
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1994

A π-Calculus Specification of Prolog A -Calculus Specification of Prolog

Benjamin Z. Li
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Benjamin Z. Li, "A π-Calculus Specification of Prolog", . January 1994.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-02.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/251
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/251
mailto:repository@pobox.upenn.edu

A π-Calculus Specification of Prolog A -Calculus Specification of Prolog

Abstract Abstract
A clear and modular specification of Prolog using the π-calculus is presented in this paper. Prolog goals
are represented as π-calculus processes, and Prolog predicate definitions are translated into π-calculus
agent definitions. Prolog's depth-first left-right control strategy as well as the cut control operator are
modeled by the synchronized communication among processes, which is similar in spirit to continuation-
passing style implementation of Prolog. Prolog terms are represented by persistent processes, while
logical variables are modeled by complex processes with channels that, at various times, can be written,
read, and reset. Both unifications with and without backtracking are specified by π-calculus agent
definitions. A smooth merging of the specification for control and the specification for unification gives a
full specification for much of Prolog. Some related and further works are also discussed.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-94-02.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/251

https://repository.upenn.edu/cis_reports/251

a n-calculus Specification of Prolog

MS-CIS-94-02
LINC LAB 263

Benjamin 2. Li

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

January 1994

A T-calculus Specification of Prolog*

Benjamin Z. Li

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389 USA
zhenli@saul,cis.upenn.edu

Abstrac t . A clear and modular specification of Prolog using the x-
calculus is presented in this paper. Prolog goals are represented as x-
calculus processes, and Prolog predicate definitions are translated into x-
calculus agent definitions. Prolog's depth-first left-right control strategy
as well as the cut control operator are modeled by the synchronized com-
munication among processes, which is similar in spirit to continuation-
passing style implementation of Prolog. Prolog terms are represented by
persistent processes, while logical variables are modeled by complex pro-
cesses with channels that, at various times, can be written, read, and
reset. Both unifications with and without backtracking are specified by
x-calculus &gent definitions. A smooth merging of the specification for
control and the specification for unification gives a full specification for
much of Prolog. Some related and further works are also discussed.

1 Introduction

Prolog is a sinlple, powerful and efficient programming lan uage, but its depth- ? first left-right control as well as the control operator cut (.) and i ts lack of the
occurs check destroys the declarative reading of Prolog programs. For example,
a left recursive clause will cause an infinite computation while a right recursive
clause with same logic reading will terminate the computation. Hence, logic does
not provide a simple and formal semantics for Prolog. In [Ros92a] Ross provided
a n interesting specification of Prolo control by mapping i t into processes in the
concurrent specification language ~ C S [MilBq. i n this paper, we develop and
extend this approach significantly by uslng the T-calculus, a richer concurrent
specification language. We are not only able to specify Prolog's control primitives
but also i ts correct interaction with Prolog's unification, including the lack of
the occur-check and the construction of circular terms.

The w-calculus MPW92a, MPW92b1 Mi1911 is a calculus for modeling con-
current systems wit I evolving communication structure. I t has been proven very
powerful in modeling functional programming languages[Mil90b] and object-
oriented programming languages[Wal90]. In this paper, we will introduce a clear
and modular specification for Prolog using the T-calculus. The specification is
modular in the sense tha t the Prolog control part and unification are specified
separately, but can be merged together smoothly to form a full specification for
Prolog. In fact, par t of the motivation behind this paper was to understand how
successfully the sr-calculus could be used to specify the operational semantics of
a non-trivial programming language, in this case Prolog. As we hope i t will be
clear from this paper, the T-calculus, along with a sorting discipline proposed
for i t , does indeed provide an attractive specification language.

* To be appeared in European Symposium on Programming 1994, LNCS series.

The rest of this paper is organized as follows. The T-calculus will bc briefly
introduced in Section 2. A T-calculus specification for Prolog's depth-first left-
right control as well as the cut control will be defined in Section 3, and a T-

calculus specification for ~~nif ica t~ion will be discussed in Section 4. Section 5 will
merge these two specifications together to achieve a specification for full Prolog.
We will compare with some related works and discuss future works in Section 6.
Section 7 is the conclusion.

2 The T-calculus

The T-calculus is a model of concurrent computation based upon the notation
of naming, which provides an identity to an entity tha t allows it t o concur-
rently coexist in an environment with other entities. The primitive elements of
T-calculns are structureless entities called Names, infinitely many and denoted
by {x, y , 2 . . . E N . A name refers to a commurlication channel. If the name
s represent,^ t I e input end of a channel, then the co-name 3: represents i ts out-
put end. 111 the following syntax of the T-calculus, P, PI , P2 range over process
expressions, A ranges over agent identifiers IC, and 5 is an abbreviation for a
sequence of names yl . . . y, (n 2 0) .

where

- 0 is the znactzon process which can do nothing.
-

- x. 9.P can output the name(s) jj along the channel x and then becomes P .
- x(fj) .P can input some arbitrary name(s) E d o n g the the channel x and then

becomes P{Z /y} . Of cause, 9 a.nd 2 have to be of the same length.
- A sumrriation PI + Pz can behave as either PI or P2 no11-tlct,crn-rinist,ically.
- A compo~it~iori PI I Pz means that IJ; and Pz are concurrently active, so they

can act independeri1,ly but can also c~mmunica i~e . For esa.rr~ple, if P = cz .P1
and Q = x(y).Q1 then PIQ means that either P car1 output z along charirlc:l
x ; or Q can input an name along channel x ; or P and Q can cornrnrlrlicate
internally by performing a silent action r and then becomes PIIQ1{z /y} .

- A restriction (11x)P declares a new name name) x in P that is dif-
ferent from all external names. For example, (v x) (~ z . P lx(y) .Q1) can only
perform internal comm~lnication, b ~ i t T z . PJ (vx)x (y) .Q1 can not conlmrlni-
cilte. Actually, (v z) z (y) .Q1 is a dead process, which is equivalent to 0.

-- A match [x= y] P behaves like P if a and y are identical, and otherwise like
0.

- A mis-match [a # y]P behaves like P if z and y are not identical, and
otherwisr like 0.'

- A defined agent A(y) must have a corrcsporiding defining equation of the
def form: A(2) = P. Then A($) is the sallle as P{i j /2) .

de.f
- A replication ! P , which can be defined as: ! P = PI !P , provides infinite

col~ics of I' in composit.ion, i.c. ! P = P I P

A transition in the ir-calculus is of the form: P 5 Q , which means tha t P
can evolve into Q by performing the ac1,ion a . 'l'he action cu (:;ill 1)e one of t.lie
r, sty, x (y) and a fourth action called bound output action which allows a process

t h e mis-match is n o t presrnbed in the original x-calculus, but is includcd here to
simplify the specifications present,ed in this paper.

to output a private name and hence widen the scope of the private name. The
formal definition of translatioil relation 5 is given in [MPW92b]. Here is a simple
example:

Some convenient abbreviations are used in this paper, such as x(y) (resp. zy) as
an abbreviation for x(y).O (resp. Zy.O), (vxl . . . x n) P for (vxl) . . . (uxn)P , and
al . . . a ,
+ for n sequential transitions 3 . . .2. We also use the anonymous channel

name - when the name itself does not matter.
Names in ij are said to be bound in x(ij .P, and so is the name y in (uy)P.

Some processes are considered to be equiva i ent according to the structural con-
gruence relation, defined in [Mi191]. Two processes are observation-equivalent
or bisimilar (x) if their input/output relationships (ignoring the internal com-
munication r) are the same. Bisimilarity and process equivalence are discussed
i11 [MPW92b, Mi1891.

3 Specifying the Prolog Control in the T-calculus

In this section, we will specify the Prolo 's depth-first left-right control strategy
and the cut coiitrol operator in the T-ca 7 culus. For simplicity, Prolog terms and
unification will be ignored until next section. A Prolog goal is represented as a T-
calculus process, and a Prolog predicate definition is translated into a T-calculus
agent definition.

3.1 P ro log Goals a s Processes

The evaluation of a Prolog goal G can result in either success or fail. A suc-
cessfully evaluated goal G might be backtracked to find alternative solutions. So
the corresponding T-calculus process [G](s, f , b) is associated with three chan-
nel names: s (for success channel), f (for fai l channel), b (for backtracking
channel). Its behavior can be described as follows:

(s, f , b) if evaluation of the Goal G succeeds.
if evaluation of the Goal G fails.

After having found one solution, [G](s, f , b) sends an output action S and t,hen
waits on the backtracking channel b before computing alternative solutions (de-
noted by G,lt-sol(s, f , b)). Suppose a goal G can produce n (n > 0) solutions,
then [G (s, f , b) = (~ . b .) ~ f .

A le ! t-associative sequential-and control operator b is introduced in order
to simplify the notation of the corresponding process for a Prolog conjunctive
goal (P , Q)3:

U(P, &)I(,, fl b) a (UP1 IIQII)(s, f , b) (2)

: (vs'f ')(uPl(~' , f , f') I !s'.UQII(S, f', 6)) (3)
A . d e f .
= 1s used for translations from Prolog to x-calculus while = is used in x-calculus
agent definitions.

3

The behaviors of definition (3) can be understood as follows:

- If [P]]y, f , f') reports fai l via f , so does [P, Q](s, f , b) since they use the
same c annel f .

- If [P](sl, f , f') reports success via 7, then one copy of [Q](s, f l , b) will be
activated after the synchronized communication of s' and s'. And then,

If [Q](s, f'? b) reports success viaS, so does [P, Q](s, f , b) since both use
the same channel s .
If [Q](s, f', b) reports fai l via 7, then [P](sl, f , f') will be backtracked.

The bang ! before sl.[Q](s, f', b) is necessary because backtracked [P](sl, f , f')
may find another solution and then need to invoke [Q](s, f', b) again.

Similarly, a left-associative sequential-or control operator $ is used for dis-
junctive goal (P; Q):

(A @ B)(sl f: b) (Y f l) (A(s, f', b) I f l .B(s , f , b)) (4)

where [P] and [Q] use the same s and b channels, corresponding to the or
relationship of P and Q. However, [Q] can be activated only after [P] reports
fai l via f'. Thus, we exactly models Prolog's sequential nature of or and Prolog's
sequential clause searching as we shall see in Section 3.2.

Using the sort notation in [Mil91 , we introduce two sorts, Succ and Fail
for the success channel names and 1 ail channel names respectively. Based on
the above discussion, it is clear that backtracking channel names have the same
sort as the fai l channel names. The following sorting:

{Succ H (), Fail t+ ()}

means that both success channels and fai l channels carry no names. A general
sorting of the form S w (S1,. . . , Sn) means that along a channel s of sort S ,
we can receive or send n names of sorts S1,. . . , Sn respectively. We also use s A t
for the concatenation of sorts, e.g. (Sl)^(S2,S3 = (S1, S 2 , S3). The following
notations are used to specify sorts for names and agents:

- S, si, S' : SUCC means that names s, s;, s1 are of sort Succ. And similarly,
, b , f', fi : Fail means that f , b , f ', f; are of sort Fail.
G] , [P, Q], [P; Q] : (Succ, Fail, Fail) means that agents [GI, UP, Q , [P; Q] - t

shall take three name arguments of sorts Succ, Fail, Fail respective 1 y.

3.2 Pro log P red i ca t e Definitions a s T-calculus Agen t Definitions

A Prolog predicate is defined by a sequence of clauses. Suppose we have the
following definition for a predicate P, consisting of m clauses:

P : - Bodyl.
P : - Bodya.

. . .
P : - Body,.

Then the corresponding T-calculus agent definition for P : (Succ, Fail, Fail) is:

where the definition for each Pi (1 5 i 5 rn) is determined by the ith clause of
the predicate P.

Suppose the ith clause of P is defined as: ' P : -B1, B2 , . . . , Bn .' , then the
agent Pi : (Succ, Fail, Fail) is defined as follows:

Pi(s, f , b) d'f (([Bl] t> [B,] b [Bs] I. . . . I. [Bn]l)(s, f , b) (7) - (us1 . . . ~ n - 1 fi . . . fn-1)(UB1I1(~1~f , f i) I ! s I . I I B ~] (~ ~ , ~ I ~ ~ z)
I ! ~ : , . [[B ~] (s Q , f 2 , f 3) I . . . I !~n- l . [Bn](s , f n - I , b)) (8)

The behavior of above definition can be described in a similar way as the behavior
of definition (3). We can also imagine that there exist two chains in definition
(8): a success chain connected by si's, and a backtracking chain connected by
fi s , as illustrated in Fig. 1.

success chain

m rn 7 " ' -3 7 [B ~] (s I , f j f i) ~ . s I . [B z] (s ~ , ~ I , ~ ~) I ! s z . I [B ~] (s ~ , f2, f 3) 1 J !sn- l . [Bn](~, fn - l , b)
d l : . . . > L

backtracking chain

Fig. 1. success and backtracking chain

If the ith clause of P is a fact (i.e. a clause with empty body): 'P.' , then the
d e f -

agent Pi is defined as: Pi(s, f , b) = s.b.7, which says that Pi reports success
via s only once and then reports fail via f upon receiving baclctrack via 6.

Now, let us look at a propositional Prolog example and its a-calculus trans-
lation:

d e f -
a. A(s, f , b) = s.6.f

d e f -
b :-a. B l (s , f , b) = A(s , f , b) (i . e .= s.b.f)

b : -6 , a . Bz(s, f , b) dAf (B A) (s , f , b)
(v s l f l) (B (s l , f , f l) I !sl.A(s, f l , b))

B(s , f , b) d2f (Bl'di B2)(s, f , 6)
= (v f)(Bl(S, f ' , b)lf1.B2(s, f , b))

Using the structural congruence relation and transition relation discussed in
Section 2, the process B(s , f , b) behaves as follows:

B(s , f, b) (v f l) (B l (s , f ' , b) I f l .Bz(s, f , b)) (v f l) (A (s , f ' , b) I f l .Bz(sl f , 6)) - (v f l) (s .b . f ' l f1.B2(s, f , b)) 2 (v f l) (f ' I f1.B2(s, f , b))

'. (OIB2(s, f , b)) B2(% f , b) - (~ ~ l f l) (B (~ l , f , f l) I ! s ~ . A (s , f l , b)) - (v s l f l) ((v f l) (B1 (s l , f', f l) l f1.B2(s1, f , f l)) I !s1.A(s, f l l b))

(~ ~ l f i) ((~ f ') (~ l . f I . f r I f1.B2(s1, f , f l)) I !sl.A(s, f l , b))

'. (v s I f i) ((v f 1) (f l .f I f1.B2(s1, f , f l)) I 4% f l , b) I !sl.A(s, f l , b))

= (v s l f i) ((v f l) (f l . r I f 1 . ~ 2 (s l , f , f l)) I 2 .b.z I ! S ~ . A (S , f l , b))

which shows that B(s , f , b) can perform infinitely many S.b. actions, reflecting
the infinitely many solutions of predicate b.

3.3 Specifying t h e Cut
In Prolog, the cut ! is a non-declarative control operator used to cut search space.
It can also be treated as a special goal, which is translated into a T-calculus agent
Cu t : (Fail)^ (Succ, Fail, Fail):

d e f -
Cut(fo)(s, f , b) = s . b . 5 (9)

The process Cut(fO)(s, f , b) , when activated, will report success on S as usually,
but will reports fa i l on fo instead of the regular fa i l channel (7). As we shall
see in definition (ll), the fo must be the fai l channel of the calling process.
Suppose that the ith clause of the predicate P contains a cut as the jth goal in
the body: P :-Bl . . .B j - I , ! , B j+ l , . . . , Bn.

Then the agent Pi : (Fail)^(Succ, Fail, Fail) and P : (Succ, Fail, Fail) are
defined as follows:

P (s , f , b) d"f (PI @Pi $. . . @ Pi(f) $. . .bi P,)(s,f, b)
-

(10)
= (vfi...fm-i)(P~(s~fi,b)lfi.P~(~~f~,b)l.. .I

fi-l.pi(f)(sl f i l b) l . . . lfm-l.Pm(slf,b))

P i (f ~) (s , f , b) def ([[B I ~ D . . . [Bj-11 ~ C u t (f ~) b [[B ~ + l] b . . . [Bn])(s, f, b) (11) - (..I . . . sn-1 fi . . . fn-l)([Bll(sl, f , fi) I !si.[[Bz](~z, f i , f i) 1
. . .I !si-z .[[Bi-l](si-~ , fi-Z, fi-I) l!si-l .Cu t (f~) (s i , fi-1, f i) 1

!si.Bi+l (si+i 1 f i , fi+l) 1 . . . I !sn-l .[[Bn](s, fn-1 , b)) (12)
(l o) , the fa i l channel f of a calling process is passed to Pi , and then is passed
the Cut process in (11). By identifying the failure of Cut (upon backtracking)
th the failure of the calling process P, we achieve the effect of the cut.

Since a backtracking never passes across a cut, the ! before si-1 and si in
definition (12) is not necessary. So we can optimize the definitions using an
optimized sequential-and operator DJ:

1 (AD(B)(s , f , 6) 5 (vs'f1)(A(s', f , f') I s l .B(s, f ' , b)) (13)

Pi(f0)(s1 f , h) dg ([BI] t> . . . [Bj-I] o(Cut(f0) Nl[Bfi,] D. . . [B,])(s, f , b) (14)
-
= (us1 . . .Sn-l fi . . . fn-i)([Bi](~i, f , f i) I !sI.[B~](sz, f i , fz) I

. . . I!~i-~.[[Bi-l](~i-l, fi-2, fi-1)I~i-1 . C u t (f ~) (~ i , fi-I, f i) I

si.B+i(si+l,fi,fi+~)l...I!sn-~.I[Bn](~,fn-~,b)) (15)
I

If the second clause for the predicate b in the example of Section 3.2 is replaced
with 'b : -b, !, a.', then we have:

d e f - A(s, f , b) = s.6.f

Bl (s, f , b) dkf A(,, f , b) (- s.b.7)
B2(f0)(.,f1b) def (B D(C.ut!fo) H A)(s, f , b)

(~ ~ 1 ~ 2 f i f 2) (B (~ 1 , f , f i) I ~ i .Cu t (fo) (s z , f i , fz) I sz.A(s, fz, b))

B(s , f , b) (Bl @ Bz)(s, f , 6) = (vfl)(B1(s, f', b)lf1.B2(f)(s, f , b))

Now, the behavior of process B(s, f , b) is different from the one in Section 3.2:

B(s, f , b) = (vfl)(B1(s, f l , b) I f i .B2(f)(s , f , b)) -- (vfl)(s.b.f'I f1.B2(f)(s,f,b))
5 6 - (.fl)(f' I f1.B2(f)(s, f , b)) 1, B 2 (f) (~ , f , b) - (~ ~ 1 ~ 2 f l f 2) (B (~ l , f , f l) l ~ l . C ~ t (f) (~ ~ , f l , fz)I~z.A(s, f 2 , b)) - (~s1szf1f2)((vf1)(5.f1.f'I f l .Bz(f) (s l , f , f1))I

s l .Cut(f>(sa, fl, f2)Is2.A(s1 f 2 , b))

'i (~~1~2flf2)((~f~)(fi..f'I f1.Bz(f)(s1, f , fl))l
Cut(f)(sz , fl, f2)Is2.-4(s, f 2 , b)) - (vs1s2f1f2)((vf1)(f1.f'I f1.Bz(f)(s1 1 f , fi))l%.f2.f Is~.A(s, f 2 , b))

(vsls2fif2)((~f1)(fi.f'I f1.B2(f)(s1, f1 f l)) l f ~ . f l A (~ , f 2 1 b)) - (~s1szf1f2)((~f1)(f1.f'1 f1.Bz(f)(s1 1 f , f1))lfz.f l2.b.K)
s. b
+ (~~1~~fif2)((vfl)(fi.f'1 f l . B ~ (f) (s l 1 f r f1))lfz.f 15)

which shows that after reporting twice success via % (corresponding to the two
solutions of the predicate b), B(s, f , b) will terminate.

4 Specifying Unification in the T-calculus

In this section, we will show how to represent Prolog terms as T-calculus pro-
cesses, and logical variables as complex processes with channels that, at various
times, can be written, read, and reset. We then show how to specify, in T-calculus,
unification with and without backtracking.

4.1 T e r m s as Processes
The following sorting will be used for specifying terms:

{Tag H (), Cell H (Tag, Ptr U Cell), Ptr H (Cell, P t r))

A channel x:Cell is used for representing terms, and different kinds of terms are
distinguished by different names of sort Tag that x carries:
- Var : Tag denotes an unbound logical variable. Re f : Tag denotes a bound

logical variable. When the first name carried on a channel x : Cell is R e f ,
then the second name must be of sort Cell. In all other cases, the second
name must be of sort Ptr.

- f , g, k : Tag denote function or constant terms where f , g, k are functor
names or constant names. As stated above, the second name that carried on
x must be of sort P t r .

A channel p : P t r is used for representing, in aform similar to a link list structure
(see the coming example), the arguments of a function. 0 :P t r denotes the end of
a list. The following is the translation from Prolog terms to T-calculus processes:

A
If(t~,...~tn)lIl(~)=(~~l...~nxl...~~)(!Ffpl) ! ~ ~ 1 p 2 I ! ~ x ~ p s I . . .

11% xn 01 [IItllll(x~) I . . . I [tn](xn))

A
(I[X]IJ(x) = NewVar (z) Defined in Fig. 2

with the restriction that several occurrences of a same variable X must use the
same channel x and such [X] (x) must be translated only once, e.g. the three
occurrences of X in the following example. The picture shows the 'link list'
representation of the arguments of f (a , g (X) , X , X) .

A o r f (a , g (X) , X , X)III(x) = PI Pa Ps P4 2 1 2 2 2 3) (! 5 f p1
I ! E ~ : ~ P Z I ! ~ ~ X Z P ~ I ! ~ ~ X ~ ~ ~ I ! ~ ~ X ~ ~
I !%a 0 I (v Q I) (! x ~ (~ Q L) 1 ! E x 3 0) / NewVar (z s))

4.2 Logical Variable and Pure Uni f ica t ion

A definition of the agent NewVar and a specification of pure unification without
backtracking is illustrated in Fig. 2, where a logical variable is represented by

N e w V a r (x) dAf T Var 0 . N e w V a r (z) + x (- y) . B n d V a r (x , y)

B n d V a r (x , y) dAf !T R e f y

def D r e f (x , T) = x (t a g y) . ([t a g = R e f] D r e f (y , T) + [tag # R e f] F x)

def
(.=u Y) (% f , b) = (Y T x ~ y) (D ~ e f (z , ~ x) I D ~ e f (y , T Y) ~ T X (X ~) . T Y (Y ~) .

([X I = y l] ~ . b . T +

["I # ~ l l " l (t a 9 x p x) . y l (t a g , P,).
-

([t a g , = V a r] - y1.S.b. f +
[tag , =Var] - X I .?.b.T +
[tag= # V a r I [t a g , # V a r I ([t a g x = tag, l (px = p p ,) (s , f , b) +

[tag% # tag,] f 1))
def

(p = p q) (s , f , b) = [P = 91 S.b.7 +
[P # 91 P (X P l) . q (y q l) . ((r =u ?/I O((Pl =, q 1)) (s , f , b)

big. 2. Pure Unification Without Backtracking 1

a process with two states:

- the unbound state NewVar(x) which can either send (Var 0) along channel
x to indicate that a: is not bound yet, or receive (- y on channel x to indicate
that x is oing to be bound to the cell y, and there ore enter the bound state
~ n d ~ a r t x , y).

2
- the bound state BndVar(x , y) which always send (R e f y) along channel x

to indicate that x is bound to y.

When x is bound to y in the state BndVar(x, y), y itself may denote an
unbound logical variable and may be bound to another cell later. Hence, pos-
sible reference chains can exist, such as in Fig. 3. In order to unify two cells

m m m
!z Ref y I !jj Ref z I !Z Ref w I !E k 0 I ! T i Ref z

Fig. 3. Reference Chain

(representing two terms), dere ferencing is performed by a process Dre f (x , r)
which, when applied to a cell x, will send along channel r the last cell of the
chain that contains the cell x. In the example of Fig. 3 , Dref(x, r) will cause -
r w.

The process (x =, y)(s, f, b) performs unification, which first invokes Dre f
to dereference possible chains in order to get the last cells X I and yl :

- If x1 and yl are the same cell, then done.
- If X I (resp. yl) is an unbound variable, then xl (resp. yl) is bound to the

cell yl (resp. xl).
- If x l and yl are both bound, then check whether they have same tag (i.e.

same functor/constant name), if yes, then call agent =p to unify their argu-
ments.

Basically, the agent =p sequentially calls the unification agent =, to unify all
pairs of the corresponding arguments. Now, let us look at a simple example,
illustrated in Fig. 4, where four unbound variables x, y, u, v are to be unified.

initially: N e w V a r (x) / NewVar (y) 1 NewVar (u) I NewVar (v)

m
after x =, y: !F Ref y (NewVar (y) I NewVar (u) I NewVar (v)

rn rn
after u =, v: !F Ref y I NewVar (y) I !ZRef v (NewVar (v)

m m
after x =, u: ! R e f y I !?jRef v 1 !E Ref v 1 Newl /a r (v)

Fig. 4. Unification of Four Variables

In the last step, unification x =, u is actually performed at cell y and v due to
the dereferencing.

4.3 Unification with Backtracking

In Prolog, a backtracked unification must undo all the variable bindings per-
formed during the unification, i.e. reset the corresponding variables to the un-
bound state. We can modify the above unification agent definitions to incorpo-
rate the backtracking, as shown in the Fig. 5. Only the definitions for BndVar
and =, need to be changed. In the bound state BndVar(x, y), a special cell
(Bck -) can be received along channel x to indicate that x must be reset to
the unbound state NewVar(x). So, having reported success (S) after binding
yl to x l (resp. X I to yl), the process (x =, y)(s, f , b) waits on the backtracking

def -
B n d V a r (x , Y) = x Ref ~ . B n d V a r (x , Y) + x (t a g -).[tag = B c k] N e w V a r (x)

def
(X = U Y) (s , f , b) = (v r x r y) (D r e f (2 , ~ x) I D ~ e f (3 1 , T ~) ~ T , (X I) . T ~ (Y I) .

-
([x i = yi]s .b. f +

[X I # ~ 1 1 x 1 (tag.% p=) .y l (tagy py).

([t a g , = V a r] - y1 .s. b . E Bck 0.7 +
[tag , = V a r] jjT - x l .Z .b .E Bck 0.7 +
[tag , # V a r I [t a g , # V a r l ([t a g x = t a g y l (p X =.p,)(s, f , b) +

[tag , # t a s , l 7))))

ig. 5. Unification with Backtracking

channel b. If it receives a backtracking request b , then it will undo the variable
binding by sending out a special cell (Bck -) along channel (resp. yl) before
reporting failure via 7.

Occur-check is not performed at the above unification, hence circular terms
are allowed to be constructed. However, an occur-check can be specified in T-

calculus and be easily incorporated into the above unification.

5 Prolog

Now we are going to merge the specifications described in Section 3 and 4 to
give a full specification of Prolo . We assume that all Prolo clauses have been
simplified in such a way that afl head unifications are ex$citly called in the
body, i.e. all clause heads contain only variables as arguments, such as in the
following append example:

5.1 U n d o Cha in s

The agent C u t defined in Section 3.3 is not powerful enough when combined with
unification. Given a clause in the form: 'P : -B1,. . . , Bj-l, !, Bj+], . . . , B,.', a
backtracking to the cut ! not only causes the failure of the calling process, but
also has to undo all the variable bindings performed in B1, . . . , Bj-1. In order
to achieve this effect, an undo chain is used by associating each goal process
with two additional channels of sort U n d o , i.e. [G] (u , v)(s, f , b) with sorting
[GI] : (Undo, Undo)^(Succ , Fail, Fail). We call v the input undo channel, and
u the output oudo channel. Upon receiving an undo signal on v, G](u , v (s,, f , b
will undo all the variable bindings it has performed, and then sen ! I an u n o signa
on ?i, which will cause another process to undo the variable bindings. An undo
chain runs from right to left in a conjunction, similarly to the backtracking
chain as shown in Fig. 1. The modified definitions after incorporating the undo
channels are shown in Fig. 6.

(A b B) (u , v) (s , f , b) 5 (v u ' s 1 f 1) (A (u , u l) (s l , f , f ') 1 !s'.B(u', v) (s , f ' , b))

(A b/ B) (u , v) (s , f , b) 5 (v u l s l f l) (~ (u , u l) (s l , f , f ') I s l . ~ (u l , V) (S , f l , b))

(A $ B) (u , v) (s , f, b) 2 (v f l) (A (u , v) (s , f ' , b) 1 f l . B (u , v) (s , f , b))
def -

C u t (f o) (u ~) (u , v) (s , f , b) = s.(v.E+b.([u # uo]z.uo.fo+ [u = ~ 0 1 . 5))

(x = y) (u , v) (s , f , b) def (VS' f ~ b ') ((x = ~ y)(s: f : bl) I (f ! f +s ' .~.(b.F. f l . f+v.F. fl.3))

Fig. 6. Incorporating the Undo Channels

- Since D and bI are used for conjunctions, so their definitions are mod-
ified only to expand the undo chain, in a similar way as expanding the
backtracking chain.

- The Cut : (Fa i l)^ (Undo)^(Undo, Undo)^(Succ , Fail, Fail) reports success
as usual, then

if it receives backtracking request b, then it sends ii to undo all the
variable bindings performed by the goals before the cut. As we shall see
in the definition (17) in Fig. 7, the u,o must be the output undo channel of
the leftmost goal. So signaling on uo means that all the undo's have been
finished, and only then the Cut reports fai l on The match [u = uo]
means that the cut itself is the leftmost goal, so no undo is necessary.
if it receives undo request v, then it passes out the undo request on ii.
This case can happen when the undo is caused by other cut or by a Not,
defined in Section 5.3.

- The unification agent (x = y) : (Undo, Undo)^(Succ , Fail, Fail) calls the
backtracking unification agent =,, defined in Section 4.3. If =, fails (f'),
then it reports fai l (7). If =, succeeds (s'), then it reports success (s), but
then

If a backtrackinq request b is received. then =,, is backtracked (b') (which - - - \ , ,
will automatically undo variable bindings as described in Fig. 5). Since
a backtracked unification - must fails, so after signaling on fl , the agent
= reports fails(f) .

~,

If an undo request v is received, then by backtracking the =, via b', all
the variable bindings performed by =, will be undone. After signaling
on f', which also means the undo is finished, the agent = passes the
undo request to other goals via 21.

5.2 Full Specification of Pro log

As in Section 3 , suppose that a predicate P of arity k is defined by rn clauses,
and the ith clause contains a cut ! as the j th body goal: ' P (X 1 , . . . , X k) : -
B1, . . . , Bj- l , !, Bj+1, . . . , En.'. Let 2 denotes X I , . . . , x k , then a full specification
of Prolog is shown in Fig. 7. Compared to the translation in Section 3, there are
only the following changes:

- the agents P and Pi now take additional k + 2 arguments, i.e.
P : (Cell, . . . , Cell)^ (Undo, Undo)^ (Succ, Fail, Fail),
Pi : (Cell, . . . , Cell)^(Fai l)^(Undo, Undo)^(Succ , Fail, Fail).

- Cut takes additional argument u' , which is also the output undo channel of
leftmost process [B I] , satisfying the requirement stated in Section 5.1.

with the following restrictions: I
- Suppose VI,. . . , V, are the all shared local variables among 31,. . . , B,, then

V l , . . . , V, will be translated into NewVor(v1) I . . . I NewVar(v ,) as in (17) .
- in (18), any occurrence of shared local variables (x, . . . , V,) or head variables

(XI . . . Xk) in the body goals will be represented directly by the corresponding
vl . . . v, or X I . . .xk without generating new channels.

r ig. 7. Full Specification of Prolog i
I I

- v.21'.u1.ii in definition (17) is used to handle the undo request (v) from outside
of Pi. Hence we distinguish between the uodo request set by the inside Cu t
which should be stopped at [B1] , and the undo request (v) from outside of
Pi which, after finishing all the undo's of this clause (via v'.ul), should be
passed out to other process via ii.

The restrictions in Fig. 7 require that each shared local variable in the body is
translated only once and every occurrence of same variable in different subgoals
will use the same channel name (of sort Cell). If the ith clause contains no
cut, then use [B j] in place of Cut(fo)(u) in definition (17) and eliminate the
argument (f o) from Pi. If the ith clause is a fact of the form 'P(X1, . . . , X k) .I,
then the agent Pi is defined as follows:

which is also the definition for t rue . As an example, the translation of append
is shown in Fig. 8. The is the functor name for the list structure.

P ig. 8. Encoding the Append predicate

5.3 Negation as Failure and Other Prolog's Primitives

Based on the principle of negation as failure, we can define a control operator
Not for Prolog negation not (\+).

(N o (())) () (f ,b) (uu'?i'slf'b')(A(~)(u',u')(s: f', b') (
(s'..'.u1.7+ fl.s.(b.f + v . ~)))

Agent Not(A(2)) first calls A(?): if A(2) fails (f'), then Not(A(2)) reports
success (S) and then handles possible backtracking request (b.7) or passes undo
request (v.E); if A(2) succeeds (s'), then Not(A(5)) reports fa i l (7) after undo- -
ing possible variable bindings (because of A(2)) via vl.u'.

Prolog's condition operator (P-> Q; R), as well as t rue and fai l , are speci-
fied in a-calculus as follows:

def -
True(u, v)(s, f , b) = s.(b.f + v.E)

def -
Fail (u , v)(s, f , b) = f

For the similar reason as in the definition (17) of Fig. 7, v .v ' .u1 .~ is used in
defining the condition agent.

6 Future and Related Works

Ross's CCS Semantics of Prolo The work described here has been more or
less influenced by Ross's works on &e CCS semantics of Prolog control [RS91,
Ros92aI and on the a-calculus semantics of logical variables [RosSSb]. However,
our approach, described in Section 3, exactly models Prolog's left-right sequential
control while [RS91, Ros92aI does not. Namely, given a conjunction goal (P , Q) ,
its corresponding T-calculus agent UP] D[&] works in such a way that the success
of [PI] will invoke [Q], and at the same time the agent [PI will suspend until
a backtracking request is received from I[&]. However, the corresponding CCS
agent [PI] D [Q] in [RS91, Ros92aI works in a different way that the success of
[PI will invoke [Q], but a t the same time the agent [P] can concurrently works
to find alternative solutions to invoke another copy of [Q]. Hence a certain kind
of or-parallelism exists, so it is unclear how unification can be incorporated
(at the process level) into such a scheme since or-parallelism usually requires
multi-environments.

The approach of this paper is also simpler since only two4 control operators
are needed, corresponding to Prolog's sequential-and and sequential-or, while
[RosS'La] uses five control operators. This paper specifies not only Prolog's con-
trol but also unification, while [Ros92a] does not specify unification as process.
Although a n-calculus semantics of unification has been attempted in [Ros92b],
it fails to work for some examples, such as the example of unification of four

bl is only an optimization of b in the sense that b works well in the place of H,
as described in Section 3 .

variables in Fig. 4.

Warren's Abstract Machine The representation of logical variables and the
approach for unification described in Section 4 are similar to those in the WAM
[War83, AK91], especially in the way of using reference chains for binding vari-
ables. However, these two approaches are at different levels, i.e. algebraic process
level and abstract instruction level. Since the WAM is much closer to an actual
implementation than the a-calculus specifications, it necessarily has more com-
plicate and explicit notation of environment stack.

Evolving Algebra The comparison of this work with other semantics specifica-
tions of Prolo , especially the work in evolving algebra by Borger and Rosenzweig
[BRgO, BR92f will be interesting.

Continuation-Passing Style The specification presented in this paper is sim-
ilar in spirit to the continuation-passin style used in functional programming
implementation of Prolog [Nay87, E F 9 q In P(s , f , b) , the s can be treated as
the address of the success continuation process which is invoked when P sends
S ; the f can be treated as the address of failure continuation process which is
invoked when P sends f; and the b is used to pass the address of failure con-
tinuation to the next process in the conjunction since b is the same channel as
the failure channel of next process, as discussed in Section 3. Instead of passing
the continuation itself as in most continuation-passing styles, only the address
of the continuation is passed in our approach.

Concurrent Logic Programming Languages As the a-calculus is a model
of concurrent computation, the approaches of this paper can be extended to
specify the semantics of the family of concurrent logic programming languages.
As a sequel, some results have been achieved in specifying the flat versions
of these languages, such as Flat Parlog CG86] and Flat GHC[Ued86, Sha891,
which do not require multi-environment 1 or committed or-parallelism and whose
unifications are eventual in the sense that no backtracking is required. The and-
parallelism is modeled by using the a-calculus concurrent composition (I pro-
cesses. The committed or-parallelism is modeled in two steps: the or-para ? lelism
part is modeled by using concurrent composition (processes while the commit-
ted non-determinism part is modeled by the non- d eterminisrn of the a-calculus
summation (+) process. We are also successful in specifying a deadlock-free con-
current unification in the a-calculus by associating each logical variable with a
lock.

High-Order Features Using the techniques described in [Mil91 , we can replace
all a-calculus agent definitions with replications. Hence, a pre d icate definition
is now translated into a persistent process which can be called via a unique
channel name (served as the address of the process) associated with it. Since a
channel name can be passed around, we might be able to extend this technique
to specify high-order logic programming languages [MilSOa] in T-calculus. Some
preliminary results show this is promising.

7 Conclusion

This paper presents a concise a-calculus specification of Prolog that combines a
continuation-passing style specification of control with a WAM style specification
of logical variables and unif cation. Several examples have been tested success-
fully using a n-calculus interpreter written by the author. Given a a-calculus
specification of Prolog, the a-calculus bisimulation theory [Milag, MPW92bl
may be a promising tool in Prolo program transformation and reasoning, fol-
lowing lines developed by Ross inqRos92a, RSB1]. Since the a-calculus is a low
level calculus with a simple computation mechanism, it is easy to imagine that a

T-calculus specification of Prolog may yield an actual implementation of Prolog.

Acknowledgments: I own many thanks to Dale Miller who directed me to
this project and contributed a lot of important ideas presented in this paper.
I also thank Srinivas Bangalore for helpful discussions. This project has been
funded in part by NSF grants CCR-91-02753 and CCR-92-09224.

References

[AK91] H. Ait-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. MIT
Press, 1991.

[BRSO] Egon Borger and Dean Rosenzweig. From prolog algebras towards wam
- a mathematical study of implementations. In Computer Science Logic
(LNCS 5331, pages 31-66. Springer-Verlag, 1990.

rBR921 E. Bijrger and D. Rosenzweig. Warn algebras- a mathematical study of
implementation part 2. In ~ & i c ~rogramming (LNCS 592), pages 35-54.
Springer-Verlag, 1992.

[CG86] K.L. Clark and S. Gregory. Parlog: Parallel programming in logic. ACM
Trans. Prog. Lung. Syst., 8(1):1-49, January 1986.

[EF91] C. Elliott and Pfenning F. A semi-functional implementation of a high-
order logic programming language. In P. Lee, editor, Topics in Advanced
Language Implementation, pages 287-325. The MIT Press, 1991.

[Hay871 C.T. Haynes. Logic continuations. Journal of Logic Programming,
4(2):157-176, 1987.

[Mil891 R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Milgoal D. Miller. Abstractions in logic programming. In P. Odifreddi, editor, Logic

and Computer Science, pages 329-359. Academic Press, 1990.
[Milgob] R. Milner. Function as processes. Technical Report 1154, INRIA, Sophia

Antipolis, February 1990.
[Mi1911 R. Milner. The polyadic n-calculus: A turorial. Technical Report ECS-

LFCS-91-180, LFCS, University of Edinburgh, 1991.
[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i.

Information and Computation, 100(1):1-40, 1992.
[MPW92b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, ii.

Information and Computation, 100(1):41-77, 1992.
[Ros92a] B.J. Ross. A n Algebraic Semantics of Prolog Control. PhD thesis, Univer-

sity of Edinburgh, Scotland, 1992.
[Ros92b] B.J. Ross. A n-calculus semantics of logical variables and unificatin. In

Proc. of North American Process Algebra Workshop, Stony Brook, NY,
1992.

[RS91] B.J. Ross and A. Smaill. An algebraic semantics of prolog program termi-
nation. In Eighth International Logic Programming Conference, pages 316
- 330, Paris, France, June 1991. MIT Press.

[Sha89] E. Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):412-510, September 1989.

[Ued86] K. Ueda. Guarded horn clause. In Logic Programming'85, pages 168-179.
LNCS 221, Springer-Verlag, 1986.

[Wa190] D. Walker. T-calculus semantics of object-oriented programming languages.
Technical Report ECS-LFCS-90-122, LFCS, University of Edinburgh, 1990.

[War831 D.H.D Wareen. An abstract prolog instruction set. Technical Report Note
309, SRI International, Menlo Park, CA, 1983.

This article was processed using the UTEX macro package with LLNCS style

15

	A π-Calculus Specification of Prolog
	Recommended Citation

	A π-Calculus Specification of Prolog
	Abstract
	Comments

	tmp.1184253322.pdf.fPo15

