5,092 research outputs found

    Freight Train Optimization and Simulation

    Get PDF
    Train scheduling has already received a lot of attention, whether for passenger or freight trains. While the volume of goods transport has increased over the years, extensions of railway systems are very rare because they represent major investments for railway companies or governments. Accordingly, the railway companies are often operating freight trains in a system that is close to saturation. It follows that a very effective planning and optimization of the rail network is needed. While passenger train schedules are relatively static and cyclic, and can be planned months ahead, freight train schedules are designed with a much shorter planning time period, sometimes even one day or few hours before train departures. Moreover, passenger train schedules must obey some strict time window constraints as trains must arrive and depart from stations in order for passengers to get off/on the trains according to the posted schedule. On the opposite, the schedule of the freight trains may vary according to the train lengths or loads, i.e., freight trains have a much greater variability in their average speed. Lastly, the track configuration of the freight trains does not have a dedicated direction as it is often the case for passenger trains. For all those reasons, the scheduling of freight trains is more complex than for passenger trains. In this thesis, we propose a new dynamic row/column management algorithm for the schedule of freight trains in a single/double track railway mesh network system. While many works have already been devoted to train scheduling, previously published optimization models all suffer from scalability issues. Moreover, very few of them take into account the number of alternate tracks in the railway stations or in the sidings for train meets, as well as the delay incurred by trains that take sidings. We propose a non time-indexed model, which takes into account such constraints, and we design an original solution scheme with iterative additions/removals of constraints/variables in order to remain with a manageable sized mixed integer linear program, while still ensuring convergence to an optimal solution. Numerical results are presented on several data instances of CPR (Canada Pacific Railway) on the Vancouver-Calgary corridor, one of the busiest corridors in their railway system. In addition, we developed a simulation tool within the Arena framework, for the scheduling of freight trains. Comparisons of the simulation and optimization tools are made, together with a review of the pros and cons of simulation against optimization tools

    A Dynamic Row/Column Management Algorithm for Freight Train Scheduling

    Get PDF
    We propose a new dynamic row/column management algorithm for freight train scheduling in a single track railway system. While many papers have already been devoted to train scheduling, previously published optimization models still suffer from scalability issues, even for single track railway systems. Moreover, very few of them take into account the capacity constraints, i.e., the number of alternate tracks in the railway stations/sidings in order for the trains to meet/bypass. We propose an optimization model which takes such constraints into account, while still handling efficiently the other meaningful constraints. We design an original solution scheme with iterative additions/removals of constraints/variables in order to remain with a manageable sized mixed integer linear program at each iteration, without threatening to reach the optimal solution. Numerical results are presented on several data instances of CPR (Canadian Pacific Railway) on the Vancouver-Calgary corridor, one of the most busy corridor in their railway system. Therein, the proposed model and algorithm are used as a planning tool to evaluate the network capacity, i.e., how much the number of trains can be increased without impacting significantly the average travel times between the source and destination stations of the various trains in the corridor. Larger data instances than those previously published are solved accurately (epsilon-optimal solutions) for the schedule of freight trains

    Multi-objective model for optimizing railway infrastructure asset renewal

    Get PDF
    Trabalho inspirado num problema real da empresa Infraestruturas de Portugal, EP.A multi-objective model for managing railway infrastructure asset renewal is presented. The model aims to optimize three objectives, while respecting operational constraints: levelling investment throughout multiple years, minimizing total cost and minimizing work start postponements. Its output is an optimized intervention schedule. The model is based on a case study from a Portuguese infrastructure management company, which specified the objectives and constraints, and reflects management practice on railway infrastructure. The results show that investment levelling greatly influences the other objectives and that total cost fluctuations may range from insignificant to important, depending on the condition of the infrastructure. The results structure is argued to be general and suggests a practical methodology for analysing trade-offs and selecting a solution for implementation.info:eu-repo/semantics/publishedVersio

    Integer programming based solution approaches for the train dispatching problem

    Get PDF
    Railroads face the challenge of competing with the trucking industry in a fastpaced environment. In this respect, they are working toward running freight trains on schedule and reducing travel times. The planned train schedules consist of departure and arrival times at main stations on the rail network. A detailed timetable, on the other hand, consists of the departure and arrival times of each train in each track section of its route. The train dispatching problem aims to determine detailed timetables over a rail network in order to minimize deviations from the planned schedule. We provide a new integer programming formulation for this problem based on a spacetime networkÍŸ we propose heuristic algorithms to solve it and present computational results of these algorithms. Our approach includes some realistic constraints that have not been previously considered as well as all the assumptions and practical issues considered by the earlier works

    The new Dutch timetable: The OR revolution

    Get PDF
    In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network, and improve the robustness of the timetable resulting in less train delays in the operation. Further adjusting the existing timetable constructed in 1970 was not option anymore, because further growth would then require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques, and finally selected and implemented one of these timetables. Furthermore, because rolling-stock and crew costs are principal components of the cost of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of 40 million euros (60million)ofwhichabout10millioneuroswerecreatedbyadditionalrevenues.Weexpectthistoincreaseto70millioneuros(60 million) of which about 10 million euros were created by additional revenues. We expect this to increase to 70 million euros (105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible. Therefore, people can switch from car transport to rail transport, which will reduce the emission of greenhouse gases.

    Modelling rail track deterioration and maintenance: current practices and future needs

    Get PDF
    As commercialisation and privatisation of railway systems reach the political agendas in a number of countries, including Australia, the separation of infrastructure from operating business dictates that track costs need to be shared on an equitable basis. There is also a world-wide trend towards increased pressures on rail track infrastructure through increases in axle loads and train speeds. Such productivity and customer service driven pressures inevitably lead to reductions in the life of track components and increases in track maintenance costs. This paper provides a state-of-the-art review of track degradation modeling, as well as an overview of track maintenance decision support systems currently in use in North America and Europe. The essential elements of a maintenance optimisation model currently under development are also highlighted

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Optimized shunting with mixed-usage tracks

    Get PDF
    We consider the planning of railway freight classification at hump yards, where the problem involves the formation of departing freight train blocks from arriving trains subject to scheduling and capacity constraints. The hump yard layout considered consists of arrival tracks of sufficient length at an arrival yard, a hump, classification tracks of non-uniform and possibly non-sufficient length at a classification yard, and departure tracks of sufficient length. To increase yard capacity, freight cars arriving early can be stored temporarily on specific mixed-usage tracks. The entire hump yard planning process is covered in this paper, and heuristics for arrival and departure track assignment, as well as hump scheduling, have been included to provide the neccessary input data. However, the central problem considered is the classification track allocation problem. This problem has previously been modeled using direct mixed integer programming models, but this approach did not yield lower bounds of sufficient quality to prove optimality. Later attempts focused on a column generation approach based on branch-and-price that could solve problem instances of industrial size. Building upon the column generation approach we introduce a direct arc-based integer programming model, where the arcs are precedence relations between blocks on the same classification track. Further, the most promising models are adapted for rolling-horizon planning. We evaluate the methods on historical data from the Hallsberg shunting yard in Sweden. The results show that the new arc-based model performs as well as the column generation approach. It returns an optimal schedule within the execution time limit for all instances but from one, and executes as fast as the column generation approach. Further, the short execution times of the column generation approach and the arc-indexed model make them suitable for rolling-horizon planning, while the direct mixed integer program proved to be too slow for this. Extended analysis of the results shows that mixing was only required if the maximum number of concurrent trains on the classification yard exceeds 29 (there are 32 available tracks), and that after this point the number of extra car roll-ins increases heavily

    Dynamic railway junction rescheduling using population based ant colony optimisation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Efficient rescheduling after a perturbation is an important concern of the railway industry. Extreme delays can result in large fines for the train company as well as dissatisfied customers. The problem is exacerbated by the fact that it is a dynamic one; more timetabled trains may be arriving as the perturbed trains are waiting to be rescheduled. The new trains may have different priorities to the existing trains and thus the rescheduling problem is a dynamic one that changes over time. The aim of this research is to apply a population-based ant colony optimisation algorithm to address this dynamic railway junction rescheduling problem using a simulator modelled on a real-world junction in the UK railway network. The results are promising: the algorithm performs well, particularly when the dynamic changes are of a high magnitude and frequency

    Optimal Scheduling of Trains on a Single Line Track

    Get PDF
    This paper describes the development and use of a model designed to optimise train schedules on single line rail corridors. The model has been developed with two major applications in mind, namely: as a decision support tool for train dispatchers to schedule trains in real time in an optimal way; and as a planning tool to evaluate the impact of timetable changes, as well as railroad infrastructure changes. The mathematical programming model described here schedules trains over a single line track. The priority of each train in a conflict depends on an estimate of the remaining crossing and overtaking delay, as well as the current delay. This priority is used in a branch and bound procedure to allow and optimal solution to reasonable size train scheduling problems to be determined efficiently. The use of the model in an application to a 'real life' problem is discussed. The impacts of changing demand by increasing the number of trains, and reducing the number of sidings for a 150 kilometre section of single line track are discussed. It is concluded that the model is able to produce useful results in terms of optimal schedules in a reasonable time for the test applications shown here
    • 

    corecore