25,830 research outputs found

    Predicting when to laugh with structured classification

    No full text
    International audienceToday, Embodied Conversational Agents (ECAs) are emerging as natural media to interact with machines. Applications are numerous and ECAs can reduce the technological gap between people by providing user-friendly interfaces. Yet, ECAs are still unable to produce social signals appropriately during their interaction with humans, which tends to make the interaction less instinctive. Especially, very little attention has been paid to the use of laughter in human-avatar interactions despite the crucial role played by laughter in human-human interaction. In this paper, a method for predicting the most appropriate moment for laughing for an ECA is proposed. Imitation learning via a structured classification algorithm is used in this purpose and is shown to produce a behavior similar to humans’ on a practical application: the yes/no game

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Tactor devices : using tactile interface designs for mobile digital appliances : a practice-based research thesis for the fulfilment of a Master of Design degree, College of Design, Fine Arts, and Music, Massey University, Wellington

    Get PDF
    This Thesis focuses the potential of communication interfaces that use tactors (tactile actuators) to improve user interactions with mobile digital devices which are currently based on audio and visual technologies. It presents two product concepts, which use tactile signals to enable new ways in tele-operations, such as tactile telecommunication and tactile navigation. Tactor interfaces, although still in its infancy as elements of modern digital communication and technology, have considerable potential for the future as designers attempt to maximise the use of all human senses in people's interaction with technology. Only the military and a few entertainment companies have introduced tactile signals into Human-Computer Interactions (HCI). Human touch perception uses the hands as the main sensing organs. They perceive tactile signals while handling, typing or navigating with digital devices and receive direct confirmation of physical actions. In contrast to other senses, touch perceptions are based on interactions with the sensed objects. The study analyses, experiments and evaluates if these interactions are useful in interface designs and recommends how tactile stimulations can be introduced to interface designs besides images and sounds that dominate the control of current digital appliances. Tactile actuators and sensors enable devices to use tactile signals, such as impulses and vibrations, to communicate with the users. Users and tactor devices will be able to communicate in a physical and direct way. Touch reflective interfaces, could react like living creatures that respond to touch, for example a cat that starts purring when touched. Digital product design is always challenged to create human-computer interactions that meet people's needs. Designing digital devices is difficult because they are not necessarily three-dimensional objects. They are stimulator of the human senses and can be as small as the sensing nerve endings that detect sensations. By miniaturisation, form and function become invisible and Product Design is increasingly incorporating Process Design that explores and enables new interactions between users and products to work interactively and efficiently. The study is divided into four chapters: Chapter 1 gives an introduction to the thesis. Chapter 2 presents a survey on current literature which examines the five human senses to define the limits and possibilities in interface design. It reviews current research on materials and technologies as well as the psychology and physiology of touch as a potential sense in human-computer interactions. It evaluates the technical feasibilty of tactile signal performances and how they could be used as tele-touch codes in navigation and telecommunication. Chapter 3 is focused on primary research undertaken to extend the knowledge in tactile sensing. It includes experiments, questionnaires, and concepts that give examples how tactor interfaces can be used in tele-operations. This section focuses on specific user groups, that may primarily benefit from tactile signal transmissions, such as sight and hearing-impaired people or professionals who have to deal with limited perceptions like fire fighters, for example. These case studies are aimed at exploring and expanding a wider range of possibilities in tactile device innovations in the networked society. Chapter 4 gives a conclusion of the research

    A study of the very high order natural user language (with AI capabilities) for the NASA space station common module

    Get PDF
    The requirements are identified for a very high order natural language to be used by crew members on board the Space Station. The hardware facilities, databases, realtime processes, and software support are discussed. The operations and capabilities that will be required in both normal (routine) and abnormal (nonroutine) situations are evaluated. A structure and syntax for an interface (front-end) language to satisfy the above requirements are recommended
    • …
    corecore