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A T-calculus Specification of Prolog* 

Benjamin Z.  Li 

Department of Computer and Information Science 
University of Pennsylvania 

Philadelphia, PA 19104-6389 USA 
zhenli@saul,cis.upenn.edu 

Abstrac t .  A clear and modular specification of Prolog using the x- 
calculus is presented in this paper. Prolog goals are represented as x- 
calculus processes, and Prolog predicate definitions are translated into x- 
calculus agent definitions. Prolog's depth-first left-right control strategy 
as well as the cut control operator are modeled by the synchronized com- 
munication among processes, which is similar in spirit to continuation- 
passing style implementation of Prolog. Prolog terms are represented by 
persistent processes, while logical variables are modeled by complex pro- 
cesses with channels that, at various times, can be written, read, and 
reset. Both unifications with and without backtracking are specified by 
x-calculus &gent definitions. A smooth merging of the specification for 
control and the specification for unification gives a full specification for 
much of Prolog. Some related and further works are also discussed. 

1 Introduction 

Prolog is a sinlple, powerful and efficient programming lan uage, but  its depth- ? first left-right control as well as the control operator cut (.) and i ts  lack of the 
occurs check destroys the  declarative reading of Prolog programs. For example, 
a left recursive clause will cause an  infinite computation while a right recursive 
clause with same logic reading will terminate the  computation. Hence, logic does 
not provide a simple and formal semantics for Prolog. In [Ros92a] Ross provided 
a n  interesting specification of Prolo control by mapping i t  into processes in the  
concurrent specification language ~ C S  [MilBq. i n  this paper, we develop and 
extend this approach significantly by uslng the T-calculus, a richer concurrent 
specification language. We are not only able to  specify Prolog's control primitives 
but  also i ts  correct interaction with Prolog's unification, including the  lack of 
the  occur-check and the  construction of circular terms. 

The  w-calculus MPW92a, MPW92b1 Mi1911 is a calculus for modeling con- 
current systems wit I evolving communication structure. I t  has been proven very 
powerful in modeling functional programming languages[Mil90b] and object- 
oriented programming languages[Wal90]. In this paper, we will introduce a clear 
and modular specification for Prolog using the T-calculus. The specification is 
modular in the  sense tha t  the Prolog control part  and unification are specified 
separately, but  can be merged together smoothly to  form a full specification for 
Prolog. In  fact, par t  of the  motivation behind this paper was to  understand how 
successfully the  sr-calculus could be used to specify the operational semantics of 
a non-trivial programming language, in this case Prolog. As we hope i t  will be  
clear from this paper,  the  T-calculus, along with a sorting discipline proposed 
for i t ,  does indeed provide an  attractive specification language. 

* To be appeared in European Symposium on Programming 1994, LNCS  series. 



The  rest of this paper is organized as follows. The  T-calculus will bc briefly 
introduced in Section 2. A T-calculus specification for Prolog's depth-first left- 
right control as well as the cut control will be defined in Section 3,  and a T- 

calculus specification for ~~nif ica t~ion will be discussed in Section 4. Section 5 will 
merge these two specifications together to  achieve a specification for full Prolog. 
We will compare with some related works and discuss future works in Section 6.  
Section 7 is the conclusion. 

2 The T-calculus 

The  T-calculus is a model of concurrent computation based upon the notation 
of naming, which provides an  identity to  an entity tha t  allows it t o  concur- 
rently coexist in an  environment with other entities. The  primitive elements of 
T-calculns are structureless entities called Names, infinitely many and denoted 
by {x,  y ,  2 . .  . E N .  A name refers to  a commurlication channel. If the  name 
s  represent,^ t I e input end of a channel, then the co-name 3: represents i ts  out- 
put  end. 111 the following syntax of the T-calculus, P, PI ,  P2 range over process 
expressions, A ranges over agent identifiers IC, and 5 is an  abbreviation for a 
sequence of names yl . . . y, ( n  2 0) .  

where 

- 0 is the  znactzon process which can do nothing. 
- 

- x. 9.P can output the name(s) jj along the channel x  and then becomes P .  
- x(fj) .P can input some arbitrary name(s) E d o n g  the the channel x  and then 

becomes P{Z /y} .  Of cause, 9 a.nd 2 have to  be of the same length. 
- A sumrriation PI + Pz can behave as either PI or P2 no11-tlct,crn-rinist,ically. 
- A compo~it~iori PI I Pz means that  IJ; and Pz are concurrently active, so they 

can act independeri1,ly but  can also c~mmunica i~e .  For esa.rr~ple, if P = cz .P1  
and Q = x(y).Q1 then PIQ means that  either P car1 output z along charirlc:l 
x ;  or Q can input an  name along channel x ;  or P and Q can cornrnrlrlicate 
internally by performing a silent action r and then becomes PIIQ1{z /y} .  

- A restriction (11x)P declares a new name name) x in P that  is dif- 
ferent from all external names. For example, ( v x ) ( ~ z .  P  lx(y)  .Q1) can only 
perform internal comm~lnication, b ~ i t  T z .  PJ (vx )x ( y ) .Q1  can not conlmrlni- 
cilte. Actually, ( v z ) z ( y ) .Q1  is a dead process, which is equivalent to  0. 

-- A match [x= y ] P  behaves like P if a and y  are identical, and otherwise like 
0.  

- A mis-match [a # y]P behaves like P if z  and y are not identical, and 
otherwisr like 0.' 

- A defined agent A(y) must have a corrcsporiding defining equation of the  
def  form: A(2)  = P. Then A($) is the sallle as P{i j /2 ) .  

de.f 
- A replication ! P ,  which can be defined as: ! P  = PI !P ,  provides infinite 

col~ics of I' in composit.ion, i.c. ! P  = P I P .  . .. 

A transition in the ir-calculus is of the form: P 5 Q ,  which means tha t  P 
can evolve into Q by performing the ac1,ion a .  'l'he action cu (:;ill 1)e one of t.lie 
r, sty, x (y )  and a fourth action called bound output action which allows a process 

t h e  mis-match is n o t  presrnbed in the original x-calculus, but is includcd here to 
simplify the specifications present,ed in this paper. 



to output a private name and hence widen the scope of the private name. The 
formal definition of translatioil relation 5 is given in [MPW92b]. Here is a simple 
example: 

Some convenient abbreviations are used in this paper, such as x(y) (resp. zy) as 
an abbreviation for x(y).O (resp. Zy.O), (vxl . . . x n ) P  for (vxl) . . . (uxn)P ,  and 
al . . . a ,  
+ for n sequential transitions 3 . . .2. We also use the anonymous channel 

name - when the name itself does not matter. 
Names in ij are said to be bound in x(ij .P, and so is the name y in (uy)P.  

Some processes are considered to be equiva i ent according to the structural con- 
gruence relation, defined in [Mi191]. Two processes are observation-equivalent 
or bisimilar (x) if their input/output relationships (ignoring the internal com- 
munication r) are the same. Bisimilarity and process equivalence are discussed 
i11 [MPW92b, Mi1891. 

3 Specifying the Prolog Control in the T-calculus 

In this section, we will specify the Prolo 's depth-first left-right control strategy 
and the cut coiitrol operator in the T-ca 7 culus. For simplicity, Prolog terms and 
unification will be ignored until next section. A Prolog goal is represented as a T- 
calculus process, and a Prolog predicate definition is translated into a T-calculus 
agent definition. 

3.1 P ro log  Goals  a s  Processes  

The evaluation of a Prolog goal G can result in either success or fail. A suc- 
cessfully evaluated goal G might be backtracked to find alternative solutions. So 
the corresponding T-calculus process [G](s, f ,  b) is associated with three chan- 
nel names: s (for success channel), f (for fai l  channel), b (for backtracking 
channel). Its behavior can be described as follows: 

(s,  f ,  b) if evaluation of the Goal G succeeds. 
if evaluation of the Goal G fails. 

After having found one solution, [G](s, f ,  b) sends an output action S and t,hen 
waits on the backtracking channel b before computing alternative solutions (de- 
noted by G,lt-sol(s, f ,  b)). Suppose a goal G can produce n (n > 0) solutions, 
then [G (s, f ,  b) = ( ~ . b . ) ~ f .  

A le ! t-associative sequential-and control operator b is introduced in order 
to  simplify the notation of the corresponding process for a Prolog conjunctive 
goal (P ,  Q)3: 

U(P, &)I(,, fl b) a (UP1 IIQII)(s, f ,  b) (2) 

: (vs'f ')(uPl(~' ,  f ,  f') I !s'.UQII(S, f', 6)) (3) 
A .  d e f .  
= 1s used for translations from Prolog to x-calculus while = is used in x-calculus 
agent definitions. 

3 



The behaviors of definition (3) can be understood as follows: 

- If [P]]y, f ,  f') reports fai l  via f ,  so does [P, Q](s, f ,  b) since they use the 
same c annel f .  

- If [P](sl, f ,  f') reports success via 7, then one copy of [Q](s, f l ,  b) will be 
activated after the synchronized communication of s' and s'. And then, 

If [Q](s, f'? b) reports success viaS, so does [P, Q](s, f ,  b)  since both use 
the same channel s .  
If [Q](s, f', b) reports fai l  via 7, then [P](sl, f ,  f') will be backtracked. 

The bang ! before sl.[Q](s, f', b) is necessary because backtracked [P](sl, f ,  f') 
may find another solution and then need to invoke [Q](s, f', b) again. 

Similarly, a left-associative sequential-or control operator $ is used for dis- 
junctive goal (P; Q): 

(A @ B)(sl f: b)  (Y f l ) (A(s,  f', b) I f l .B(s ,  f ,  b)) (4) 

where [P] and [Q] use the same s and b channels, corresponding to the or 
relationship of P and Q. However, [Q] can be activated only after [P] reports 
fai l  via f'. Thus, we exactly models Prolog's sequential nature of or and Prolog's 
sequential clause searching as we shall see in Section 3.2. 

Using the sort notation in [Mil91 , we introduce two sorts, Succ  and Fail  
for the success channel names and 1 ail channel names respectively. Based on 
the above discussion, it is clear that backtracking channel names have the same 
sort as the fai l  channel names. The following sorting: 

{Succ H (), Fail t+ ()} 

means that both success channels and fai l  channels carry no names. A general 
sorting of the form S w (S1,. . . , Sn) means that along a channel s of sort S ,  
we can receive or send n names of sorts S1,. . . , Sn respectively. We also use s A t  
for the concatenation of sorts, e.g. (Sl)^(S2,S3 = (S1, S 2 ,  S3). The following 
notations are used to specify sorts for names and agents: 

- S, si, S' : SUCC means that names s, s;, s1 are of sort Succ. And similarly, 
, b ,  f', fi : Fail means that f ,  b ,  f ', f; are of sort Fail. 
G] , [P, Q], [P; Q] : (Succ, Fail, Fail) means that agents [GI, UP, Q , [P; Q] - t 

shall take three name arguments of sorts Succ,  Fail, Fail  respective 1 y. 

3.2 Pro log  P red i ca t e  Definitions a s  T-calculus Agen t  Definitions 

A Prolog predicate is defined by a sequence of clauses. Suppose we have the 
following definition for a predicate P, consisting of m clauses: 

P : - Bodyl. 
P : - Bodya. 

. . . 
P : - Body,. 

Then the corresponding T-calculus agent definition for P : (Succ, Fail, Fail) is: 



where the definition for each Pi (1 5 i  5 rn) is determined by the ith clause of 
the predicate P.  

Suppose the ith clause of P  is defined as: ' P  : -B1, B2 , .  . . , Bn .' , then the 
agent Pi : (Succ, Fail, Fail) is defined as follows: 

Pi(s, f ,  b )  d'f ( ([Bl] t> [B,] b [Bs] I. . . . I. [Bn]l)(s, f ,  b )  (7) - (us1 . . . ~ n - 1  fi . . . fn-1)(UB1I1(~1~f , f i )  I ! s I . I I B ~ ] ( ~ ~ , ~ I ~ ~ z )  
I ! ~ : , . [ [ B ~ ] ( s Q ,  f 2 ,  f 3 )  I . . . I  !~n- l . [Bn](s ,  f n - I ,  b )  ) (8) 

The behavior of above definition can be described in a similar way as the behavior 
of definition (3).  We can also imagine that there exist two chains in definition 
(8): a success chain connected by si's, and a backtracking chain connected by 
fi s ,  as illustrated in Fig. 1. 

success chain 

m rn 7 " '  -3 7 [ B ~ ] ( s I ,  f j f i )  ~ . s I . [ B z ] ( s ~ , ~ I ,  ~ ~ ) I ! s z . I [ B ~ ] ( s ~ ,  f2, f 3 ) 1  J !sn- l . [Bn](~,  fn - l ,  b )  
d l :  . . .  > L 

backtracking chain 

Fig. 1. success and backtracking chain 

If the ith clause of P is a fact (i.e. a clause with empty body): 'P.' , then the 
d e f  - 

agent Pi is defined as: Pi(s, f ,  b )  = s.b.7, which says that Pi reports success 
via s only once and then reports fail via f upon receiving baclctrack via 6. 

Now, let us look at  a propositional Prolog example and its a-calculus trans- 
lation: 

d e f  - 
a.  A(s,  f ,  b )  = s.6.f 

d e f  - 
b :-a. B l ( s ,  f , b )  = A(s , f , b )  ( i . e .=  s.b.f) 

b : -6 ,  a .  Bz(s, f ,  b )  dAf ( B  A) (s ,  f ,  b )  
( v s l f l ) (B ( s l ,  f ,  f l )  I !sl.A(s, f l ,  b ) )  

B(s ,  f ,  b )  d2f (Bl'di B2)(s, f ,  6 )  
= ( v f  )(Bl(S,  f ' ,  b)lf1.B2(s, f ,  b ) )  

Using the structural congruence relation and transition relation discussed in 
Section 2, the process B(s ,  f ,  b )  behaves as follows: 

B(s ,  f, b )  ( v f l ) ( B l ( s ,  f ' ,  b )  I f l .Bz(s, f ,  b ) )  ( v f l ) ( A ( s ,  f ' ,  b )  I f l .Bz(sl f ,  6 ) )  - (v f l ) (s .b . f ' l  f1.B2(s, f ,  b ) )  2 ( v f l ) ( f ' I  f1.B2(s, f ,  b ) )  

'. (OIB2(s, f ,  b ) )  B2(% f ,  b )  - ( ~ ~ l f l ) ( B ( ~ l ,  f ,  f l )  I ! s ~ . A ( s ,  f l ,  b ) )  - ( v s l f l ) ( ( v f l ) (B1 ( s l ,  f', f l )  l f1.B2(s1, f ,  f l ) )  I !s1.A(s, f l l b ) )  

( ~ ~ l f i ) ( ( ~ f ' ) ( ~ l . f I . f r  I f1.B2(s1, f ,  f l ) )  I !sl.A(s, f l ,  b ) )  

'. ( v s I f i ) ( ( v f 1 ) ( f l  .f I f1.B2(s1, f ,  f l ) )  I 4% f l ,  b )  I !sl.A(s, f l ,  b ) )  

= ( v s l f i ) ( ( v f l ) ( f l . r  I f 1 . ~ 2 ( s l ,  f ,  f l ) )  I 2 .b.z  I ! S ~ . A ( S ,  f l ,  b ) )  



which shows that B(s ,  f ,  b) can perform infinitely many S.b. actions, reflecting 
the infinitely many solutions of predicate b. 

3.3 Specifying t h e  Cut 
In Prolog, the cut ! is a non-declarative control operator used to  cut search space. 
It  can also be treated as a special goal, which is translated into a T-calculus agent 
Cu t  : (Fail)^ (Succ, Fail, Fail): 

d e f  - 
Cut(fo)(s, f ,  b) = s . b . 5  (9) 

The process Cut(fO)(s,  f ,  b) ,  when activated, will report success on S as usually, 
but will reports fa i l  on fo instead of the regular fa i l  channel (7). As we shall 
see in definition (ll),  the fo must be the fai l  channel of the calling process. 
Suppose that the ith clause of the predicate P contains a cut as the jth goal in 
the body: P :-Bl . .  .B j - I , ! ,  B j+ l , .  . . ,  Bn. 

Then the agent Pi : (Fail)^(Succ, Fail, Fail) and P : (Succ,  Fail, Fail) are 
defined as follows: 

P ( s , f , b )  d"f (PI @Pi $ .  . . @ Pi(f) $ .  . .bi P,)(s,f, b) 
- 

(10) 
= (vfi...fm-i)(P~(s~fi,b)lfi.P~(~~f~,b)l.. .I 

fi-l.pi(f)(sl f i l b ) l  . . .  lfm-l.Pm(slf,b)) 

P i ( f ~ ) ( s ,  f , b )  def ( [ [ B I ~ D . .  . [Bj-11 ~ C u t ( f ~ ) b [ [ B ~ + l ]  b . .  . [Bn])(s, f, b) (11) - (..I . . . sn-1 fi . . . fn-l)([Bll(sl, f ,  fi) I !si.[[Bz](~z, f i ,  f i )  1 
. . .I !si-z .[[Bi-l](si-~ , fi-Z, fi-I) l!si-l .Cu t ( f~ ) ( s i ,  fi-1, f i )  1 

!si.Bi+l (si+i 1 f i ,  fi+l) 1 . . . I !sn-l .[[Bn](s, fn-1 , b) ) (12) 
( l o ) ,  the fa i l  channel f of a calling process is passed to Pi ,  and then is passed 
the Cut  process in (11). By identifying the failure of Cut  (upon backtracking) 
th  the failure of the calling process P, we achieve the effect of the cut. 

Since a backtracking never passes across a cut, the ! before si-1 and si in 
definition (12) is not necessary. So we can optimize the definitions using an 
optimized sequential-and operator DJ: 

1 (AD( B)(s ,  f ,  6) 5 (vs'f1)(A(s', f ,  f') I s l .B(s,  f ' ,  b)) (13) 

Pi(f0)(s1 f ,  h)  dg ([BI] t> . . . [Bj-I] o(Cut(f0) Nl[Bfi,] D. . . [B,])(s, f ,  b) (14) 
- 
= (us1 . . .Sn-l fi  . . . fn-i)([Bi](~i,  f ,  f i )  I !sI.[B~](sz, f i ,  fz) I 

. . . I!~i-~.[[Bi-l](~i-l, fi-2, fi-1)I~i-1 . C u t ( f ~ ) ( ~ i ,  fi-I, f i ) I  

si.B+i(si+l,fi,fi+~)l...I!sn-~.I[Bn](~,fn-~,b)) (15) 
I 

If the second clause for the predicate b in the example of Section 3.2 is replaced 
with 'b : -b, !, a.', then we have: 

d e f  - A(s, f ,  b) = s.6.f 

Bl  (s,  f ,  b) dkf A(,, f ,  b) (- s.b.7) 
B2(f0)(.,f1b) def ( B  D( C.ut!fo) H A)(s,  f ,  b) 

( ~ ~ 1 ~ 2 f i f 2 ) ( B ( ~ 1 ,  f ,  f i )  I ~ i .Cu t ( fo ) ( s z ,  f i ,  fz) I sz.A(s, fz, b)) 

B(s ,  f ,  b) (Bl @ Bz)(s, f ,  6) = (vfl)(B1(s, f', b)lf1.B2(f)(s, f ,  b)) 



Now, the behavior of process B(s,  f ,  b) is different from the one in Section 3.2: 

B(s, f ,  b) = (vfl)(B1(s, f l ,  b) I f i .B2(f)(s ,  f ,  b)) -- (vfl)(s.b.f'I f1.B2(f)(s,f,b)) 
5 6 - (.fl)(f' I f1.B2(f)(s,  f ,  b)) 1, B 2 ( f ) ( ~ ,  f ,  b) - ( ~ ~ 1 ~ 2 f l f 2 ) ( B ( ~ l ,  f ,  f l ) l ~ l . C ~ t ( f ) ( ~ ~ ,  f l ,  fz)I~z.A(s,  f 2 ,  b)) - (~s1szf1f2)((vf1)(5.f1.f'I f l .Bz( f ) ( s l ,  f ,  f1))I 

s l .Cut(f>(sa,  fl, f2)Is2.A(s1 f 2 ,  b)) 

'i (~~1~2flf2)((~f~)(fi..f'I f1.Bz(f)(s1, f ,  fl))l 
Cut(f)(sz ,  fl, f2)Is2.-4(s, f 2 ,  b)) - (vs1s2f1f2)((vf1)(f1.f'I f1.Bz(f)(s1 1 f ,  fi))l%.f2.f Is~.A(s, f 2 ,  b ) )  

(vsls2fif2)((~f1)(fi.f'I f1.B2(f)(s1, f1 f l ) ) l f ~ . f l A ( ~ ,  f 2 1  b)) - (~s1szf1f2)((~f1)(f1.f'1 f1.Bz(f)(s1 1 f ,  f1))lfz.f l2.b.K) 
s. b 
+ (~~1~~fif2)((vfl)(fi.f'1 f l . B ~ ( f ) ( s l  1 f r  f1))lfz.f 15) 

which shows that after reporting twice success via % (corresponding to the two 
solutions of the predicate b), B(s,  f ,  b)  will terminate. 

4 Specifying Unification in the T-calculus 

In this section, we will show how to represent Prolog terms as T-calculus pro- 
cesses, and logical variables as complex processes with channels that,  at various 
times, can be written, read, and reset. We then show how to specify, in T-calculus, 
unification with and without backtracking. 

4.1 T e r m s  as Processes  
The following sorting will be used for specifying terms: 

{Tag H (), Cell  H (Tag, Ptr U Cell), Ptr H (Cell,  P t r ) )  

A channel x:Cell is used for representing terms, and different kinds of terms are 
distinguished by different names of sort Tag  that x carries: 
- Var  : Tag denotes an unbound logical variable. Re f  : Tag denotes a bound 

logical variable. When the first name carried on a channel x : Cell  is R e f ,  
then the second name must be of sort Cell. In all other cases, the second 
name must be of sort Ptr. 

- f ,  g, k : Tag denote function or constant terms where f ,  g, k are functor 
names or constant names. As stated above, the second name that carried on 
x must be of sort P t r .  

A channel p : P t r  is used for representing, in aform similar to a link list structure 
(see the coming example), the arguments of a function. 0 :P t r  denotes the end of 
a list. The following is the translation from Prolog terms to T-calculus processes: 

A 
If(t~,...~tn)lIl(~)=(~~l...~nxl...~~)(!Ffpl ) ! ~ ~ 1 p 2  I ! ~ x ~ p s  I . . .  

11% xn 01 [IItllll(x~) I . . . I  [tn](xn)) 

A 
(I[X]IJ(x) = NewVar ( z )  Defined in Fig.  2 



with the restriction that several occurrences of a same variable X must use the 
same channel x  and such [ X ] ( x )  must be translated only once, e.g. the three 
occurrences of X in the following example. The picture shows the 'link list' 
representation of the arguments of f ( a ,  g ( X ) ,  X ,  X ) .  

A o r f  ( a ,  g ( X ) ,  X ,  X)III(x) =  PI Pa Ps P4 2 1  2 2  2 3 ) ( ! 5  f p1 
I ! E ~ : ~ P Z I ! ~ ~ X Z P ~ I ! ~ ~ X ~ ~ ~ I ! ~ ~ X ~ ~  
I !%a 0 I ( v Q I ) ( ! x ~ ( ~  Q L )  1 ! E x 3  0 )  / NewVar ( z s ) )  

4.2 Logical Variable  and Pure  Uni f ica t ion  

A definition of the agent NewVar and a specification of pure unification without 
backtracking is illustrated in Fig. 2, where a logical variable is represented by 

N e w V a r ( x )  dAf T Var 0 . N e w V a r ( z )  + x ( -  y ) . B n d V a r ( x ,  y )  

B n d V a r ( x ,  y )  dAf !T R e f  y  

def D r e  f  ( x ,  T )  = x ( t a g  y ) . ( [ t a g  = R e f ] D r e  f  ( y ,  T )  + [ tag  # R e f ] F  x )  

def 
(.=u Y ) ( %  f ,  b )  = (Y T x  ~ y ) ( D ~ e f ( z , ~ x ) I D ~ e f ( y ,  T Y ) ~ T X ( X ~ ) . T Y ( Y ~ ) .  

( [ X I  = y l ] ~ . b . T +  

["I # ~ l l " l ( t a 9 x  p x ) . y l ( t a g ,  P,). 
- 

( [ t a g ,  = V a r ]  - y1.S.b. f  + 
[ tag ,  =Var] - X I  .?.b.T + 
[tag= # V a r I [ t a g ,  # V a r I ( [ t a g x  = tag, l (px = p p , ) ( s ,  f ,  b )  + 

[tag% # tag,] f 1 ) ) 
def 

( p = p q ) ( s ,  f ,  b )  = [P = 91 S.b.7 + 
[P # 91 P ( X  P l ) . q ( y  q l ) . ( ( r  =u ?/I O( (Pl  =, q 1 ) ) ( s ,  f , b )  

big. 2. Pure Unification Without Backtracking 1 

a process with two states: 

- the unbound state NewVar(x)  which can either send (Var  0 )  along channel 
x  to indicate that a: is not bound yet, or receive (- y  on channel x  to indicate 
that x  is oing to be bound to the cell y, and there ore enter the bound state 
~ n d ~ a r t x ,  y). 

2 
- the bound state BndVar(x ,  y) which always send ( R e f  y) along channel x  

to indicate that x  is bound to y. 



When x is bound to y in the state BndVar(x, y), y itself may denote an 
unbound logical variable and may be bound to another cell later. Hence, pos- 
sible reference chains can exist, such as in Fig. 3.  In order to unify two cells 

m m m  
!z Ref y  I !jj Ref z I !Z Ref w I !E k 0 I ! T i  Ref z 

Fig. 3. Reference Chain 

(representing two terms), dere ferencing is performed by a process Dre f (x ,  r )  
which, when applied to a cell x,  will send along channel r the last cell of the 
chain that contains the cell x. In the example of Fig. 3 ,  Dref(x, r) will cause - 
r w. 

The process (x =, y)(s, f, b) performs unification, which first invokes Dre f 
to  dereference possible chains in order to get the last cells X I  and yl :  

- If x1 and yl are the same cell, then done. 
- If X I  (resp. yl) is an unbound variable, then xl (resp. yl) is bound to the 

cell yl (resp. xl). 
- If x l  and yl are both bound, then check whether they have same tag (i.e. 

same functor/constant name), if yes, then call agent =p to  unify their argu- 
ments. 

Basically, the agent =p sequentially calls the unification agent =, to  unify all 
pairs of the corresponding arguments. Now, let us look at a simple example, 
illustrated in Fig. 4, where four unbound variables x, y, u, v are to be unified. 

initially: N e w V a r ( x )  / NewVar (y )  1 NewVar (u )  I NewVar (v )  

m 
after x =, y: !F Ref y  ( NewVar (y )  I NewVar (u )  I NewVar (v )  

rn rn 
after u  =, v: !F Ref y  I NewVar (y )  I !ZRef v  ( NewVar (v )  

m m 
after x =, u: ! R e f  y  I !?jRef v  1 !E  Ref v  1 Newl /a r ( v )  

Fig. 4. Unification of Four Variables 

In the last step, unification x =, u is actually performed at cell y and v due to 
the dereferencing. 

4.3 Unification with Backtracking 

In Prolog, a backtracked unification must undo all the variable bindings per- 
formed during the unification, i.e. reset the corresponding variables to the un- 
bound state. We can modify the above unification agent definitions to incorpo- 
rate the backtracking, as shown in the Fig. 5. Only the definitions for BndVar 
and =, need to be changed. In the bound state BndVar(x, y), a special cell 
(Bck -) can be received along channel x to indicate that x must be reset to 
the unbound state NewVar(x). So, having reported success (S) after binding 
yl to  x l  (resp. X I  to  yl), the process (x =, y)(s, f ,  b) waits on the backtracking 



def - 
B n d V a r ( x ,  Y )  = x  Ref ~ . B n d V a r ( x ,  Y )  + x ( t a g  -).[tag = B c k ] N e w V a r ( x )  

def 
( X = U  Y ) ( s ,  f ,  b )  = (v r x  r y ) ( D r e f  ( 2 ,  ~ x ) I D ~ e f ( 3 1 ,  T ~ ) ~ T , ( X I ) . T ~ ( Y I ) .  

- 
( [ x i  = yi]s .b. f  + 

[ X I  # ~ 1 1 x 1  (tag.% p=) .y l ( tagy  py). 

( [ t a g ,  = V a r ]  - y1 .s. b . E  Bck 0.7 + 
[ tag ,  = V a r ]  jjT - x l .Z .b .E  Bck 0.7 + 
[ tag ,  # V a r I [ t a g ,  # V a r l ( [ t a g x = t a g y l  ( p X  =.p,)(s, f ,  b )  + 

[ tag ,  # t a s , l 7  ) ) ) ) 

ig. 5. Unification with Backtracking 

channel b. If it receives a backtracking request b ,  then it will undo the variable 
binding by sending out a special cell (Bck -) along channel (resp. yl) before 
reporting failure via 7. 

Occur-check is not performed at  the above unification, hence circular terms 
are allowed to  be constructed. However, an occur-check can be specified in T-  

calculus and be easily incorporated into the above unification. 

5 Prolog 

Now we are going to merge the specifications described in Section 3 and 4 to  
give a full specification of Prolo . We assume that all Prolo clauses have been 
simplified in such a way that afl head unifications are ex$citly called in the 
body, i.e. all clause heads contain only variables as arguments, such as in the 
following append example: 

5.1 U n d o  Cha in s  

The agent C u t  defined in Section 3.3  is not powerful enough when combined with 
unification. Given a clause in the form: 'P : -B1,.  . . , Bj-l,  !, Bj+],  . . . , B,.', a 
backtracking to the cut ! not only causes the failure of the calling process, but 
also has to  undo all the variable bindings performed in B1, .  . . , Bj-1. In order 
to  achieve this effect, an undo chain is used by associating each goal process 
with two additional channels of sort U n d o ,  i.e. [ G ] ( u ,  v)(s, f ,  b) with sorting 
[GI] : (Undo,  Undo)^(Succ ,  Fail, Fail). We call v the input undo channel, and 
u the output oudo channel. Upon receiving an undo signal on v, G](u ,  v (s,, f ,  b 
will undo all the variable bindings it has performed, and then sen ! I  an u n  o signa 
on ?i, which will cause another process to  undo the variable bindings. An undo 
chain runs from right to left in a conjunction, similarly to  the backtracking 
chain as shown in Fig. 1. The modified definitions after incorporating the undo 
channels are shown in Fig. 6. 



( A  b B ) ( u ,  v ) ( s ,  f ,  b) 5 ( v u ' s 1 f 1 ) ( A ( u ,  u l ) ( s l ,  f ,  f ' )  1 !s'.B(u', v ) ( s ,  f ' ,  b))  

( A  b/ B ) ( u ,  v ) ( s ,  f ,  b) 5 ( v u l s l f l ) ( ~ ( u ,  u l ) ( s l ,  f ,  f ' )  I s l . ~ ( u l ,  V ) ( S ,  f l ,  b ) )  

( A  $ B ) ( u ,  v ) ( s ,  f, b) 2 ( v  f l ) ( A ( u ,  v ) ( s ,  f ' ,  b )  1 f l . B ( u , v ) ( s ,  f , b ) )  
def - 

C u t ( f o ) ( u ~ ) ( u , v ) ( s , f , b )  = s.(v.E+b.([u # uo]z.uo.fo+ [u = ~ 0 1 . 5 ) )  

( x  = y ) (u ,  v ) ( s ,  f ,  b) def (VS' f ~ b ' ) ( ( x = ~  y)(s: f :  bl) I ( f ! f  +s ' .~.(b.F.  f l . f+v.F.  fl.3)) 

Fig. 6. Incorporating the Undo Channels 

- Since D and bI are used for conjunctions, so their definitions are mod- 
ified only to  expand the undo chain, in a similar way as expanding the 
backtracking chain. 

- The Cut  : (Fa i l )^ (Undo)^(Undo,  Undo)^(Succ ,  Fail, Fail) reports success 
as usual, then 

if it receives backtracking request b, then it sends ii to undo all the 
variable bindings performed by the goals before the cut. As we shall see 
in the definition (17) in Fig. 7, the u,o must be the output undo channel of 
the leftmost goal. So signaling on uo means that all the undo's have been 
finished, and only then the Cut reports fai l  on The match [ u  = uo]  
means that the cut itself is the leftmost goal, so no undo is necessary. 
if it receives undo request v, then it passes out the undo request on ii. 
This case can happen when the undo is caused by other cut or by a Not,  
defined in Section 5.3. 

- The unification agent (x = y) : (Undo,  Undo)^(Succ ,  Fail, Fail) calls the 
backtracking unification agent =,, defined in Section 4.3. If =, fails (f'), 
then it reports fai l  (7). If =, succeeds (s'), then it reports success (s), but 
then 

If a backtrackinq request b is received. then =,, is backtracked (b') (which - - - \ , ,  
will automatically undo variable bindings as described in Fig. 5). Since 
a backtracked unification - must fails, so after signaling on fl ,  the agent 
= reports fails( f ) .  

~, 

If an undo request v is received, then by backtracking the =, via b', all 
the variable bindings performed by =, will be undone. After signaling 
on f', which also means the undo is finished, the agent = passes the 
undo request to  other goals via 21. 

5.2 Full Specification of Pro log  

As in Section 3 ,  suppose that a predicate P of arity k is defined by rn clauses, 
and the ith clause contains a cut ! as the j th  body goal: ' P ( X 1 , .  . . , X k )  : - 
B1, . . . , Bj- l ,  !, Bj+1, . . . , En.'. Let 2 denotes X I , .  . . , x k ,  then a full specification 
of Prolog is shown in Fig. 7. Compared to the translation in Section 3, there are 
only the following changes: 

- the agents P and Pi now take additional k + 2  arguments, i.e. 
P : (Cell,  . . . , Cell)^ (Undo,  Undo)^  (Succ, Fail, Fail), 
Pi : (Cell, . . . , Cell)^(Fai l )^(Undo,  Undo)^(Succ ,  Fail, Fail). 

- Cut takes additional argument u' ,  which is also the output undo channel of 
leftmost process [ B I ] ,  satisfying the requirement stated in Section 5.1. 



with the following restrictions: I 
- Suppose VI,. .  . , V, are the all shared local variables among 31,. . . , B,, then 

V l ,  . . . , V, will be translated into NewVor(v1)  I . .  . I NewVar(v , )  as in (17) .  
- in (18), any occurrence of shared local variables (x, . . . , V,) or head variables 

(XI . . . Xk) in the body goals will be represented directly by the corresponding 
vl . . . v, or X I  . . .xk without generating new channels. 

r ig. 7. Full Specification of Prolog i 
I I 

- v.21'.u1.ii in definition (17) is used to handle the undo request (v) from outside 
of Pi. Hence we distinguish between the uodo request set by the inside Cu t  
which should be stopped at [B1] ,  and the undo request ( v )  from outside of 
Pi which, after finishing all the undo's of this clause (via v'.ul), should be 
passed out to  other process via ii. 

The restrictions in Fig. 7 require that each shared local variable in the body is 
translated only once and every occurrence of same variable in different subgoals 
will use the same channel name (of sort Cell ). If the ith clause contains no 
cut, then use [B j ]  in place of Cut(fo)(u) in definition (17) and eliminate the 
argument ( f o )  from Pi.  If the ith clause is a fact of the form 'P(X1, . . . , X k )  .I, 
then the agent Pi is defined as follows: 

which is also the definition for t rue .  As an example, the translation of append 
is shown in Fig. 8. The is the functor name for the list structure. 

P ig. 8. Encoding the Append predicate 



5.3 Negation as Failure and Other Prolog's Primitives 

Based on the principle of negation as failure, we can define a control operator 
Not for Prolog negation not (\+). 

( N o ( ( ) ) ) ( ) (  f ,b)  (uu'?i'slf'b')( A(~)(u',u')(s: f', b') ( 
(s'..'.u1.7+ fl.s.(b.f + v . ~ ) )  ) 

Agent Not(A(2)) first calls A(?): if A(2) fails (f'), then Not(A(2)) reports 
success (S )  and then handles possible backtracking request (b.7) or passes undo 
request (v.E); if A(2) succeeds (s'), then Not(A(5)) reports fa i l  (7) after undo- - 
ing possible variable bindings (because of A(2)) via vl.u'. 

Prolog's condition operator (P-> Q; R), as well as t rue and fai l ,  are speci- 
fied in a-calculus as follows: 

def - 
True(u,  v)(s, f ,  b) = s.(b.f + v.E) 

def - 
Fail (u ,  v)(s, f ,  b) = f 

For the similar reason as in the definition (17) of Fig. 7, v .v ' .u1 .~  is used in 
defining the condition agent. 

6 Future and Related Works 

Ross's CCS Semantics of Prolo The work described here has been more or 
less influenced by Ross's works on &e CCS semantics of Prolog control [RS91, 
Ros92aI and on the a-calculus semantics of logical variables [RosSSb]. However, 
our approach, described in Section 3, exactly models Prolog's left-right sequential 
control while [RS91, Ros92aI does not. Namely, given a conjunction goal (P ,  Q) ,  
its corresponding T-calculus agent UP] D[&] works in such a way that the success 
of [PI] will invoke [Q], and at the same time the agent [PI will suspend until 
a backtracking request is received from I[&]. However, the corresponding CCS 
agent [PI] D [Q] in [RS91, Ros92aI works in a different way that the success of 
[PI will invoke [Q], but a t  the same time the agent [P] can concurrently works 
to  find alternative solutions to invoke another copy of [Q]. Hence a certain kind 
of or-parallelism exists, so it is unclear how unification can be incorporated 
(at the process level) into such a scheme since or-parallelism usually requires 
multi-environments. 

The approach of this paper is also simpler since only two4 control operators 
are needed, corresponding to Prolog's sequential-and and sequential-or, while 
[RosS'La] uses five control operators. This paper specifies not only Prolog's con- 
trol but also unification, while [Ros92a] does not specify unification as process. 
Although a n-calculus semantics of unification has been attempted in [Ros92b], 
it fails to  work for some examples, such as the example of unification of four 

bl is only an optimization of b in the sense that  b works well in the place of H, 
as described in Section 3 .  



variables in Fig. 4. 

Warren's Abstract Machine The representation of logical variables and the 
approach for unification described in Section 4 are similar to  those in the WAM 
[War83, AK91], especially in the way of using reference chains for binding vari- 
ables. However, these two approaches are at different levels, i.e. algebraic process 
level and abstract instruction level. Since the WAM is much closer to an actual 
implementation than the a-calculus specifications, it necessarily has more com- 
plicate and explicit notation of environment stack. 

Evolving Algebra The comparison of this work with other semantics specifica- 
tions of Prolo , especially the work in evolving algebra by Borger and Rosenzweig 
[BRgO, BR92f will be interesting. 

Continuation-Passing Style The specification presented in this paper is sim- 
ilar in spirit to the continuation-passin style used in functional programming 
implementation of Prolog [Nay87, E F 9 q  In P(s ,  f ,  b ) ,  the s can be treated as 
the address of the success continuation process which is invoked when P sends 
S ;  the f can be treated as the address of failure continuation process which is 
invoked when P sends f; and the b is used to pass the address of failure con- 
tinuation to  the next process in the conjunction since b is the same channel as 
the failure channel of next process, as discussed in Section 3. Instead of passing 
the continuation itself as in most continuation-passing styles, only the address 
of the continuation is passed in our approach. 

Concurrent Logic Programming Languages As the a-calculus is a model 
of concurrent computation, the approaches of this paper can be extended to 
specify the semantics of the family of concurrent logic programming languages. 
As a sequel, some results have been achieved in specifying the flat versions 
of these languages, such as Flat Parlog CG86] and Flat GHC[Ued86, Sha891, 
which do not require multi-environment 1 or committed or-parallelism and whose 
unifications are eventual in the sense that no backtracking is required. The and- 
parallelism is modeled by using the a-calculus concurrent composition (I pro- 
cesses. The committed or-parallelism is modeled in two steps: the or-para ? lelism 
part is modeled by using concurrent composition ( processes while the commit- 
ted non-determinism part is modeled by the non- d eterminisrn of the a-calculus 
summation (+) process. We are also successful in specifying a deadlock-free con- 
current unification in the a-calculus by associating each logical variable with a 
lock. 

High-Order Features Using the techniques described in [Mil91 , we can replace 
all a-calculus agent definitions with replications. Hence, a pre d icate definition 
is now translated into a persistent process which can be called via a unique 
channel name (served as the address of the process) associated with it. Since a 
channel name can be passed around, we might be able to extend this technique 
to  specify high-order logic programming languages [MilSOa] in T-calculus. Some 
preliminary results show this is promising. 

7 Conclusion 

This paper presents a concise a-calculus specification of Prolog that combines a 
continuation-passing style specification of control with a WAM style specification 
of logical variables and unif cation. Several examples have been tested success- 
fully using a n-calculus interpreter written by the author. Given a a-calculus 
specification of Prolog, the a-calculus bisimulation theory [Milag, MPW92bl 
may be a promising tool in Prolo program transformation and reasoning, fol- 
lowing lines developed by Ross inqRos92a, RSB1]. Since the a-calculus is a low 
level calculus with a simple computation mechanism, it is easy to  imagine that a 



T-calculus specification of Prolog may yield an actual implementation of Prolog. 
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