric in its

approach, combined with various symbols to

show logical sequencing of activities. Figure 2.4

[21] shows three separate notations for modeling

the parallel split workflow pattern. While these

notations have minute differences in meaning, they are essentially the same. This notation

struggles at times with over-complexity. This is also evident in the use of the diamond shape

with a large number of symbols representing different forms of process splits and joins. This

makes the notation difficult to learn and not very intuitive to the novice.

Figure 2.4 Business Process Diagram Notation [21]

25

2.2.3 UML 2.0 Activity Diagram

The Object Management Group (OMG) is heavily involved in the specification of the

Unified Modeling Language (UML) as well as the Business Process Diagram (BPD). UML has

become the most pervasive modeling framework in use today. UML has become popular

because of the major need that it has filled and the language-independent results. The main

contribution of UML to business process modeling is the use of the Activity Diagram

[32].

Given the similarities in the UML Activity Diagram notation and the BPD it is reasonable to

speculate that these notations will eventually be merged into a single specification.

Figure 2.5 [21] shows the basic parallel split

workflow pattern as modeled in the UML 2.0 [33]

Activity Diagram. The use of the synchronization bar

makes this notation simpler than its BPD counterpart

thus eliminating the primary drawback of the BPD.

However, the notation has no built-in notational support for modeling different split patterns,

such as a choice, without resorting to simply annotating the lines with conditional expressions.

Of course, these conditional expressions could result in an exclusive choice, parallel split or

multiple choice patterns based on how they are written. Thus, all three patterns have essentially

the same notation and evaluation of the conditional expressions is involved in order to determine

which pattern is being modeled.

2.2.4 Critique of Current Practice

UML and BPD are the two major business process modeling frameworks in use today.

While these notations have some significant differences, they suffer from some of the same

problems. The problems with these notations are inherent to the underlying framework and

Figure 2.5 UML 2.0 Activity Diagram [21]

26

assumptions that went into them. These problems are not a result of insufficient thought in

improving current modeling techniques; the underlying assumptions and intentional limitations

placed on that thought have limited growth potential. In fact, while many areas of software

engineering have made significant improvements in the last decade, the lack of such

improvement in the area of process modeling suggests that the current approaches have reached

their upper bound.

2.2.4.1 Procedural in Nature

Some would argue that the modeling of the procedural aspects of a business, by

definition, must also be procedural. However, all software is basically procedural in nature yet

current software engineering practices use object-oriented approaches. As the complexity of

software increases, the ability to model software in a human-friendly manner allows for the

organization of these large projects to be more manageable. It can be argued that the same is

true with workflow modeling.

The current approaches use the activity as their central figure. This approach can be

merged into an object-oriented framework by using objects as inputs and outputs to these

activities. These activities have objects (sometimes many of them) that are manipulated by the

activities. In addition, the activity may also produce objects or cause changes to existing objects.

These changes in object state are not modeled by the either the BPD or UML. Even with the

number of different diagrams offered in UML in addition to the activity diagram, no single

notation exists to correlate the business process with the production, manipulation or

consumption of the objects modeled in the class diagram. A complete picture of a business

process in UML requires a minimum of four diagrams which the developer has to jump between

27

to gain enough information to program the application. This leads to the second major flaw of

the approach.

2.2.4.2 Business Oriented

Many will argue that the procedural nature of current modeling techniques is inherent to

the problem. A common assumption is that business people lack the ability to comprehend

models designed for developers. Yet, object-oriented modeling was specifically designed to be a

natural way of looking at the world. Humans, in general, think in an object-oriented manner.

The UML activity diagram and BPD were specifically designed to be easy to understand for

business analysts, but the sole purpose is undoubtedly to gather requirements for the

development of software. Yet the conversion from a procedural process to an object-oriented

framework is not intuitive and thus requires a great deal of effort to do properly.

In addition, the lack of expressiveness in the current modeling techniques makes

converting complex workflow patterns into workable software a complex task, sometimes

requiring the use of additional objects to control the activity flow. While current notations are

useful for specifying procedures for business people, it is of little help to the developer.

2.2.4.3 Not Standardized

The ability to accurately model the procedural aspects of a business, organization or

complex job is of immense value. Currently, there are numerous methods for modeling business

processes, but no single standardized approach. There is also a large array of products claiming

to model and implement business workflows. Some of these tools are very sophisticated but lack

the full expressive power required to model many complex processes. Research on new

workflow modeling techniques [22, 24, 34-38], which reached its height in the late 1990 s, has

28

slowed considerably in recent years despite the fact that there are many looming problems with

the current state of the art.

Conceptual modeling is a core prerequisite for understanding and using a technology to

the fullest. There have been attempts to address some of the issues involved with inconsistent

modeling but they have not gained traction in either academia or industry. Many attempts to

improve workflow representation merely attempt to augment or modify the current approach.

Attempts to use non-procedural notation have resulted in systems with poor flexibility or

usability. The poor uniformity and inadequate power of current modeling techniques ripple

through other areas of the technology, making them less useful.

2.2.4.4 Complex Distribution Paradigm

It was not until the introduction of the Internet that large-scale distributed systems could

be built cheaply. Unfortunately, the migration from the original single enterprise workflow

systems to the web-based version has been accomplished by adding layer after layer of

abstraction onto the existing paradigms [39]. This is why in workflow circles today, the base

components are processes. In many implementations, such processes are wrapped as objects in

an object-oriented system so that they look and behave like objects. Such band-aids only serve

to complicate an already complicated process.

2.2.4.5 No Formal Semantic

The decision to not have UML tied to a formal language was a conscious one. It was

believed that such ties would make the modeling framework too difficult to understand and

manipulate. Some efforts to add a formal semantic to UML have been attempted [10, 15, 40-42]

. Petri-nets have shown that for some complex applications a simple modeling notation can be

both easy to understand and tied to a formal semantic. It could be argued that the lack of a

29

formal semantic makes it harder to model complex systems in much the same way as writing a

program without a debugger is difficult. In fact, the very languages that modern UML-based

modelers generate have a formal semantic. This is a serious drawback to current business

process modeling techniques.

2.2.4.6 Limited Visualization Capability

Obviously, with no consistency in notation, the visualization of a process varies a great

deal. In addition, the current activity-based methods do not express enough detail to be truly

useful to the software developer. However, some research has suggested the idea of using

multiple perspectives to communicate the same model to different users. Combined with the use

of modern 3D graphics technology, which is readily available in all new personal computers,

visualizing a business process from different perspectives can be done in an intuitive and user-

friendly manner. The addition of this third dimension allows for communication of information

that is lost using current two-dimensional user interfaces.

2.3 Concurrency

Not much attention has been paid to modeling concurrency in the popular modeling

notations. Yet, there is much recent research into concurrency support in languages and

language extensions [43-45]. Moreover, research into code mobility [8, 46] and distributed

systems [9, 47] shows a clear need for an object-oriented, graphical modeling language that has

inherent support for concurrency.

The problem of concurrency in software modeling has been around for quite some time

but few attempts have been made to address it. The introduction of Petri-nets [6] was a great

milestone in modeling concurrent processes. The Petri-net s use of tokens allows for intuitive

30

understanding of concurrent actions. For complex systems, Petri-nets do not scale very well as

new places must be added for each decision or data point required [48].

In UML, concurrency is supported at the process level through the activity diagram but

modeling parallel operations on object states in the lower levels of system design requires the

insertion of written notations. In addition, the difficulties in modeling concurrent systems in

UML are well known [49]. Object behavior [16] and object chart [12, 14] models assume that an

object is in a single state thus these models do not support concurrency. The OPM [19] also has

difficulty expressing concurrency. The Object Petri-net [15] was a successful attempt to blend

the concurrency modeling notation of Petri-nets with object-oriented design. However, this

modeling framework suffers from the same scalability problems as straight Petri-net models.

A fully-expressive modeling system is able to correctly model all known types of event

patterns [30], such as those with concurrency and resource dependency. It is challenging to

model all patterns without adding additional complexity to the modeling framework. For

example, UML models some of the more complex patterns by placing textual annotations on top

of the graphical model [21]. It is desirable for the modeling framework to have sufficient

expressive power to model complex patterns without sacrificing usability or formal semantic.

OCoN [9] models, with their very compact notation, are not suitable for complex

patterns. In particular, concurrency is difficult to represent. In practice, all examples of OCoN

models show sequential patterns. Object Petri-nets [15] have excellent expressive power,

showing concurrency and resource dependency easily. They have been demonstrated, in

workflow modeling, to effectively model all known patterns. However, this expressive power

31

comes with much complexity, as additional places, transitions and tokens are required for each

resource dependency.

In addition to the above modeling systems, there are many others that are expressive

enough to show all known patterns; many of these also supporting formal methods [22-24].

Some of these modeling frameworks lack a simple notation, or they only model process,

neglecting structure and behavior. FOIL is based on -

calculus which has concurrency as its main advantage.

Thus, FOIL easily handles concurrency while

maintaining a simple object-oriented notation that

models structure, behavior and process.

2.3.1 Petri-Nets

This modeling technique was first introduced

by Carl Petri in 1962 as part of his doctoral thesis. The

concept of a Petri-net is quite simple. There are only two kinds of objects in a Petri-net, a place

and a transition. A place is represented by a circle and a transition is represented by a thin

rectangle. The Petri-net is primarily concerned with the movement of tokens. Directional lines

connect places with transition with other places. These lines represent the movement of tokens

in the model called firing. Each line can optionally have a number representing the number of

tokens required to enable firing.

Figure 2.6 Example Petri-net [50]

32

Figure 2.6 [50] shows an example Petri-net [48] showing a basic chemical reaction of

hydrogen and oxygen to form water. In this example, there are two initial places (markings) with

two tokens each. The transition t is enabled when the token conditions represented by the arrows

is met. In part (a) of Figure 2.6 this is true since the H2 firing requires two tokens. Likewise, the

O2 requires only one token; two tokens exist, so that firing is also enabled. Thus, if all firings for

a given transition (in this case t) are enabled then we say that the transition is enabled. The result

is shown in part (b) of Figure 2.6. Notice that there is a remaining token in O2 since only one

token was consumed by transition t. Also, notice that the output of transition t is two tokens as

indicated by the firing despite the fact that three tokens were consumed by transition t.

A Petri-net, in its essence, is really a weighted digraph with rules for token movement

and manipulation. The Petri-net takes care of the non-deterministic way in which flows occur in

the real world. Concurrency is inherent to the model. In fact, if concurrency is removed, what

remains is a simple state diagram. Another great advantage is the existence of a formal

specification, reduction, transformation and comparison framework which is very similar to that

of basic push-down automata.

After their introduction in the 60 s, the 1970 s saw a great deal of interest in Europe on

applying Petri-nets to various problems. The problems for which the Petri-net has been applied

are too numerous to list. Some of the primary ones are workflow modeling, data flow modeling,

complex state machines, and communication protocols.

The popularity of Petri-nets and their formal semantic have fostered much research into

their capabilities. A Petri-net is characterized by several properties that determine what can be

done with it. Some of them are:

33

Boundedness A Petri-net is bounded if its set of reachable places is finite.

Reachability

this determines whether given an initial marking M0 and

another marking N, is there a set of firings for which a Petri-net can transition
from M0 to N.

Liveness

a Petri-net is live if every transition which occurs can always

occur again. This was shown to be recursively equivalent to reachability.

Deadlock Free

a Petri-net is deadlock free if every reachable marking
enables some transition.

Conflict Free

for every place s that has multiple output transitions, every
output transition of s is also one of its input transitions.

Free Choice

whenever an arc connects a place s to a transition t, then a
Petri-net is free choice if every transition t is the unique output for s or every
place s is a unique input for t.

This does not represent a complete list of all the terms used to describe a particular Petri-

net; however, they are the most important ones and generally determine whether other properties

are decidable. For instance, it has been determined that reachability can be computed in

polynomial time for bounded, conflict-free Petri-nets [51].

One of the major downsides of a Petri-net is its inability to account for data in its model.

Modeling data specific choices into Petri-nets generally requires one or more additional places

be added to represent that data. It was found that some applications of the technology were not

feasible due to the number of places required to model them. One solution to the problem has

been the introduction of a number of tools designed to help. Improvements to how Petri-nets are

modeled have been offered to help resolve some of these complexity issues. The concepts of

coloring and hierarchies allowed for the production of larger models with reduced complexity

[52, 53]. The combining of these techniques is referred to as a high-level Petri-net [54].

34

2.4 Formal Methods

A successful modeling system is supported by formal methods that verify that the model

does not contradict itself, and that it will function as designed. (That it will function as desired

requires good design.) The creators of many modeling frameworks have intentionally declined to

use a formal semantic, because formal methods add complexity to the model. The current

modeling systems bear this out: the simple models (i.e. UML [4] and OPM [19]) do not support

formal methods; while the more complex models (Object Petri-nets [15] and object charts [12])

do support formal methods.

The Object Constraint Language [55] has been offered as a gap-filler in the area of

formal specification. This text-based language can be used to augment a UML diagram to

provide a formal framework. Thus, the formalizing of UML using OCL or other methods [10,

42] does not have a strong graphical component. TROLL [13], which uses temporal logic, also

suffers from little or no graphical correspondence. While these modeling languages can be

viewed graphically, the mathematical underpinnings cannot be viewed in the same way. Object

Petri-nets [15] and object charts [12] are supported by formal methods and have a well-known

graphical semantic, but suffer from scalability [48] and expressiveness issues [12]. The FOIL

model can display large, highly expressive models with minimal scalability issues while

maintaining a mathematical foundation.

Process Algebra is the mathematical representation of a calculation, communication, or

message passing system. Such a representation allows for formal reasoning about the

equivalence of processes. Process calculi are not a recent invention, however, different calculi

are being introduced regularly as scientists customize or refine the principles that go into them.

35

2.4.1 -Calculus

The -calculus is algebra used to represent sequential processes and can be considered the

first process algebra. It was first proposed by Alonzo Church in 1936 as a way to determine

computability for certain problems [56]. Church s -calculus allowed him to determine that the

Entscheidungsproblem (English: decision problem) was not calculable. Incidentally, Alan

Turing accomplished this same thing in the same year using a different approach which is now

referred to as the Turing machine.

-calculus is based on the concept of binding variables, meaning that a defined variable

may have any value until it is bound. The operator used to bind variables is in the form of

var(expr)arg where var is the variable being bound, expr is the expression for which the

binding is being applied, and arg is the value, expression or variable being bound to var. A

variable is considered free if it is not bound to any particular value or expression. Thus, for

example, in the expression x(x+y)z the variable x is a bound variable while y and z are both free

[57].

In the calculus, lower case letters represent variables and uppercase letters are used for

processes. The distinction is based on the idea that processes may be defined as a relationship

between variables in a different definition whereas variables are local in scope. The definition of

process is done with the symbol. Thus, we might define a process P as follows:

yyPyxxxP)(

As with any algebra, its utility relies on the ability to convert a particular statement into

equivalent statements using defined rules. In the -calculus the main operation is called a

reduction. Actually -reduction is a mixture of 3 separate reduction operations. -reduction is

36

the operation that does most of the work [58]. -reduction can really be considered a simple

substitution as can be shown in the following example:

)()(yzzyxx

Thus, -reduction allows for rewriting complex expressions into simpler ones. Applying

the -reduction indiscriminately can result in expressions which are not equivalent. The

following example demonstrates how a wrong result can be generated if only -reductions are

applied:

)()()))(((zzzyyyzyyxyx

The reason for the error is that during the x operation the y is a free variable. Likewise,

in the inner y the x is a free variable. This problem is solved through the use of the -reduction.

The -reduction allows the arbitrary substitution of any free variable. Using this reduction, the

proper equivalent expression can be created:

)()())((()))(((dzzdydzydxdxzyyxyx

This -reduction is correct. The final reduction available is called the -reduction and

stipulates that for any process P, x(Px) is equivalent to P alone as long as there is no occurrence

of x in P. This should be obvious as any -reduction on x regardless of the argument value will

result in P.

Of course, the -calculus is not suitable for algebraically modeling a distributed

workflow system as it only functions in a sequential manner. Many processes could be

executing in parallel. However, the -calculus is the basis from which most modern process

37

algebras are derived. In particular, the -reduction remains generally unchanged from one

calculus to another.

2.4.2 -Calculus

While the -calculus can be considered the first process algebra, it was not originally

invented for that purpose. In fact, the term process algebra is a relatively new term in

computer science. The first process algebra to be referred to as such was called Communicating

Sequential Processes (CSP) in 1984 [59]. This was the first calculus to consider a variable as

simply a communication. From a high-level perspective this makes sense. If you consider that a

computer must perform some sort of operation in order to access memory to retrieve a variable

value, then a function, communication or variable are all really the same thing. CSP as the name

implies, however, was still sequential in nature and thus not suitable for distributed

computational modeling.

In 1982, Robin Milner introduced the Calculus of Communication Systems (CCS) [7].

This calculus modeled the communication of two distinct entities that could occur in parallel.

This introduced the concept of parallelism into process algebra. In 1999, he introduced the -

calculus [8] which added the concept of mobility to the algebra. The -calculus is based on the

concept of naming [60]. In other words, everything in the -calculus is a name that represents a

communication channel. Thus, when a process passes a variable in -calculus it is really passing

a communication channel for accessing that variable [61]. Thus, the actual location of that

variable is not important.

The notation of the -calculus is somewhat different than the -calculus but uses some of

the same elements. Upper case letters still represent processes but lower case letters represent

38

names of a communication channels used to access resources. The following is a list of the

constructs used in the -calculus:

P|Q Process P executes concurrently with Process Q.

P.Q Process P and Q execute sequentially

x(y).P wait to receive a communication on channel x, bind the input to y and
then execute process P.

u.P -- output value of u over channel o then execute P. It should be noted
that P will always execute regardless of whether another process receives u or
not.

!P execute P one or more times concurrently.

(x)P

create a new communication channel x available to process P only.
Another way of saying this is, Process P creates a new channel x .

P.0 Execute P and then terminate.

P+Q Execute either P or Q but not both.

The -calculus can be used to show that two processes are equivalent through the use of

reduction rules. The main reduction rule which demonstrates the ability for processes to

communicate is:

zyQPQzxPyx /|).(|.

This says that when y is output on channel x then P and Q will execute concurrently with

z substituted for y in Q. In other words, a message is received on x which was transmitted as y

but will be assigned as z, then Q will execute. Note that P would execute regardless of whether

any other process received the y sent along channel x; however, Q will not execute until it has

received something (which it will call z) on channel x. Additional rules are:

EQEPQP || - concurrent operations can never inhibit computation.

QxPxQP)()(- restrictions on scope can never inhibit computation.

39

QPQQandQPandPP - concurrency is both commutative

and associative.

The syntax for various flavors of -calculus may vary, but generally they are the same.

They always have some representation for actions, sequence, parallel composition,

synchronizing actions, nondeterministic choice, emission, reception, process, local process, and

recursive process. One notation that will be used is the action label notation:

QP

This indicates that P after completion of action will become Q. This allows for

modeling of mobile, distributed event-driven systems. In fact, -calculus has already been used

to model many different types of systems, including workflow systems [62].

2.5 Synergistic Attempts

A complete survey of currently proposed frameworks for modeling software is beyond

the scope of this paper. The body of knowledge in this area is far too large. This following is a

brief survey of models or frameworks which are of significance in designing a new way of

thinking about workflow and a new approach to modeling them.

2.5.1 Objects-Rules-Roles

The best attempt to date at a full-fledged object-oriented approach to modeling workflow

separates data (objects), flow (rules) and users (roles) [23]. This approach does not offer a visual

model of the workflow or even a unified conceptual view of a workflow. The proposed system

requires the use of inheritance or composition to model a given workflow using abstract

workflow and data components. This approach has significant problems and does not even

supply a modeling or workflow specification language.

40

The reason this framework is notable stems from its attempt to use a purely object-

oriented framework to implement a workflow system. This is the only system surveyed here that

is not activity-based. In fact, activities can be abstracted from rules as to how objects interact

with each other as would be done in any object-oriented implementation of a workflow. In

addition, this model is event-driven rather than activity-driven. Thus, the performance of

activities can be done by the workflow system or any other outside system. Thus, this model and

SEAM are the only ones to specifically address and cater to workflows performed by computers

in a heterogeneous environment.

2.5.2 SEAM State-Entity-Activity-Model

A recent attempt to unify models into a design that can take advantage of formal methods

is called the State-Entity-Activity-Model (SEAM) [22]. This model is based on set theory and

provides a single view of the workflow pattern rather than many different views used by current

mainstream techniques.

SEAM starts by modeling entities. This process is a good idea as it makes translation to

an OO framework relatively straightforward for the developer. Entities can be modeled to have

attributes but not methods

precluding a complete OO implementation. However, this is still

easier to translate to OO than mainstream process modeling techniques. The entity-attribute is

similar to the standard ER diagram, which makes sense, given that implementation has been on a

standard RDBMS.

SEAM also attempts to make the model and language temporal. This is a good idea as

workflows are, by their very nature, temporal. This is done, however, by adding temporal

components to the language and the corresponding underlying database rather than using an

inherently temporal database system [63].

41

Figure 2.7 [22] shows an example

SEAM. As can be seen, the model is not

entirely intuitive and the complexity of the

language specified is fairly significant.

Thus, there is quite a large learning curve in

dealing with this model. In addition, the

limitations in the actual flow modeling

mean that modeling complex patterns is

either very difficult or completely

impossible. In addition, the model

complexity and learning curve make it unlikely to be used by business professionals.

SEAM is a good attempt at simplifying workflow modeling for the developer. This is

done by having models that can be tested with formal methods as well as having a single view of

the model which includes both data and process. It is a non-activity centric model that is very

scalable. This model represents the best step in the direction of viewing workflows differently;

any new attempts at workflow modeling would benefit from becoming familiar with this

framework.

2.5.3 Petri-Net Workflow

Petri-nets are a token-based flow modeling system and have been used in a variety of

applications such as logistics, controllers and protocols. They can be tested with formal methods

and easily deal with difficult resource management, concurrency and data flow complexity

issues. Many workflow systems use the concept of tokens, or threads of execution, to delineate

Figure 2.7 SEAM Example Model

42

when processes split or merge in either a synchronous or asynchronous way. Thus, using Petri-

nets to model workflows is a logical choice.

Figure 2.8 shows an example of one

technique for using Petri-nets to model a

workflow system. This technique alternates

the activities of the workflow with Petri-net

nodes that manage token movement. With

this technique, very complex flow patterns

can be reproduced relatively easily. Splits

and joins are easy to manage regardless of

any outside constraints on token movement.

Even multiple instance patterns can be

reproduced with the introduction of new

tokens into a given activity. Extending

Petri-nets to use color and time further add

to the power of this modeling language to express complex patterns.

Petri-nets are considered a high-level modeling tool and are generally used for modeling

processes that have little or no data interdependencies. This creates difficulties when modeling

workflow systems which tend to have a many data constraints. In addition, this approach is still

essentially activity-based and thus suffers from the same drawbacks as current mainstream

Figure 2.8 Petri-net based Workflow[64]

43

activity-based modeling approaches. However, the power of Petri-nets to model complex flows

makes this an approach that requires serious consideration when developing new techniques.

2.5.4 YAWL

Yet Another Workflow Language

This approach starts with the use of Petri-nets and attempts to develop a new language

which can express all of the currently identified patterns encountered in workflow modeling.

This approach supports all but

one of the workflow patterns, is

easy to understand and has a

formal semantic. YAWL

successfully preserves the

power of Petri-nets to describe

process and provides a

straightforward way of

expressing some complex patterns in a simpler notation than that of Petri-nets. The symbols

offered in this modeling language are very easy to understand and offer the best usability of all

the approaches surveyed in this paper.

2.5.5 Object-Process Methodology

One of the best single-diagram methodologies is called the object-process

methodology[19, 65]. This notation mixes the OO-based class diagram notation with the

processes that change their state. Thus, objects interact with processes, while special notation

describes how these objects change state as a result of interaction. Figure 2.10 shows an

example object-process model that demonstrates some of the finer features of this notation. The

circle in the center represents a process that has been expanded to show the details within it.

Figure 2.9 YAWL Diagram

44

This hierarchical structure allows for hiding of unneeded complexity while allowing for detailed

specification.

Figure 2.10 Object-Process Model

Notice that composition, inheritance and other OO design patterns can be easily

represented in this notation. This is, by far, the most complete unified modeling technique [66].

The interactions between process and objects are intuitive and simple. The object-process model

does not have a formal semantic.

2.5.6 Object Petri-Nets

Object Petri-Nets [15, 67-69] (OPN) are currently the best solution for providing a

concurrent, object-oriented language with a formal semantic while providing high usability. As

such, OPNs demand a very detailed analysis of their capabilities and liabilities in order to

demonstrate the advantages of FOIL.

Petri-nets [6], on the other hand, exhibit many strengths lacking in UML. The Petri-net

easily models complex concurrent behavior and has an underlying mathematical foundation.

45

The notation has a small symbol set and is relatively easy to comprehend. These characteristics

have made the Petri-net diagram a proven, time-tested modeling notation. The success of the

Petri-net made it a suitable launching point for an OO modeling language. Colored Petri-nets

(CPN) were introduced [53] to blend the process interaction capabilities of Petri-nets with the

data capabilities of high-level programming languages. This was shortly followed by adding

hierarchical support to CPNs (HCPN) [52]. Recent improvements include the adaptation of

HCPNs for OO design [70] or extension of HCPNs to a fully specified OO language called the

Object Petri-net (OPN) [15, 67, 68].

Object Petri-nets provide support for hierarchy and inheritance by allowing a class to be

the token of another OPN class. The outside process model controls the flow of tokens (objects)

through a common message processing interface. The internal life-cycle of objects is

represented using a finite state machine (FSM) that responds to the same messages as the

encompassing Petri-net model. Through the use of super-places and super-transitions, a great

deal of flexibility has been added to the language. A thorough survey suggests that the OPN is

the best attempt to date for providing a concurrent OO modeling language with formal

verification and has been shown to be effective in modeling real world problems [71-73].

The problems with OPN mostly arise from its roots as a process language rather than an

object-oriented one. While OPN models can be reduced to simple UML class diagrams from a

structural point of view, the behavioral nature of inheritance is not fully addressed. The formal

framework for OPN applies to objects that are already instantiated not to the instantiation process

itself. In the literature for OPNs, instantiation is assumed but not explicitly modeled.

46

In addition, OPN requires, in many cases, that objects perform functions that are not

natural in an OO methodology or that overarching objects be added to perform these processing

functions. If one supposes that a major benefit of OO design is modeling software that is

mapped onto the real world, then such object extensions should be avoided. A primary example

of this can be found in [68] where the Table object is charged with determining if a dining

philosopher problem is deadlocked. In the real world, tables do not do much of anything. The

position of this thesis is that in OO design, objects, not processes, should interact with one

another to perform work.

Finally, CPNs have thorough support for concurrency but the OPN methodology assumes

an FSM for the object life-cycle and thus concurrency within an object is not considered [68].

This is unfortunate, as real world modeling might require that such support be present. For

instance, in the classic dining philosopher problem, it is generally assumed that a philosopher

will pick up the left chopstick and then the right, but in reality they would likely pick up both

concurrently. One could model each Hand of a Philosopher to achieve such concurrency in

OPN but this is an unnecessary abstraction which adds complexity to the model.

2.6 Conclusion

Of all the modeling languages available today, most of them do not support even three of

the main design goals outlined in this thesis. None of the modeling languages surveyed

successfully implemented all of them. By far, the most complete framework allowing for

modeling of structure and behavior, a formal semantic, and concurrency support is the Object

Petri-net (OPN). But, as provided by the literature, OPN does not support direct process

modeling and has no mechanism to verify proper process operation. OPNs have a few other

47

problems: they deviate from the real-world character of object-orientation; do not account for

lifecycle concurrency; do not consider object instantiation; and can quickly become very

complex because of the way objects are extended as tokens or places. Overall, FOIL provides a

modeling framework that can meet all of the design goals, including process modeling and

verification, while maintaining a well-known object-oriented nature.

This rest of this thesis is organized as follows: Chapter 3: Introduction to the graphical

elements that make up FOIL; Chapter 4: Introduction to the FOIL algebraic representation and

the laws and identities that provide for mathematical manipulation; Chapter 5: Explanation and

examples of behavioral inheritance, concurrency modeling and model verification; Chapter 6:

Demonstration of how FOIL can be used to model all known workflow patterns; Chapter 7:

Detailed explanation of how FOIL can be used to determine the ability of a process to

accomplish its work, given a FOIL object model; and Chapter 8: Discussion of FOIL s benefits

and limitations as well as direction for future research.

48

3. FOIL NOTATION

Formal Object Interaction Language (FOIL) provides a diagrammatic notation designed

to leverage what is good about the class diagram and provide more information about the

behavior of objects after instantiation. Important extensions such as Ports are made to model

concurrency aspects of an object s behavior. Also, FOIL explicitly models an object s event

firing, and uses an event mechanism to expressly show the relationship between multiple objects

communications and individual objects behaviors. Such relationships are implicit in UML and

have to be deduced by designers from multiple diagrams.

This chapter informally presents the diagrammatic notations of the major components of

FOIL. A formal representation of FOIL modeling, especially concurrency modeling, is provided

in chapter 4.

3.1 Behavioral Representation

One of the key features of FOIL is its constraint on the behavior of objects. Current

software modeling techniques focus almost exclusively on the structure or interface of an object,

but not on the behavioral aspects. While state charts and other devices work to give developers

an idea of what the behavior of an object should look like, they little information as to what

behavioral constraints should be applied to an object. Additionally, inheritance of objects does

not extend to the behavior [74]. FOIL does both in a single notation, such that inherited objects

are modeled to perform their interface conforming methods in an consistent manner.

49

3.1.1 States

Much like state diagrams, FOIL uses states to represent the status or stages in the

behavior pattern of an object. FOIL differentiates between different types of states (i.e., between

active and passive states, and between accepting and non-accepting states. Such differentiations

represented by diagrammatic notations and captured by FOIL algebra, are necessary to increase

the expressive power of behavior modeling. Meanwhile, the state of an object in FOIL can be

complicated since FOIL allows for an object to be in multiple states simultaneously in much the

same way as non-deterministic finite automata. Figure 3.1 shows three different notational

element combinations used to indicate the state of an instantiated object.

A state can be perceived as both an attribute and a method. It functions as an attribute in

that it indicates a quality of the object s temporal nature. It functions as a method in that, upon

arrival at a state, it may perform a manipulation of the object or system. States arrived at

concurrently are assumed to execute their actions

in a random order (see 3.1.3). This should be

considered when modeling a software system as

there are ways to ensure that states execute in a

specified order by modeling them sequentially

(see Firing). All state execution methods are

considered to be protected and cannot be

executed from outside the instantiated object or

one of its children.

An active state is one that performs an unspecified action upon arriving and is

represented by shading the state grey. This action will always take place after pre-firing events

Figure 3.1 FOIL Object States

50

(see Firing). A passive state, indicated without shading, acts more like an attribute in that it

merely indicates the status of the object and does not do any real work. For an active state, its

associated action can modify the specifics of any post-firing events including canceling the event

firing; however, it can never choose to post-fire a different event as this would undermine the

formal nature of the notation.

An accepting state is denoted by a single circle and indicates that this object may

instantiate new objects if requested. This only holds true if an object instantiation transition

exists for that object (see 3.1.2). If an event is received that requires an object to create a new

instance of a class, the object must be in an accepting state in order to accept the event. A non-

accepting state is the converse of the accepting state in that any event received that would

normally instantiate a new object is not eligible . A state may be accepting or non-accepting

independent of whether it is active or passive.

The start state is the initial state of an object after instantiation. The start state is denoted

by a black arrow with a start point outside the class definition and pointing to the state. Thus, an

active start state can be viewed as a constructor while a passive start state would be analogous to

an empty or default constructor. The final state is implicit and need not be explicitly drawn by

the modeler. The final state indicates that after completion of the state execution the object has

nothing left to do. It is important to consider that some objects may not have a final state as they

may perpetually loop through states throughout the execution of the system. Since multiple

concurrent threads of execution can exist in a model, the completion of a final state does not

necessarily mean that the object is finished, since other threads may still be in progress.

51

3.1.2 Transitions

Transitions are the primary means of modeling the behavior of objects. A transition

represents a progression from one state to another and is triggered by an event that is either

internal or external to the object. In this way, transitions are the behavioral constraints placed on

an object. Different from transitions used in traditional state diagrams, the execution of a

transition depends not only on the triggering event, but also on the event s eligibility determined

by the object s state. This eligibility can be checked using FOIL algebra and is enforced during

runtime. This extra eligibility checking is important in modeling asynchronous and concurrent

behaviors of objects.

Figure 3.2 shows the various notational

elements used to represent object transitions.

Transitions are always represented by a

directional arrow labeled with the name of the

event which may cause state change. The

passing of data as part of the event mechanism may be additionally specified with parameters.

A unique transition is one where the target object only expects to receive the event once

in a given iteration. Therefore, a looping construct is not limited by the use of unique events.

The specification of the iterative uniqueness of an event is an important aspect of the modeling

language as it allows the FOIL algebra to enforce rules about the acceptability of an event based

on its possible reception in the future. If the system is aware that an event will only occur once

per iteration, the system may refuse to accept an occurrence of that event because another object

that requires it is not ready to receive it. A reoccurring transition is used to indicate that the

number of times this event will be received is indeterminate.

Figure 3.2 FOIL Transitions

52

An optional transition is used to show that this transition may or may not occur. Thus,

two optional transitions from a single state would need output ports in order for both options to

be available (see Ports). An option, which has not been taken, remains available in the model

until such time as the object flow invalidates that possibility. For example, if an optional parallel

split was modeled but only one option had been taken, the second option would remain available

unless the merge point for the two threads is passed by the first option. Thus, the second option

would be invalidated since that thread could never be merged.

An object instantiation is represented by a standard UML relationship notated with an

event. This notation is used to represent the creation of an object by the occurrence of an event.

This also indicates a relationship between two objects as the source object of the arrow

represents the object responsible for its instantiation. Object instantiation can only occur if the

responsible object is in an accepting-state (see 3.1.1).

3.1.3 Ports

Ports are used to model concurrency, both

asynchronous and synchronous. Figure 3.3

shows the notation for the types of ports. Ports

may contain numbers within them to indicate a

quantity. An empty port is assumed to have a

quantity of one. There are two basic types of

ports: input and output.

The output port indicates the number of threads of execution required to leave an object

before the object is no longer in that state, which creates a parallel split. In Figure 3.3, the output

ports indicate that there are two transitions required out of state A in order for the object to be

Figure 3.3 FOIL Transition Ports

53

considered NOT in state A. Extra threads of execution are implicitly created as a result of output

ports. Once the object s state transitions out of a port it must create a new thread in order to

remain available for the other output ports.

The input port indicates the number of threads of execution required into a state in order

to allow the object to transition out of that state. For example, in Figure 3.3 the input port on

state D means that the object s internal workflow could proceed beyond state D when a single

thread has transitioned to it. This is only meaningful when multiple threads are expected such as

in a parallel split situation. Multiple threads of execution may be merged without the use of an

input port; however, such merging will always be synchronous. Input ports are mainly used to

allow for asynchronous merging of parallel threads of execution.

3.1.4 Firing

Error! Reference source not found. Figure

3.4 shows the various event firing notations. So far,

the interactions between objects have been modeled

through the fact that independent objects react to the

same events and that some objects can instantiate

others. This is not sufficient to handle all event

patterns and can result in a model that is difficult to

understand. In order to alleviate this problem the idea that an object itself fires events is

required.

Pre-firing causes an event to be triggered prior to executing actions required by the target

state. In practice, states may have code which they execute as a result of a transition to them.

The pre-fire ensures that an event is triggered prior to executing that code. Post-firing is similar,

Figure 3.4 FOIL Event Firing

54

but occurs after executing the state code. Finally, multi-firing is a post-fire that allows multiple

instances of an event to be fired. The determination of how many events to fire occurs within the

state code at run-time.

3.1.5 Interleaving

The final notational element is interleaving. Interleaving requires that an object exhibit

multiple behaviors sequentially but in no specified order. The notation of a dotted box is used to

indicate that the items in the box should be

interleaved. This notation is provided in FOIL for

purposes of usability. Since interleaved execution

can be modeled as a choice among multiple

sequential possibilities, this pattern can be modeled

using the notational elements previously outlined.

However, this would be, in the best case, cumbersome and, in the worse case, completely

unreasonable. This is because the number of combinations per sequential choice added to the

model would grow excessively fast (on the order of n!). Thus, this notation provides a means to

model such cases while avoiding this state explosion problem. How state explosion is handled in

FOIL algebra will be covered in chapter 4.

3.1.6 Event Scope

Events in FOIL cause objects to enact their behaviors; however, what if the intent is to

enact the behavior in a specific object. In FOIL, this is accomplished through a mechanism

referred to as event scope. When an event is fired, it may be annotated with the object or objects

for which it applies. Since each object determines its own reaction to an event, the presence of

such annotations would cause the object to ensure that it was in the list before reacting to the

Figure 3.5 Interleaved State Routing

55

event. Likewise, the absence of such annotations would ensure that an object will always react

to the event. Typically these annotations are only shown when their presence is of significance

to overall system operation.

3.2 Object Modeling

Given the notation for behavior specification in FOIL, the definition of an object class

can be modeled that accounts for its structure, as in traditional modeling techniques, but also

constrains to its behavior. Since state attributes and method calls have more to do with an

object s behavior than its structure, the text representation of an object s structure need not

explicitly define these. This lends itself to a more graphical representation of an object with

fewer low detail text elements.

3.2.1 Basic Object

Representing an object with the Formal

Object Interaction Language (FOIL) is

relatively easy. Using the notational elements

outlined above, each object is represented by

its attributes, method and behavior as shown in

Figure 3.6. In this example, a Quote object is defined. The Quote starts life in the Open state

and either transitions to Expired or Ordered depending on the input event. The shading on the

Open and Ordered states indicate that they are active and thus will perform processing upon the

object arriving at the state. The Expired state does not execute any actions.

Attribute representation is abbreviated in FOIL, as with the Business Object Notation

(BON) [75], to reduce the number of specifically defined methods. Since behavior aspects of an

Figure 3.6 Basic Quote Object in FOIL

56

object are clearly defined by the notational elements, most of the remaining methods involve the

storage and access of data.

The read-only attribute qualifier (^) is also shown in Figure 5. The amount would be set

by object instantiation as indicated by the input parameter for the start state. It may be required

that the amount value be retrievable from outside the object. A class diagram would represent

this as a private attribute with an accessor method provided. Methods in FOIL can still be

specified in the typical manner.

3.2.2 Instantiation

Relationships between classes are shown in the same way as in the UML class diagram.

Thus, FOIL conforms to the traditional forms of object relationship: aggregation, composition,

association, and generalization.

Instantiation of objects of one class by another is indicated by using the association

symbol offered in traditional UML class diagrams with an added event notation. This means that

an association that does not have an event is treated as knowledge of one object by the other.

From a FOIL point of view, this represents a possible communication channel (see

Communication). An association with an added event qualifier indicates that an object of the

class will be instantiated when the event is received and the source object is in an accepting state.

57

The fact that an object must be in an accepting state is a significant difference between

FOIL and the other attempts at hybrid notations. Rather than just the behavior of a single object

being represented, FOIL offers the ability to see how objects are created and what rules are

required for such creation in a graphical way. Previous hybrid object-oriented (OO) notations

neglected the graphical representation of instantiation rules and thus made it difficult to see the

process overriding the behavior of

individual classes.

Figure 3.7 shows an

example of object instantiation. In

this example, the attributes

associated with the Account class

are omitted for brevity. It is clear

from the notation that a Payment

object can only be created if the

account is in the Active or Overdue

state. Note that the asterisk (*) on

the association indicates that more

than one receivedPayment event is

expected. This could also be done

with multiplicity values for the

relationship.

Figure 3.7 Basic Payment Process in FOIL

58

3.2.3 Inheritance

One of the hallmarks of object-oriented development is the concept of object inheritance.

This inheritance is informally referred to as an is a relationship. Thus, if a class Salmon

inherits from class Fish, it is because a Salmon is a Fish.

The main problem with inheritance as implemented in common modeling frameworks

and programming languages is that it is solely concerned with structural conformity. It might be

said that if class Salmon or Trout look like a Fish and acts like a Fish then it is a Fish. But, if

inheritance only ensures structural conformity by definition a child s wind-up fish toy (class

WindupFish) could actually be a Fish. Indeed, it looks like a Fish (attributes: fins, tail, etc.) and

acts like a Fish (methods: swim, catch, etc.). But WindupFish is not a Fish primarily because the

way in which it implements its methods is decidedly different.

FOIL reintroduces the concept of behavioral inheritance [74] where inheritance is

defined by the structural and behavioral conformity of an object. Since, FOIL allows for the

detailed modeling of the behavior of individual objects, it can be determined if the behavior of

one class represents a subset of behavior of another. The formal details of how this works will

be explained in section 5.2. Therefore, WindupFish class could not extend from Fish since the

internal behavior of Fish would not be a subset of the behavior of WindupFish. On the other

hand, a Salmon could definitely inherit from Fish. While the nuances of how a Salmon and a

Trout swim could differ slightly; in general, the mechanism for swimming in a Trout and a

Salmon are fundamentally the same because they both look, act and function internally like a

Fish.

An example of inheritance in FOIL is represented in Figure 3.7. In this case, the

Payment class is abstract but defines that every payment should have two states and should

59

accept an amount for instantiation. The deposited state is active and thus performs some action,

but this action is not abstract. The abstract nature of this class is that the transition between the

received and deposited states is undefined. By modeling the abstract class, the designer is stating

that there are two states, received and deposited, and there is a transition between them. The

concrete details are left to the subclass. Thus, each subclass must have these two states and must

have a transition between them.

3.2.4 Communication

FOIL can be used to model distributed systems with a centralized event manager. This

does not change the fact that communication between classes must be done through defined

relationships. In an object-oriented environment, communication between objects occurs when

an event is fired by one object and received by another. This is analogous to a method call.

Figure 3.8 shows an example of a

communication sent by the Elevator object to

the Door. The reachedFloor event is

propagated down the composition relationship.

A light dotted line can be used to indicate the

relationships that an event uses for

communication. This example can therefore be

interpreted to mean that the Elevator object

calls the reachedFloor method of the Door

object. The dotted line connecting a firing with

a relationship is optional but is helpful in correlating events and affected transitions.

Figure 3.8 Simple Object Communication

60

3.3 Process Modeling

FOIL not only allows for the modeling of objects and their behavior, but it also provides

a simple notation similar to the object notation for modeling high-level processes as well. A

FOIL process can be checked, using FOIL algebra, against the object model to determine

whether the given object model will, in fact, perform the defined process. The exact details of

how this is accomplished described in chapter 7.

3.3.1 Process as Object

FOIL takes the approach that a process is an object of an abstract process engine. Since

objects can be modeled with arbitrary levels of abstractions, it is reasonable that a process is an

abstraction of a process execution engine. However, this means that a process in FOIL exists

outside of the main object model and thus does not behave exactly like what would be expected

of a modeled object. FOIL considers it important that, in a pure object-oriented framework,

only objects in the model perform real work. The entire execution of process in FOIL is

performed by the objects and their corresponding communications with each other and are

moderated and controlled completely by the algebraic expressions they represent. The concept

of objects performing process rather than process using

or regulating objects, while not

unique to FOIL, is an underlying principal of the language.

In order to maintain this fundamental nature of objects in FOIL, a FOIL process must

comply with the following rules:

1. States in a FOIL process cannot perform work. Instead, active states in a process

model represent a sub-process.

2. States in a FOIL process do not correspond to states in the object model since they are

part of a totally different system: the process engine.

61

3. All Events both fired and received must exist in the object model. Object scope

qualifiers in the process model may be used.

If these rules are followed, an object

modeled can be checked to ensure that it will

execute a given process. Figure 3.9 shows an

example of a FOIL process P that can be used to

verify that the system modeled by objects X and Y

will perform work as expected. The firing of event

p guarantees that object Y will be instantiated. Once

this occurs, unique event s can not be accepted by

the system until object Y transitions to state H.

Thus, event q must always be received first, after p

is fired, but before r is fired and s is received. This analysis clearly demonstrates that process P

can be accomplished with this object system.

3.3.2 Process Nesting

Processes in FOIL can be arbitrarily nested. In FOIL, process nesting refers to the

sequential replacement of a process state by another FOIL process. The notation for this nesting

is done by marking a state in the process as active. An active state in a FOIL process diagram, as

mentioned earlier, represents a sub-process. The term active here refers to the fact that another

activity must be performed before this process may continue.

Figure 3.9 Simple FOIL Process Model

62

Figure 3.10 shows an example of how

process nesting is represented in FOIL. Process

P1 has B marked as an active state. Thus, when

arriving at state B, the process B will be verified

with the object model by straight sequential

substitution. Process P2 is logically equivalent.

3.3.3 Process Spawning

In addition to nesting processes, FOIL

supports the concept of process spawning. A

process is spawned when an event occurs that

will cause a new process to start. These two processes (the calling process and the new process)

will then continue concurrently. Since a FOIL process model is primarily used for verification,

this spawning allows objects to perhaps

communicate in different ways while still performed

their core process. Thus, concurrency in process

modeling allows for more flexibility in the object

model.

Figure 3.11 shows an example of how

process spawning is modeled in FOIL. When

process P3 transitions to state B an r event is

triggered. This event causes the creation of process

B3 which will continue concurrently with process P3.

At this point, either an s or a t event would be valid allowing the underlying object model to fire

Figure 3.10 Process Nesting Equivalence

Figure 3.11 Process Spawning Equivalence

63

or receive these events in an arbitrary order. This is not true of object P1 in Figure 3.10. In

general, process spawning is a much looser validation of the underlying object model than

process nesting. Process P4 in Figure 3.11 is logically equivalent to the process system create by

the interaction of process P3 and process B3.

3.4 Simple Elevator System

A simple elevator system is modeled below in both the Formal Object Interaction

Language (FOIL) and the Unified Modeling Language (UML). As UML is both popular and

familiar, this should aid in understanding the distinctive qualities of the FOIL model.

Figure 3.12 shows a simple elevator system as modeled with the Formal Object

Interaction Language (FOIL). The relationships used in the model are the same as those used in

the standard UML class diagram. However, in UML the communication between objects as a

result of these relationships is unclear. The FOIL notation makes the communication

requirements clear. This is an example of the behavioral information implicit in a FOIL model.

Notice in Figure 3.12 how the elevator Door can be stopped by a Passenger, resulting in the

Door reopening. The loop in the ElevatorController causes the Door to attempt to close again.

The MasterController in this diagram shows how concurrency is modeled. In this case,

the master controller is a continuous listening object that will spawn a new thread of execution

for every request received by the buttons. The next available ElevatorController sends a

nextFloor event to the MasterController. The logic for which floor the controller will dispatch

the elevator is determined by the active state Queued. In object-oriented implementation, the go

event is really a method call that has a floor parameter. This is optional in the FOIL notation but

is shown in the go event definition in the ElevatorController object.

64

Figure 3.12 FOIL Elevator Example

65

The FOIL notation supports all of the relationships in the UML class diagram.

Inheritance is extended to include behavioral inheritance, as can be shown by the abstract

Button class. In this case, a button has a dim and a lit state and the press event will always cause

transition from dim to lit regardless of the type of button. The implementation of the active state

lit is not specified and must be implemented by the subclasses of Button. This is denoted by the

lit state in italics.

The FOIL model can also be augmented with a reference help called the Event-Object

Schedule. Figure 3.13 shows the schedule for the elevator example in Figure 3.12. In this

schedule, straight arrows indicate that the event is fired and the curved arrows indicate that the

object accepts that event. This is a beneficial reference when trying to determine which objects

are involved in event production and reaction.

Pa
ss

en
ge

r

M
as

te
rC

on
tr

ol
le

r
El

ev
at

or
C

on
tr

ol
le

r
El

ev
at

or

D
oo

r

B
ut

to
n

Fl
oo

rB
ut

to
n

El
ev

at
or

B
ut

to
n

D
oo

rO
pe

nB
ut

to
n

close

dim

go

going

doorClosed

doorOpen

move

nextFloor

open

press

pressButton

reachedFloor
stop

Figure 3.13 FOIL Diagram Event-Object Schedule

66

Finally, Figure 3.14 shows the FOIL process diagram for the elevator model in Figure

3.12. This process model is composed of two processes that run concurrently: Pick up

Passenger and Drop off Passenger. Each one is triggered by the Passenger pressing the

appropriate button. Every time a Passenger presses a FloorButton, a new Pick Up Passenger

process is created. The Drop off Passenger process is created whenever a Passenger presses an

ElevatorButton and the Pick up Passenger process is in the Loading state. It should be relatively

easy to see that the process as modeled in Figure 3.14 can be accomplished by the FOIL object

model previously given in Figure 3.12.

Figure 3.14 FOIL Elevator Process

67

3.4.1 UML Equivalent

A simple FOIL model can be converted to a standard UML model. As more of the

concurrency features of FOIL are used, the converted UML model becomes quite large as

individual thread of execution must be explicitly modeled in UML. Figure 3.15 shows the UML

class diagram of the equivalent model from Figure 3.12. Each active state in the FOIL model

becomes a private method in a standard UML model. Likewise, any event which can be received

becomes a public method. Read-only attributes are converted to private attributes with an

Figure 3.15 UML Class Diagram of Elevator

68

appropriate accessor method. Public attributes

of which there are none in this model

can be

converted as standard public attributes or private attributes with the appropriate get/set methods.

The detail in the equivalent class diagram is far less than the FOIL model as there is no

indication as to the behavior of individual methods nor is there any indication as to how the

objects interact. In UML this requires a separate diagram, of which there are several varieties.

Figure 3.16 represents an equivalent sequence diagram for standard elevator operation as

modeled by the FOIL diagram in Figure 3.12. The diagram in Figure 3.16 models an expected

operation of a single elevator.

It should be noted that a sequence diagram is rarely suitable for specifying multiple

scenarios. Modeling of the behavior of the MasterController or the scenario of an elevator door

impediment would each require an additional diagram. Even after diagramming each scenario,

additional UML state or collaboration diagrams would be required to specify the complete

interaction between objects. Thus, this simple system would require approximately eight

diagrams to display the same information as contained in the single FOIL model.

69

Figure 3.16 UML Sequence Diagram Equivalent

70

A UML activity diagram for this elevator example is hardly worth modeling. The

process performed by an elevator is extremely simple and thus a UML activity diagram would

consist of two boxes with a line between them. Additional notations may be made to the

diagram. The FOIL process diagram actually presents the expected sequence of events when in

operation. This could be done by creating a UML activity diagram with a very low process

granularity where, for example, the door closing and opening would each be considered

activities. In addition, the low level nature of such an activity diagram would totally defeat the

purpose of an activity diagram which is to model what work the system is to perform from a high

level perspective.

Finally, matching such a UML activity diagram with the class and sequence diagrams

would be a manual process to be done by the designer. Part of this problem is caused by having

multiple dissimilar diagrammatic notations to display the behavior of the objects and the system.

This is exacerbated if UML state or collaboration diagrams are needed. Additionally, there is no

formal or even standard mechanism, in place, for reconciling these multiple diagrams. FOIL

uses a single notation to model the system structure, individual object behavior, object

interaction, and high-level process. More importantly, the FOIL algebra provides a way to

mathematically verify that the individual object behaviors are internally consistent and that high-

level processes will reliably perform the desired work.

71

4. FOIL ALGEBRA

In addition to the graphical notation, the Formal Object Interaction Language (FOIL) has

a direct representation as an algebraic expression called FOIL Algebra. This algebra gives FOIL

a robust mechanism for ensuring model correctness both at design-time and run-time. FOIL

algebra is a variant of the -calculus originally designed by Robin Milner [7, 8] with additional

axioms and theorems for manipulating object-oriented system execution. The -calculus as a

process algebra is solely concerned with names and as such it is overly abstract for the purposes

of FOIL thus specific name types (such as events and states) have been added to the algebra for

clarity. While every system in FOIL algebra can be abstracted into a pure -calculus definition,

the constraints placed on FOIL algebraic construction, manipulation, and reduction are in terms

of the more specific FOIL naming semantics.

This chapter provides a theoretical discussion of the application of process algebra to the

FOIL graphical model. First, algebraic expression for a system is constructed by converting each

graphical element into individual terms and combining them. Second, the various algebraic laws

and identities are discussed to enable manipulation of system expressions for use in model

verification and run-time execution. Next, the system expressions are reduced using algebraic

reduction with eligibility constraints. This chapter concludes with a demonstration of

construction, manipulation and reduction of a sufficiently complex workflow pattern. This

chapter is necessarily abstract; however, the following chapters will contain more real world

examples.

72

4.1 Construction

Each notational element in FOIL has an algebraic equivalent; therefore, a system

comprised solely of FOIL notational elements can be completely expressed using these algebraic

equivalents. Through a process of substitution an expression for a complete system can be

created.

4.1.1 Events and Operators

An event in FOIL represents a name in a -calculus system that functions to change the

state of the system. In a FOIL model, the primary unit of work is an Active State. The algebraic

definition of a FOIL model is not concerned with the specific work being done, only the events

required to start or end the performance of that work. The system definition must include all

possible options for the sequence of events that are acceptable while allowing independent event

sequences to carry on concurrently. As a convention, events are represented by a lower case

letter.

Figure 4.1 shows the difference in algebraic

notation for consuming or receiving an event verses

producing or triggering an event. The bar notation

over the t event indicates that it is fired not received.

State G is defined as transitioning upon the receipt of a t event while state H is defined as

triggering a t event (post-trigger). FOIL uses these simple event expressions to represent

complex system behaviors by using operators to define the temporal relationships between

events.

Figure 4.1 Algebraic Event Construction

73

There are only three operators in the FOIL algebra: sequential, concurrent, and choice

(see Figure 4.2). The sequential operator, represented by a dot or period, denotes two or more

events which occur in a specified and sequential order. The concurrent operator, represented by

a pipe, denotes two or more events which occur simultaneously. The choice operator,

represented by a plus, denotes a choice among two or more events. All possible combinations of

system operations as specified in FOIL can be completely expressed using these operators.

4.1.2 Object Qualifiers

There is some debate as to whether the use of object identifiers limits the flexibility in

modeling object-oriented systems. However, in the case of FOIL, objects need to be able to

respond to events that may be specifically designed for them. Without a mechanism for

addressing a specific event to a specific object, this would not be possible. Thus, despite some

drawbacks to this approach, it was decided that FOIL would use object identifiers. These

identifiers can be prepended to an event term in the FOIL algebra to offer event specificity.

CqpA
CqBandBpA

..
.. CqBpA ..CqBpA .|.

Figure 4.2 Algebraic Operators

74

Figure 4.3 shows an example of a class X

that is defined with a specific event s and a global

event p. The X qualifier to the s event means that

this s event is specific to an object instance of class

X. Thus, when an X object is instantiated the

expression is

EXsXpFXX 1111 ..

The convention for this paper will be to sequentially number each instance of an object as

its identifier but any object identifier scheme may be used.

4.1.3 State Representation

Each state of an object has an algebraic expression that represents its behavior. In that

regard, state expressions are the building blocks of system definitions. The representation of

passive states is rather trivial. As such, it has already been presented previously without much

explanation. The expressions take on a

fair amount of complexity, however,

when active states are involved.

Figure 4.4 shows two examples

that contain active states. There are two

main problems in the algebraic

representation of active states

Figure 4.3 Object Qualifier

Figure 4.4 Active State Examples

75

demonstrated in these examples: 1) ensuring that the p event does not fire until the actions of E

are complete, and 2) determining when the actions of E should begin. It is easy to see that

neither of these problems have any consequence if state E is passive in either class. In order for

the algebra to be robust and complete, there must be an event representation for handling active

states.

Figure 4.5 shows the

behavior in FOIL notation for the

active state E in both objects in

Figure 4.4. Of course, the FOIL notation could be drawn to show this behavior explicitly and,

indeed, a diagramming tool could have this option. However, the simple shading of an active

state retains simplicity in the overall diagram which could easily grow cumbersome if such

behavior was explicit. The impact on the algebra of this substitution is significant. For instance,

object X would now have the expression:

GppEEEEXsX

GppEEEEEEXsFFX

......̀.̀
......̀`.

This complexity is stark when compared to the expression for Object X if state E were

passive:

GppXsX

GppEEXsFFX

...
...

Likewise, object Y with its concurrency takes on a new character as well:

GppEEEEYtGppEEEEYsY

GppEEEEEEYtEYsFFY

......̀.̀|......̀.̀
......̀`.|.

Figure 4.5 Active State Event Flow

76

The extra events fired and received with these expressions may seem rather redundant;

however, the utility of this representation will become apparent later during the discussion of

reductions on these expressions. In addition, it should be noted that the diagram of Figure 4.5 is

only one representation of how active state behavior could be modeled. In this case, active states

will only execute their actions when all threads of execution synchronize onto it (unless an input

port is used). Additionally, no pre-firing events will fire until all threads have synchronized to

the active state. By replacing the behavior of active states with a different state flow, the system

as a whole would treat such situations differently. For example, an action could fire when the

first thread reaches the state rather than waiting until synchronization occurs. For the remainder

of this thesis, active states will be assumed to follow the behavior of Figure 4.5.

It may be necessary for an executable modeling system based on FOIL to know what

state an object is in. This can be done through the use of a state event. This is a simple

mechanism of firing an event when an object reaches a given state. It requires no additional

notation but is implicit. With state events object X of Figure 4.4 would have the expression:

GppEEEEEXsFX

GppEEEEEEXsFFX

.......̀.̀.
......̀`.

The addition of the F, E and G events serve to inform the system that object X has

reached a those states. The E event occurs within the active state flow meaning that all pre-firing

events must be accepted prior to being considered by the system as arriving at this state.

The firing of state events is completely optional. It is easy to see that such event firing

does not inhibit the work of the system since no transition is dependent on such an event. It is

conceivable that such events could be used by other objects to trigger additional transitions but

77

this behavior can be modeled without such mechanisms. Additionally, it should be noted that

without this mechanism, state G in object X and Y of Figure 4.4 has no expression unless

termination is denoted by a 0

as is common in the standard -calculus. It will be the convention

of this thesis not to substitute states that have no expression.

4.1.4 Object Definition

Creating a FOIL algebraic expression of an object is a matter of substituting state

expressions. This substitution of state terms is relatively trivial and has already been shown by

the expressions created for Figure 4.4 and Figure 4.5. These simple cases did not have any

iteration or loops. It is important that substitution only occur up to any loops or iteration. The

reason for this restriction will become clear during the discussion on how these expressions are

used during run-time operation of a system (i.e. reductions) and how models are verified. In

addition, it is intuitive that if looping constructs are

to be allowed (which they are) then substitution of

terms would be infinite without at least an arbitrary

stopping point. By having a clearly defined

substitution stopping point, we maintain some

qualities of the model which are useful.

Figure 4.6 shows an example of a class definition that contains an iterative behavior.

Terms are substituted in a depth-first manner using a simple depth-first search algorithm on the

connected graph [76] represented by the behavior diagram. Substitution will cease whenever a

back-edge is encountered thus eliminating any looping. The following shows the steps for

building the expression for Figure 4.6:

Figure 4.6 Object with Iteration

78

stopDsubstituteBsrqpX
CsubstituteDrqpX
BsubstituteCqpX
AsubstituteBpX

sexpressionstateBsDDrCCqBBpAAX

.....5
....4

...3
..2

.....1

In a depth-first search of the graph represented by object X, the event s transition would

be a back-edge. Thus, no substitutions take place beyond that transition until it is required in

order to continue after a reduction.

This does not mean that the same

state will not be substituted twice.

Figure 4.7 shows an example of

where repeated substitution of the

same state may occur.

againDsubstituteEtrqEtspX
CsubstituteDrqEtspX
DsubstituteCqEtspX
BsubstituteCqDspX
AsubstituteBpX

sexpressionstateEtDDrCCqDsBBpAAX

)......(.6
).....(.5

)....(.4
)...(.3

..2
......1

State D in Figure 4.7 gets substituted twice during object expression construction. This

is because the s event transition does not represent a back-edge during depth-first traversal (it is a

cross-edge) and thus substitution should continue normally until a back-edge is encountered or

no transitions are available (state E).

Figure 4.7 Repeated Substitution with No Loops

79

4.1.5 System Definition

The final step to construction of a system using FOIL algebra is the substitution of object

expressions for the creation of a unified system expression. The substitution of object

expressions generally occurs at run-time and directly correlates with object instantiation.

Consider that an object-oriented program when

first executed has no objects. Thus, the initial

algebraic expression for a system would consist of

the events that cause object instantiation from an

outside source. Whether this outside source is a

function, user or other system is unimportant.

Figure 4.8 shows an example of a complete

system composed of two objects, neither of which exists prior to execution. Only when a t or u

event is generated by the system will these objects be instantiated. Thus, this initial algebraic

expression for this system is:

YuXtsystem .|.

Since, objects X and Y have not been instantiated no substitution for these variables takes

place. Only when an object term reaches the front of a concurrent expression during reduction

will the substitution take place. However, the class expressions for objects X and Y can be

predetermined prior to run-time to improve performance during object expression substitution.

4.2 Manipulation

The expressions created by the construction of a model using FOIL algebra are not very

useful as created. Run-time execution and model verification place rules on the reductions that

Figure 4.8 System Object Instantiation

80

are allowed on a given system s expression. These rules would be overly complex and difficult

to automate on raw expressions. Given this, expressions need to be rearranged such that they are

more suitable for reduction operations and model verification.

4.2.1 Algebraic Identities

The identities associated with process algebra are fairly well known; however, FOIL

takes a loose approach to equivalence. In addition, it is helpful to see how the identities function

in FOIL algebraic notation rather than assuming that such notations are common knowledge.

These identities are provided as axioms rather than providing rigorous proof since justification

for these laws is fairly intuitive.

4.2.1.1 Distributive Law of Choice

Events fired or received before or after a choice can be distributed into the choice. Figure

4.9 shows a FOIL model of this law. Object X and Y have an equivalent behavior. In English,

Object X would read, Accept event p and then accept

event q or accept event r. Object Y, on the other

hand, reads, Accept event p and then accept event q

or accept event p and then accept event r. The logical

equivalency of these two statements should be fairly

intuitive. Object Y displays something akin to a

differed choice, where two threads exist until a choice

is actually made. However, since the destination of

the deferred choice (state B) is the same, only a

single thread need be produced during execution. This

logical equivalence produces the axiomatic identity:

Figure 4.9 Distributive Law of Choice

81

DrpCqpDrCqp

thenYXif

DrpCqpY

DrBandCqBandBpBpAandAY

DrCqpX

DrCqBandBpAandAX

....)...(

....

....

)...(

...

2121

4.2.1.2 Distributive Law of Concurrency

Sequential conditions required for the

spawning of concurrent threads can be distributed to

multiple threads. This identity is very similar to that

for choice. Figure 4.10 shows an example of this

Law. In English, object X would read, Accept

event p and then concurrently accept events q and

r. Object Y, on the other hand, would read,

Accept event p and then q and concurrently accept

event p and then r. Once again, the equivalence of

these two statements should be intuitive. This

produces the axiomatic identity:

DrpCqpDrCqp

thenYXif

DrpCqpY

DrBandCqBandBpBpAandAY

DrCqpX

DrCqBandBpAandAX

..|..).|..(

..|..

...|.

).|..(

.|..

2121

Figure 4.10 Distributive Law of Concurrency

82

4.2.1.3 Law of Redundancy

A choice between two identical sequential event expressions is not a choice. Likewise, a

concurrency between two identical sequential event expressions is a single thread. It should be

clear that to, accept p and then r or accept p and then r, is completely redundant and while it is

worded as a choice between two actions there is really no choice at all. The same law holds true

for concurrent relationships between event sequences.

rprprp

rprprp

..|.

...

4.2.1.4 Law of Concurrent Subsequence

If a sequential term in a concurrent expression is the order subsequence of another term

in that same concurrent expression, then the first term may be eliminated. This law is closely

connected to the reduction eligibility rule to be discussed later in this chapter. An example of

this law is as follows:

vutsrqpusqvutsrqp|......

4.2.1.5 Law of Nullability

If a sequential term of a concurrent expression begins with a non-event, then that

expression is eliminated. If after construction or through the course of execution, all the terms of

a concurrent expression begin with an event NOT being received, then that expression has no

chance of execution. This particular law is based on the assumption that NOT making a choice

is a passive event and would not be explicitly fired by the system. As such, an expression

starting with such terms will never be reduced.

83

srqpqpsrqpsrqpsrqp .|...|..|!.!.|!.

4.2.1.6 Law of Contradiction

Two concurrent terms where any two events

are sequentially transposed can be eliminated. Figure

4.11 shows an example of a simple contradiction.

Since events p and q are unique, they can only be

accepted once per iteration and thus to accept p would

invalidate the bottom thread and likewise, to accept q would invalidate the top thread. This is an

inherent contradiction. Such contradictions can be easily found by scanning the concurrent terms

for transposed events, as in this example:

0.|. pqqp

4.2.2 Algebraic Form

Using the algebraic identities described

above, FOIL expressions can be rearranged to

produce equivalent expressions that are useful for

run-time execution and verification.

4.2.2.1 Choice-Action Form (CAF)

Any FOIL expression can be placed into a

form where every possible sequence of events is

handled. In effect, an expression in Choice-Action

Form (CAF) is a choice among concurrent events. CAF is accomplished by fully distributing

concurrency and choices using the distributive laws. Figure 4.12 shows an example of a simple

Figure 4.11 Law of Contradiction

Figure 4.12 Algebraic Forms

84

object model which both concurrency and choices. The algebraic construction and manipulation

to CAF is:

DrpCqpDrtpJvutp
CqtpJvutpDrtpHustpCqtpHustpX

DrCqDrtJvutCqtJvutDrtHustCqtHustpX
DrCqDrtCqtJvutHustpX
DrCqDrCqtJvuHustpX

onconstructiSystemDrCqDrCqJvuHustpX
onconstructiYJvuHusY
onconstructiXDrCqDrCqYtpX

statesYJvGHuFGuFsEEY
statesXDrCqDrCqYtBBpAAX

CAF

.......|....
...|.......|.......|....

)....|.....|.....|.....|....(
)..)....|).......(
)..)...(|).....(.(
)..))..(|).....((.(

....
)..))..(|.(.(

....
..))..(|.(.

In this example, it is not necessary to substitute for object Y until a t event has been fired

but doing so does not affect the execution of

the model and serves to show the utility of

CAF. The final expression in CAF is a

complete list of all the possible concurrent

outcomes for this system. In this form, it is

extremely easy to use the remaining laws to

eliminate terms. Additionally, CAF is used

to determine whether two modeled objects

are logically equivalent.

The simple merge pattern allows for

the construction of an interesting equivalency. Figure 4.13 shows two object behaviors that are

equivalent. Object X1 uses a deferred choice followed by a simple merge while object X2 uses a

parallel split followed by a synchronous merge. In both cases, states B, C and D are reached.

Figure 4.13 Choice-Concurrent Equivalence

85

The difference is that object X1 is waiting to determine where the single thread of execution

exists while object X2 has three separate threads of execution. Upon an s, t, or u event both

behaviors will transition to state E once and only once. Object X1 makes its choice while object

X2 merges its three threads into one. Algebraically, it can be shown that the two flows are the

same.

12

2

2

2

2

1

1

.........

.)....(.)..(
.)..(|)..(|.)..(

.).(,,.|.|.)||.(
.........

.......

XX
FvupFvtpFvspX

FvuptpspFvutspX
FvutspvFutspFvutspX

FvEEutsDCBDpCpBpDCBpX
FvupFvtpFvspX

FvEEuDEtCEsBDpCpBpX

CAF

CAF

The main drawback to CAF is that it exhibits the state explosion problem. For each

optional choice used the number of possible action sequences increases by a factor of two. Thus,

the growth rate of the algebraic expression is O(2n) where n is the number of options. In object-

oriented models that exhibit low coupling the size of the expressions are manageable since it is

expected that the expression of any single object would be relatively small. However, in some

models the size of the system expression would make run-time verification intractable.

4.2.2.2 Choice-Compressed Form (CCF)

The Choice-Compressed Form (CCF) is achieved by distributing all concurrent and

sequential actions but delaying the distribution of choices until necessary for subsequent

reductions. While CCF is not as easy to reduce as CAF, it does not exhibit the exponential

growth rate. This means that CCF expressions will never grow too large for state-based analysis

86

and run-time reductions. The Algebraic construction and manipulation into CCF of the system

in Figure 4.12 is:

DrpCqpDrtpCqtpJvutpHustpX

DrpCqpDrtCqtpJvutHustpX
DrCqDrtCqtJvutHustpX

onconstructiSystemDrCqDrCqJvuHustpX

CCF

....)......(|)........(

....).....(|).......(
)..)....(|).......((

)..))..(|).....((.(

4.3 Reduction

Once any event is sent or an eligible event is received there is no reason to continue to

denote it in the expression. The process of removing these terms is called a reduction. A FOIL

algebraic expression is changed at run-time as a result of such reductions. The reduction process

is as follows:

1. Determine Reduction Eligibility

2. Reduce the Expression

3. Fire Additional Events

4.3.1 Determine Reduction Eligibility

The first step in performing algebraic reductions is to determine whether or not the given

event received is eligible. The following definition is provided with respect to FOIL algebra:

Eligibility

The system is in a state such that it is ready to process the event and

the processing of said event will not place the system in a state from which it can

no longer complete its work.

As an example, take the following expression:

tpsrqpX ..|..

87

This expression represents a system that is performing two concurrent threads. It is clear

that events q, r, and t are not eligible since the system is not in a state that is ready to receive

them. It may not be so obvious that event p is also not eligible. The reason for this is that if

unique event p were processed then the second concurrent term would be deadlocked since it

also expects that same event p in the future. Another way of describing eligibility would be, all

concurrent actions that expect the event are ready to receive that event. Given this

understanding, it is clear that the only eligible event is s.

Eligibility Rule: Given a system definition in Choice-Action Form (CAF) and the

receiving of an event b, a choice is not eligible for reduction if event b exists

anywhere other than the beginning of a concurrent expression. Event b is not

eligible if there are no eligible choices.

Determining eligibility is easiest when

a FOIL expression is placed in CAF. The

diagram in Figure 4.14 shows an example of a

multiple choice pattern for the state flow of

Object X. Note in this case, that the receiving

of event q before receiving event p will mean

that p is no longer an option. The FOIL

algebra expression for Object X in CAF is:

)...!...(|)...!...(|)...!...(

..).!(|..).!(|..).!(

FvtrFvtrFvtqFvtqFvqpFvqpX

ChoiceofLawveDistributiby

FvtrrFvtqqFvqppX

Figure 4.14 Multiple Choice Eligibility

88

FvtrFvtqFvqpFvtrFvtqFvqp

FvtrFvtqFvqpFvtrFvtqFvqp

FvtrFvtqFvqpFvtrFvtqFvqp

FvtrFvtqFvqpFvtrFvtqFvqpX

FvtrFvtrFvtqFvqp

FvtqFvqpFvtqFvqpFvtqFvqpX

FvtrFvtrFvtqFvqp

FvtqFvqpFvtqFvqpFvtqFvqpX

yConcurrencofLawveDistributiby

CAF

...|!...|!...!...|!...|!...

...|!...|...!...|!...|...

...|...|!...!...|...|!...

...|...|...!...|...|...

)...!...(|)...|!...!

...|!......|...!...|...(

)...!...(|)...|!...!

...|!......|...!...|...(

FvqpFvtqFvtqFvqpFvtr
FvtrFvqpFvtrFvtqFvtrFvtqFvqpX

yNullabilitofLawby
CAF

.........|......
...|......|......|...|...

Determining whether an event is ready to be accepted by the system is a simple matter of

scanning the events at the beginning of each sequential term providing the set: {p,q,r}. After

this, it can be determined whether each event in this set occurs anywhere other than in a

concurrent term. In the first choice above, event q is not eligible since it occurs in the sequential

expression p.q.v.F. Since event q is not in the front then this choice is ineligible. However, the

event q remains an eligible event since there are other choices in the expression for which this

event is eligible.

This example, however, clearly illustrates the state explosion problem created by using

CAF. In this case, the initial construction of object X is already in CCF:

choicesthroughdistributenotdo
FvtrrFvtqqFvqppX

CCF

..).!(|..).!(|..).!(

89

If the same eligibility rule outlined above is used on this expression in CCF, it would

seem that event q is not eligible. The front terms of each expression will still indicate that events

{p,q,r} are ready but modification of the rule to support CCF is required.

Eligibility Rule: Given a system definition in Choice-Compressed Form (CCF)

and the receiving of an event b, a choice is not eligible if event b occurs anywhere

other than the beginning of a concurrent expression and participates in any choice

that does not contain a non-event. Event b is not eligible if there are no eligible

choices.

Given this rule for CCF expressions, event q above is clearly eligible. It occurs

downstream of a concurrent expression but does NOT participate in any choice that does not

contain a non-event. It participates in the (p+!p) choice, but this contains a non-event. Thus,

event q is eligible. It should be noted that the eligibility rules for CAF and CCF will always

result in the same set of eligible events.

4.3.2 Reduce the Expression

Once an event is determined to be eligible, it is processed. This processing from an

algebraic sense means that the system is no longer waiting on this event to occur. Thus, there is

no longer any reason to denote this in the expression. In addition, while the event may have been

eligible, individual choices within the system expression may not have been. Thus, these choices

(having not been chosen) may be removed from the expression. Continuing with the example of

Figure 4.14, the processing of the eligible event p on the expression in CAF would be:

FvqFvtqFvqFvtrFvqFvtrFvtqFvqX
FvqpFvtqFvtqFvqpFvtr

FvtrFvqpFvtrFvtqFvtrFvtqFvqpX

p

CAF

.....|.....|.....|...|..
.........|......

...|......|......|...|...

90

Note that of the seven choices represented by the expression, only four of them were

eligible for processing event p. The final expression for object X has removed event p from the

front of each sequential term that participated in an eligible choice and eliminated all ineligible

choices. The same object would reduce differently if event q were received:

FvtFvtrFvtrFvtX
FvqpFvtqFvtqFvqpFvtr

FvtrFvqpFvtrFvtqFvtrFvtqFvqpX

q

CAF

........|..
.........|......

...|......|......|...|...

In this reduction, there are only three eligible terms. The reduction eligibility rule

eliminates the first and fifth choices even though these choices have a term that begins with this

event.

Performing reductions in CCF is more difficult in that rather than eliminating whole

terms, analysis can result in eliminating a portion of expressions.

FvtrrFvtqqFvqX
FvtrrFvtqqFvqppX

p

CCF

..).!(|..).!(|..
..).!(|..).!(|..).!(

Processing event p results in reduction of the entire choice. Since, it is determined that

indeed, one of those choices was reduced, the other choices were not and thus they can be

eliminated as well. Processing of event q is even more complex:

FvtrrFvtX
FvtrrFvtqqFvqppX

q

CCF

..).!(|..
..).!(|..).!(|..).!(

91

To understand this result, consider that event q was previously determined to be eligible

by the CCF eligibility rule; however, if event q is accepted then none of the concurrent choices

of the first term are eligible. This leads to the following CCF elimination rule:

Elimination Rule: Given a system definition in Choice-Compressed Form (CCF)

and the receiving of an event b, if in a concurrent term event b is eligible merely

because it participates in a non-event choice, then that concurrent term may be

eliminated.

Object X in CCF has only one choice of three concurrent terms; however, this choice is

only eligible to received event q because the first concurrent term, while having a downstream q

event participates in a non-event choice. Thus, this term can be eliminated when the q event

reduction is performed.

A reduction operation may mean that an object is created or that a loop has occurred.

This is obvious during reduction when a state or object variable reaches the front of a term.

Referring back to Figure 4.6, which shows a simple looping construct for object X. The

execution of this system using FOIL algebraic reductions is:

BsrqX
substitutesofronttheatisB

BBsBsrBsrqBsrqpX

srqp

srqp
CAF

...

..........

,,,

It may be convenient to number the iterations of events; this can be done with simple

subscripts:

3222
,,,

221211211121111

...

..........

BsrqX
substitutesofronttheatisB

BBsBsrBsrqBsrqpX

srqp

srqp
CAF

92

The event subscripts should not be confused with object identifiers that also use

subscripts. Substitution of object variables, which occurs when one object instantiates another, is

done in the same manner as state variables and is presented in the example at the end of this

chapter. After substitution of variables it may be necessary to place the expression into CAF or

CCF again.

4.3.3 Fire Additional Events

After completing the reduction operation, it may be that event firings move to the front of

terms in the expression. If this is true, then they are immediately processed. Thus, event firings

are always immediately removed from the terms. If multiple events reach the front

simultaneously, this is only because they are participating in concurrent actions and thus the

order of the event firings is unimportant. A simple queue is used to handle these multiple events.

Optionally, any events fired that are ineligible can be moved to the back of the queue until only

ineligible events remain. This can be used to ensure that events are not ineligible simply due to

the order for which simultaneous events were fired. This option can present additional problems

thus it may not be preferable. Such difficulties can be eliminated through better design of the

model.

Figure 4.15 shows an example of a

simple state flow for Object Y. In this example,

events p and q are performed concurrently, thus

q is eligible from the beginning; however, the

system wants to guarantee that if event p is

received first that event q is immediately fired.

Algebraically, if event p is received first:

Figure 4.15 Event Firing Reduction

93

EsDrX
EsqDrEsqDrqX

EsqDrqpX

q

p

CAF

.|.
..|...|..

..|...

This example shows each step of the operation. It is permissible to simply show:

EsDrX
EsqDrqpX

p

CAF

.|.
..|...

It is important to note that event firings do not affect the eligibility of a choice and thus

do not affect the eligibility of an event. While there is a q event firing in the first concurrent

term, it does not make q ineligible, but the later firing of event q in this example would be:

ineligibleEsDrEsDrqEsDrqpX

EsqDrqpX
qpq

CAF

.|..|...|...
..|...

The ineligibility of a fired event does not

make the originating event ineligible. An event firing

is always immediately reduced. The result of the

event on the system is immaterial to the eligibility of

prior operations.

4.4 Example

Figure 4.16 shows an example of a system

modeled in FOIL. Object X is initially in state A.

Because A is an accepting state object X can accept both p and t events. The p event will cause

object X to transition to state B. The t event will cause object X to instantiate a new Y object

Figure 4.16 Object-Event Synchronization

94

which can subsequently begin accepting events. The asterisk indicates that multiple Y objects

can be created by multiple t events being received as long as object X is in an accepting state.

 The diagram in Figure 4.16 models a workflow pattern known as multiple instance with

no a priori runtime knowledge [30]. This is one of the more complicated patterns in workflow

management. The system does not know how many instances of object Y there will be. But, it

has to make sure that all of those copies are in state E before accepting the q event. For example,

the event sequence (t,Yr,q) would be undesirable as object X would still be in state A. Thus,

while object Y is ready to receive the q event, object X is not ready. The problem could likewise

be reversed with a sequence like (t,p,q). To complicate matters, the problem could be extended

with an event sequence such as (t1,Y1r,t2,p,q). In this case, there are two instances of Y but only

one of them is prepared to accept the q event.

The following demonstrates the algebraic construction of the system in Figure 4.16 with

object identifiers:

YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

YtAtYBCqtCqptYBCqtpCqpX
YAYBCqtCqptYBCqtCqpX

YABXptBXpX
YBCqtCqBXYABXptBXpAX

CAF

inninn

.|.|...|...|.........|..|.....

.|.|))||..(..(.)||..(...
)||))||..(..(.())||..(..(

)||..(.
)||..(.)||..(.

1121212112221

112121

2121

1111

 If instance number 1 of an X object received an p event, the following reduction would

take place:

YtBtCqtCq
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

p

CAF

.|.|...
.|.|...|...|.........|..|.....

222

1121212112221

95

Note that two choices were completely removed because the t event was not received and

these choices were eliminated. The remaining expressions were reduced by eliminating the p

events from the remaining applicable expressions. The final definition now represents the state

of the system after receiving event p. Some interesting things to note from this current definition

are:

Receiving an event q will now completely eliminate event t from the
definition. This is logical since, if q is received, then any new Y object will
never complete since q has already processed.

Receiving an event t would place B at the front of a term. This would be
expanded and the definition again placed into choice-action form (CAF).

As discussed earlier, if the system received and accepts the events (t, Y1r, q) the system

would be hung since the X1 object is not in a state that can accept the q event even though the Y1

instance is ready. Reduction of these events yields:

YAYtpBtpCqtpCqp
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

t

CAF

||..|..|.....
.|.|...|...|.........|..|.....

222

1121212112221

This triggers the instantiation of object Y. Anytime a name reaches the front of a

concurrent action and does not have a defined subscript, it is assumed that new object creation

has occurred and the subscript is replaced with the next iteration of the object instance.

Continuing with the reductions:

96

choiceseligibleno
FYqYtAtYtptBtptCqtpt

FYqCqptFYqYtpBtpCqtpFYqCqp
FYqrYYtAtYtptBtptCqtpt

FYqrYCqptFYqrYYtpBtpCqtpFYqrYCqp

FYqrYYtAtYtptBtptCqtptCqptYtpBtpCqtpCqp
Asubstitute

FYqrYA
Yobjectcreate

YAYtpBtpCqtpCqp
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

q

rY

CAF

t

CAF

111212121

1112221

1111212121

1111122211

11112121211222

11

222

1121212112221

.|.|.|...|...|....
.|....|..|..|....|..

..|.|.|...|...|....
..|.....|..|..|.....|..

..|).|.|...|...|.........|..|.....(

..|

||..|..|.....
.|.|...|...|.........|..|.....

1

A look at the final reduction demonstrates the utility of the eligibility rule. All four of the

concurrent choices are ready to accept a q event and without the rule the reduction would

proceed normally; however, all four choices have a q embedded in one of their concurrent

components. The eligibility rule states that a choice is not eligible if the event occurs anywhere

other than the beginning of a concurrent component. Based on this, none of these action choices

are eligible and thus the event is not accepted. Correctly receiving a p event will make one of the

concurrent terms q eligible, as follows:

FYC
FYqYtBtCqtFYqCq

FYqYtAtYtptBtptCqtpt
FYqCqptFYqYtpBtpCqtpFYqCqp

FYqrYYtAtYtptBtptCqtpt
FYqrYCqptFYqrYYtpBtpCqtpFYqrYCqp

YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

q

p

rY

t

CAF

1

12221

111212121

1112221

1111212121

1111122211

1121212112221

|
.|.|.|...|.

.|.|.|...|...|....
.|....|..|..|....|..

..|.|.|...|...|....
..|.....|..|..|.....|..

.|.|...|...|.........|..|.....

1

The following example demonstrates that it does not matter whether the Y1r event or the

p event is received first as long as both of them are received before the q.

97

FYC
FYqYtBtCqtFYqCq

eligiblenot
FYqrYYtBtCqtFYqrYCq

FYqrYYtAtYtptBtptCqtpt
FYqrYCqptFYqrYYtpBtpCqtpFYqrYCqp

YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

q

rY

q

p

t

CAF

1

12221

1122211

1111212121

1111122211

1121212112221

|
.|.|.|...|.

..|.|.|....|.
..|.|.|...|...|....

..|.....|..|..|.....|..
.|.|...|...|.........|..|.....

1

As a final example, if two instances of object Y are created by two separate t events, the

eligibility rule ensures that all instances are synchronized before continuing.

FYFYCFYC
YtBtCqtFYqFYqCqFYqFYqCqFYqCq

eligiblenotstill
YtBtCqtFYqFYqrYCqFYqFYqrYCqFYqCq

eligiblenot
YtBtCqtFYqrYFYqrYCqFYqrYFYqrYCqFYqrYCq

FYqrYYtBtCqtFYqrYCq
FYqrYYtAtYtptBtptCqtpt

FYqrYCqptFYqrYYtpBtpCqtpFYqrYCqp
YtAtYtptBtptCqtptCqptYtpBtpCqtpCqpX

q

rY

q

rY

q

t

p

t

CAF

121

33312121

3331221221

3331122112211

1122211

1111212121

1111122211

1121212112221

|||
.|.|..|.|.|..|.|..|.

.|.|..|.|..|..|..|..|.

.|.|..|..|..|...|..|...|.
..|.|.|....|.

..|.|.|...|...|....
..|.....|..|..|.....|..

.|.|...|...|.........|..|.....

2

1

98

5. CONCURRENCY, INHERITANCE, AND MODEL VERIFICATION

The Formal Object Interaction Language (FOIL) shows its utility most effectively when

used to model complex systems. In addition to its inherent support for concurrency and its

conformity to an object-oriented paradigm, it can be used to verify certain attributes of a

complete system, and to analyze individual objects and states.

5.1 Concurrency

The ability to model systems that can perform concurrent actions is becoming more

important in an age of distributed systems. FOIL has a method for modeling such simultaneous

actions through the mechanism of thread spawning. As the notation and algebra of FOIL have

already been explained, an understanding of how

some concurrent patterns are modeled will aid in

the understanding of the expressive power of the

FOIL model.

5.1.1 Spawning Threads

Spawning multiple threads of execution is

done, primarily, by the use of the output port

notational element. The output port indicates

that the object will remain in its initial state until all output ports are satisfied. Figure 5.1 shows

an example of a simple case where object X1 will remain in state A until both a p and a q event

are received. After the p event, object X1 will be in state {A, B}. After the q event, object X1 will

Figure 5.1 FOIL Thread Spawning

99

be in state {B, C}. Thus, object X1 begins its life in a single state but ends life in multiple states

due to the thread spawning effect of the output ports.

Initially, this sounds like an easy concept, but there are many ways to model thread

spawning, and in some of them the number of output transitions required for completing a state

is either unknown or infinite. FOIL can handle all of these cases both by notation and by

algebra.

Object X3 in Figure 9 shows an example of a case where the number of output transitions

to complete state A is unknown. In this case, any one of three events can be received while in

state A but they are all optional. In this model, we must receive one of the events for the object

to progress but we may receive multiple events which must be processed. Thus, the number of

threads spawned is unknown at design-time. In fact, the number of threads required is not even

known at run-time until the E state is reached by one or more threads. Thus, only when the E

event is received and all threads which have left A have reached E, will the object complete

transition out of state A. The algebra clearly handles this case:

ActionsEventNotmove
EurEtqEspEurEtqEsp

EurEtqEspEurEtqEspEurEtqEsp
EurEtqEspEurEtqEspEurEtqEspX

EurrEtqqEsppX
CAF

Re
'..|!'..|!'..!'..|'..|!'..!

'..|!'..|'..!'..|'..|'..!'..|!'..|!'..
'..|'..|!'..'..|!'..|'..'..|'..|'..

'.).!(|'.).!(|'.).!(

3

3

100

done
EEEurEE

ineligible
EtEEurEtE

EtEsEurEtEs
EsEurEsEtqEsEurEtqEs

EurEtqEurEtqEsp
EurEspEtqEspEurEtqEspX

E

t

E

s

q

p

CAF

'

'

3

'|''..|'|'

'.|''..|'.|'
'.|'.'..|'.|'.

'.'..|'.'..|'.'..|'..|'.
'..'..'..|'..'..

'..|'..'..|'..'..|'..|'..

Another case involves the concept that an object will never completely transition from a

given state. This pattern can be used to model listening devices or objects that will infinitely

react to events and process them. Object X2 of Figure 5.1 shows an example of such a pattern.

In this case, object X2 will never fully transition out of state A. As each event p is received a new

state B is created and processing continues. Thus, the initial state of object X2 is {A}; after a p

event, it becomes {A, B1}; after another p event, it becomes {A, B1, B2} and so on. The algebraic

construction and operation clearly shows this behavior:

).|'.(|'

).|'.(|'|'

).|'.(|'

.|'.

)|'.(

' ApBpB

ApBpBB

ApBpB

ApBpX

ABpX

B

p

p

3331

33321

2221

1112

112

2

The MasterController object in Figure 3.12 of the elevator system is an example of this

pattern in practical use.

5.1.2 Merging Threads

Perhaps an even more complicated situation that arises from modeling concurrency is

how to merge multiple threads of execution. In some cases, Petri-nets fall short when it comes to

101

this problem. For example, whether threads merge synchronously or asynchronously must be

considered. Additionally, one must distinguish between a model merging and a thread merging.

Figure 5.2 shows three

examples of identical object thread

spawning; however, all of these cases

merge differently. Object X1 shows a

standard synchronous merge; meaning

that an object of type X1 will not accept

a t event unless both threads

completely reach state D. Note that

there is no specific notation for a

synchronous merging of two

behavioral threads. This is because the

reduction eligibility rule automatically

enforces this constraint.

'

'.'.|'.

'.|'..

'.|'...

'..|'...

'...|'...

E

EtEtEt

ineligible

EtEtr

ineligible

EtEtrp

EtsEtrp

EtsqEtrpX

t

r

t

p

t

s

q

1

Figure 5.2 FOIL Thread Merging

102

Object X2, on the other hand, models an asynchronous merge. In this case, the first thread

reaching state D will be allowed to continue on with execution. The second thread will merge

when it reaches state D regardless of the state of the first thread. The action of state E will not be

executed twice even though it may be executed before both threads reach state D.

'|
'|.

'.|.
.'.|.'...'.|'...

|.'..|.|'...'..|'...
.|.'...|..|'...'...|'...

)'...(|)'...(
'...

.|.

2

2

2

Er
Erp

tfortermeligibleonlytheisEtrp
rpEtrpEtrpEtEtrp

srpEtsrpsEtrpEtsEtrp
sqrpEtsqrpsqEtrpEtsqEtrpX

sEtsqrEtrpX
EtDsDsCrDrB

CqBpAAX

p

t

s

q

caf

Class X3 is not a thread merging at all. It represents a model or multi merge. In this case,

the two threads remain independent. This would be the same as having two state D s and two

state E s. Thus, state D and E will each be executed twice, once by each thread. In order to

distinguish them in the calculus, subscripts are used to represent different state instances in the

instantiated object.

'...|'...

'...

.|.

22113

3

EtrpEtrpX

EtDDsCDrB

CqBpAAX

nnnnn

5.1.3 Active State Interrupt

To complete the representation of concurrency in FOIL, it is important to understand how

active states perform their work. When a thread of execution arrives at an active state, all pre-

103

fire events are transmitted (i.e. method calls are made) in a concurrent manner. This means that

method calls in FOIL are assumed to run in their own thread on a sequential system. They are

merely transmitted asynchronously in a distributed system. Once this is complete, the active

state is free to perform its active state code.

The execution of the state s actions must also be performed in its own thread. The main

thread will wait on this process while continuing to listen for events that may cause a transition

to occur. Thus, the reception of an eligible

event will result in immediate suspension of

active state processing.

Figure 5.3, a model of the Door object

used by an elevator system (see Figure 3.12), is

an example of how this mechanism is

understood in FOIL. Object X starts in state A.

Upon receiving a p event it will transition to B and begin executing B s active state code. Upon

completion of B s code (B), it will fire a q event, which will cause it to transition to state C.

However, if B receives a t event prior to completion of its code, it will transition to D and event q

will never be fired. This is completely determined by the implied representation of active states.

The behavior of active states as outlined here is based on the underlying representation outlined

in 4.1.3 and the assumption that active state execution is current with other system operations.

Given these assumptions the following reductions demonstrate the active state interrupt behavior

of the model in Figure 5.3:

Figure 5.3 FOIL Active State Interrupt

104

AstsDDDtqBAsrqsDDDrqqB

AstpsDDDtpqBBBpAsrqpsDDDrqpqBBBpX

AssDDDDDrCDtCqqBBBBBpA

p

CAF

..|...̀.̀|....|...̀.̀.|.

...|...̀.̀.|...̀.̀....|...̀.̀..|...̀.̀

.|...̀`.)..(|...̀`.

If event t is received before B completes:

AssDqBt .|.|.

Active State B finishes but q is no longer eligible:

AssDB .|.

In this example, B does actually complete processing even though the t event is received.

Post-firings of the active state may still be processed. It is completely possible that by making

different assumptions with regard to how active states behave that the system would perform

differently. Likewise, if a constraint was made that events can only be accepted following

completion of active state processing (i.e. sequential), then the t event would not be eligible until

after the B

event is received. The following shows the algebra for the same sequence of events

and the same active state representation but with the assumption of sequential process of

interrupt events:

eligiblenot
AssDDDtqBBBpAssDDDrqqBBBp

AssDDDtqBBBpAssDDDrqqBBBpX

AssDDDDDrCDtCqqBBBBBpA

t

p

CAF

.....̀.̀....̀.̀.....̀.̀.....̀.̀
.....̀.̀....̀.̀.....̀.̀.....̀.̀

.....̀`.)...(...̀`.

The decision on how active states are treated could be made on an object or event a state

level; however, FOIL currently has no notational variant to denote such treatment.

105

5.2 Inheritance

It is safe to say that FOIL could not be considered a truly object-oriented (OO) modeling

language if it did not support inheritance. The code saving attribute of inheritance is one of the

hallmarks of OO development. Two of the other attributes of OO development, abstraction and

encapsulation, do not deviate from the traditional sense when expressed using FOIL. The other

major attribute of OO programming is polymorphism and is primarily an implementation issue

and does not impact the modeling of such systems in a specific way. Therefore, the specific

mechanisms of polymorphism are not discussed in this thesis. It is safe to assume that, if it can

be successfully demonstrated that inheritance is supported, the implementation of polymorphism

is a programming-language-specific function and can be accomplished in a meaningful way

when represented by a FOIL model.

5.2.1 Structural Inheritance

In typical object-oriented (OO) development, the term inheritance deals with the is a

relationship of one object to another. For instance, a sparrow is a bird. While this relationship

is intuitive, it may not be obvious that from a programming perspective, this inheritance

relationship

sometimes referred to as generalization

only applies to the structural definition,

or interface, of a class or object. FOIL does not contradict this notion.

Figure 5.4 is a more detailed FOIL model of the simple inheritance model of Figure 3.7.

In order to demonstrate that FOIL models exhibit interface conformity, as in the typical

definition of inheritance in OO development, the approach will be to convert the classes of this

diagram into typical OO class definitions. This will prove that a FOIL model exhibits structural

inheritance if:

106

The conversion process is generic and repeatable for all such models.

The conversion does not in any way add additional information to the model.

The resulting conversion, while being less expressive than the original FOIL
diagram, results in a valid OO class diagram.

The conversion of a FOIL model to a typical UML class diagram is relatively simple.

Since FOIL offers additional information to a typical OO model, we simply extract from the

FOIL model those methods and attributes which comprise the subset of information contained in

the entire object. For example, FOIL implicitly tracks the state of the object and state tracking is

Figure 5.4 Structural and Behavioral Inheritance Example

107

non-deterministic and thus a state collection would have to be maintained in a typical OO

language. However, since every such object in FOIL would have such a condition this would not

aid in proving inheritance.

Every event in a FOIL model is

received by the system as a whole and

distributed to the object by some

mechanism. This could be a distributed

event service or an object to object call as

is the case in OO development. Thus, each

event could be viewed as a public method.

Likewise, each active state performs work

specific to that object and thus could be

considered a protected method. A

conversion of the read-only attributes as

specified in FOIL to the appropriate

protected attribute with a getter method for

access would also have to be done.

Combining the methods from these

steps with the attributes and methods specified by FOIL in the traditional UML manner would

result in the simple class diagram of Figure 5.5. It is evident that this resulting UML diagram is

valid and since the method described above can be performed on any FOIL diagram then FOIL

does conform to the industry-standard definition of inheritance.

Figure 5.5 OO Equivalent of FOIL Inheritance

108

In addition to proving that FOIL does provide for structural object-oriented inheritance,

the resulting UML diagram provides proof that a FOIL diagram is far more expressive than its

UML counterpart. In UML, the modeling required to provide the same level of behavioral detail

would require numerous diagrams. In addition, this conversion process provides evidence

regarding the intuitive nature of FOIL diagrams as compared with UML. While this evidence

certainly does not constitute proof, it does suggest that such a claim may be plausible.

5.2.2 Behavioral Inheritance

While FOIL complies with the traditional notion of inheritance, it is difficult to see how

this idea of inheritance makes implementation of polymorphism intuitive. Polymorphism means

that one object can act like another and, in as far as one object can do all the things of another,

this definition is completely satisfied by the concept of interface conformity. However, if the

notion of polymorphism included that the object must behave the same way, then the concept of

behavioral inheritance must be introduced.

Behavioral inheritance is not a new concept [70, 74]. It is easy to expand the idea of an

is a relationship as being one where one object can do all the things that another can AND

must do so in the same manner. Obviously, if an object does exactly the same thing in exactly

the same way as another than those two objects are equivalent and there is no need for

inheritance. However, an extension or override of behavior is allowed in the same was as an

extension or override of an interface.

Given the fact that a class can extend or override the behavior of another, behavioral

inheritance as a concept must be clearly defined. In FOIL, the informal definition of behavioral

inheritance is:

109

Object X is said to be inherited from object Y, if it conforms to the same interface

AND for all states in Y there are corresponding states in X such that the receipt of

any event in Y will result in the same transition as that of X.

Formally, the behavior of an object is represented by a tuple:

,,, FRSO

Where S is the set of states in O, R is the set of events received by O, F is the set of

events fired by O, and

is the set of transition functions performed by O. Formally, an object X

inherits from Y if:

xy

Referring back to the example of Figure 5.4 extension of behavior can occur in one of

three ways: sequential extension, concurrent extension, and choice extension. The Check class

shows an example of sequential extension. The Payment class behavior is basically untouched in

the Check class but where the Payment class would end the Check class has been extended to add

additional states and transitions. The Cash class shows an example of concurrent extension. In

this case, the terminating states of the parent class (Payment) remain the terminating states of the

child but there are additional terminating states by way of concurrent actions. These two

methods can be combined in the same object like the CreditCard class which is both a

concurrent and sequential extension on the Payment behavior. Choice extension while not

demonstrated in Figure 5.4 is similar to concurrent extension but is comprised of choices.

110

From a polymorphic perspective,

choice and sequential extension provide

some interesting side effects. For

instance, if an object is treated as its

inherited parent, some states in the object

may not exist in the parent. In this case,

the object is considered to be in the last

state it was in that is in the set of states of

the parent. For instance, if the Check

object above is in the cleared state, then if

it were treated as a generic Payment, it

would be in the deposited state.

Ensuring proper behavioral

inheritance notation is quit simple.

Copying the behavioral specification of an

object to another and then extending the

behavior, adding concurrent actions or

adding additional choices will result in a second object that can be said to inherit the behavior of

the first. Figure 5.6 shows an optional way to denote the commonalities that may aid in clearly

communicating this relationship.

The behavioral inheritance characteristic of FOIL can also be verified algebraically. This

follows from the formal definition given previously.

Figure 5.6 Alternate Behavioral Inheritance Notation

111

An object X exhibits behavioral inheritance with respect to object Y, if for each

sequential term of the FOIL algebraic expression for Y there is a corresponding

expression in X that is a sequential superset.

As an example, consider again Figure 5.4. If the first letter of each state and event is

used as an algebraic term, then the Payment class would be expressed as:

VVVVcRDDDDuRPayment ...̀.̀....̀.̀.

The inherited class Cash would be:

VVVVcRCCCmRDDDDuRCash ...̀.̀...̀.̀.|...̀.̀.

It should be obvious that

each sequential term in the

expression for the Payment object

is contained within a selected term

of the Cash object.

It should be clear at this

point, that the behavioral

inheritance concept adds an additional constraint to an object in FOIL before it can be considered

to be inherited from another. Figure 5.7 shows an example of an class which complies with the

requirement of interface conformity as demonstrated by its corresponding UML class

specification. Note that all of the attributes and methods of this Trade class do exist in the

Payment class. Thus, by traditional thinking; the Trade class could be inherited from Payment

class; however, from a FOIL perspective, it should be obvious that the behavioral specification

of Trade does not match that of Payment. The algebra also bears this out:

Figure 5.7 Structural Inheritance Only

112

VVVVcRDDDDuSSSSsRTrade

VVVVcRDDDDuRPayment

...̀.̀....̀.̀....̀.̀.
...̀.̀....̀.̀.

While the second term of these expressions match, the first terms do not. In addition, the

first term of the Payment expression can not be found embedded in any term in the Trade

expression. There is a common subsequence between these terms but this is not sufficient to

fulfill the requirements for behavioral inheritance. This should be clear from the fact that in

order for Trade to be inherited from Payment, the receipt of an updateAccount event while in

state Received should result in a transition to state deposited, but clearly it does not.

5.3 Model Verification

Obviously, one of the major benefits of the Formal Object Interaction Language (FOIL)

is the ability to validate models formally. This is done by a special form of state-based analysis

using the FOIL algebra. Simple analysis of a FOIL system expression can reveal characteristics

about the system as designed or the system during execution. While the extent of what can be

learned using this method is less than that of other modeling approaches (such as Petri-nets), the

information gleaned is consistent with that required for information system analysis.

5.3.1 Inherent Inconsistency

A simple sequential pattern can be

used to represent an object behavior that is

inconsistent. Figure 5.8 shows an object

behavior that is inconsistent. This

inconsistency is mainly derived from the fact that this model does not denote the p event as

occurring multiple times. The system can not accept a p event since it will require it later but it

Figure 5.8 Inconsistent Sequential Behavior

113

can not get to the C state which requires it without accepting a p event. Thus, there is a

contradiction. The simple algebraic representation for this system is:

DpqpX
CAF

...

Clearly based on the Reduction Eligibility Rule, the only term in this expression is

eliminated since it begins with a p event but has a p event embedded in it as well. This leaves

object X with no valid events for which it may perform its behavior. Thus, object X can be said

to have no behavior and thus it is no use as modeled. The term used in FOIL to describe this

condition is Inherently Inconsistent .

Figure 5.9 shows an example of the same

X object but with the added notation that event p

is allowed to occur multiple times. The

algebraic construction now becomes:

DpqpX
CAF

... 21

Each starred event is numbered upon expansive construction. Now it is clear that a p

event will be processed if the occurrence of that valid event is numbered. Since event p1 does

not appear in the downstream sequence the Reduction Eligibility Rule is not violated. Thus, the

behavior of object X expressed in Figure 5.9 is consistent.

5.3.2 Deadlocks

The ability to identify inherent inconsistencies in a model also allows for the detection

simple deadlocks. Figure 5.10 shows an example of a simple deadlock. In this case, object X

must be in state C before a p event will be accepted but it must be in state B before a q event will

Figure 5.9 Sequential with Plural Events

114

be accepted. Therefore, a deadlock condition exists. Algebraically Figure 5.10 would be

constructed as:

EpqDqpA

EpCandDqB

CqBpA

..|..

..

.|.

It is easy to see that there are no eligible terms for reduction since all starting events are

embedded in other concurrent action

sequences. Thus, when an object is

represented such that no eligible events

exist, the algebra inherently detects the

deadlock condition.

5.3.2.1 Deadlock Possibility

Figure 5.11 shows a deadlock scenario where object W and object X are sharing access to

objects Y and Z. The algebraic expression for Figure 5.11 without state flow is:

KsrIqpEXsXqXpXrAWqWsWrWpS
CAF

..|..|....|....

FOIL algebra can be used to

find possible deadlocks. This is done

by placing the model in CAF with

only global event scope and

determining what global events are

eligible. Removing event scope in S

produces:

Figure 5.10 Simple Synchronization Deadlock

Figure 5.11 Deadlock Example

115

KsrIqpEsqprAqsrpS
GCAF

..|..|....|....

An attempt to determine the eligible events will result in an empty set since both p and r

are embedded in other concurrent terms. Thus, this system can result in a deadlock.

5.3.2.2 Deadlock Occurrence

FOIL algebra also provides a mechanism to determine if a system is deadlocked. This is

done similarly to deadlock avoidance but during the runtime reduction of events. It is easy to see

in Figure 5.11 that a deadlock will result if a local p event is received for W and a local r event is

received for X. The following reductions show this process:

LrsJpqFXrXsXqXpBWpWqWsWr
KsrJpqEXsXqXpXrBWpWqWsWrS

Xr

Wp

..|..|....|....
..|..|....|....

Once again, an attempt to determine eligible events will result in an empty set meaning

that the system can no longer accept any events. The system is deadlocked.

5.3.3 Reachability

Determining whether states are reachable after design or during run-time is nearly as

simple as deadlock detection. Figure 5.12 shows an example of an object that has an

unreachable state as designed as well as the potential for an unreachable state during execution.

The algebraic expression for this object with partial state flow is:

FFtDDrCCsEEsBBpGGDrDrCCsEEsBBp

FFtDDrCCsFFtDDqBBpGGDrDrCCsFFtDDqBBp

FFtDDrCCsGGrDDqBBpGGDrDrCCsGGrDDqBBpX

FFtGGrDDrCCsEEsFFtGGrDDqBBpX
CAF

........|............|.....
........|...............|........
........|...............|........

).....(.....|)..).....(...(..

Removing inherently inconsistent terms produces:

116

FFtDDrCCsEEsBBpFFtDDrCCsFFtDDqBBpX|.............|........

There are only two

concurrent terms remaining and

states A and G are missing. State A

is the current state of the object,

thus state G, from the outset, is

unreachable. This can be done

during runtime as well. If the

above system were to receive an s event, the reduction would be:

FFtDDrFFtDDqBBpX s|........

Since the second term was ineligible, that choice was eliminated and only the single term

remains. In addition, states A, G, and E (the system is currently in state C) are no longer in the

expression, thus they are all unreachable as this point in execution.

Figure 5.12 Reachability Analysis

117

5.4 Russian Philosopher Problem

One of the most popular problems in computer science, the Dining Philosopher Problem,

is used to teach and demonstrate the problem of concurrency and resource dependency in

computer systems. The problem poses that there are five philosophers sitting around a circular

table. Each philosopher has a bowl of rice and a chopstick on their left. In order to eat the rice,

each philosopher must pick up the chopstick on their left and their neighbors

chopstick on their

right. Each philosopher is thinking

independently and when he is done thinking

he will eat. The goal is to design a system

where no philosopher starves.

A typical solution to this problem is

to have each philosopher, when done

thinking, pick up the chopstick on his left,

then pick up the chopstick on his right, and

then eat. When finished, he will put down

his left and then his right chopstick

sequentially and start thinking again. If the philosopher can not pick up a chopstick because it is

being used by another, then he must wait until the chopstick become available. The problem

with this scenario occurs if all philosophers begin to eat at the same time. Each one picks up his

left chopstick and thus there is no right chopstick for any of them. Thus, they all wait. There are

several solutions available to solve this problem but it is not the goal of this paper to explore

them.

Figure 5.13 Dining Philosopher Problem

118

Figure 5.14 shows a FOIL model for the Dining Philosopher problem. Immediately, it should

be obvious that this model is different from traditional solutions. Since FOIL has support for

concurrency, the picking up of chopsticks has been modeled as a concurrent action. To reiterate,

if one of the benefits of OO modeling is that it most closely resembles the real world, then this

Figure 5.14 FOIL Dining Philosopher Model

119

model is more accurate, as most would agree that picking up both chopsticks at the same time is

most likely how a person would do it. This deviation from the traditional model does not

actually solve the deadlock problem; it merely makes it less likely.

Figure 5.15 FOIL Russian Philosopher

120

The Russian Philosopher Problem is an extension of the classic Dining Philosopher

Problem. This extension is used to add a level of hierarchy to the model. In the Russian

Philosopher Problem each Russian philosopher is thinking of a Dining Philosopher problem.

A Russian Philosopher eats only when the Dining Philosopher table deadlocks. It is simple to

see that a Russian Philosopher is a Dining Philosopher. Figure 5.15 shows the Russian

Philosopher class as modeled in FOIL. There are two places where concurrent extension is used

to ensure both structural and behavioral inheritance: the newProblem event was added to fire

concurrently when the RussianPhilopher is doneEating and complete transition to Hungry will

not occur until both the doneThinking and deadlock events are received.

121

6. WORKFLOW PATTERNS

The Formal Object Interaction Language (FOIL) can model any system that can be

modeled in UML, while providing more information about object behavior. In addition, it

supports concurrency, resource dependency, and structural and behavioral inheritance. These

models are verifiable through the FOIL algebra providing a formal underpinning much like Petri-

nets. This makes FOIL a powerful modeling tool for object-oriented software development.

FOIL can also be used to model high-level processes. These processes can be verified

using FOIL algebra to ensure that the underlying object model can perform the overarching

process (see Chapter 7). However, modeling from an object or process perspective requires that

any underlying framework be complete. The term complete refers to the ability to represent all

known process or workflow patterns. The composition of a list of patterns is a well studied

problem [31] and the current list of these patterns is generally considered to be complete. All

complex processes or workflows can be composed of one or more patterns from this list.

This chapter outlines how every workflow pattern can be represented in FOIL both

graphically and algebraically. When certain interesting run-time situations are presented by

these patterns, an additional demonstration of how FOIL algebra handles such occurrences may

be provided. All of the patterns shown use non-active states, unless the fact that states perform

code, has an effect execution of the pattern. In some cases, the algebraic reductions will include

the state indicators while, for simplicity, others may not.

122

6.1 Basic Control Patterns

The simplest class of patterns found for processing work deal with simple control. The

basic control patterns address simple issues such as task processing in series or parallel and

making choices about which tasks will be performed. Parallel processing in the basic sense is

always considered to be synchronous.

6.1.1 Sequence

The simplest pattern found in standard workflow implementation is the sequence. In a

sequence, the object proceeds from one state to another in a sequential fashion. In this case, an

object will never be in multiple states and thus it is completely deterministic in nature.

Figure 6.1 shows an example of

the sequence pattern. When object X is

instantiated, it begins in state A. Upon

the receipt of a p event designated for the

X object, it will transition to state B.

Upon the receipt of a designated q event, the X object will transition to state C. Once arriving at

state C, no further behavior can be performed on the object making it eligible for deletion.

As might be expected the algebra for this pattern as well as the execution of the events

outlined above is simple:

c
q

B
p

A

X
CqX

CqBpX
.

...

Figure 6.1 Sequence Pattern

123

6.1.2 Parallel Split

In order to adequately express the behavior of an object, multiple threads of execution

may be required. The parallel split represents a simple situation where multiple threads of

execution are enacted. Thus, an object after a parallel split may be in multiple states

simultaneously. This is analogous to non-deterministic finite automata.

Figure 6.2 shows the simplest example of the

parallel split pattern. The output port ensures that

object X will remain in state A until both a p and a q

event have been received. Thus, when a p event is

received object X will be in two states, that being

state A and state B, simultaneously. If the threads

were to continue from state B and C then each thread would execute concurrently.

The following is the object X expression construction:

CqBpX A .|.

Thus, there are two concurrent action sequences that must be followed before the entire

flow is complete. Note that a reduction upon receipt of event p would result in:

CqBX p
A .|

6.1.3 Synchronization

Synchronization refers to the idea that one thread of execution must wait for a parallel

process to reach a proper state before accepting the next event. This should not be confused with

a merge (see 6.2.2) as in this case both threads of execution will continue independently. It

merely suggests that each thread must be in a certain state before either thread can continue.

Figure 6.2 Parallel Split

124

Figure 6.3 shows a diagrammatic example of an object behavior which requires

synchronization. Note that event q

shows up twice in the diagram. If

these occurrences had been

represented by a q* then no

synchronization would be required

since multiple q events would be

expected. However, this was not done and thus only a single q event is expected. When an

event q is received it is expected that object X will transition from state B to state D and

concurrently transition from state A to state C; however, object X must be in state B already.

Thus, an event q is not eligible unless an event p has already been received.

This demonstrates the robustness of the FOIL algebra and the utility of the reduction

eligibility rule. Inherently, events that are assumed to occur once must be synchronized. This

unique event synchronization is automatically enforced by the algebra. Figure 6.3 can be

constructed as follows:

ErCqDqBpX

ErCDqBCqBpA
CAF

A ...|...

...|.

According to the reduction eligibility rule the only term in the expression for object X

that is eligible for reduction is p.B.q.D since while the second concurrent action starts with a q it

also appears embedded in the other concurrent action. It is rather simple to see that the q event

does become eligible after a p event is received.

ErCqDqXX BA
p

A ...|.|

Figure 6.3 Synchronization Pattern

125

Now, the q event is eligible for reduction. Thus, the algebra by way of the reduction

eligibility rule, enforces synchronization among unique events.

6.1.4 Exclusive Choice

This pattern represents a single choice between one or more transitions. This pattern can

also be viewed as directing a particular thread of execution. No new threads of execution are

produced during the execution of this pattern.

Figure 6.4 shows an example of the exclusive

choice pattern. Note the absence of the output ports

which result in additional threads of execution.

Without output ports only the single thread that started

object X in state A will be executed upon either a p or

a q event. It is also important to understand that

object completion does not require that all final states

be reached. In the case of Figure 6.4, either state B or state C will be reached but not both; and,

in either case, the object has finished its behavior.

C
q

A

B
p

A

A

XX
XX

CqBpX ..

6.1.5 Simple Merge

The simple merge pattern represents the merging of one or more alternate paths. This

should not be confused with the merging of threads of execution. In the case of the simple

merge, there is only one thread of execution; however, the path of that execution merges with

another alternate path.

Figure 6.4 Exclusive Choice Pattern

126

Figure 6.5 shows an example of the simple merge pattern. The choice made at state A

causes a single thread to move

to either state B or C.

Regardless of this choice, the

path of the behavior will merge

at state D. Once again, merging

in this context does not indicate

the joining of two concurrent threads of execution but merely refers to the merging of the path

for a single thread.

The algebra for the simple merge is implicit in its construction and is straightforward.

D
sq

A

D
rp

A

A

XX
XX

EtDsCqEtDrBpX
EtDDsCDrBCqBpA

.

.

..........
.....

The distributive law of choice can be applied to show that states D and E are only

executed once.

EtDsCqrBpX A ..).....(

6.2 Advanced Branching and Synchronization

The power of a modeling language is composed of its ability to model complex patterns

while maintaining model simplicity. Many of the patterns in common use in object and process

modeling can be composed of series of simple patterns; however, such compositions can grow

exponentially resulting in a completely unusable model. Thus, it becomes necessary to ensure

that there are simpler notations for more complex patterns.

Figure 6.5 Simple Merge Pattern

127

6.2.1 Multiple Choice

The multiple choice pattern allows for the optional spawning of multiple threads of

execution. In other words, it allows for choosing several execution paths from many

alternatives.

Figure 6.6 shows an example of

the multiple choice pattern along with

its associated path merging. In this

case, events p, q and r will all spawn a

thread of execution but are optional. In

this figure, object X will remain in state

A as long as one of the events has not

been received. Thus, Figure 6.6 will not complete unless all of the optional events are received.

This can be overcome by adding a synchronizing event that will result in completion without

receiving all events (see 6.2.3).

It is interesting to note that if all events are received this pattern is the same as the parallel

split while if only one event is received it is the same as the exclusive choice. Thus, this

construct allows for the range of possibilities between those two patterns inclusively.

Additionally, the use of output ports for the transitions out of state A are optional since such ports

would not change the behavior in any way. Thus, output ports may be added if the spawning of

threads from this pattern is not clear.

It is relatively clear that the dotted line represents the possibility that an event may be

received. Thus, it is necessary to have an annotation for not receiving an event. While p

represents the occurrence of the p event, a !p represents the lack of a p event. In the algebra, this

Figure 6.6 Multiple Choice Pattern

128

functions as a placeholder for manipulating the expressions since it is understood that a !p event

will never be received. However, some implementations could send a !p event explicitly if it is

determined that a p event will never be received. The algebra will handle this case as well.

Using this notation, the basic definition for the p event option of state A in is:

pBpA !.

This is read simply as: A is defined as receiving an event p and acting like B or not

receiving an event p at all. Understanding this, the complete definition of X is:

)!...(|)!...(|)!...(
...)!.(|)!.(|)!.(

rEuDrqEtCqpEsBpX
EuDEtCEsBrDrqCqpBpA

A

Through the application of the distributive laws, this definition can be converted to

choice-action form.

rqprEtCqprqEsBprEtCqEsBp
EuDrqpEuDrEtCqpEuDrqEsBpEuDrEtCqEsBpX

rEuDrqpEtCqpqEsBpEtCqEsBpX
rEuDrqEtCqpEsBpX

CAF

A

A

A

|!|!!|!...|!|!|!...|!...|...
...||!!...|...|!...||!......|...|...

)!...(|)|!!...|!|!......|...(
)!...(|)!...(|)!...(

This algebra clearly shows the

state explosion problem that can be a

result of the placing expressions in

CAF. In implementation, the

underlying system would be better off

to place this expression in choice-

compressed form (CCF) (see 4.2.2.2).

Note that the last choice allows for no events to be received but this case must be executed

Figure 6.7 No options chosen but continue

129

explicitly by the firing of events: !p, !q, and !r. This makes sense because the absence of

information is not sufficient for the object to determine that it should continue. Also, the final

option will result in termination but will not result in arriving at state E as may be desired. In

order to accomplish this, an additional option may be necessary as shown in Figure 6.7. In this

case, the algebra becomes:

ErEqEprEtCqprqEsBprEtCqEsBp
EuDrqpEuDrEtCqpEuDrqEsBpEuDrEtCqEsBpX

CAF

A

.|!.|!.!|!...|!|!|!...|!...|...
...||!!...|...|!...||!......|...|...

This allows for transition to state E if the system explicitly indicates that no choices will

be made.

6.2.2 Synchronizing Merge

In this pattern multiple

threads of execution are

synchronized and then merged into

a single thread of execution. This

is distinguished from the simple

merge pattern (see 6.1.5), where the

paths are merged but only one

thread exists, and the discriminator

(see 6.2.4), where the threads of execution are merged but are not synchronized.

Figure 6.8 Synchronizing Merge Pattern

130

Figure 6.8 shows an example of the synchronizing merge. State A is a parallel split that

causes multiple concurrent threads of execution to be spawned. No explicit diagrammatic

notations are required to show the synchronous nature of the merge as the synchronizing of the

threads occurs implicitly at state D. Since only one t event is expected, the system implicitly

understands that all threads must reach state D prior to allowing that event.

The algebraic representation of Figure 6.8 is not much different than what has already

been presented in the other patterns.

EtDsCqEtDrBpX

EtDDsCDrBCqBpA
CAF

A|.....

....|.

The main mechanism for synchronous merging is the reduction eligibility rule. As an

example, note how the following events affect the expression.

finishedE
EtEtEt

termeligibleannot
EtDsEt

termeligibleannot
EtDsCqEt

EtDsCqEtDr
EtDsCqEtDrBpX

t

s

t

q

t

r

p
A

..|.

...|.

.....|.
.....|...

.....|.....

131

Thus, the reduction eligibility rule enforces synchronization. It is also interesting to note

that the algebra without

modification handles a situation

where synchronization is optionally

required. Figure 6.9 shows an

example diagram of such a

situation. In this case, a

synchronizing merge will be required at state D until a choice is made at state B. If an event t is

received prior to passing state B then it is assumed that u is the only valid event to transition out

of state B. The following algebra, without state identifiers, demonstrates this property:

EtEtrEtEvu
EtsEtrEtsEvu

EtsEtrpEtsEvup
EtsqEtrpEtsqEvupX

EtsqEtrEvupX
EvFEtDDsCDrFuBCqBpA

s

p

q

CAF

A

A

.|...|..
..|....|..

..|.....|...
...|......|...

...|).....(
......|.

At this point a decision

will be made on the next valid

event. If an event u or t is

received then the first choice will

be used. If an r event is received

then the second choice will be

used. This makes sense because

the acceptance of the t event prior to synchronization precludes r as a valid choice out of state B.

Figure 6.9 Optional Synchronizing Merge

Figure 6.10 Forced Synchronizing Merge

132

If it is desirable to have the thread wait at state D until a choice is made at B, a simple use of the

synchronization pattern can achieve this as shown in Figure 6.10. In this instance, E and D

require the same event in order to merge at F. Thus, if state C transitions to D by event s, an

event t will still be unaccepted until the thread through state B has made a choice and

transitioned to either state E, where the synchronizing merge will occur at F, or state D where the

synchronizing merge occurs right away. The algebra handles this case without modification and

is not shown here.

6.2.3 Multiple Merge

This pattern means that many execution paths are merged without synchronization and

multiple threads continue to exist. This does not represent a merging of execution threads but a

merging of the path multiple threads will follow. For this reason, this pattern is often referred to

as a Path merge.

Figure 6.11 shows an

example of the multiple-merge

pattern. This diagram looks

identical to that of the

synchronous merge with the

exception of the asterisk notation on states D and E and on event t. This asterisk is a multiplicity

indicator. Thus, a state marked with an asterisk refers to the fact multiple instances of this state

may exist. Likewise, an event marked with an asterisk means that multiple events of this type

may be expected.

Figure 6.11 Multiple Merge Pattern

133

Thus, Figure 6.12

indicates that the multiple

threads of execution spawned at

state A will continue even after

their paths have merged at state

D. Since there are multiple

state Ds and the expectation that multiple t events will be received then the threads of execution

are independent and thus no synchronization is necessary. Figure 6.12 shows another way of

looking at the same pattern that may make the function of the asterisks clear. This version of the

pattern makes it clear that multiple threads will continue to exist independently but that the same

path will be followed by both threads.

During the construction of the algebraic representation of the model in Figure 6.11, each

starred item is numbered sequentially as each instance in encountered during expansion. Thus,

the algebra for Figure 6.11 is:

2211

22211121

...|...
.....|.

EtsqEtrpX
EtDEtDDsCDrBCqBpA

A

It is important when using this notation to remember that the numbers do not represent

any relation to the actual sequence that these states or events will be reached or received. If

either the t1 and t2 reductions are eligible when a t event arrives a reduction will occur on that

instance. If both are eligible then only one of the instances will be reduced, the choice of which

is unimportant. The following sequence of events demonstrates this point.

Figure 6.12 Multiple Merge Pattern Alternate Look

134

211

2211
,

2211

2211

|..
.|..

...|..
...|...

EEtr
EtEtr

EtsqEtr
EtsqEtrpX

t

sq

p
A

The t event in this example results in reduction of the second concurrent term despite the

fact that this is the first t event received but the second term is marked with a subscript of two.

The subscript notation is important because, without it, the t event would not be accepted at all as

it would violate the reduction eligibility rule. Thus, the proper construction of the algebraic

notation using subscripts for the starred items results in an expression which can be reduced

without any modification to the reduction rules. While it is encouraged that the numbering of

starred items be sequential, in actuality the numbering carries no semantic meaning and thus

could be arbitrary as long as no two instances have the same subscript.

6.2.4 Discriminator

This pattern is the merging of threads of execution, not a merging of paths. Thus,

multiple threads become one thread of execution. The difference is that this merging can be

done asynchronously. Therefore, execution of states after the merge is not stopped until the

other thread catches up.

Figure 6.13 shows an

example of the discriminator

pattern. In this example, if a p

and r event is received, the

subsequent receipt of event t will

still be accepted event though the

Figure 6.13 Discriminator Pattern

135

other thread of execution never even reached state C.

Algebraically the function of the input port is similar to that of the optional transitions as

shown in Figure 6.8. Each one represents a possibility. Thus, state B would be represented as:

0.. rDrB

The use of the .0 term is introduced to explicitly show that a thread will terminate. It is

not always necessary to show these, as all final states implicitly have this element. Thus state D

in Figure 6.13 could really be shown as t.0 or possibly t.E.0, but such explicitness in the algebra

would only serve to raise the complexity without improving comprehension. However, in this

instance, it is desirable to show the termination since it is not at a final state. Thus, this

expression can be read as, B is defined as the receiving of event r and then acting like D or

receiving of an event r and then terminating. Given this understanding, the full definition of

object X in choice-action form is:

0..|0.....|0..0..|......|...

)0.....(|)0.....()0....(|)0....(
)0..()0..(..|.

sqrpEtsqrpsqEtrpEtsqEtrpX

sqEtsqrpEtrpsEtsqrEtrpX
sDsCrDrBEtDCqBpA

CAF

A

A

The final term in this definition was dropped since it is completely encompassed by the

other terms. Thus, there is no option to accept events p, r and events q, s and then terminate

completely as other choices have yet to be resolved. The following demonstrates the behavior

with events p, q, s, and t:

136

Er
EtrEtEtr

EtsrsEtrEtsEtr
EtsqrsqEtrEtsqEtr

EtsqrpsqEtrpEtsqEtrpX

t

s

q

p

CAF

A

|0.
.|0..|..

..|0.0.|....|..
...|0.0..|.....|..

...|0..0..|......|...

The reductions of events p and q are trivial. The reduction for event s is also trivial

except to note that the second term loses one of its terms since the terminating .0 is reached and

the remaining concurrent action can be dropped by the Law of Redundancy (see 4.2.1.3). The

most interesting reduction is the t event. The first choice has a t embedded in its first concurrent

action so it violates the reduction eligibility rule. The only acceptable choice is the second term.

After reduction it is clear that state E has been reached but that completion of the behavior can

not occur until the r event has been received. Thus, an asynchronous merge has occurred

assuring that state E will not be executed twice.

6.2.5 N-out-of-M Join

An alternate way of modeling the discriminator pattern of Figure 6.13 is to treat an input

port as a form of sequential interleaving. In the case of Figure 6.13, state B would be interpreted

as having a simple transition to state D, since it has an input port. It then becomes the

responsibility of state D to ensure that the input port is satisfied. Thus, the algebra of Figure 6.13

would have a construction of:

0..|0..0..|......|0.....|...

)0.....(|)0.....(

)0..(.|)0..(.

0....|.

sqrpsqEtrpEtsqrpEtsqEtrpX

sqEtsqrpEtrpX

EtsqEtrpX

EtDDsCDrBCqBpA

CAF

137

Since this alternate representation is logically equivalent, it is no surprise that the final

CAF expression is identical. This is not the preferred way of modeling the discriminator pattern

because it looks backward into

the model, which is not done on

any other occasions.

This is the only way,

however, of handling the N out of

M join pattern. Figure 6.14

shows a simple example of this

pattern. This example models the situation where event v is not to be accepted until at least two

of the three threads have transitioned to state D. This pattern can be viewed logically as a

complex discriminator with an interleaved condition required for thread continuation. In order to

combine these ideas, the alternate form of the discriminator algebra is to be used:

0..|0..|0..

0..|0..|....0..|0..|....0..|....|0..

0..|....|....0..|....|....0..|....|0..

0..|....|........|0..|0......|0..|....

....|0..|........|....|0......|0..|0..

....|0..|........|....|0......|....|0..

)0.......(.|)0..

.....(.|)0.......(.

)0.)..((.|)0.)..((.|)0.)..((.

0.).(....|.|.

urtqsp

urtqFvuspurtqFvtspurFvutqsp

urFvutqFvuspurFvutqFvtspurFvstqsp

urFvstqFvuspFvturtqspFvturtqFvusp

FvturtqFvtspFvturFvstqspFvsurtqsp

FvsurtqFvtspFvsurFvutqspFvsurFvstqspX

FvuFvtFvsurFvu

FvtFvstqFvuFvtFvsspX

FvutsurFvutstqFvutsspX

FvutsEEuDEtCEsBDrCqBpA

CAF

Figure 6.14 N out of M Join

138

The expression (s+t+u) at the beginning of state E is repeated n-1 times, where n is the

number represented in the input port notation. Thus, if the input port were to have no number or

an explicit one in its notation, then this term would be omitted; or, the construction for the

discriminator pattern could be used (see 6.2.4). If the input port notation contained an asterisk,

then it would have to wait for all thread to converge before continuing, which is a synchronous

join (see 6.2.2). Thus, this pattern covers the range of possibilities between these two patterns.

The following algebraic reductions demonstrate how this pattern would function during

run-time:

0..|

0..0..|..0..|.0..|..0..|..|..0..|..

0..|0.0..|0.|..0..|0.|..0..|...0..|...|..

0..|...|......|0.....|0.|......|0.|..

0..|0..0..|0..|..0..|0..|..

0..|....0..|....|..0..|....|..

....|0......|0..|......|0..|..

0..|0..|0.0..|0..|...0..|0..|...0..|....|0.

0..|....|...

0..|....|...0..|....|0.0..|....|...

....|0..|0.....|0..|...

....|0..|.......|....|0.....|0..|0.

....|0..|.......|....|0.....|....|0.

urF

ururFvuurFvurFvuurFvuFvuurFvu

urturtFvuurtFvturFvuturFvutFvu

urFvutFvtFvturtFvturtFvuFvturtFvt

urtqurtqFvuurtqFvt

urFvutqurFvutqFvuurFvutqFvt

FvturtqFvturtqFvuFvturtqFvt

urtqsurtqFvusurtqFvtsurFvutqs

urFvutqFvus

urFvutqFvtsurFvstqsurFvstqFvus

FvturtqsFvturtqFvus

FvturtqFvtsFvturFvstqsFvsurtqs

FvsurtqFvtsFvsurFvutqsFvsurFvstqsX

v

t

q

s

p

6.3 Structural Patterns

These patterns involve the structural aspects of process control flow, not the structural

aspects of objects. As such, it is similar to control flow statements or activities found in modern

programming languages. FOIL has little trouble representing these patterns.

139

6.3.1 Arbitrary Cycles

This is a basic looping construct.

This pattern is primarily supported by the

manner in which the expression is

constructed in FOIL. Recall that a

unique event is defined as occurring only

once per iteration. Thus, by looping a unique event can occur multiple times. Figure 6.15 shows

an example of an arbitrary cycle. Event p is a unique event and thus occurs only once per

iteration. Iteration, in this example, is triggered by an event r while in state B. Algebraically, the

fact that substitution of terms is done only when unexpanded state terms reach the front of an

expression is what allows for this behavior:

ArBpCqBpX
ArCqX

ArBpCqBpX

ArCqpX
ArCqBBpA

A
r

B
p

CAF

A

A

......
..

......

)...(
...

Figure 6.15 Arbitrary Cycle

140

6.3.2 Implicit Termination

This pattern represents a system, process or

object implicitly terminating when there is nothing left to

do. This pattern is so intuitive that is have been used

throughout this these with little explanation. Figure 6.16

shows two examples of this pattern. Analytically, an

object or process is said to terminate when all remaining

states are unreachable (see 5.3.3). Algebraically, implicit

termination can be explicitly represented:

terminated0
0..

0.

B
p

A

BA

X
BpX

XBpX

This explicitness is usually not necessary but can be helpful in understanding the

behavior. For example, note that termination of an object does not necessarily mean that all

states have been touched or all final states have been reached:

terminated0
0..0..

00..

C
r

A

CBA

X
CrBpY

XXCrBpY

Finally, implicit termination does not just refer to a process or object but could refer to a

single thread of execution. Algebraically, such representation will always be explicit while

graphically it may not. For an example of this refer the discriminator pattern (see 6.2.4).

Figure 6.16 Implicit Termination

141

6.4 Patterns Involving Multiple Instances

An object-oriented modeling language would hardly be useful without the ability to

create and manage multiple instances. Interestingly, this same characteristic is used in process

modeling to denote multiple copies of a process that run concurrently. With the ability of FOIL

to model concurrency, objects can be distributed on multiple systems allowing for each copy of

an object to run independently. The following is a review of the main workflow patterns

involving multiple instances.

6.4.1 MI without Synchronization

This pattern involves the ability to create multiple instances of objects without requiring

synchronization at a future time. In this sense, it is the simplest of the multiple instance patterns.

The use of asterisks on event handlers provides a notational indicator that an event may be

received multiple times. When used on a relationship between objects, it indicates that an event

received by one object will result in the instantiation of another.

 Figure 6.17 shows an example of this

pattern. When an event t is received and

object X is in an accepting states (states A and

B), then a new instance of object Y will be

created. Since object X and object Y have no

events in common there is no need for future

synchronization. If a global event r was

received and there were two instance of Y then a synchronization condition might result, but if all

events for instance of object Y are locally specified, no synchronization will occur in this system.

The algebraic construction is:

Figure 6.17 MI without Synchronization

142

YtXtYttXttXqtt

YtXtXqtYtpXtpXqtpXqpX

YXYXXqtXqtYXXqtXqpX

XYXXqtXqXYXXptXpX

ABC

ACBCC

ABCCBCC

CBCCBABBA

.|.|..|..|...

.|.|....|..|.....

)||))||..(..(())||..(..(

0)||..(.)||..(.

11212121

111222

212

21

Note that the receiving of an event t results in expansion of the expression to include Y

and an iteration of state A of object X:

FYsYrYXYtXtXqtFYsYrYXXq
YXYtXtXqtYXXqX

FsrY
YYsYYrY

ABCAC

ABCAC
t

FFEED

111222111

222

..||.|.|....||.
||.|.|..||.

..
0..

The expansion of XA will result in redundancies which can be eliminated based on

previous laws; however, this expansion is not shown here as it is a long and relatively trivial

exercise.

6.4.2 MI with Priori Design Time Knowledge

This pattern involves the creation of

multiple instances where the number of

objects created is known at design time.

FOIL allows, in addition to the asterisk, the

placement of a number to represent the

number of times that an event is

acceptable. Figure 6.18 shows an example

of this pattern. The relationship between class X and class Y indicates that exactly two instances

of object Y will be instantiated. Since, all of the states in object X are accepting, the exact time

of their creation is unknown.

Figure 6.18 MI with Priori Design Time Knowledge

143

The algebraic construction requires that all event t results be pre-expanded the specified

number of times. The creation of an arbitrary loop resulting from a t event would allow for an

unbounded number of Y objects (see 6.4.1), which is clearly not the intent. Given this, the

algebraic construction for each state is:

)..|)...(.()...(
)..|.|)..|..(.()..|..(.
)..|.|)..|..(.()..|..(.

111222211111

111222211111

111222211111

FYsYrYFYsYrYttFYsYrYtX
FYsYrYXqFYsYrYXqttFYsYrYXqtXqX
FYsYrYXpFYsYrYXpttFYsYrYXptXpX

C

CCCCB

BBBBA

Creating full expression and applying the various laws would actually result in:

FYsYrYtFYsYrYtXqpX C 22221111 ...|...|..

This massive reduction in the size of the expression occurs because all states in object X

are accepting and thus the creation of the two Y objects can occur at any time concurrently with

normal behavior of object X. In some cases, this behavior may not be desirable.

A more complicated case occurs

when state B is in a non-accepting state.

Thus, there are two instances of object Y

required but they must be created in one of

three ways: both while in state A, both while

in state C, or one in each of states A and C.

Figure 6.19 shows an example of such a case.

The algebra in this case does not simplify as nicely as the previous.

Figure 6.19 MI Creation Restriction

144

CtFYsYrYtCttFYsYrYttCtFYsYrYtX
XqX

FYsYrYtXptFYsYrYttXpttFYsYrYtXptXpX

CCFYsYrYCFYsYrYttCFYsYrYtX
XqX

FYsYrYXpFYsYrYXpttFYsYrYXptXpX

C

C

CAF

B

BBBB

CAF

A

C

CB

BBBBA

.|...|..|.....|...
.

...|..|....|......|...

)|..|)|...(.()|...(
.

)..|.|)..|..(.()..|..(.

11111212222111111

11111222212111111

111222211111

111222211111

Substituting terms and expanding all expressions using the distributive laws:

FYsYrYtCqptFYsYrYttFYsYrYtCqptCqp
CtFYsYrYtqpCttqpFYsYrYttqpCtqpFYsYrYtqpX

111112222111111

11111212222111111

...|...|.......|.....
.|.....|....|.........|.....

The expanded expression in choice-action form has many terms which are inherently

inconsistent or violate one of laws. These concurrent terms are eliminated from the expression to

produce a simplified and final CAF expression. This final expression shows that there are

actually five choices, not just the three outlined previously. While it is true that there are only

three ways to create the two Y objects, it is clear from the algebra that this system only limits the

number of Y objects to three. Inspection of the algebra shows that there is a possibility that zero

or one event t will be received. So, in this case, the design-time specification of two acceptable t

events is merely a constraint on the creation of new Y objects.

Also, it is obvious from the verbose

algebra, that there is still not a defined moment

in which the Y objects will be created. If it is

desired to ensure that exactly two Y objects

will be created and that they will be created at

a certain time, then a different diagram is

Figure 6.20 MI with Increased Determinism

145

required, such as Figure 6.20.

6.4.3 MI with Priori Runtime Knowledge

The pattern represents a condition

in which the number of objects that will be

instantiated for a particular class is not

known at design time. In FOIL this

particular pattern is actually easier to

model than the design-time scenario.

Figure 6.21 shows an example of this

pattern where at some point prior to state B, the number of t events that will be fired after state B

executes is determined. This causes the creation of a fixed number of instances of object Y but

the exact number is known at some time during execution but not at design time.

YttpXttpCqttpCqtpX

YXCqtCqtpX

CXYXXqtXqtXXpX

B

CAF
B

CBCCBBA

..*.|..*.|...*...*.

)))||..(..(*.(

))||..(..(*.

111

1

1

Initially the only eligible event is p, but after reception, an indeterminate number of t

events will be fired. It is fairly easy to see that each event will result in a new Y object. The

recursion occurs with the substitution of the XB term.

Figure 6.21 MI with Priori Runtime Knowledge

146

6.4.4 MI with no Priori Runtime Knowledge

This pattern results from the system

being unaware of exactly how many

objects will be instantiated both at design-

time and at run-time. This is most likely

caused by the system responding to outside

events. Since the FOIL modeling language

is an event driven approach this particular

pattern is extremely simple. Figure 6.22 shows a graphical example of this pattern in FOIL. The

algebra is likewise relatively simple:

YtpXtpCqtpCqpX

YXCqtCqpX
CXYXXqtXqXXpX

B

CAF
B

CBCCBBA

..|..|.....

))||..(..(
)||..(..

111

1

1

This pattern is frequently used in a context of a listening device that will infinitely

respond to events. In fact, this pattern has actually already been previously demonstrated with

the MasterController class in the elevator example (see 3.4).

6.5 State-Based Patterns

This group of patterns is based on the idea that control flow is impacted by system state.

In other words, if the system is in a particular state it will force or restrict various choices. Since,

FOIL is, at its core, a state-driven modeling language, these patterns are not especially

challenging to implement or follow. The only exception is, possibly, interleaved routing which

requires special notation to avoid the model growing to an unusable size.

Figure 6.22 MI with no Priori Runtime Knowledge

147

6.5.1 Deferred Choice

The pattern represents that ability

of a system to respond to a choice that may

not be immediately apparent, but will be

determined by future events. FOIL

actually depends on this truth in order to

allow for the Distributive Law of Choice

(see 4.2.1.1). Class X of Figure 6.23 shows

a simple example of this pattern. The p

event will result in a transition to either

state B or state C. The absence of any output ports means that only one path can be chosen but

the correct transition can not be determined until a subsequent event is received. If event q is

received than the path to state B is chosen. Conversely, state C is chosen if the next eligible

event received is event r. In the simple case, the algebra shows that object X would coexist in

states B or C until another event is received.

ErDqXX
ErCpDqBpX

ErCXDqBXXpXpX

CB
p

A

CAF
CBCBA

..
......

......

This particular situation creates difficulties algebraically if state B and/or C is an active

state. While it may be desirable to have both states execute their code and have one thread

terminate, this is usually not the intended behavior. Object Y of Figure 6.23 shows such an

example. In this case, a simple rule can be applied to prevent such occurrences. It is logical to

assume that the state execution can not be started by two different choices; hence the algebra can

Figure 6.23 Deferred Choice

148

be converted to bring the next event forward in the expression to allow for that choice to be made

first.

ErCCCCDqBBBBX
ErCCCCpDqBBBBpY

ErCCCCYDqBBBBYYpYpY

p
A

CAF
CBCBA

.....̀`.....̀`

.....̀.̀.....̀.̀

.....̀`.....̀`..

Since each choice is supposed to fire an execution event to start processing this would

result in a race condition as the first event to be received would eliminate the remaining term. In

addition to being total unacceptable, it is not logical for concurrent events to fire when no

concurrency is warranted. Thus, by moving the next eligible term to the front of each offending

expression the decision is postponed.

ECCCCrDBBBBqX p
À.̀....̀.̀

6.5.2 Interleaved Routing

This pattern is concerned with

sequential operation of multiple control

flows, but in no predetermined order. In

other words, two or more flows need to

be executed but they can not be executed

at the same time. The order of execution

is unimportant. Figure 6.24 shows a

FOIL diagram of a simple interleaved

routing situation. Once object X receives

Figure 6.24 Interleaved Routing

149

an event p, then either the q or r events will be exclusively allowed. The algebra constructed by

a series of sequential choices where the interleaved construct is considered its own state I:

DsCrBqpDsBqCrpX

DsCrCrpDsCrBqpDsBqCrpDsBqBqpX
DsCrBqCrBqpX

DsCrBqCrBqIIpA

CAF

............

........................
.)...).(...(

.)...).(..(.

Substitution of state B or C in the above example can be expanded to include any

independent flow. If the control flows cross in any way, or if they have a dependency on one

another, then the algebraic expression would completely cancel out. This would indicate that

such a pattern would not function. Object Y in the above figure demonstrates a slightly more

complicated object control flow with some notational variations.

A transition without an event could be considered to be an automatic transition. In most

cases, this is not desirable as such a construct just adds notational complexity without adding any

meaning. Object Y in Figure 6.24, however, would like to execute two independent sequences

one at a time but does not need a starting event to indicate that it wishes to start such a process.

In this case, transitioning into or out of an interleaved construct is implicit as the algebra

indicates:

DGurFtqDGurEsqDFtqGurDEsqGurY

DGurDFtqDEsqGurFtqEsqY
DGurFtEsqGurFtEsqY

GuCFtEsBDCrBqCrBqIIA

CAF

........................

).........).(......(
)...)...().(..)...((

...)...).(..(

150

6.5.3 Milestone

The milestone pattern involves other objects or processes waiting until another has

reached a particular event has occurred. Synchronization of objects or processes may or may not

occur with this pattern. This is because if all flows are, in fact, waiting on the milestone to be

reached, then it is logical to say that when the milestone is reached the flows will be

synchronized. If, however, the milestone is reached before affected flows are waiting then no

synchronization occurs.

Figure 6.25 shows an example of

this pattern. In this example, the

assumption is that objects X, Y, and Z are

all instantiated and currently in their

starting states. The milestone occurs at

state B of object X. Object Y is not

allowed to proceed past state F and

object Z is not allowed to proceed past

state J until an event x has been received.

This event is immediately fired by object

X upon arriving at state B. The use of a concurrent thread in modeling this pattern ensures that

synchronization has to occur at YF and ZJ respectively, but that event x may be received at any

time. This example does not prohibit x from being fired from outside object X, however, such

constraints can be applied through the use of event scope if desired.

The following is the algebraic construction with state notation of the system in Figure

6.25:

Figure 6.25 Milestone

151

KwJxHJvIuHZGtFxDGtFsErDYCqBxpAX
CAFCAFCAF

....|........|...........

Since these objects each execute independently, the system expression would be:

KwJxHJvIuHGtFxDGtFsErDCqBxpAS
CAF

....|....|....|......|.....

The following demonstrates this pattern during run-time:

KwJxJvIuGtFxGtFCqBxp
KwJxJvIuGtFxGtFsCqBxp

KwJxJvIuGtFxGtFsErCqBxpS

s

r
ADH

...|...|...|..|....
...|...|...|...|....

...|...|...|.....|....

At this point during execution, object Y can not completely arrive at state F since there is

still a state F term in a concurrent expression. It is clear that object Y can not continue until an x

is received. This will move the remaining F state to the front of its concurrent term making it

eligible for reduction. Once object X arrives at state B all restrictions on the objects are removed.

KwJJvIuGtCqB
KwJxJvIuGtFxGtFCqBx

x

p

..|...|.|..
...|...|...|..|...

When x is fired, object Y arrives at state F and can continue with processing. Object Z

was practically unaffected by the receipt of event x. It no longer has to synchronize with object

X. Thus, in this scenario, object Y synchronizes at the milestone and object Z never does.

6.6 Cancellation Patterns

These patterns, while important, are among the simplest in workflow processing. These

patterns involve causing a process or series of processes to stop execution.

152

6.6.1 Cancel Activity

The cancel activity pattern is simply ensuring that the

receipt of an event will cause all processing of an object to

cease. It is simple to see how FOIL could implement such a

pattern. Figure 6.26 shows an example of this pattern using

an optional notation to indicate that the thread terminates. There is no need to actually label the

destination state for cancellation; however, in practice this would likely be desired to give an

underlying implementation an indication of what state an object is in. Obviously, the modeling

must ensure that a cancellation event terminates all concurrent threads of an object regardless of

what state the object is in. This concept, while logically simple, can result in a very busy

diagram. An alternate notation indicating that all states in the diagram have a choice to transition

to the cancelled state could be used but is not provided here.

6.6.2 Cancel Case

This pattern is really just an extension on the previous pattern and ensures that a

cancellation causes a group of related objects or processes to all terminate concurrently. Once

again, this pattern is no challenge to the FOIL algebra; however, it may be a notational challenge

if explicitly modeled, since every state of every object or process involved would require a

transition to a cancelled state. In addition, the ability to restart a canceled case can be easy or

difficult depending on whether the modeler wants to always restart at the beginning of a process

or, instead, desires a restart from the previous object state.

Figure 6.26 Cancel Activity

153

7. PROCESS ANALYSIS

The Formal Object Interaction Language (FOIL), as has already been discussed is

capable of modeling process flows as well as object diagrams. FOIL does this using primarily

the same notational elements for both models. In addition, both models have a common

underlying mathematical representation. Given that two models have an algebraic

representation, it is logical that if there exists any intersection in the events received by these

models, certain mathematical operations may offer insight into their interaction.

7.1 Process Achievability

The concept of process achievability is centered on the idea that a process can be

completed given a particular object model. This does not indicate that a process will be

completed. Since any FOIL object model can be effectively canceled at any time, it can be

argued that there is never any guaranty that a process will complete; however, this is not

considered as part of the definition:

A process is said to be achievable if during the pursuit of local completion of

object workflow on a corresponding object model, a given process has the

potential to complete.

Determining the achievability of a process is a useful metric. It can be used to reject

object models that can not perform a certain process. In addition, if it is desirable to ensure that

a process will always complete, achievability metrics can be used to determine the

modifications to the object model that are necessary.

154

The technique for determining achievability involves a look-ahead simulation of a

process on the object model. Figure 7.1 shows a simple FOIL object model (objects X and Y)

and a corresponding FOIL process model (processes M and N). The algebraic representation of

objects X and Y in choice-action form are:

LyJwIKxJwIY

HvCqAYzBpABzBpAGuFrzBpA
HvCqAYzBpABzBpAEtDszBpA
HvCqAGuFrBpAHvCqAEtDsBpAX

CAF
i

ii

CAF

........

....|....|....|.......
....|....|....|.......
....|..........|......

The algebraic representation of processes M and N in choice-action form are:

SuRxN

NvQwONvPrOM
CAF

CAF

...

....|.... 11

The algorithm for determining achievability uses a simple backtracking technique applied

to the process and object expressions. Each eligible process event is placed in a process event

Figure 7.1 Process Achievability

155

stack U. The first event is removed from the stack and a search is done to determine which

choice terms in the object expression have the event. This event is referred to as the search

event. Each eligible term in the object expression is assigned a weight proportional to the depth

at which the search event occurs and pushed onto a choice stack V in descending order. The

term with the lowest weight is then simulated by popping stack V and firing events up to and

including the search event. Then, all eligible process events are placed in the stack U and the

process is repeated. If after each iteration, the process expression is reduced to 0 then the

process is achievable. If the both stacks U and V become empty prior reducing the process

expression to 0, then the process is not achievable.

Using the example of Figure 7.1, the following demonstration is given to determine if the

process of M and N is achievable with the object X and Y:

11

11

...|...
....|....

NvQwNvPrM
NvQwONvPrOM

start

CAF

At this point in process M the eligible events are r and w. These are pushed onto the

stack Z.

},{ rwU

Event w is popped from the stack and a search is done on the object expression X to

determine which choice contains an event w. This is intuitive since in order for the process to

complete, an event w must be accepted at some time during the object model workflow.

{}Xw

156

The search for an event w in the object event model results in an empty set of terms.

Thus, event w is not a valid choice and the next term is popped from the stack, in this case r.

}5:....|....|....|.......
,4:....|......{

HvCqAYzBpABzBpAGuFrzBpA
HvCqAGuFrBpAV

i

The search for event r in the object expression results in a set of two possible choices for

execution. These choices are assigned a weight based on the first appearance of event r in their

expressions. In this example, there are two choices eligible. The first choice has event r

appearing as the fourth term, while in the second expression event r is the fifth term. A

simulation is then run on the object expression by reducing the expression with all events

necessary to reduce event r starting with the lowest weight choice.

F
r

i

ii
p

i

ii

create

i

XHvCqGuX
HvCqYzBzGuFrz

HvCqYzBzEtDszHvCqGuFrHvCqEtDsX
HvCqYzBpBzBpGuFrzBp
HvCqYzBpBzBpEtDszBp

HvCqGuFrBpHvCqEtDsBpX
HvCqAGuFrBpAchoice

HvCqAYzBpABzBpAGuFrzBpAV

...|.
...|.|.|....

...|.|.|.......|......|...
...|...|...|......
...|...|...|......

...|........|.....
....|......

}5:....|....|....|.......{

After the reductions, the process expression is reduced with event r as follows:

11 ...|. NvQwNvM

The next eligible events are pushed onto stack U. Event V violates the eligibility rule and

thus is not pushed onto stack U.

}{wU

157

It is clear that event w in stack U can not be processed with the object expression in its

current state. Thus, stack U becomes empty and stack V must be popped to attempt the second

choice.

HvCqLyJwEtDsGuHvCqKxJwEtDsGu
HvCqLyJwEtDsGuHvCqKxJwEtDsGuX

HvCqLyJwEtDsGuFrHvCqKxJwEtDsGuFr
HvCqLyJwEtDsGuFrHvCqKxJwEtDsGuFrX

HvCqYzBzGuFrz
HvCqYzBzEtDszHvCqGuFrHvCqEtDsX

HvCqYzBpBzBpGuFrzBp
HvCqYzBpBzBpEtDszBp

HvCqGuFrBpHvCqEtDsBpX
HvCqAYzBpABzBpAGuFrzBpAchoice

V

r

z
i

ii
p

i

ii

create
i

...|...|...|....|...|...|.
...|...|...|....|...|...|.

...|...|...|......|...|...|...
...|...|...|......|...|...|...

...|.|.|....
...|.|.|.......|......|...

...|...|...|......
...|...|...|......

...|........|.....
....|....|....|.......

{}

As before, the next eligible process events are placed on the stack:

}{wU

Event w appears in every choice in exactly the same place, so the order in which these

choices are pushed onto stack V is unimportant.

HvCqLyEtDsGuHvCqKxEtDsGu
HvCqLyEtDsGuHvCqKxEtDsGuX

HvCqLyJwEtDsGu
HvCqKxJwEtDsGu
HvCqLyJwEtDsGu

HvCqKxJwEtDsGuV

w

...|.|...|....|.|...|.

...|.|...|....|.|...|.
}3:...|...|...|.
,3:...|...|...|.
,3:...|...|...|.

,3:...|...|...|.{

The process expression is now:

}{
.|. 11

vU
NvNvM

This process continues as follows:

158

LyEtDsGuKxEtDsGuLyEtDsGuKxEtDsGuX
HvCqLyJwEtDsGu

HvCqKxJwEtDsGuHvCqLyJwEtDsGu
HvCqLyEtDsGuHvCqKxEtDsGu

HvCqLyEtDsGuHvCqKxEtDsGuV

vq .|...|..|...|..|...|..|...|.
}3:...|...|...|.

,3:...|...|...|.,3:...|...|...|.
3:...|.|...|.,3:...|.|...|.

3:...|.|...|.,3:...|.|...|.{

,

For simplicity, stack V is not shown in these last steps; however, it should be noted that

stack V will continue to grow with each step.

0
...

}{
.

...|....|....|.
}{

......|...

M
EtDsX

uU
SuM

EtDsGuEtDsGuEtDsGuX
xU

SuRxSuRxSuRxM

u

x

The process expression M completes

and thus this process is achievable with the

object model given by X and Y. The same

process which is achievable with the object

model of Figure 7.1 can be non-achievable

with a different object model. Figure 7.2

shows an example of an object model that

would not be achievable with the previously

defined process model M and N. While it may

not be obvious at first glance, intuitively it is

simple to see that events r and u are mutually

exclusive in object X. Thus, since the

Figure 7.2 Defunct Object Model

159

combined process of M and N required both events, this object model can not be used to achieve

the process. This is referred to as a defunct object model.

7.2 Process Determinism

Another concept of importance related to that of achievability is that of determinism. A

process is said to be deterministic if for every conceivable event sequence that results in object

model workflow completion, the process is guaranteed to complete. Recall that achievability

says that a process can complete given a specific object model. Determinism means that a

process will complete. The proof that a process is deterministic is two fold. First, prove that

the process is completely achievable. Second, prove that for every control flow path in the

object model the sequence of events is in keeping with that in the process model.

7.2.1 Determining Complete Achievability

A process P is said to have complete achievability with respect to an object

model O if for every path to completion in O, process P is achievable.

A slight modification of the object model in Figure 7.1 is shown in Figure 7.3. It is not

completely obvious that with this object model, the process of M and N of Figure 7.1 can be

completed regardless of the path. Classification of a process as wholly achievable is done by

performing the achievability algorithm as described in 7.1 with two modifications: 1) Record all

choices that lead to an achievable result and place in a set , and 2) do not discontinue the

algorithm when achievability is proven, but instead continue until all stacks are empty.

160

Given an object model O and a

process model P, let S be the set of all paths

through the object system O and let

be the

set of all eligible paths through the object

model O that achieve the process P. Thus,

process P is said to be achievable if:

{}andS

Process P is said to be completely

achievable if:

{}SandSS

Thus, after full completion of the

achievability algorithm, if the total set of

eligible choices that will result in completion of the process is the same as the set of all choices

to complete the object model, then the process is completely achievable. The logic is simple: if

all choices can complete the process, then there are no choices that can not complete the

process. Thus, the process can always be completed.

Figure 7.3 Completely Achievable Process

161

7.2.2 Determining Process Determinism

This still does not prove that a

process model is deterministic. In order

to complete the proof, it must be shown

that the process is completely achievable

and that for every eligible sequence of

events the process will be completed.

While the model in Figure 7.3 is

completely achievable with respect to the

process model of Figure 7.1, it is not

deterministic. While every path can result

in completing the process of Figure 7.1,

note that the process model requires that

event w be received prior to event v. The

object model does not enforce this

constraint. Thus, if an event v were received before event w, the object model would continue

reductions normally but the process would no longer be valid.

Figure 7.4 shows a further modification of the object model to ensure determinism.

Performing the achievability algorithm would indicate that this object model is completely

achievable. The second step in proving that this process is deterministic resides in the fact that

during the achievability algorithm backtracking in stack V only occurs as a result of completing

the process.

Figure 7.4 Process Determinism

162

Recall that during the achievability algorithm, if a process could not be completed given

a certain choice, this processing was abandoned and the next choice in stack V was tried. In the

process of determining complete achievability, stack V is popped when either a path is

abandoned or a process is completed. If stack V is exhausted only because all paths resulted in

completion of the process, then the process is guaranteed to complete regardless of the path

chosen. Thus, the process is deterministic.

LyJwIKxJwIY

YzzAFuGxHvCrzzAFrswBpzzA

YzzAFuGxHvCrzzAFrwBpzzAX

CAF

CAF

........

...|..........|........
...|..........|.......

11

11

...|...
....|....

NvQwNvPrM
NvQwONvPrOM

start

CAF

}...|..........|.......{

}8:...|..........|........
,7:...|..........|.......{

},{

YzzAFuGxHvCrzzAFrwBpzzA
toVpop

YzzAFuGxHvCrzzAFrswBpzzA
YzzAFuGxHvCrzzAFrwBpzzAV

rwU

11
,

,

.|.
.|......|.....

...|.......|.....

...|.......|.....
...|.......|....

...|.......|....

NvNvM
LyFuGxHvKxFuGxHvX

LyJwFuGxHvCrFrswBp
KxJwFuGxHvCrFrswBp

LyJwFuGxHvCrFrwBp
KxJwFuGxHvCrFrwBpX

rp

rp

create

}{vU

completionuntilonsoand
SuRxM

LyFuGxKxFuGxX
v

v

...
.|....|...

163

}...|..........|........
,...|..........|.......{

YzzAFuGxHvCrzzAFrswBpzzA

YzzAFuGxHvCrzzAFrwBpzzA
toVpop

beforeascontinue
NvNvM

LyFuGxHvKxFuGxHvX
rsp

rsp

11
,,

,,

.|.
.|......|.....

This example demonstrates that all terms in the object model can be followed to complete

the process. Since the set of all choices S is equal to the final set of all achievable choices , the

process model is completely achievable using this object model. In addition, during the

achievability algorithm, every choice placed in stack V was achievable and thus this process is

also deterministic.

7.3 Process Enforcement

The previous example of process determinism shows that creating a object model that

guarantees the completion of a given process is possible and can be verified; however, it can be

quite difficult with large models to create such models. An alternative to this approach is to use

a process model as a constraint on an object model. This provides a simpler mechanism of

guaranteeing completion of a process. The method for constraining the object model is by

ensuring that any event received during execution of the object model that also exists in the

process model must be eligible in both models.

In order for this to function properly, a process must be completely achievable on a given

object model. The reason for this is quite simple. If there are paths which may be followed in

the workflow of an object model that do not result in process completion it is likely because

these paths do not contain events that exist in the process model. Figure 7.1 shows a process

164

model that is achievable with respect to the object model. If the process model is used as a

constraint against the object model, it does not guaranty completion.

MineligiblenotisbutMinexistsvX
processinexistnotdoessNvQwNvPrM

HvCqEtX
processinexistnotdoespNvQwNvPrM

HvCqYzBBzBGuFrz
HvCqYzBBzEtDszHvCqGuFrHvCqEtDsX

vqt

s

s

p
i

ii
p

0
...|...

...|.
...|...

...|..|..|....
...|..|.|.......|......|...

,,
11

11

Thus, two things can occur when attempting to constrain an object model with a

incompletely achievable process: deadlock or object completion with no corresponding process

completion. In this example, a deadlock resulted as event v is constrained by the process but

enabling events r and w no longer exist in the object model. It is a trivial exercise to create a

model where a path in the object model contains no constraining events in the process model.

Thus, the object workflow would complete without the process even starting.

Using a completely achievable process model does not have this problem, as all paths can

result in completion of the process. Recall that the only thing preventing a completely

achievable process from being completed is the correct events occurring in the wrong order.

However, if the process model is used to constrain the order of events, then the process model is

guaranteed to complete.

As shown earlier, the process model of Figure 7.1 is completely achievable with respect

to the object model in Figure 7.3 but is not deterministic. The main problem reason this model is

not deterministic is that the process must receive event v before event x but this is required in the

corresponding object model. The following demonstrates how the process model is used to

ensure proper sequence of received events.

165

processinexistnotdoesqSuRxNvQwSuRxNvPrM
GxHvLyJwIGuFrDsGxHvKxJwIGuFrDs

GxHvLyJwIGuFrGxHvKxJwIGuFrX
processinexistnotdoespSuRxNvQwSuRxNvPrM

GxHvCqLyJwGuFrDsGxHvCqKxJwGuFrDs
GxHvCqLyJwGuFrGxHvCqKxJwGuFrX

q

q

p

p

.......|.......
...|....|........|....|.....

...|....|......|....|...
.......|.......

.....|...|..........|...|.....
.....|...|........|...|...

At this point in execution, it is clear that event v is eligible in the object model but it is

not in the process model. Thus, a receipt of an event v will be rejected since the process

modeling is enforcing sequence in the object model. The only other eligible events in the object

model are events r, s, and w. These are completely eligible since events r and w are eligible in

the process model and event s is not constrained by it. Continuing with execution:

SuRxNvQwSuRxNvM
GxHvLyJwGuGxHvKxJwGuX

r

r

.......|.....
...|...|....|...|.

Now in addition to event v, the u event is eligible in the object model but is not in the

process model. Thus, events u and v are ineligible.

SuRxNvSuRxNvM
GxHvLyGuGxHvKxGuX

r

w

.....|.....
...|.|....|.|.

Now event v and y are the only eligible events.

0
0

.|.
.

...|...
.|.

.....|.....
...|.

u

u

x

x

v

v

y

y

M
X

SuSuM
GuX

SuRxSuRxM
GxGuX

SuRxNvSuRxNvM
GxHvGuX

166

This demonstrates the ability for a process to be used as a constraint on an object model.

This is obviously unnecessary if the process is already deterministic, but it offers another

alternative to creating and refining a deterministic model that, in practice, can be quite difficult.

7.4 Document Management Example

The Formal Object Interaction Language (FOIL) object diagrams can be used to model

complex systems. In FOIL, the process and object models use the same notational elements and

algebraic constructs. By the algorithm described in this chapter, the object model can be

simulated to determine if it can perform the work of the process model (achievability). More

importantly, if the object model is built correctly, the process model can be used as a constraint

on execution during run-time.

7.4.1 Object Model

Consider a document management system in which there are multiple documents and

multiple logons. A System User initiates a Session with the application and authenticates. There

are two types of logons: a User logon and an Editor logon. There only difference between these

two types of users is that the Editor can edit a Document while the user can merely open and

close a Document. Multiple Users can open a Document at the same time, but no User may open

a Document that is being edited. An Editor may not edit a Document that is open but must wait

until all Users have closed the Document. To avoid resource starvation, if an Editor requests to

edit a Document that is currently open then no other User may open that Document until the

Editor completes the changes. Figure 7.5 shows the FOIL object model for such a system.

167

Figure 7.5 FOIL Document Management Object Model

168

This model is very concise, containing

all of the necessary components to ensure all

of the constraints listed previously. For

instance, the locking property of an Editor

request as discussed is an important aspect of

this system. This behavior is completely

specified in the Document object.

Figure 7.6 shows the Document object

in this example. When an s event is received the document is created and is immediately opened

by the submitting User. After the submitting User closes the document then other Users may

open it.

Each state and event is replaced with a letter in order to demonstrate the locking behavior

with FOIL algebra. The following shows the construction of the Document object expression:

FrlaaceooFrlaaecooFocooVocoo

AceooAecooFocooVocoo

WeooAecooFocooVocoo

WeooFcoo

Voo

FrlaaAAcWWeFcVAeFVoFVooC

A

W

F

V

C

xxxxxxxx

....................|....

............|....

...........|....

......

..

........)|.(..

2121121

2121121

121121

11

1

In order to keep this expression simple for demonstration purposes, there is no specific

object instance qualifier and state markers are not used. In addition, the behavior of active states

is abbreviated for state A and is not shown in state V. These simplifications can be made because

they do not impact the result in this case. The following demonstrates the algebra for two Users

opening a Document and then an Editor requesting to edit the document.

Figure 7.6 FOIL Document Object

169

FrFcFFrFc
FcFrFc

FrlaacFrlaaFrlaacFrlaacFoFcoFrlaac

FrlaacFrlaaFcFrlaacFoFcoFc

FcFrlaaFrlaacFcFoFcoFrlaacFcFrlaaFc

FrlaaceFrlaaeFrlaace

FrlaaceFoFrlaaceoFrlaace

FrlaaceFoFcoFrlaace

FrlaaceFrlaaeFcFrlaaceFoFrlaaceoFc

FrlaaceFoFcoFcFcFrlaaeFrlaace

FcFoFrlaaceoFrlaaceFcFoFcoFrlaace

FcFrlaaeFcFcFoFrlaaceoFcFcFoFcoFc

FrlaaceFFrlaace

FrlaaceFFcFcFFrlaaceFcFoFc

FrlaaceFrlaaeFrlaaceFoFrlaaceo

FrlaaceFoFcoFcFrlaae

FcFoFrlaaceoFcFoFco

FV
FrlaaeFoVo

FrlaaceFrlaaecFocVoc

FrlaaceooFrlaaecooFocooVocoo

c

a

e

xFVWA

o

FVWA

o

c

o

s

.|.|.|..10
.|.|..9

.....|....|..........|.|..|.....

.....|....|......|.|..|.

.|....|......|.|..|......|....|..8

......|.....|......

......|.|.......|......

......|.|..|......

......|.....|.......|.|.......|.

......|.|..|..|.....|......

.|.|.......|.......|.|..|......

.|.....|..|.|.......|..|.|..|.

......||......

......||..||.......|.|..6

......|...........|.|.......

......|.|...|.....

.|.|........|.|...5

|.4
......|..3

..............|...2

....................|.....1

22

12

1213332

1213332

121333212

12

13332

13332

1213332

1333212

1333213332

12133213332

12

1212122

11222

12221

12221222

1

212

2121121

2121121

Lines 1 and 2 show the initial submission of the document. The initial creation reduces

the expression such that an o event is fired. Thus, the document is open immediately upon

submission by a user. Line 3 shows that the document was closed by the submitter. Lines 4 and

5 show that a user opened the document. This reduces the expression and substitution is

performed. Lines 6 and 7 show that an additional user has opened the document and that

substitution of terms has again been performed. Line 8 shows the reduction that occurs when an

editor requests to edit the document. This results in an immediate transmission of event a, to

indicate the starting of the active state code, but only one term is in a state to receive this event

(line 9). Thus, in line 10, it can be clearly seen that no one may open a document (event o) until

the users close the document (events c1 and c2) and the editor releases the document (event r).

170

7.4.2 Process Model

Thus, the algebra constrains the system to prevent problems. In the example of Figure

7.5, users must be authenticated in order to perform any task. Behavioral inheritance is

demonstrated as an editor is a type of user but can also edit document. This completely

conforms to the concept of inheritance as discussed in section 5.2.2. Despite this concise object

model complete with inheritance, concurrency and resource management, it does not guaranty

that it will perform its desired function.

Figure 7.7 shows a FOIL model for a process that is desired to be performed using the

FOIL object model in Figure 7.5. This process is composed of two activities. First a document

is submitted by a user; then it is desired that two editors make changes to the document. The

editing steps to this process can be performed concurrently. Note the use of behavioral

Figure 7.7 FOIL Document Management Process Model

171

inheritance with respect to these to activities. This could be referred to as process inheritance but

it does not significantly differ from that discussed for objects in section 5.2.2.

7.4.3 Achievability

The remainder of this section is devoted to demonstrating the concepts of this chapter as

they apply to determining whether the process in Figure 7.7 is achievable with the object model

of Figure 7.5. While this section contains a large amount of algebra, it is necessary to

demonstrate the usefulness of the process validation feature of FOIL. For simplicity, state

markers are shown in the initial construction but are removed during the validation process.

Since this example involves multiple classes and multiple instances of the same class, object

qualifiers are required. These are not shown during initial class construction but are added

during object instantiation. Stack V during the achievability algorithm is not shown as its

function in this example is trivial. The following two diagrams are identical to the previous

models but have had their events and states substituted with letters for algebraic representation.

Figure 7.8 FOIL Document Management Process Algebra

172

Figure 7.9 FOIL Document Management Object Model

173

7.4.3.1 Object Model Construction

The following show the construction of each object in the object model:

Document Object (D)

AerlceooForlceooVorlceooAecooFocooocooD

AeFrlAcWeVooCFoFrlAcWeVooCVoFrlAcWeVooC

AeFcVooCFoFcVooCVoFcVooCD

VooCDAeFVoFFrlA

AcWWeFcVVooC

CAF

CAF
iii

iiii

..............|...............|...

........................|............
..............|.......

....)|.(..

.....

11111111111

111111121111

111112111

User Object (U))

IDosIDcaosVoosIDDDcoosDs

IDoIDcaoVooIDDDcooU

IDVosIDcCaVosVoVosIDDDDcMoVosDs

IDVoIDcCaVoVoVoIDDDDcMoVoU

IDDDDDIDcCDcM

IDCaVMoVVoDsVoI

i

CAF
i

ii

CAF
i

iii

.....*......|'...̀.̀...|.
....*....|'...̀.̀..

......*.........|'....̀.̀.....|.

.....*.......|'....̀.̀....

'....̀`..*.

..)|.().|.(.

111

111

11111

111

Editor Object (E)

IrlesDsIDosDsIDcaosDs

VoosIDDDcoosDsIrleIDoIDcaoVooIDDDcooE

IrElResDsIDVosDs
IDcCaVosDsVoVosIDDDDcMoVosDs

IrElReIDVoIDcCaVoVoVoIDDDDcMoVoE

IDDDDDIDcCDcMIDCaVMoV
IrEElRReVoDsReVoI

iiiiii

CAF

iiiii

iiiii

CAF
iiii

....|....|...*...|.

...|'...̀.̀...|........*....|'...̀.̀..

......|.....|.
..*.....|.....|'....̀.̀.....|.

..........*.......|'....̀.̀....

'....̀`..*...)|.(
..))..(|.(..

174

Session Object (S)

IyyxrzuuppxazuuppxUuuppx

rzddppxazddppxEddppxrzppxazppxS

IyyAx

rCzuuVppAxaCzuuVppAxUuuVppAx

rCzddVppAxaCzddVppAxEddVppAx

rCzVppAxaCzVppAxS

CzuuUuuCzddEddCzV

raCCzUuCzEdCzduV

IyVpypAAxI

CAF

CAF

CAF

.........|......|.....
......|......|.........|....

....
.........|.........|.......
.........|.........|.......

.......|.......

...|.....|...

)|()).|.().|.(.).((
)..).((.

System Expression ()

.|.)|.(qSqSq i

CAF

i

7.4.3.2 Process Model Construction

Document Submission (PS)

2211

2211

2211

2211

......|......

...........|...........

).|..(.........
).|..(........

EqcUoUsUpSxSEqcUoUsUpSxSP

EqCcUOoUIsUSpSAxSEqCcUOoUIsUSpSAxSP

EqEqCcUOoUIsUSpSAxSP
EqEqCcUOoUIsUSpSAAxSB

iiiiiiiiii

CAF

s

iiiiiiiiii

CAF

s

iiiiis

iiiii

Document Edit (PE)

rElEeEpSxSP

FrEMlEReESpSAxSP

FrEMlEReESpSAAxSB

iiiii

CAF

E

iiiii

CAF

E

iiiii

....

.........

........

Document Process (P)

rElEeEpSxSqcUoUsUpSxSqrElEeEpSxSqcUoUsUpSxSqP

PqP
LELE

CAF
s

3333321111122222111111

3221

...........|...........

.

175

7.4.4 Achievability Algorithm

Iteration 1

ElEeEpSxSqcUoUsUpSxSrElEeEpSxSqcUoUsUpSxSP
qSqISySySxS

qSqrSzSuSuSpSpSxSaSzSuSuSpSpSxSUuSuSpSpSxS

qSqrSzSdSdSpSpSxSaSzSdSdSpSpSxSEdSdSpSpSxS

qSqrSzSpSpSxSaSzSpSpSxS

qSqS
qSq

qU

q
i

ii

ii

i

i
q

i

..........|..........
.|.|...

.|.|......|......|.....

.|.|......|......|.....

.|.|....|....

.|.|
.|.

}{

333321111122222111111

1111

1111111111111111111

1111111111111111111

1111111111

1

Iteration 2

.|.|...|...|..

.|.|...|...|...|.|.|.

.........|.........
.|.|..

.|.|.....|.....|....

.|.|.....|.....|....

.|.|...|...

}{

1111111111

11111111111111

3333211112222211111

111

1111111111111111

1111111111111111

11111111

1

1

1

1

qSqrSzSuSuSaSzSuSuSUuSuS

qSqrSzSdSdSaSzSdSdSEdSdSqSqrSzSaSzS

ElEeEpSxSqcUoUsUpSrElEeEpSxSqcUoUsUpSP

qSqISySyS

qSqrSzSuSuSpSpSaSzSuSuSpSpSUuSuSpSpS

qSqrSzSdSdSpSpSaSzSdSdSpSpSEdSdSpSpS

qSqrSzSpSpSaSzSpSpS

xSU

ii

iii
pS

xS
i

ii

ii

i
xS

PprocessinexistnotdoesP

qSqrSzSaSzSIUDUoUsU

qSqrSzSaSzSIUDUcUaUoUsU

qSqrSzSaSzSVUoUoUsUIUDUDUDUcUoUoUsUDUsU

qSqrSzSaSzSIUDUoU

qSqrSzSaSzSIUDUcUaUoU

qSqrSzSaSzSVUoUoUIUDUDUDUcUoUoU

qSqrSzSaSzSU

ElEeEpSxSqcUoUsUrElEeEpSxSqcUoUsUP

uS
i

i

ii

i

i

i

i
uS

pS

1

1

1

.|.|.|.|...

.|.|.|.|..*...

.|.|.|.|...|'..`.`....|.

.|.|.|.|..

.|.|.|.|..*..

.|.|.|.|..|'..`.`...

.|.|.|.|

........|........

11111111

1111111111

111111111111111111111

1111111

111111111

11111111111111111

11111

33332111222221111

176

Iteration 3

ElEeEpSxSqcUoUrElEeEpSxSqcUoUP

qSqrSzSaSzSIUDUoU

qSqrSzSaSzSIUDUcUaUoU

qSqrSzSaSzSVUoUoU

IUDUDUDUcUoUoUADUeDUrDUlDUcDUeDUoDUoDU

qSqrSzSaSzSVUoUoUIUDUDUDUcUoUoU

FDUoDUrDUlDUcDUeDUoDUoDU

VDUoDUrDUlDUcDUeDUoDUoDU

qSqrSzSaSzSVUoUoU

IUDUDUDUcUoUoUADUeDUcDUoDUoDU

qSqrSzSaSzSVUoUoUIUDUDUDUcUoUoU

FDUoDUcDUoDUoDUoDUcDUoDUoDU

qSqrSzSaSzSIUDUoU

qSqrSzSaSzSIUDUcUaUoU

qSqrSzSaSzSVUoUoUIUDUDUDUcUoUoUDU

sUU

sU

i

i

i

i

i

i

i

i

i
sU

.......|.......

.|.|.|.|..

.|.|.|.|..*..

.|.|.|.|..

|'..`.`...|.......

.|.|.|.|..|'..`.`...

|.......

|.......

.|.|.|.|..

|'..`.`...|....

.|.|.|.|..|'..`.`...

|....|...

.|.|.|.|..

.|.|.|.|..*..

.|.|.|.|..|'..`.`...|

}{

333321122222111

1111111

111111111

11111111

11111111111111111111111111

11111111111111111

111111111111111111

1111111111111111111

11111111

11111111111111111111

11111111111111111

1111111111111111111111

1111111

111111111

1111111111111111111

1

1

1

Step 4

ElEeEpSxSqcUrElEeEpSxSqcUP

qSqrSzSaSzSIUDU

qSqrSzSaSzSIUDUcUaU

qSqrSzSaSzSVUoU

IUDUDUDUcUoUADUeDUrDUlDUcDUeDU

qSqrSzSaSzSVUoUIUDUDUDUcUoU

FDUoDUrDUlDUcDUeDUVDUoDUrDUlDUcDUeDUoDU

qSqrSzSaSzSVUoUIUDUDUDUcUoUADUeDUcDU

qSqrSzSaSzSVUoU

IUDUDUDUcUoUFDUoDUcDUoDUcDU

oDU

i

i

i

i

i

i

oDU

......|......

.|.|.|.|.

.|.|.|.|..*.

.|.|.|.|.

|'..`.`..|.....

.|.|.|.|.|'..`.`..

|.....|......

.|.|.|.|.|'..`.`..|..

.|.|.|.|.

|'..`.`..|..|.

3333212222211

111111

11111111

1111111

111111111111111111111

111111111111111

1111111111111111111111111111111

1111111111111111111111

1111111

1111111111111111111111

11

11

177

Step 5

Note that the process model allows for an edit event, this is not a problem as the object

model does not allow U1D1e.

ElEeEpSxSqrElEeEpSxSqP
qSqrSzSaSzSVUoUIUDUDUDUcUoUADUeDU

IUDUDUDUcUoUFDUoDUcDUoDU

cUU

cU
i

cU

.....|.....
.|.|.|.|.|'..`.`..|.

|'..`.`..|..|
}{

33332222221

1111111111111111111

1111111111111111111

1

1

1

Iteration 6

ElEeEpSxSqrElEeEpSxSP

qSqISySySxSrSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSuSuSpSpSxS

aSzSuSuSpSpSxSUuSuSpSpSxSrSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSdSdSpSpSxS

aSzSdSdSpSpSxSEdSdSpSpSxSrSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSpSpSxSaSzSpSpSxSrSzSaSzSVUoU

IUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

SrSzSaSzSVUoUIUDUDUDUcUoUADUeDU

IUDUDUDUcUoUFDUoDUcDUoDU

qqU

q

i

i

i

i

q

.....|....

.|.|...|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|......

|......|.....|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|......

|......|.....|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|....|....|.|.|.

|'..`.`..

|.|'..`.`..|..|

||.|.|.|'..`.`..|.

|'..`.`..|..|

},{

3333222222

222211

1111111111111

11111111111111111111111

2222222

222222222222211

1111111111111

11111111111111111111111

2222222

222222222222211

1111111111111

11111111111111111111111

22222222221111111

11111111

11111111111111111111111

21111111111111111111

1111111111111111111

178

Iteration 7

ElEeEpSxSqrElEeEpSP

qSqISySySrSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSuSuSpSpS

aSzSuSuSpSpSUuSuSpSpSrSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSdSdSpSpS

aSzSdSdSpSpSEdSdSpSpSrSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSpSpSaSzSpSpSrSzSaSzSVUoU

IUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qqxSU

q

i

i

i

i

xS

.....|...

.|.|..|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.....

|.....|....|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.....

|.....|....|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|...|...|.|.|.

|'..`.`..

|.|'..`.`..|..|

},,{

333322222

22211

1111111111111

11111111111111111111111

222222

2222222222211

1111111111111

11111111111111111111111

222222

2222222222211

1111111111111

11111111111111111111111

222222221111111

11111111

11111111111111111111111

2

2

179

ElEeEpSxSqrElEeEP

qSqrSzSaSzSIErElEeEsEDEsErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSIEDEoEsEDEsErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSIEDEcEaEoEsEDEsErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzS

VEoEoEsEIEDEDEDEcEoEoEsEDEsErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSIErElEeErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSIEDEoErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSIEDEcEaEoErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSVEoEoEIEDEDEDEcEoEoErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qSqrSzSaSzSErSzS

aSzSVUoUIUDUDUDUcUoUADUeDU

IUDUDUDUcUoUFDUoDUcDUoDU

dSpS

ii

ii

ii

i

i

i

i

i

i

i

dSpS

.....|..

.|.|.|.|....|.|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.|...|.|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.|..*...|.|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.

|...|'..`.`....|.|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.|...|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.|..|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.|..*..|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.|..|'..`.`...|.

|.|.|'..`.`..

|.|'..`.`..|..|

.|.|.|.||.

|.|.|'..`.`..|.

|'..`.`..|..|

33332222
,

2222222222211

1111111111111

11111111111111111111111

222222222211

1111111111111

11111111111111111111111

22222222222211

1111111111111

11111111111111111111111

2222

2122222221212222211

1111111111111

11111111111111111111111

2222222211

1111111111111

11111111111111111111111

222222211

1111111111111

11111111111111111111111

22222222211

1111111111111

11111111111111111111111

2222212222221212211

1111111111111

11111111111111111111111

2222211

11111111111111111

1111111111111111111
,

22

22

180

Iteration 8

ElEeEpSxSqrElEP

qSqrSzSaSzSIErElErSzS

aSzSVUoUIUDUDUDUcUoU

ADUeDUIUDUDUDUcUoUFDUoDUcDUoDU

qqeEU

eE

i

eE

.....|.

.|.|.|.|..|.

|.|.|'..`.`..

|.|'..`.`..|..|

},,{

3333222

222222211

1111111111111

11111111111111111111111

2

2

2

Iteration 9

ElEeEpSxSqrEP

qSqrSzSaSzSIErErSzSaSzSVUoU

IUDUDUDUcUoUADUeDU

IUDUDUDUcUoUFDUoDUcDUoDU

qqlEU

lE

i

lE

.....|

.|.|.|.|.|.|.|.

|'..`.`..|.

|'..`.`..|..|

},,{

333322

2222221111111

111111111111

1111111111111111111

2

2

2

Iteration 10

ElEeEpSxSqP

qSqrSzSaSzSIErSzSaSzSVUoU

IUDUDUDUcUoUADUeDU

IUDUDUDUcUoUFDUoDUcDUoDU

qqrEU

rE

i

rE

.....

.|.|.|.||.|.|.

|'..`.`..|.

|'..`.`..|..|

},,{

33332

222221111111

111111111111

1111111111111111111

2

2

2

For brevity, the algorithm is terminated at this point because it is clear that the system

state is similar to that of iteration 6 and the only remaining term in the process equation is also

the same as that of iteration 6. Thus, in this case, it is not necessary to show the final steps. The

anticipated completion of the process simulation demonstrates that, indeed, this process can be

performed by the object model. A complete execution of the algorithm showing stack V and

emptying state V would also demonstrate that this model is also completely achievable. Thus,

the process model of Figure 7.7 can be used to enforce event eligibility on the object model of

Figure 7.5 during run-time to guaranty that this process will complete.

181

8. CONCLUSION AND FUTURE WORK

The Formal Object Interaction Language (FOIL), as presented in this thesis, is a complete

modeling language that can model software structure, behavior and process using a single unified

notation. All aspects are reflected algebraically for analysis and verification. In this thesis, there

have been three examples given of systems modeled using FOIL. These examples demonstrate

all the major features and benefits of FOIL and provide a significant range of complexity.

While not addressed in this thesis, the complexity of modeling a system in FOIL is not

substantially more difficult than standard Unified Modeling Language (UML) and likely to be

simpler than Object Petri-nets (OPN). Experience in using FOIL for the examples in this thesis

suggests that FOIL requires more abstract thinking than simpler languages, but with some

practice is suitable for real-world applications. A cursory overview of FOIL suggests that it is

ideally suited for an executable modeling language. At a minimum, FOIL is a springboard to

spur renewed interests in formal graphical modeling languages.

8.1 Benefits and Limitations

The Formal Object Interaction Language (FOIL) is designed to be a complete and

comprehensive graphical modeling language. FOIL is meant to have a user friendly graphical

notation while providing more expressive power. It was intended that FOIL be able to model

structure, behavior and process with a single notation, and with a common mathematical

underpinning. Complete support for behavioral inheritance and concurrency were key design

goals. Finally, the ability to verify that a process can be completed by an object model is a

182

unique advantage. It is likely that there are modeling languages and frameworks that are

superior to FOIL in one or more of these areas. This thesis was specifically written to show that

FOIL is unique in its ability to perform well in ALL of these major design areas.

8.1.1 Graphical Notation

Graphically, the Formal Object Interaction Language (FOIL) is comprised of what has

worked well in current modeling practices. The basic structure of the class diagram, as provided

by UML, has remained effectively unchanged in FOIL. Many of the attributes and methods

required in standard UML are not necessary in FOIL. The reason for this is that many of the

attributes and methods in the UML notation are used to implement object behavior. Since FOIL

represents behavior graphically (where the UML class diagram does not), many of these

attributes and methods are specified in the behavioral portion of the class notation. Additionally,

as used in the Business Object Notation (BON), attributes can be specified as read-only, while

UML requires an attribute and method to accomplish this feature. The focus on FOIL structural

modeling was to follow the example of UML but simplify the notation to avoid redundancies and

allow room for behavioral specification without making the diagram overly complex.

The behavioral specification of classes in FOIL is a completely new notation but should

look familiar, as a hybrid of simple state diagrams and Petri-nets. The choice to use ports to

model variations of concurrent behavior stems from the desire to remove the token

concept

from Petri-nets. In the Object Petri-net (OPN) notation, a class can basically function as a

process or a token. This requires that the modeler know which function a class is performing in

the model. The idea with FOIL was to keep the structure of a typical UML class diagram, where

such distinctions are not necessary, while still providing complete support for concurrent

behavior within and between objects.

183

Many of the notations for behavioral modeling were designed specifically to prevent the

system diagram from becoming overly large or complex. This problem is well-known in other

modeling languages, such as Petri-nets, but have had solutions offered by other languages such

as YAWL and BON. Specifically, FOIL uses the concept of optional events (represented by a

dotted line), that would require significantly more diagrammatic elements to represent with basic

notations. Also, the notation for interleaving could be modeled as a serious of sequential steps

encompassing all known possibilities but this quickly becomes incomprehensible as the number

of sequential steps grows beyond three (see 8.2.1).

The focus of FOIL process modeling was to ensure a consistency with the FOIL

modeling notation for structure and behavior. As such, the process model, from a high-level,

flows much like many of the process modeling notations in current practice such as UML

activity diagrams, YAWL, SEAM, and Business Process Diagram Notation. However, the

internal behavior of processes can be represented by more complex specifications than most of

these languages. This behavioral specification of processes in FOIL is done in the same way as

that of objects. The goal, again, was to maintain similarity with current methods, where such

features did not inhibit the ability of FOIL to model all know workflow patterns or ruin the

ability of FOIL to be used for mathematical analysis and verification.

Finally, the behavioral notation of both classes and processes in FOIL was designed to

ensure that the construction of the mathematical expressions could be done on a state-by-state

basis. By maintaining this notational property, the mathematical construction assures that a

system expression is the combination of all class or process expressions and that these

184

expressions are a combination of their individual state expressions. This is critical in the

scalability of the modeling language both graphically and mathematically.

8.1.2 Algebra

The FOIL algebra is heavily modeled after -calculus. Since, some of the features in -

calculus, such as scoping, are not necessary, the process algebra expressions in FOIL are

simplified. The algebraic construction of a system is done in a bottom-up fashion allowing for

progressively more complex models to be built while assuring that, if graphical conventions are

followed, there is always a corresponding algebraic representation.

The elements that truly make FOIL useful for mathematical verification are graphically

implicit. This allows for fairly complex analysis of a FOIL model without adding significantly

complex graphical constructs. The concept of event scope is added to ensure that mathematical

reductions can have sufficient granularity and selectivity in their response to the system. The

added concepts of unique and non-unique events are used to ensure that a reduction eligibility

rule could be provided to ensure run-time and design-time verification of system state. Finally,

the concept of non-events is given to allow for an externally responsive system where certain

actions are optional without requiring excessively large graphical representation.

The construction of FOIL algebraic representations is done on a state-by-state basis.

After construction, the various laws and identities offered for the FOIL algebra allow for the

manipulation of the algebraic expressions for use by the system during run-time. The main

purpose for providing these mathematical processes is to make construction, manipulation and

verification simple to perform either manually or by a computer system.

Finally, the reductions performed during run-time have a predictable algorithm and have

strong performance characteristics. The reduction eligibility rule is checked prior to reduction to

185

ensure system stability during run-time. All of the algorithms given for algebraic construction,

manipulation, execution and verification make FOIL suitable as a directly executable modeling

language.

8.1.3 Behavioral Inheritance

Inheritance is a concept that allows a large system to grow without the need to recode

elements that exhibit common structure. Inheritance is a well-known and studied concept in

object-oriented design and development; however, most research and implementation centers on

the concept of interface conformity. FOIL allows for an optionally more strict interpretation of

inheritance to ensure both structural (interface) and behavioral conformity. Thus, with this new

stricter interpretation of inheritance, the code savings involved in inheriting classes from more

generalized classes are much larger. Extending a class both structurally and behaviorally means

that code for interaction of the class with the encompassing system and internal control flow of

actions within the object are already specified. Ensuring behavioral inheritance is a simple

algorithm done on the FOIL algebraic expressions, once again, making this feature suitable for

enforcement by any underlying executable system.

8.1.4 Concurrency

Because the behavior notation is derived from Petri-nets and the algebraic representation

is derived from -calculus, FOIL is built on previous advances that have, as one of their key

features, support for concurrency. Thus, it is not surprising that FOIL has inherent support for

concurrency. This concurrency support makes FOIL suitable for modeling complex distributed

systems. The literature review performed for this thesis indicates that FOIL is likely to be the

only modeling language which can be used to generate multi-threaded source code without

explicit thread modeling.

186

Concurrency modeling is useful beyond simple distributed systems. By modeling the

internal behavior of active states, certain choices about how software handles concurrent events

and processing can be made. In this thesis, most examples involve sequentially processed events

with responsive behavior from concurrent threads; however, active state modeling provides a

clear mechanism for responding to concurrent events on single threads.

FOIL concurrency modeling does not implicitly enforce resource dependency or race

conditions. These must be considered when modeling any system using FOIL. In addition,

concurrency is graphically represented in-line with other system features whereas other

languages have chosen to do this outside of basic structural diagramming. As such, FOIL does

require more abstract thinking on the part of the modeler than those modeling languages without

concurrency support.

Finally, FOIL s inherent support for concurrency gives it the ability to model all known

and studied workflow patterns. While there are many process languages that have support for

these patterns, many of them do not have a formal semantic or object-orientation. FOIL s ability

to do all of these things makes it truly unique among modeling languages.

8.1.5 Model Analysis and Verification

The underlying algebraic representation of a FOIL model, combined with the various

mathematical laws and identities, allows for broad analysis of systems prior to implementation.

This thesis presents the basic ideas of object state reachability, inherent inconsistency, and

deadlock potential, as design-time analyses which can be performed on a FOIL object system.

Reachability and inconsistency can be determined during run-time as well. Thus, with FOIL, a

system could be designed to avoid these undesirable conditions. Additionally, the occurrence of

187

a deadlock can be detected using FOIL allowing run-time events to be rejected if they are found

to result in a deadlock condition.

More impressive is the ability of FOIL to respond algebraically to events as part of a

simulation. This simulation capability was shown to be useful in performing analysis on

processes as they relate to an object model. Using the algorithm provided in this thesis, FOIL

can determine process achievability, complete achievability, and determinism. If a process is

determined to be completely achievable then this thesis showed that such a process can be

used as a run-time constraint on an object model to ensure that a process will always complete.

8.1.6 Limitations

The intended purpose of the Formal Object Interaction Language (FOIL) is to simplify

and enhance the design and implementation of software. Other areas of software engineering,

such as requirements gathering and analysis, hardware infrastructure design, and software

deployment are not addressed by the FOIL model.

FOIL is ideally suited for interactive or reactive systems that are object-oriented or

service-oriented in nature. This covers a large segment of the software being developed today.

FOIL is very expressive and if the details of active states are specified, it can be used to fully

generate application or executable code. The initial basis for the development of FOIL was as a

formal object-oriented language as the foundation for a workflow management system [77] and

thus, it is well suited for this purpose.

FOIL is not a requirements gathering or system deployment notation and thus is not

suitable for those purposes. Good design of software would dictate the use of UML Use Case

diagrams for requirements modeling, while package, system and deployment diagrams would

still be used for their independent purposes. The FOIL diagram can take advantage of

188

requirements specifications as demonstrated by the passenger actor in Figure 3.12. FOIL is

primarily suited for the design and implementation of the software once the requirements have

been determined.

FOIL may not be the modeling notation of choice for some applications. FOIL s

abbreviated notation for attributes and their access make it less suitable for applications without a

significant behavior component. Thus, if the main feature of an application is the storage and

retrieval of objects, attributes or data, the FOIL notation offers little advantages over other

options. However, a system which would require one or more UML sequence or state diagrams

to specify behavior would benefit from the FOIL notation.

Mathematically, FOIL is not temporal as are other languages [13, 34, 63] and thus would

not be suitable for real-time or discrete event systems that must have an inherent mathematical

concept of time. However, it is possible that FOIL could be extended to support a temporal

semantic.

8.2 Future Work

While this thesis has attempted to present a complete picture of the Formal Object

Interact Language (FOIL) and provide sufficient depth so as to appreciate its benefits and uses,

the subject of software modeling, in general, is very broad. The successful blending of structure,

behavior, and process in a graphical and formal manner has raised potential issues that need to be

addressed, uses that need to be attempted, and extensions that need to be explored.

8.2.1 State Explosion

One of the primary issues related to using state-based analysis of systems is the state

explosion problem. It should be relatively easy to surmise that the algebraic manipulations

189

performed during reductions as well as the application of the reduction eligibility rule during

run-time are really just a form of state-based analysis. The main problem with state-based

analysis is that the number of state options grows exponentially resulting in some tractability

problems involved with analytical algorithms. State explosion is a known problem with process

algebra [78] but is not unique to FOIL. Solutions have been offered for other modeling

languages such as Petri-nets [79].

Most of the examples in this thesis use the choice-action form (CAF) as the basic

mathematical form for run-time execution and analysis. However, this form grows exponentially

for certain control flow patterns. Specifically, interleaved routing and multiple choices are two

patterns that exhibit this problem early in the mathematical process. FOIL has some notations

designed to eliminate this problem from a graphical standpoint; however, these notations do little

to minimize the growth rate of the underlying algebraic expressions.

It was briefly mentioned in this thesis, that an alternate algebraic form can be used to

prevent the state explosion problem. This form, called the choice-compressed form (CCF),

delays the expansion of choices until the last possible moment. Preliminary work suggests that

reductions can be done on expressions in CCF, but that such rules are far more complicated than

their CAF counterparts. While it seems logical that such rules could be proven and codified, this

has only been done on a very basic level. Additionally, the research on using CCF is incomplete.

For instance, while basic reductions and analyses have been explored using CCF, the

achievability algorithm has not been attempted.

8.2.2 Process Metrics

The ability for FOIL to determine whether a given process is achievable with a given

object system is a distinctive feature of FOIL. A thorough survey suggests that there is no

190

modeling language offered today with this capability. The FOIL achievability algorithm shows

that there is a coupling between an object model and the processes it is designed to achieve.

With other modeling languages this coupling is implicit or inferred; while in FOIL, it is explicit

and verifiable.

The FOIL achievability algorithm performs its work by executing a simulation of events

in the system based on expected process results. Many of the events simulated, however, do not

actually show up in the process model. In other words, it may be that in order to determine that a

given process is achievable; the assumption of an event sequence of n length is required. Yet a

more detailed process model may be determined to be achievable with the same object model

with only n-3 event assumptions.

Another possible metric is to complete the achievability algorithm even after

achievability is determined. If the process model is determined to be achievable but not

completely achievable, then there is the possibility of placing a coined achievability index to the

system. This would represent the number or magnitude of internal control flow paths inside the

object model that do not lead to achievability. This could be represented as a number or a

percentage of the total number or magnitude of control flow paths.

These two possible metrics are merely given as a suggestion or beginning on what may

be possible with future research into this area. Likely, further contemplation would reveal many

more possible measurements that could be performed on system models created with FOIL. The

main focus of this thesis has been on model production, execution, and verification with little

attention given to model optimization. The formulation and understanding of such metrics

191

derived with FOIL models would open a whole avenue of research into FOIL model

optimization.

8.2.3 Process Mining

Process mining is a technique used to generate a process model from the transaction logs

of existing systems. These systems are usually transactional and procedural in nature. The

problem of process mining is not an easy one, as all systems show variations in their logging

capability, and methods for computer analysis of such logs are necessarily complex. Despite

this, process mining holds much promise, as a tool for business analysis, to reduce the time

required to model as-is business processes. Also, mining techniques can be used to determine if

the operations of a system correspond with the designed intent.

There has been a fair amount of research into mining process logs. EMiT is a low-level

process mining tool that can be used to read event logs and determine the workflow structure of

the underlying system [80]. One of the notable advancements offered by this tool is the use of an

intermediate XML log format to which logs from various applications are converted. The EMiT

system was made part of a larger workflow mining tool called TeamLog [81]. The InWoLvE

workflow mining processor uses a more inductive approach and essentially solves the problem of

task-oriented workflow mining in two steps[82]. First it derives a stochastic activity graph

(SAG) from a given log and then combines repeated activities at the end.

The Process Miner was a product whose theoretical foundation and program

implementation ware done almost exclusively by Guido Schimm. The first iteration of the

product [83] was based on his ideas presented in 2000 [84]. It differs from other approaches in

that it extracts an exact model of the workflow based on the logs. It also presents its model in a

192

block-oriented fashion. Using this model type, a process model will have an algebra that has

distributive, associative and commutative properties [85] much like FOIL algebra.

Since a FOIL object model is an event driven system, it is easy to contemplate how a

workflow or process analyzer could be implemented. As each event is received, the associated

reductions in the algebraic expressions are recorded. Then such event reductions could be mined

to determine the probabilities of various event sequences. Based on this idea, a FOIL process

model could be created. A FOIL process which is determined to be achievable may still have

other processes that are more prevalent. This generated process model would be useful as an

informational tool to determine what work is actually being done by a given FOIL object model.

Additionally a generated process model might serve as an aid to process and object model

designers.

8.2.4 Distribution

There have been a large number of techniques introduced to provide scalable, distributed

workflow services. These solutions range from purely event-driven models [86] to grid

computing architectures [87]. One of the motivations for FOIL was in creating an object-

oriented workflow management system. As such, system distribution has been a concern during

development of FOIL but has not been fully addressed.

8.2.4.1 WfMC Reference Model

In 1993, the Workflow Management Coalition (www.wfmc.org) was formed to help

standardize the industry with respect to workflow management systems. Their efforts have been

only partially successful, but they have introduced modeling structures for building workflow

systems to support scalability and interoperability. Figure 8.1 shows a diagram of the proposed

http://www.wfmc.org

193

reference model for workflow systems [88]. This model suggests that interfaces be standardized

to allow for connections between different systems.

Distribution through this basic model is realized through the interaction (Interface 4) of a

workflow engine with other existing workflow engines in addition to the ability to invoke outside

applications (Interface 3) from within the engine. This model is very basic and does not take into

account some of the more complex issues with distribution. For example, this model assumes

that the Workflow Client Application will always be connected to a central workflow engine. In

large scale implementations, the client may not be aware of the location of the closest workflow

engine. Additionally, whether invocation of remote applications is synchronous or asynchronous

and how these decisions affect the engine is unspecified.

Figure 8.1 WfMC Reference Model [88]

194

8.2.4.2 Physical-Logical Separation

One of the key issues in interoperability is the desire to abstract the interface to a system

away from its underlying platform implementations. This was the intent of the first WfMC

model; however, this approach is rather simplistic dealing with just mere interoperability without

regard for redundancy, load-balancing and geographic scalability.

One approach involved the use of assignment servers [89, 90]. An assignment server is a

separate machine or program which has knowledge of the location and physical requirements of

multiple workflow servers. When a client requests needs to perform a task, the message is sent

to an assignment server which will then pass on the request to the appropriate workflow server.

Thus, the assignment server functions as a translator for the target machine making the platform

issues with interfacing with the server transparent to the client. One similar approach was to

create workflow repositories that serve the same function as the assignment server but also stores

the interfaces for each workflow[91, 92].

Figure 8.2 Event-Driven WFMS using CORBA [86]

195

Figure 8.2 [86] shows the basic setup of this idea within a CORBA framework. Each

process registers with a central event channel as to which events it listens for. In addition, it

registers which events it provides. Thus, each process is both a consumer and producer of

events. The event channel has filters which ensure that events are only sent to those processes

for which it is applicable. This extends beyond just mere registry but the event channel will also

take into account the sequence and data involved in the event in determining applicability. To

some degree, the event channel with its associated filters acts as a workflow engine, making

decisions on behalf of the processes under its charge. However, the work is performed

completely by the target objects and the event channel is completely unaware of the logic, data

manipulation, implementation or platform of the processes.

Each object as modeled in FOIL can be decoupled with a central event controller as

offered by CORBA or other workflow-based systems [88]. This decoupling allows for

distributed or mobile objects to interact under a defined service-based interface. Additionally,

the security services that enforce the interaction between objects can be more strictly specified

than in typical object-oriented implementation. For example, in Figure 3.12, it may be necessary

to ensure that a reachedFloor event can only be fired by the elevator and no other object. In

typical object-oriented design, the reachedFloor method is public and thus accessible to all

objects. FOIL with its decoupling capability and inherent support for concurrency is an ideal

candidate to be considered for distributed system design in the future.

196

REFERENCES

[1] E. F. Codd, "A relational model of data for large shared data banks," Commun.
ACM, vol. 13, no. 6, pp. 377-387, 1970.

[2] P. P.-S. Chen, "The entity-relationship model toward a unified view of data,"
ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

[3] T. Rentsch, "Object oriented programming," SIGPLAN Not., vol. 17, no. 9, pp.
51-57, 1982.

[4] G. Booch, Object-Oriented Analysis and Design with Applications, 2nd ed.
Redwood City: Benjamin Cummings, 1993.

[5] T. Halpin, "Data modeling in UML and ORM revisited," in The Proceedings of
Workshop on Evaluation of Modeling Methods in Systems Analysis and Design.
Heidelberg, Germany, 1999.

[6] C. A. Petri, Kommunikation mit Automaten PhD Thesis: Bonn: Institut fur
lnstrumentelle Mathematik, 1962.

[7] R. Milner, A Calculus of Communicating Systems. Secaucus, NJ: Springer-
Verlag New York, Inc, 1982.

[8] R. Milner, Communicating and mobile systems: the -calculus: Cambridge
University Press, 1999.

[9] H. Giese, J. Graf, and G. Wirtz, "Seamless Visual Object-Oriented Behavior
Modeling for Distributed Software Systems," in Proceedings of the IEEE
Symposium on Visual Languages: IEEE Computer Society, 1999.

[10] S.-K. Kim and D. Carrington, "Formalizing the UML Class Diagram Using Object-
Z," Lecture Notes in Computer Science, pp. 83, 1999.

[11] P. Bichler and M. Schrefl, "Active object-oriented database design using active
object/behavior diagrams," in Fourth International Workshop on Research Issues
in Data Engineering: IEEE, 1994, pp. 163.

[12] D. Coleman, F. Hayes, and S. Bear, "Introduction Objectcharts or How to Use
Statecharts in Object-Oriented Design," IEEE Trans. Softw. Eng., vol. 18, no. 1,
pp. 9-18, 1992.

197

[13] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas, "TROLL - A Language
for Object-Oriented Specification of Information Systems," ACM Transactions on
Information Systems, vol. 14, no. 2, pp. 175-211, 1996.

[14] D. Harel and E. Gery, "Executable Object Modeling with Statecharts," in IEEE
18th International Conference on Software Engineering, 1996.

[15] J. A. Saldhana and S. M. Shatz, "UML Diagrams to Object Petri Net Models: An
Approach for Modeling and Analysis," in International Conference on Software
Engineering and Knowledge Engineering. Chicago, Illinois, 2000.

[16] G. Kappel and M. Schrefl, "Object/behavior diagrams," in Seventh International
Conference on Data Engineering. Kobe, 1991, pp. 530.

[17] X. Blanc, M. P. Gervais, and R. Le-Delliou, "Using the UML language to express
the ODP enterprise concepts," in Third International Enterprise Distributed Object
Computing Conference. Mannheim, Germany: IEEE, 1999, pp. 50-59.

[18] A. Kleppe and J. Warmer, "Making UML activity diagrams object-oriented," in
Proceedings of the Technology of Object-Oriented Languages and Systems:
IEEE, 2000, pp. 288.

[19] M. Peleg and D. Dori, "From Object-Process Diagrams to Natural Object-Process
Language," in 4th International Workshop on Next Generation Information
Technologies and Systems, vol. 1649, R. Y. Pinter and S. Tsur, Eds.: Springer-
Verlag, 1999, pp. 221-228.

[20] W. M. P. v. d. Aalst, A. H. M. t. Hofstede, B. Kiepuszewski, and A. P. Barros.,
"Workflow Patterns," Distributed and Parallel Databases, vol. 14, no. 3, pp. 5-51,
2003.

[21] S. A. White, "Process Modeling Notations and Workflow Patterns," in BPTrends,
2004.

[22] A. Bajaj and S. Ram, "SEAM: A state-entity-activity-model for a well-defined
workflow development methodology," Knowledge and Data Engineering, IEEE
Transactions on, vol. 14, no. 2, pp. 415, 2002.

[23] G. Kappel, S. Rausch-Schott, and W. Retschitzegger, "A framework for workflow
management systems based on objects, rules and roles," ACM Computing
Survey, vol. 32, no. 1, pp. 27, 2000.

[24] W. M. P. van der Aalst and A. H. M. ter Hofstede, "YAWL: Yet Another Workflow
Language," Queensland University of Technology, Brisbane, QUT Technical
report FIT-TR-2003-04, 2003.

198

[25] P. Coad and E. Yourdon, Object Oriented Design: Prentice Hall, 1991.

[26] S. Grumbach and V. Vianu, "Tractable query languages for complex object
databases," in Proceedings of the tenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. Denver, Colorado, United States:
ACM Press, 1991.

[27] A. M. Alashqur, S. Y. W. Su, and H. Lam, "OQL: a query language for
manipulating object-oriented databases," in Proceedings of the 15th international
conference on Very large data bases. Amsterdam, The Netherlands: Morgan
Kaufmann Publishers Inc., 1989.

[28] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters, "Workflow mining: a survey of issues and approaches,"
Data Knowl. Eng., vol. 47, no. 2, pp. 237-267, 2003.

[29] N. Turbit, "Business Process Modeling Overview" available at
http://www.projectperfect.com.au/info_business_process_modelling_overview.ph
p, accessed in 2005.

[30] W. v. d. Aalst, "Workflow Patterns" available at http://www.workflowpatterns.com,
accessed in 2005.

[31] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros,
"Workflow Patterns," Distrib. Parallel Databases, vol. 14, no. 1, pp. 5-51, 2003.

[32] R. M. Bastos and D. D. A. Ruiz, "Extending UML activity diagram for workflow
modeling in production systems," in Proceedings of the 35th Hawaii International
Conference on System Sciences: IEEE, 2002.

[33] M. Bjerkander and C. Kobryn, "Architecting systems with UML 2.0," Software,
IEEE, vol. 20, no. 4, pp. 57, 2003.

[34] M. Huadong, "A Workflow Model Based on Temporal Logic," in Proceedings of
the 8th International Conference on Computer Supported Cooperative Work in
Design, vol. 2. Beijing, China: IEEE, 2004, pp. 327.

[35] M. M. Kwan and P. R. Balasubramanian, "Dynamic workflow management: a
framework for modeling workflows," in Proceedings of the 30th International
Conference on System Sciences: Information Systems Track Internet and the
Digital Economy, vol. 4. Hawaii: IEEE, 1997, pp. 367.

[36] W. M. P. van der Aalst, K. M. van Heez, and G. J. Houben, "Modelling and
analysing workflow using a Petri-net based approach," Eindhoven University of
Technology, Dept. of Mathematics and Computing Science, Eindhoven, The
Netherlands. 2003.

http://www.projectperfect.com.au/info_business_process_modelling_overview.ph
http://www.workflowpatterns

199

[37] Y. Wenqi and L. Feng, "Workflow modeling: a structured approach," in The 8th
International Conference on Computer Supported Cooperative Work in Design,
vol. 1. Beijing, China, 2004, pp. 433.

[38] J. Yueping, W. Zhaohui, D. Shuiguang, and Y. Zhen, "Service-Oriented Workflow
Model," in Proceedings of the 19th International Conference on Advanced
Information Networking and Applications - Volume 2, vol. 2: IEEE, 2005, pp. 484.

[39] W. M. P. v. d. Aalst, "Don't go with the flow: Web services composition standards
exposed," IEEE Intelligent Systems, Jan/Feb 2003.

[40] H. Xudong, "Formalizing UML class diagrams-a hierarchical predicate transition
net approach," in 24th International Computer Software and Applications
Conference: IEEE, 2000, pp. 217.

[41] M. Richters and M. Gogolla, "On Formalizing the UML Object Constraint
Language OCL," Lecture Notes in Computer Science, pp. 449, 1998.

[42] A. Mar, a. Funes, and C. George, "Formalizing UML class diagrams," in UML and
the unified process: Idea Group Publishing, 2003, pp. 129-198.

[43] A. Welc, S. Jagannathan, and A. Hosking, "Safe futures for Java," in
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications. San Diego, CA, USA: ACM
Press, 2005.

[44] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich, "Flow analysis for
verifying properties of concurrent software systems," ACM Trans. Softw. Eng.
Methodol., vol. 13, no. 4, pp. 359-430, 2004.

[45] E. Battiston, A. Chizzoni, and F. D. Cindio, "CLOWN as a Testbed for Concurrent
Object-Oriented Concepts," in Concurrent Object-Oriented Programming and
Petri Nets: Advances in Petri Nets: Springer-Verlag, 2001, pp. 131.

[46] A. Ahern and N. Yoshida, "Formalising Java RMI with explicit code mobility," in
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications. San Diego, CA, USA: ACM
Press, 2005.

[47] A. Ferrara, "Web Services: A Process Algebra Approach," in International
Conference On Service Oriented Computing: ACM Press, 2004.

[48] T. Murata, "Petri nets: Properties, analysis and applications," Proceedings of the
IEEE, vol. 77, no. 4, pp. 541, 1989.

200

[49] C. Lakos, "The Challenge of Object Orientation for the Analysis of Concurrent
Systems," in Applications and Theory of Petri Nets 2002: 23rd International
Conference, Proceedings. Adelaide, Australia, 2002, pp. 59.

[50] X. Amatriain, "An Object-Oriented Metamodel for Digital Signal Processing"
available at http://www.iua.upf.es/~xamat/Thesis/html/Thesis_forHTML.html,
accessed in 2004.

[51] J. Esparza and M. Nielsen, "Decidability Issues for Petri Nets - a Survey,"
Journal of Informatics, Processing and Cybernetics, vol. 30, no. 3, pp. 143-160,
1994.

[52] P. Huber, K. Jensen, and R. M. Shapiro, "Hierarchies in Coloured Petri Nets," in
Proceedings on Advances in Petri nets 1990: Springer-Verlag New York, Inc.,
1991.

[53] K. Jensen, "Coloured Petri nets," in the Proceedings of IEEE Colloquium on
Discrete Event Systems: A New Challenge for Intelligent Control Systems,
London, 1993.

[54] K. Jensen, "High-Level Petri Nets," in Selected Papers from the 3rd European
Workshop on Applications and Theory of Petri Nets: Springer-Verlag, 1983.

[55] O. M. G. (OMG). "UML Object Constraint Language Specification. Version 1.5,"
Rational Software Corporation, Santa Clara, CA-95051, USA March 2003.

[56] A. Church, "An Unsolvable Problem of Elementary Number Theory," American
Journal of Mathematics, vol. 58, no. 2, pp. 345-363, 1936.

[57] H. Barendregt, The lambda calculus, its syntax and semantics: North-Holland,
1984.

[58] C. Barker, "Lambda Calculus Tutorial" available at
http://ling.ucsd.edu/~barker/Lambda/, accessed in 2005.

[59] C. A. R. Hoare, Communicating Sequential Processes: Prentice Hall, 1985.

[60] J. Parrow, "An Introduction to the -Calculus," in Handbook of Process Algebra,
Bergstra, Ponse, and Smolka, Eds.: Elsevier, 2001, pp. 479-543.

[61] P. Sewell, "Applied Pi Calculus," University of Cambridge, July 28, 2000, pp. 65.

[62] H. Smith and P. Fingar, "Workflow is just a Pi Process," Computer Sciences
Corporation, 2003.

http://www.iua.upf.es/~xamat/Thesis/html/Thesis_forHTML.html
http://ling.ucsd.edu/~barker/Lambda/

201

[63] C. Combi and G. Pozzi, "Architectures for a temporal workflow management
system," in Proceedings of the 2004 ACM symposium on Applied computing.
Nicosia, Cyprus: ACM Press, 2004.

[64] W. M. P. van der Aalst, "Making Work Flow: On the Application of Petri Nets to
Business Process Management," Lecture Notes in Computer Science, pp. 1,
2002.

[65] D. Dori, "Object-process methodology applied to modeling credit card
transactions," in Advanced topics in database research vol. 1: Idea Group
Publishing, 2002, pp. 87-105.

[66] D. Dori, "Object-Process Methodology Website" available at
http://www.objectprocess.org, accessed in 2005.

[67] C. Lakos, "From Coloured Petri Nets to Object Petri Nets," in Proceedings of the
16th International Conference on Application and Theory of Petri Nets: Springer-
Verlag, 1995, pp. 278 - 297.

[68] C. Lakos, "Object Oriented Modelling with Object Petri Nets," in Concurrent
Object-Oriented Programming and Petri Nets: Advances in Petri Nets: Springer-
Verlag, 2001, pp. 1 - 37.

[69] O. Biberstein, D. Buchs, and N. Guelfi, "Object-Oriented Nets with Algebraic
Specifications: The CO-OPN/2 Formalism," in Concurrent Object-Oriented
Programming and Petri Nets: Advances in Petri Nets: Springer-Verlag, 2001, pp.
73.

[70] J. o. P. Barros and L. Gomes, "On the Use of Coloured Petri Nets for Object-
Oriented Design," in Applications and Theory of Petri Nets 2004: Springer-
Verlag, 2004, pp. 117.

[71] L. Sea and L. Seng Wai, "Advanced Petri Nets for modelling mobile agent
enabled interorganizational workflows," in Proceeding of the 9th IEEE
International Conference on Engineering of Computer-Based Systems: IEEE,
2002, pp. 245.

[72] P. Sanchez, P. Letelier, and I. Ramos, "Constructs for Prototyping Information
Systems with Object Petri Nets.," in Proceedings of IEEE Systems, Man and
Cybernetics, vol. 5. Orlando (USA): IEEE, October 1997, pp. 4260-4265.

[73] N. Aoumeur and G. Saake, "Towards an Object Petri Nets Model for Specifying
and Validating Distributed Information Systems," in Advanced Information
Systems Engineering: 11th International Conference, CAiSE'99. Heidelberg,
Germany: Springer, 1999, pp. 381.

http://www.objectprocess.org

202

[74] D. Harel and O. Kupferman, "On object systems and behavioral inheritance,"
IEEE Transactions on Software Engineering, vol. 28, no. 9, pp. 889-903, 2002.

[75] R. F. Paige and J. S. Ostroff, "Comparison of the Business Object Notation and
the Unified Modeling Language," Lecture Notes in Computer Science, pp. 67,
1999.

[76] E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structures in C++.
New York, NY: W.H. Freeman and Company, 1995.

[77] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, "Business Process
Management: A Survey," Lecture Notes in Computer Science, pp. 1, 2003.

[78] W. J. Yeh and M. Young, "Compositional reachability analysis using process
algebra," in Proceedings of the symposium on Testing, analysis, and verification.
Victoria, British Columbia, Canada: ACM Press, 1991.

[79] M. Heiner, "Verification and Optimization of Control Programs by Petri Nets
without State Explosion," in the Proceedings of 2nd Int. Workshop on
Manufacturing and Petri Nets, Toulouse, 1997.

[80] B. F. van Dongen and W. M. P. van der Aalst, "EMiT: A Process Mining Tool,"
Lecture Notes in Computer Science, pp. 454, 2004.

[81] S. Dustdar, T. Hoffman, and W. M. P. van der Aalst, "Mining of ad-hoc business
processes with TeamLog," Technical University of Vienna TUV-1841-2004-07,
2004.

[82] J. Herbst and D. Karagiannis, "Workflow mining with InWoLvE," Computers in
Industry, vol. 53, no. 3, pp. 245, 2004.

[83] G. Schimm, "Process Miner - A Tool for Mining Process Schemes from Event-
Based Data," Lecture Notes in Computer Science, pp. 525, 2002.

[84] G. Schimm, "Generic linear business process modeling.," in International
Workshop on Conceptual Modeling Approaches for E-Business. Salt Lake City:
Springer, 2000.

[85] G. Schimm, "Mining exact models of concurrent workflows," Computers in
Industry, vol. 53, no. 3, pp. 265, 2004.

[86] Z. Tari and V. Pande, "Dynamic workflow management in CORBA distributed
object systems," in Proceedings of the International Symposium on Software
Engineering for Parallel and Distributed Systems: IEEE, 2000, pp. 51.

203

[87] C. Junwei, S. A. Jarvis, S. Saini, and G. R. Nudd, "GridFlow: workflow
management for grid computing," in Proceedings of the 3rd International
Symposium on Cluster Computing and the Grid: IEEE, 2003, pp. 198.

[88] D. Hollingsworth, "The Workflow Reference Model: 10 Years On," in Workflow
Handbook 2004. United Kingdom: Fujitsu Services, 2004.

[89] H. Schuster, J. Neeb, and R. Schamburger, "A configuration management
approach for large workflow management systems," in Proceedings of the
international joint conference on Work activities coordination and collaboration.
San Francisco, California, United States: ACM Press, 1999.

[90] H. Schuster and P. Heinl, "A workflow data distribution strategy for scalable
workflow management systems," in Proceedings of the 1997 ACM symposium on
Applied computing. San Jose, California, United States: ACM Press, 1997.

[91] J. Neeb, M. Schlundt, and H. Wedekind, "Repositories for workflow-
management-systems in a middleware environment," in Proceedings of the 33rd
International Conference on System Sciences. Hawaii: IEEE, 2000, pp. 10 pp.
vol.2.

[92] OMG, "Common Object Request Broker Architecture: Core Specification Version
3.0.3" available at http://www.omg.org/docs/formal/04-03-01.pdf, accessed in
March 2004.

http://www.omg.org/docs/formal/04-03-01.pdf

	Georgia State University
	ScholarWorks @ Georgia State University
	5-3-2007

	Formal Object Interaction Language: Modeling and Verification of Sequential and Concurrent Object-Oriented Software
	Jason Andrew Pamplin
	Recommended Citation

	Microsoft Word - Dissertation_Final.doc

