42 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Verification of a Prolog compiler - first steps with KIV

    Get PDF
    This paper describes the first steps of the formal verification of a Prolog compiler with the KIV system. We build upon the mathematical definitions given by Boerger and Rosenzweig in [BR95]. There an operational semantics of Prolog is defined using the formalism of Evolving Algebras, and then transformed in several systematic steps to the Warren Abstract Machine (WAM). To verify these transformation steps formally in KIV, a translation of deterministic Evolving Algebras to Dynamic Logic is defined, which may also be of general interest. With this translation, correctness of transformation steps becomes a problem of program equivalence in Dynamic Logic. We define a proof technique for verifying such problems, which corresponds to the use of proof maps in Evolving Algebras. Although the transfor- mation steps are small enough for a mathematical analysis, this is not sufficient for a successful formal correctness proof. Such a proof requires to explicitly state a lot of facts, which were only impli- citly assumed in the analysis. We will argue that these assumptions cannot be guessed in a first proof attempt, but have to be filled in incrementally. We report on our experience with this `evolutionary\u27 verification process for the first transformation step, and the support KIV offers to do such incremental correctness proofs

    A π-Calculus Specification of Prolog

    Get PDF
    A clear and modular specification of Prolog using the π-calculus is presented in this paper. Prolog goals are represented as π-calculus processes, and Prolog predicate definitions are translated into π-calculus agent definitions. Prolog\u27s depth-first left-right control strategy as well as the cut control operator are modeled by the synchronized communication among processes, which is similar in spirit to continuation-passing style implementation of Prolog. Prolog terms are represented by persistent processes, while logical variables are modeled by complex processes with channels that, at various times, can be written, read, and reset. Both unifications with and without backtracking are specified by π-calculus agent definitions. A smooth merging of the specification for control and the specification for unification gives a full specification for much of Prolog. Some related and further works are also discussed

    Towards flexible goal-oriented logic programming

    Get PDF

    Logic Programming in Tabular Allegories

    Get PDF
    We develop a compilation scheme and categorical abstract machine for execution of logic programs based on allegories, the categorical version of the calculus of relations. Operational and denotational semantics are developed using the same formalism, and query execution is performed using algebraic reasoning. Our work serves two purposes: achieving a formal model of a logic programming compiler and efficient runtime; building the base for incorporating features typical of functional programming in a declarative way, while maintaining 100% compatibility with existing Prolog programs

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog
    corecore