
A Dynamic Row/Column Management Algorithm
for Freight Train Scheduling∗

Brigitte Jaumard1, Thai H. Le1, Huaining Tian1, Ali Akgunduz2,
and Peter Finnie3

1 Concordia University, CSE – Computer Science and Software Eng., Concordia
University, Canada, bjaumard@cse.concordia.ca

2 Concordia University, MIE - Mechanical and Industrial Eng., Concordia
University, Canada

3 CPR, Canadian Pacific Railway, Calgary, Canada

Abstract
We propose a new dynamic row/column management algorithm for freight train scheduling in a
single track railway system. While many papers have already been devoted to train scheduling,
previously published optimization models still suffer from scalability issues, even for single track
railway systems. Moreover, very few of them take into account the capacity constraints, i.e., the
number of alternate tracks in the railway stations/sidings in order for the trains to meet/bypass.
We propose an optimization model which takes such constraints into account, while still handling
efficiently the other meaningful constraints. We design an original solution scheme with iterative
additions/removals of constraints/variables in order to remain with a manageable sized mixed
integer linear program at each iteration, without threatening to reach the optimal solution.

Numerical results are presented on several data instances of CPR (Canadian Pacific Railway)
on the Vancouver-Calgary corridor, one of the most busy corridor in their railway system. Therein,
the proposed model and algorithm are used as a planning tool to evaluate the network capacity,
i.e., how much the number of trains can be increased without impacting significantly the average
travel times between the source and destination stations of the various trains in the corridor.
Larger data instances than those previously published are solved accurately (ε-optimal solutions)
for the schedule of freight trains.

1998 ACM Subject Classification G.1.6 Integer Programming, G.2.3 Applications

Keywords and phrases Railway optimization, Train scheduling, Single track

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.108

1 Introduction

Train scheduling has already received a lot of attention, whether for passenger or freight
trains. While passenger train schedules are relatively static and cyclic, and can be planned
months ahead, freight train schedules are designed with a much shorter planning time period,
sometimes even one day or few hours before train departures. Moreover, passenger train
schedules must obey some strict time window constraints as trains must arrive and depart
from stations in order for passengers to get off/on the trains according to the posted schedule.
On the opposite, the schedule of the freight trains may vary according to the train lengths
or loads, i.e., freight trains have a much greater variability in their speed. Lastly, the track
configuration of the freight trains does not have a dedicated direction as it is often the case

∗ This work was partially supported by CPR, NSERC and FQRNT.

© Brigitte Jaumard, Thai Hoa Le, Huaining Tian, Ali Akgunduz, and Peter Finnie;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 108–119

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.108
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 109

for passenger trains. For all those reasons, the scheduling of freight trains is more complex
than for passenger trains. While the volume of goods transport has increased over the years,
extensions of railway systems are very rare because they represent major investments for
railway companies or governments. Accordingly, the railways are often operating freight
trains in a system that is close to saturation. It follows that a very effective planning and
optimization of the rail network is needed. From now on, we focus on freight train scheduling,
and refer the interested reader to, e.g., the following surveys for passenger train scheduling
[1] [3].

Several optimization models, exact and heuristic algorithms have been proposed for freight
train scheduling. We will now review the most recent ones. Kraay and Harker [7] proposed a
Mixed Integer Linear Program (MILP) with only a subset of the constraints (dwell times,
train meets and overtakes, time windows on the departure/arrival times) which does not
include any capacity constraint, i.e., limit on the number of available tracks at a given
station/siding. Moreover, they use heuristics in order to solve their model as their solution
process is not able to scale with the large number of constraints and variables. Experiments
are very limited (less than 11 stations/sidings along a single line track). A very similar
MILP model was developed by Higgins, Kozan and Ferreira [5] and tested against a Tabu
Search heuristic on data instances with up to 30 trains and 12 sidings. As for [7], the MILP
model could not scale properly. Consequently, the authors only solve the linear relaxation of
their MILP model, and use the lower bound it provides in order to evaluate the quality of
their heuristic solutions. Depending on the papers, the objective varies from minimizing the
tardiness of the trains or the fuel consumption for the most commonly considered ones.

A similar MILP model has been reused in [4, 9, 8, 2]. In [9], Zhou and Zhong design
a branch-and-bound based heuristic and a Lagrangian relaxation lower bound in order to
solve data instances with up to 30 trains and 18 stations. In [8, 2], the authors propose a
vertical decomposition algorithm in order to overcome the scalability issues, i.e., dispatching
the trains one by one, or one train cluster at a time in the MILP model. However, the size of
successive MILP models to be solved is constantly increasing, and therefore the size of solved
data instances is not much larger than those of previous studies. Note also that, in the first
algorithm (FixedPath) of [8] and in [2], the definition of the route of a train includes whether
to travel or not to travel a siding, and routes are defined at the outset (i.e, no optimization
is made on which trains should travel the sidings). Track capacity constraints are enforced
with flow conservation constraints which require the introduction of additional variables. In
the second algorithm (FlexiblePath) of [8], routes are no more defined at the outset, however,
several restrictions apply, in particular, two trains travelling in the same direction cannot be
running at the same time on an identical segment, one train behind the other one (under
some headway constraints). The authors solved data instances with 4 trains using their exact
models, and then larger data instances with the help of heuristics and a parallel algorithm,
i.e., data instances with up to 10 sidings and 24 trains.

The paper is organized as follows. In Section 2, we present the problem statement of the
train scheduling in a single track freight train railway system, as that of CPR - Canadian
Pacific Railway. The newly proposed optimization model is detailed in Section 3, with the
inclusion of the capacity constraints. Solution of the optimization model, an original dynamic
row and column generation/removal exact algorithm is described in Section 4. Numerical
results are presented in Section 5 on several data set instances in order to evaluate the
performance of the optimization model, as well as an estimation of the network capacity of a
railway system, i.e., how many trains can run simultaneously in the system without unduly
increasing the average travel times. Conclusions are drawn in the last section.

ATMOS’12

110 A Dynamic Row/Column Management Algorithm for Train Scheduling

2 Problem Statement

This study considers a rail system with a single two-way track between stations or sidings,
associated with a mesh network. Each track is divided into segments which are separated
by sidings or stations. Tracks can be used by trains running in both directions, and trains
can meet and pass at stations or sidings. Sidings are typically added to a railway line in
order to allow two trains to pass one another and are the most common method used to
expand capacity. Sidings are typically built long enough to permit trains to come to a full
stop inside the siding while remaining clear of the switches at either end.

The proposed optimization model, which will be detailed in the next section, builds a
freight train scheduling with all meaningful constraints. The input is the topology of the
network as described by its set of segments and the list of trains that need to be scheduled,
with their characteristics: origin/destination stations, expected departure/arrival times,
average and maximum train speed. Moreover, each train has a specific priority which
depends on the train series, i.e., the types of goods. It may also depend on the customer
contract agreements and the train loads. We assume that the given railway network is a
single track mesh network. Two trains in opposite directions are not allowed to be on the
same track segment and they can meet each other only at a siding or a station. Two trains
in the same direction can be running on a segment at the same time but they must maintain
a safety distance, and they can pass each other only at a siding or a station.

The output of the model is a schedule for each train that specifies the departure and
arrival times at each siding/station, and consequently the earliness/tardiness on the expected
departure time with respect to the objective which has been set. In this study, we focus on
the objective of minimizing the average travel times between departure/destination stations,
while restricting the standard deviation to be below some threshold throughout a limit on
the train end-to-end travel times.

3 Optimization Model

3.1 Input Parameters

Railway network parameters
P = P stations ∪ P sidings, indexed by p, where P stations is the set of station locations and P sidings

is the set of siding locations.
S Set of segments in the railway network, indexed by s. A segment is a single track between

two successive locations of elements (either a station or a siding) of P . A segment s =
[p, p′]corresponds to an ordered pair of locations, with p traversed before p′.

Train parameters
T Set of trains, indexed by t
Tp Set of trains which go through location p
Ts Set of trains which go through segment s
T⇒

s Set of (t, t′) pairs of trains that travel segment s = [p, p′] ∈ S in the same
direction

T�
s Set of (t, t′) pairs of trains that travel segment s = [p, p′] ∈ S in the opposite

directions
src(t) Departure station of train t
dst(t) Destination/arrival station of train t
St List of segments defining the route of train t from src(t) to dst(t)

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 111

d
t
src(t) Expected (planned) departure time of train t at its origin location
at

dst(t) Expected (planned) arrival time of train t at its destination location
πt Priority (e.g., series number) of train t in the network
penalt

offset_d Penalty if train t leaves the origin station before/after the planned departure
time

Location and train parameters
dwt

p Minimum dwell time of train t at location point p. If p is only a location that train t
is passing through, then dwt

p = 0.
vt

s Average speed of train t on segment s. It depends on many parameters, e.g., the
number of locomotives, the length of the train, the series number of the train, the
load of the cars, the slope of the track, etc.

capp The capacity, in terms of the number of tracks, of the siding located at p, i.e., the
number of parallel tracks, excluding the main track. For the time being, we do not
take into account the length of the sidings vs. the length of the trains, and therefore
assume that each track in a siding can host any train, one at a time.

We assume that all times are expressed in minutes. In order to simplify the expression of the
constraints, we assume that all constraints are expressed in terms of times, meaning that
the average/maximum speeds are translated into times it takes for a train to travel a given
distance (e.g., segment):
rt

s Average time for train t to travel segment s = [p, p′] with p, p′ ∈ P , i.e., rt
s =

Distance(p, p′)/(Average speed of t on s = [p, p′]).
rt

s Minimum time for train t to travel segment s = [p, p′] with p, p′ ∈ P , i.e., rt
s =

Distance(p, p′)/(Speed Limit of t on s = [p, p′]).
τ t

s Time required for train t to travel the safety distance on segment s = [p, p′].

3.2 Variables
The first set of variables are related to the arrival and departure times of the trains.

dt
p Departure time of train t from location p

earlyt
d Earliness of train t at departure station

latet
d Lateness of train t at departure station

at
p Arrival time of train t at location p

offsett
d = max {earlyt

d, latet
d}

All the above variables are real valued variables. Both arrival and departure time values will
be rounded to the closest minute in practice. We use real valued variables to model them to
simplify the solution of the model.
A train schedule is characterized by its arrival/departure time at every station/siding along
its way from origin to destination:

schedule(t) = [(at
src(t), d

t
src(t)), . . . , (at

p, d
t
p), . . . , (at

dst(t), d
t
dst(t))].

The next set of variables corresponds to decision variables, which takes their values in {0, 1}.
For any t, t′ ∈ T⇒

p : t < t′; s = [p, p′] ∈ S; p, p′ ∈ P :
θtt′

p = 1 if t leaves station/siding p before t′, 0 otherwise.
For any t, t′ ∈ T�

s : t < t′; s = [p, p′] ∈ S; p, p′ ∈ P :
δtt′

s = 1 if t leaves p before t′ towards p′, 0 otherwise.
For any t, t′ ∈ Tp : t < t′; p ∈ P :
αtt′

p = 1 if train t arrives after train t′ at point p, 0 otherwise.
βtt′

p = 1 if train t′ departs after the arrival of train t at point p, 0 if train t departs after
the arrival of train t′ at point p.

For any t, t′ ∈ Tp; p ∈ P :
γtt′

p = 1 if the arrival time of t in p is between the arrival and the departure times of t′,
i.e., if at′

p ≤ at
p ≤ dt′

p .

ATMOS’12

112 A Dynamic Row/Column Management Algorithm for Train Scheduling

Indeed,

γtt′

p = αtt′

p βtt′

p ; γt′t
p = (1− αtt′

p) (1− βtt′

p) = 1− (αtt′

p + βtt′

p) + γtt′

p . (1)

Using (1), we can eliminate half of the γtt′

p variables, defining them only for, e.g., t < t′.

3.3 Minimize the Train Travel Times
We look at the objective of minimizing the train travel times in order to estimate the network
capacity, i.e., the maximum number of trains which can be running on the tracks without
deteriorating too much the average travel times between source/destination stations. Indeed,
when a railway network is overloaded, waiting times for crossing or bypassing trains at
sidings, are increasing. The analytical expression of the objective can be written:

1
|T |
∑
t∈T

(
πt (at

dst(t) − d
t
src(t))

)
= 1
|T |
∑
t∈T

(
πt (at

dst(t) − d
t

src(t))
)
, (2)

assuming departure times are fixed (dt
src(t) = d

t

src(t)). A possible drawback of the above
objective (2), i.e., the average of the train travel times, is not to be able to distinguish
between, e.g., 5+5 and 2+8 (same average), resulting in large variance values in the second
case. In order to overcome a possible large variance, we may impose some limit on the travel
time of all or on some of the trains:

at
dst(t) − d

t
dst(t) ≤ max_travel_timet, (3)

where max_travel_timet may depend on the train priorities.
In order to evaluate the network load of a train system, it might be of interest to allow

some offset times on the planned departure times. In such a case, we keep the same objective
(left-hand side of inequality (2)), but add the following constraints (similar constraints could
be added with respect to some arrival offset times):

For each train t ∈ T ,

dt
src(t) = d

t

src(t) + latet
d − earlyt

d ; earlyt
d ≤ earlyt,max

d ; latet
d ≤ latet,max

d . (4)

3.4 Constraints
In order for a train schedule to be feasible, each train must satisfy constraints, namely travel
and dwell time constraints, safety distance constraints, segment conflict constraints, and
capacity constraints. We next describe in detail these constraints.

3.4.1 Travel and Dwell Time Constraints
A train may have to stop at a location point p ∈ P for a given dwell time dwt

p (e.g., time
for loading/unloading goods or train refuelling and crew shift). Inequality (5) guarantees
that the difference between the departure and arrival times should not be smaller than the
minimum dwell time.

dt
p − at

p ≥ dwt
p t ∈ T, p ∈ P. (5)

In any case, dt
p − at

p ≥ 0 for a location p ∈ P where t ∈ T passes trough.
Since the speed of each train t is limited, it requires a minimum amount of time rt

s to
travel segment s = [p, p′]. Inequality (6) ensures that the time travel of segment s, which is

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 113

at
p′ − dt

p, must be at least the minimum rt
s time required for this segment (i.e., train must

observe the speed limit).

at
p′ − dt

p ≥ rt
s t ∈ T, s = [p, p′] ∈ St, p ∈ P, p′ ∈ P. (6)

3.4.2 Safety Distance Constraints
Due to safety regulation, two trains that travel the same segment s = [p, p′] (in the same
direction) must maintain a safety distance (or headway) between them. We express this
safety distance in time terms, using the average speed of the train. In order to ensure that
safety distances are respected, we need to ensure that arrival and departure times are spaced
far enough apart from each other. It leads to the following set of constraints:

For all s = [p, p′] ∈ St ∩ St′ ; t, t′ ∈ T⇒
s : t < t′; p, p′ ∈ P

dt′

p − dt
p ≥ τ t′

p −M(1− θtt′

p) at′

p′ − at
p′ ≥ τ t′

p −M(1− θtt′

p) (7)

dt
p − dt′

p ≥ τ t
p −Mθtt′

p at
p′ − at′

p′ ≥ τ t
p −Mθtt′

p . (8)

Indeed, if train t departs from p before t′ (i.e., θtt′

p = 1), then we must have dt′

p − dt
p ≥ τ t′

p , as
well as at′

p′ − at
p′ ≥ τ t′

p , see (7) when the speed of t′ is higher than the speed of t over segment
s, as otherwise the constraint is always satisfied as long as departure times are sufficiently
spaced out. In such a case, constraints (8) are redundant. On the other hand, if train t′
departs from p before t (i.e., θtt′

p = 0), the meaningful constraints are (8) , while constraints
(7) are redundant.

3.4.3 Segment Conflict Constraints
For two trains t and t′ which need to go through a given single track segment in opposite
directions, we must ensure that one train at most is running on the segment. This is the
purpose of the next set of constraints:
For all s = [p, p′] ∈ S; t, t′ ∈ T�

s : t < t′; p, p′ ∈ P

at′

p ≤ dt
p +M(1− δtt′

s) ; at
p ≤ dt′

p +Mδtt′

s . (9)

Indeed, for a given segment s = [p, p′], with s ∈ St and s′ = −s = [p′, p] ∈ St, and two
trains t, t′ such that t < t′, then either train t reaches p′ before train t′ departs from p′ (i.e.,
δtt′

s = 1), or train t′ reaches p before train t departs from p (i.e., δtt′

s = 0). In the former case,
we must ensure that at′

p ≤ dt
p, while in the latter case, we must ensure that at

p ≤ dt′

p .

3.4.4 Capacity constraints
Note that in order to reduce the number of variables and constraints, we define αtt′

p and βtt′

p

for t < t′, but γtt′

p , for all pairs of t, t′. Capacity constraints are expressed as follows. For all
p ∈ P ; t, t′ ∈ Tp : t < t′, we have:

−Mαtt′

p ≤ at′

p − at
p ≤M(1− αtt′

p) (10)

−M(1− αtt′

p + βtt′

p) ≤ at
p − dt′

p ≤M(1− βtt′

p) (11)

−M(1− βtt′

p + αtt′

p) ≤ at′

p − dt
p ≤Mβtt′

p (12)

(αtt′

p − 1) + βtt′

p ≤ γtt′

p ≤ min{αtt′

p ;βtt′

p } (13)

−
(

(αtt′

p − 1) + βtt′

p

)
≤ γt′t

p ≤ min{1− αtt′

p ; 1− βtt′

p }. (14)

ATMOS’12

114 A Dynamic Row/Column Management Algorithm for Train Scheduling

In addition, we have:∑
t′∈Tp

γtt′

p =
∑

t′∈Tp:t<t′

γtt′

p +
∑

t′∈Tp:t>t′

γtt′

p ≤ capp p ∈ P ; t ∈ Tp. (15)

Each station/siding point p has a limited capacity, i.e., number of side tracks capp, for
trains to meet, overtake or platform. We need to make sure that at any given time, no
more than capp + 1 (with one train on the main track) trains, regardless of their directions,
can be at p. Recall that a train t stays at p during the interval [at

p, d
t
p]. Constraints (10)

determine the value of variables αtt′

p , i.e., the order of train arrival, between t and t′, at
station/siding p. Constraints (11)-(12) determine the value of variables βtt′

p . Constraints
(13) - (14) determine the values of variables γtt′ and γt′t, and correspond to linearization of
the following quadratic terms defined in (1). Finally, inequality (15) ensures that at anytime,
at most capp + 1 trains in any direction can be at the same crossing point p.

4 Solving the stts_m (Single Track Train Scheduling) Model

In order to overcome the large number of constraints and variables, we propose a row and
column generation algorithm, called stts_a and depicted in Figure 1, in which we iteratively
add/remove some rows and columns until we reach an ε-optimal train schedule. Indeed, the
idea is to start with a rather small optimization model made of constraints (4) - (6) only, i.e.,
of the constraints involving only continuous variables: the earliness and tardiness constraints
(4), the dwell constraints (5), and the travel time constraints (6). Note that this first group
of constraints only involves continuous variables, as it does not involve any of the decision
(integer) variables δtt′

s , αtt′

p , βtt′

p , γtt′

p , θtt′

p , and therefore is an easy problem to solve as it is a
linear program (LP).

The resulting LP model is then solved, and then we check the feasibility of the solution,
examining the constraints involving the interaction between two (or more) train schedules.
Note that those last constraints, namely, constraints (7) up to (15), each involves one or two
binary variables (with some constraints sharing the same binary variable(s)), so that their
addition to the incumbent mathematical program will often entail the addition of one or
two new 0-1 variables. A compromise has to be found for the number of added constraints
and variables at each iteration between the following two extreme strategies: adding one
violated constraint at a time or adding all violated constraints. With the first strategy, the
convergence might be too slow, while with the second strategy, we might end up very quickly
with an unnecessary large set of constraints and variables. Once we have added some or all
violated constraints, the optimization model becomes a MILP model, which is solved again,
and we keep adding violated constraints until all constraints are satisfied. Note that, in
practice, it does not require solving the MILP stts_m model with the explicit embedding of
all possible constraints, but with a quite small fraction of the overall set of variables and
constraints, as will be seen in Section 5.

For the addition of the violated constraints, we consider the following strategy. Trains
are ordered according to a given criterion. In this study we order the trains according to
the departure times, alternating between westbound trains and eastbound trains (as the
rail network we consider is an East ↔ West one). Remaining ties, if any, are arbitrarily
broken. At iteration iter ≥ 2, after solving the current MILP, we revisit the constraints
for all the train interaction constraints, namely, (7) up to (15) with respect to the first iter
trains, identify the ones which are violated and add them to the current MILP. Once we

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 115

reach iteration iter = |T |, we may need several iterations before reaching a feasible schedule,
i.e., train schedules which satisfy all constraints.

After conducting some experiments, we found out that, rather than adding all violated
constraints at each iteration, it was more efficient (with respect to the overall computing
times) to only add the first 100 violated constraints.

Note that in the course of the iterations, we may have too many constraints and variables,
so that the scalability of the current MILP is impaired. In such a case, except for constraints
(4) - (6), we remove all the other constraints which are not binding constraints in the last
computed MILP solution.

Figure 1 Flowchart of the Solution Process.

5 Numerical Results

5.1 Data Instances
We evaluated the performance of the stts_m model and stts_a algorithm proposed in
the previous sections on the Canadian Pacific Railway (CPR) network between Calgary and
Vancouver [6]. It is a single track railway system, which we divided into 5 subdivisions. The
number of sidings/stations in each subdivision (including the endpoints) is:

Subdivision 1: Calgary - Field - 16 stations or sidings
Subdivision 2: Field - Revelstoke - 13 stations or sidings
Subdivision 3: Revelstoke - Kamloops - 14 stations or sidings
Subdivision 4: Kamloops - Mission - 14 stations or sidings
Subdivision 5: Mission - Vancouver - 16 stations or sidings

In terms of capacity (number of alternate tracks), we assume 2 alternate tracks at every
location which is the endpoint of a subdivision, and 1 otherwise. The algorithm stts_a was
run on 1 to 5 subdivisions with a variable number of trains in order to evaluate its performance,
but also the network capacity of the railway system. Indeed, there is a compromise between
the number of trains in the railway system and the overall travel times of the trains: if
the number of trains is too large, then the overall travel times of the trains increase with
significant waiting times, which is undesirable.

ATMOS’12

116 A Dynamic Row/Column Management Algorithm for Train Scheduling

We use a set of a 16 to 30 trains, with 61 sidings/stations, (with the same number of
trains from Vancouver towards Calgary as from Calgary towards Vancouver) with departure
times uniformly distributed over a time period of 24 hours. Consequently, when the number
of trains increases, their departure times are less spaced.

5.2 Efficiency of the stts_a Algorithm
Following the description of the stts_a algorithm in the previous section, the algorithm
iteratively adds trains to be taken into account in the overall train schedule, and alternates
between adding violated constraints and removing non binding constraints. First set of
experiments was done with the objective 2, i.e., non flexibility on the departure times.

In Figure 2, we plot the number of constraints and variables at each major iteration
(i.e., when we add a new train to be taken into account in the schedule) of the stts_a
algorithm for train scheduling with 30 trains. We remove non binding constraints before
inserting the constraints (4)-(6) related to an additional train, so we plotted the number of
variables/constraints before/right after the removal of the non binding constraints for the
curves associated with their overall number. Those plots correspond to the saw-tooth curves
in Figure 2. In addition, we added the plots related to the number of constraints/variables
for each set of constraints, but plotted only the numbers after the removal of the non binding
constraints. In Figure 2, the dash lines correspond to the overall number of constraints in
the MILP model: we observe that it goes beyond several tens of thousands constraints while
the number of considered constraints never exceed 10,000 for 30 trains. The legend indicates
the different groups of constraints.

1

10

100

1000

10000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

overall # of var # conflict var

safety var # capacity var

continuous var

4 #	 continuous	 constraints8 #	 overall	 constraints28 20 	 #	 safety	 constraints10 #	 overall	 safety	 constraints52 	 #	 conflict	 constraints2 	 #	 overall	 conflict	 constraints104 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints1064 #	 total	 overall	 constraints1228
4 #	 continuous	 constraints8 #	 overall	 constraints20 20 	 #	 safety	 constraints10 #	 overall	 safety	 constraints52 	 #	 conflict	 constraints2 	 #	 overall	 conflict	 constraints104 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints1064 #	 total	 overall	 constraints1228
5 #	 continuous	 constraints10 #	 overall	 constraints47 27 	 #	 safety	 constraints13 #	 overall	 safety	 constraints104 	 #	 conflict	 constraints4 	 #	 overall	 conflict	 constraints156 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints1750 #	 total	 overall	 constraints2020
5 #	 continuous	 constraints10 #	 overall	 constraints27 27 	 #	 safety	 constraints13 #	 overall	 safety	 constraints104 	 #	 conflict	 constraints4 	 #	 overall	 conflict	 constraints156 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints1750 #	 total	 overall	 constraints2020
6 #	 continuous	 constraints12 #	 overall	 constraints90 18 	 #	 safety	 constraints 0 #	 overall	 safety	 constraints156 	 #	 conflict	 constraints6 	 #	 overall	 conflict	 constraints234 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints2604 #	 total	 overall	 constraints3006
6 #	 continuous	 constraints12 #	 overall	 constraints18 18 	 #	 safety	 constraints 0 #	 overall	 safety	 constraints156 	 #	 conflict	 constraints6 	 #	 overall	 conflict	 constraints234 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints2604 #	 total	 overall	 constraints3006
7 #	 continuous	 constraints14 #	 overall	 constraints131 22 	 #	 safety	 constraints 0 #	 overall	 safety	 constraints234 	 #	 conflict	 constraints8 	 #	 overall	 conflict	 constraints312 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints3626 #	 total	 overall	 constraints4186
7 #	 continuous	 constraints14 #	 overall	 constraints22 22 	 #	 safety	 constraints 0 #	 overall	 safety	 constraints234 	 #	 conflict	 constraints8 	 #	 overall	 conflict	 constraints312 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints3626 #	 total	 overall	 constraints4186
8 #	 continuous	 constraints16 #	 overall	 constraints189 31 	 #	 safety	 constraints 0 #	 overall	 safety	 constraints312 	 #	 conflict	 constraints15 	 #	 overall	 conflict	 constraints416 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints4816 #	 total	 overall	 constraints5560
8 #	 continuous	 constraints16 #	 overall	 constraints31 31 	 #	 safety	 constraints 0 #	 overall	 safety	 constraints312 	 #	 conflict	 constraints15 	 #	 overall	 conflict	 constraints416 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints4816 #	 total	 overall	 constraints5560
9 #	 continuous	 constraints18 #	 overall	 constraints223 38 	 #	 safety	 constraints 2 #	 overall	 safety	 constraints416 	 #	 conflict	 constraints18 	 #	 overall	 conflict	 constraints520 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints6174 #	 total	 overall	 constraints7128
9 #	 continuous	 constraints18 #	 overall	 constraints38 38 	 #	 safety	 constraints 2 #	 overall	 safety	 constraints416 	 #	 conflict	 constraints18 	 #	 overall	 conflict	 constraints520 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints6174 #	 total	 overall	 constraints7128
10 #	 continuous	 constraints20 #	 overall	 constraints264 45 	 #	 safety	 constraints 1 #	 overall	 safety	 constraints520 	 #	 conflict	 constraints24 	 #	 overall	 conflict	 constraints650 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints7700 #	 total	 overall	 constraints8890
10 #	 continuous	 constraints20 #	 overall	 constraints45 45 	 #	 safety	 constraints 1 #	 overall	 safety	 constraints520 	 #	 conflict	 constraints24 	 #	 overall	 conflict	 constraints650 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints7700 #	 total	 overall	 constraints8890
11 #	 continuous	 constraints22 #	 overall	 constraints277 55 	 #	 safety	 constraints 4 #	 overall	 safety	 constraints650 	 #	 conflict	 constraints29 	 #	 overall	 conflict	 constraints780 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints9394 #	 total	 overall	 constraints10846
11 #	 continuous	 constraints22 #	 overall	 constraints55 55 	 #	 safety	 constraints 4 #	 overall	 safety	 constraints650 	 #	 conflict	 constraints29 	 #	 overall	 conflict	 constraints780 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints9394 #	 total	 overall	 constraints10846
12 #	 continuous	 constraints24 #	 overall	 constraints331 97 	 #	 safety	 constraints 2 #	 overall	 safety	 constraints780 	 #	 conflict	 constraints32 	 #	 overall	 conflict	 constraints936 	 #	 capacity	 constraints39 	 #	 overall	 capacity	 constraints11256 #	 total	 overall	 constraints12996
12 #	 continuous	 constraints24 #	 overall	 constraints97 97 	 #	 safety	 constraints 2 #	 overall	 safety	 constraints780 	 #	 conflict	 constraints32 	 #	 overall	 conflict	 constraints936 	 #	 capacity	 constraints39 	 #	 overall	 capacity	 constraints11256 #	 total	 overall	 constraints12996
13 #	 continuous	 constraints26 #	 overall	 constraints278 68 	 #	 safety	 constraints 8 #	 overall	 safety	 constraints936 	 #	 conflict	 constraints34 	 #	 overall	 conflict	 constraints1092 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints13286 #	 total	 overall	 constraints15340
13 #	 continuous	 constraints26 #	 overall	 constraints68 68 	 #	 safety	 constraints 8 #	 overall	 safety	 constraints936 	 #	 conflict	 constraints34 	 #	 overall	 conflict	 constraints1092 	 #	 capacity	 constraints0 	 #	 overall	 capacity	 constraints13286 #	 total	 overall	 constraints15340
14 #	 continuous	 constraints28 #	 overall	 constraints681 161 	 #	 safety	 constraints 6 #	 overall	 safety	 constraints1092 	 #	 conflict	 constraints38 	 #	 overall	 conflict	 constraints1274 	 #	 capacity	 constraints89 	 #	 overall	 capacity	 constraints15484 #	 total	 overall	 constraints17878
14 #	 continuous	 constraints28 #	 overall	 constraints161 161 	 #	 safety	 constraints 6 #	 overall	 safety	 constraints1092 	 #	 conflict	 constraints38 	 #	 overall	 conflict	 constraints1274 	 #	 capacity	 constraints89 	 #	 overall	 capacity	 constraints15484 #	 total	 overall	 constraints17878
15 #	 continuous	 constraints30 #	 overall	 constraints743 132 	 #	 safety	 constraints 6 #	 overall	 safety	 constraints1274 	 #	 conflict	 constraints52 	 #	 overall	 conflict	 constraints1456 	 #	 capacity	 constraints44 	 #	 overall	 capacity	 constraints17850 #	 total	 overall	 constraints20610
15 #	 continuous	 constraints30 #	 overall	 constraints132 132 	 #	 safety	 constraints 6 #	 overall	 safety	 constraints1274 	 #	 conflict	 constraints52 	 #	 overall	 conflict	 constraints1456 	 #	 capacity	 constraints44 	 #	 overall	 capacity	 constraints17850 #	 total	 overall	 constraints20610
16 #	 continuous	 constraints32 #	 overall	 constraints428 137 	 #	 safety	 constraints 6 #	 overall	 safety	 constraints1456 	 #	 conflict	 constraints42 	 #	 overall	 conflict	 constraints1664 	 #	 capacity	 constraints57 	 #	 overall	 capacity	 constraints20384 #	 total	 overall	 constraints23536
16 #	 continuous	 constraints32 #	 overall	 constraints137 137 	 #	 safety	 constraints 6 #	 overall	 safety	 constraints1456 	 #	 conflict	 constraints42 	 #	 overall	 conflict	 constraints1664 	 #	 capacity	 constraints57 	 #	 overall	 capacity	 constraints20384 #	 total	 overall	 constraints23536
17 #	 continuous	 constraints34 #	 overall	 constraints1201 349 	 #	 safety	 constraints12 #	 overall	 safety	 constraints1664 	 #	 conflict	 constraints53 	 #	 overall	 conflict	 constraints1872 	 #	 capacity	 constraints250 	 #	 overall	 capacity	 constraints23086 #	 total	 overall	 constraints26656
17 #	 continuous	 constraints34 #	 overall	 constraints349 349 	 #	 safety	 constraints12 #	 overall	 safety	 constraints1664 	 #	 conflict	 constraints53 	 #	 overall	 conflict	 constraints1872 	 #	 capacity	 constraints250 	 #	 overall	 capacity	 constraints23086 #	 total	 overall	 constraints26656
18 #	 continuous	 constraints36 #	 overall	 constraints1391 409 	 #	 safety	 constraints13 #	 overall	 safety	 constraints1872 	 #	 conflict	 constraints59 	 #	 overall	 conflict	 constraints2106 	 #	 capacity	 constraints301 	 #	 overall	 capacity	 constraints25956 #	 total	 overall	 constraints29970
18 #	 continuous	 constraints36 #	 overall	 constraints409 409 	 #	 safety	 constraints13 #	 overall	 safety	 constraints1872 	 #	 conflict	 constraints59 	 #	 overall	 conflict	 constraints2106 	 #	 capacity	 constraints301 	 #	 overall	 capacity	 constraints25956 #	 total	 overall	 constraints29970
19 #	 continuous	 constraints38 #	 overall	 constraints1730 493 	 #	 safety	 constraints20 #	 overall	 safety	 constraints2106 	 #	 conflict	 constraints60 	 #	 overall	 conflict	 constraints2340 	 #	 capacity	 constraints375 	 #	 overall	 capacity	 constraints28994 #	 total	 overall	 constraints33478
19 #	 continuous	 constraints38 #	 overall	 constraints493 493 	 #	 safety	 constraints20 #	 overall	 safety	 constraints2106 	 #	 conflict	 constraints60 	 #	 overall	 conflict	 constraints2340 	 #	 capacity	 constraints375 	 #	 overall	 capacity	 constraints28994 #	 total	 overall	 constraints33478
20 #	 continuous	 constraints40 #	 overall	 constraints2189 824 	 #	 safety	 constraints24 #	 overall	 safety	 constraints2340 	 #	 conflict	 constraints62 	 #	 overall	 conflict	 constraints2600 	 #	 capacity	 constraints698 	 #	 overall	 capacity	 constraints32200 #	 total	 overall	 constraints37180
20 #	 continuous	 constraints40 #	 overall	 constraints824 824 	 #	 safety	 constraints24 #	 overall	 safety	 constraints2340 	 #	 conflict	 constraints62 	 #	 overall	 conflict	 constraints2600 	 #	 capacity	 constraints698 	 #	 overall	 capacity	 constraints32200 #	 total	 overall	 constraints37180
21 #	 continuous	 constraints42 #	 overall	 constraints3140 907 	 #	 safety	 constraints36 #	 overall	 safety	 constraints2600 	 #	 conflict	 constraints65 	 #	 overall	 conflict	 constraints2860 	 #	 capacity	 constraints764 	 #	 overall	 capacity	 constraints35574 #	 total	 overall	 constraints41076
21 #	 continuous	 constraints42 #	 overall	 constraints907 907 	 #	 safety	 constraints36 #	 overall	 safety	 constraints2600 	 #	 conflict	 constraints65 	 #	 overall	 conflict	 constraints2860 	 #	 capacity	 constraints764 	 #	 overall	 capacity	 constraints35574 #	 total	 overall	 constraints41076
22 #	 continuous	 constraints44 #	 overall	 constraints3226 623 	 #	 safety	 constraints25 #	 overall	 safety	 constraints2860 	 #	 conflict	 constraints71 	 #	 overall	 conflict	 constraints3146 	 #	 capacity	 constraints483 	 #	 overall	 capacity	 constraints39116 #	 total	 overall	 constraints45166
22 #	 continuous	 constraints44 #	 overall	 constraints623 623 	 #	 safety	 constraints25 #	 overall	 safety	 constraints2860 	 #	 conflict	 constraints71 	 #	 overall	 conflict	 constraints3146 	 #	 capacity	 constraints483 	 #	 overall	 capacity	 constraints39116 #	 total	 overall	 constraints45166
23 #	 continuous	 constraints46 #	 overall	 constraints4119 1115 	 #	 safety	 constraints36 #	 overall	 safety	 constraints3146 	 #	 conflict	 constraints77 	 #	 overall	 conflict	 constraints3432 	 #	 capacity	 constraints956 	 #	 overall	 capacity	 constraints42826 #	 total	 overall	 constraints49450
23 #	 continuous	 constraints46 #	 overall	 constraints1115 1115 	 #	 safety	 constraints36 #	 overall	 safety	 constraints3146 	 #	 conflict	 constraints77 	 #	 overall	 conflict	 constraints3432 	 #	 capacity	 constraints956 	 #	 overall	 capacity	 constraints42826 #	 total	 overall	 constraints49450
24 #	 continuous	 constraints48 #	 overall	 constraints4044 1134 	 #	 safety	 constraints56 #	 overall	 safety	 constraints3432 	 #	 conflict	 constraints74 	 #	 overall	 conflict	 constraints3744 	 #	 capacity	 constraints956 	 #	 overall	 capacity	 constraints46704 #	 total	 overall	 constraints53928
24 #	 continuous	 constraints48 #	 overall	 constraints1134 1134 	 #	 safety	 constraints56 #	 overall	 safety	 constraints3432 	 #	 conflict	 constraints74 	 #	 overall	 conflict	 constraints3744 	 #	 capacity	 constraints956 	 #	 overall	 capacity	 constraints46704 #	 total	 overall	 constraints53928
25 #	 continuous	 constraints50 #	 overall	 constraints4817 1470 	 #	 safety	 constraints42 #	 overall	 safety	 constraints3744 	 #	 conflict	 constraints79 	 #	 overall	 conflict	 constraints4056 	 #	 capacity	 constraints1299 	 #	 overall	 capacity	 constraints50750 #	 total	 overall	 constraints58600
25 #	 continuous	 constraints50 #	 overall	 constraints1470 1470 	 #	 safety	 constraints42 #	 overall	 safety	 constraints3744 	 #	 conflict	 constraints79 	 #	 overall	 conflict	 constraints4056 	 #	 capacity	 constraints1299 	 #	 overall	 capacity	 constraints50750 #	 total	 overall	 constraints58600
26 #	 continuous	 constraints52 #	 overall	 constraints5277 1223 	 #	 safety	 constraints52 #	 overall	 safety	 constraints4056 	 #	 conflict	 constraints91 	 #	 overall	 conflict	 constraints4394 	 #	 capacity	 constraints1028 	 #	 overall	 capacity	 constraints54964 #	 total	 overall	 constraints63466
26 #	 continuous	 constraints52 #	 overall	 constraints1223 1223 	 #	 safety	 constraints52 #	 overall	 safety	 constraints4056 	 #	 conflict	 constraints91 	 #	 overall	 conflict	 constraints4394 	 #	 capacity	 constraints1028 	 #	 overall	 capacity	 constraints54964 #	 total	 overall	 constraints63466
27 #	 continuous	 constraints54 #	 overall	 constraints3299 603 	 #	 safety	 constraints113 #	 overall	 safety	 constraints4394 	 #	 conflict	 constraints39 	 #	 overall	 conflict	 constraints4732 	 #	 capacity	 constraints397 	 #	 overall	 capacity	 constraints59346 #	 total	 overall	 constraints68526
27 #	 continuous	 constraints54 #	 overall	 constraints603 603 	 #	 safety	 constraints113 #	 overall	 safety	 constraints4394 	 #	 conflict	 constraints39 	 #	 overall	 conflict	 constraints4732 	 #	 capacity	 constraints397 	 #	 overall	 capacity	 constraints59346 #	 total	 overall	 constraints68526
28 #	 continuous	 constraints56 #	 overall	 constraints5070 1329 	 #	 safety	 constraints103 #	 overall	 safety	 constraints4732 	 #	 conflict	 constraints82 	 #	 overall	 conflict	 constraints5096 	 #	 capacity	 constraints1088 	 #	 overall	 capacity	 constraints63896 #	 total	 overall	 constraints73780
28 #	 continuous	 constraints56 #	 overall	 constraints1329 1329 	 #	 safety	 constraints103 #	 overall	 safety	 constraints4732 	 #	 conflict	 constraints82 	 #	 overall	 conflict	 constraints5096 	 #	 capacity	 constraints1088 	 #	 overall	 capacity	 constraints63896 #	 total	 overall	 constraints73780
29 #	 continuous	 constraints58 #	 overall	 constraints6762 1782 	 #	 safety	 constraints99 #	 overall	 safety	 constraints5096 	 #	 conflict	 constraints88 	 #	 overall	 conflict	 constraints5460 	 #	 capacity	 constraints1537 	 #	 overall	 capacity	 constraints68614 #	 total	 overall	 constraints79228
29 #	 continuous	 constraints58 #	 overall	 constraints1782 1782 	 #	 safety	 constraints99 #	 overall	 safety	 constraints5096 	 #	 conflict	 constraints88 	 #	 overall	 conflict	 constraints5460 	 #	 capacity	 constraints1537 	 #	 overall	 capacity	 constraints68614 #	 total	 overall	 constraints79228
30 #	 continuous	 constraints60 #	 overall	 constraints6390 1967 	 #	 safety	 constraints77 #	 overall	 safety	 constraints5460 	 #	 conflict	 constraints95 	 #	 overall	 conflict	 constraints5850 	 #	 capacity	 constraints1735 	 #	 overall	 capacity	 constraints73500 #	 total	 overall	 constraints84870
30 #	 continuous	 constraints60 #	 overall	 constraints1967 1967 	 #	 safety	 constraints77 #	 overall	 safety	 constraints5460 	 #	 conflict	 constraints95 	 #	 overall	 conflict	 constraints5850 	 #	 capacity	 constraints1735 	 #	 overall	 capacity	 constraints73500 #	 total	 overall	 constraints84870

1	

10	

100	

1000	

10000	

100000	

4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

overall	 #	 MILP	 constraints	 #	 MILP	 capacity	 constraints	 #	 MILP	 conflict	 constraints	
#	 MILPsafety	 constraints	 overall	 #	 constraints	 #	 capacity	 constraints	
#	 safety	 constraints	 #	 conflict	 constraints	 #	 conAnuous	 constraints	

(a) Number of Variables (b) Number of Constraints

Figure 2 Evolution of the number of variables and constraints (1 subdivision).

We observe that the stts_a algorithm allows remaining with a highly manageable
set of constraints and variables, in spite of the theoretical huge number of variables and
constraints of the model, in particular when the number of trains increases. For instance, the
complete MILP model contains 45,405 binary variables and 84,870 constraints for 30 trains.
As expected, the dominant group of constraints corresponds to the capacity constraints as
soon as the number of trains increase, while the safety constraints are much less critical (due
to the distribution of train departure times).

5.3 Travel Times vs. Number of Trains
We now investigate the network capacity of the Calgary - Vancouver corridor, using objective
(2), i.e., the average travel times. The goal is to investigate the increase of the travel times

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 117

from source to destination vs. the number of trains running in the railway network. To do
so, we use the following statistics:

Average travel times (mean - µ, lower bound - LB, standard deviation - σ):(∑
t∈T

(at
dst − dt

src)
)
/|T | ;

Average waiting times (mean - µ, standard deviation - σ):(∑
t∈T

∑
p∈P

(at
p − dt

p − dwt
p)
)
/|T | ;

Number of train meetings out of the overall number of possible ones ;
Accuracy (εout) of the ε-optimal solution (relative value of the difference between the
incumbent value and a lower LP bound) vs. initial requested accuracy (εin when solving
the MILP with the CPLEX solver).

Table 1 Travel times vs. network load – No flexibility on departure times.

All
|T |

Average Average Number
εin εout travel

cpu
times travel waiting of
are times times train h:m

in hours µ LB σ µ σ meetings
1 subdivision: 16 7:08 6:59 1:03 0:45 0:53 29/64 10 2.2 7:12 00:01

18 7:22? 7:22 0:54 1:01 0:40 39/81 10 0.0 7:24 00:01
Kamloops 20 7:33 7:22 0:51 1:12 0:37 50/100 15 2.4 7:35 00:00
l 22 10:46? 10:46 5:52 3:59 5:05 90/121 15 0.0 10:54 00:08

Revelstoke
24 11:39? 11:39 6:30 4:26 5:40 107/144 15 0:0 11:54 00:22
28 11:40 11:32 6:26 4:35 5:46 141/196 15 1.2 11:48 01:48
30 12:16 11:54 6:22 5:29 5:54 167/225 15 3.0 12:35 04:54

3 subdivisions: 16 21:58 20:47 1:16 2:35 1:16 59/64 15 5.4 22:00 00:01

Kamloops
18 22:02 20:59 1:38 2:18 1:29 75/81 15 4.8 22:06 00:03

l
20 21:53 20:55 0:55 2:30 0:48 94/100 15 4.4 22:11 00:06

Calgary
22 22:15 21:06 2:36 1:05 2:36 115/221 15 5.1 22:18 00:06
24 22:16 20:31 4:42 3:22 1:19 129/144 15 7.9 24:00 00:23
26 24:19 22:08 2:00 4:07 1:47 165/169 15 8.9 24:30 00:25
28 23:51 21:47 1:46 3:31 1:36 192/196 10 8.7 26:48 11:57
30 26:38 22:53 2:44 5:34 2:03 221/225 15 14.1 29:00 19:41

5 subdivisions: 16 30:08 29:27 0:54 1:22 0:53 64/64 15 2.3 30.26 00:02

Vancouver
18 30:54 29.46 1:15 2:21 1:19 81/81 10 3.7 31:06 00:05

l
20 31:00 29:38 1:12 2:29 1:08 100/100 15 4.4 31:06 00:03

Calgary
22 31:18 29:50 1:38 2:42 1:36 121/121 15 4.7 31:30 00:04
24 31:45 30:03 1:32 2:31 1:12 144/144 15 5.4 31:48 00:09
26 31:50 30:09 1:48 2:58 1:34 169/169 15 5.3 32:24 02:21
28 32:24 30:17 1:49 3:31 1:48 196/196 15 6.5 34:00 02:04
30 34:07 31:16 2:10 4:37 1:44 225/225 15 10.4 35:47 10:57

Table 2 Travel times vs. network load – Some flexibility around the planned departure times.

Average travel Number of
εout

travel

∑
t∈T

earlyt
d

|T |

∑
t∈T

latet
d

|T |
times train

Trains µ σ meetings
Trains depart on planned departure times

16 7:08 1:03 29/64 2.2 7:12 0. 0.
18 7:22 0:54 39/81 0.0 7:24 0. 0.
20 7:33 0:51 50/100 2.4 7:35 0. 0.

Trains can be up to 30 mn early and 30 mn late with respect to planned departure times
16 6:50 0:51 27/64 7.0 7:00 0:03 (4) 0:16 (12)
18 6:52 0:35 37/81 7.5 7:00 0:10 (7) 0:14 (11)
20 6:50 0:32 49/100 3.8 7:00 0:08 (9) 0:11 (11)

ATMOS’12

118 A Dynamic Row/Column Management Algorithm for Train Scheduling

Statistics are reported for 1, 3 and 5 subdivisions, i.e., for 14, 37 and 61 sidings/stations
respectively. The requested precision at the outset ε varies between 10% and 15% in order
not to spend too much time solving the first MILP models. As can be observed in the column
entitled εout, the final precision is often much better than the requested one (? means that
the optimal value has been obtained, i.e., εout = 0). However, the obtained precision varies
with the number of trains and partially explains why the average times are not always strictly
increasing when the number of trains is increasing for a given number of subdivisions. The

optimal value is however guaranteed to lie in the interval
[
LB,

∑
t∈T

(at
dst − dt

src)/|T |
]
, and

there is a clear trend of increasing LB and average travel times values. The increase of the
average travel and waiting times are consistent due to train meetings, as expected. Note
that there is no guarantee that average travel times are always increasing when the number
of trains is increasing. Consider the example with 4 stations p1, p2, p3, p4 evenly spaced (40
miles for each segment), and 2 trains, one eastbound (t1) and one westbound (t2) running at
40mph. Assume t1 leaves at 8:05am from p1 and t2 leaves p4 at 8:00am. The average travel
times is then 3:28 hours. Add a new westbound train leaving p4 at 7:55am with the same
speed, then the average travel times becomes 3:18 hours.

In order to illustrate the train scheduling, we represented one of them with the so-called
string graph for an instance with 5 subdivisions, i.e., the entire Vancouver - Calgary corridor
with 20 trains. String graphs are used to display spatial and temporal information of track
occupancy: the vertical axis contains the distances between the Eastern and Western stations
(or the location of the intermediate sidings/stations) while the horizontal axis is a time axis.

Figure 3 String graph (Vancouver – Calgary – 20 trains – 5 subdivisions).

In Table 2, we report results on how much we can improve the average travel times when
allowing some flexibility on the departure times. We consider two scenarios, the first one
where the trains depart on time, and a second one where trains depart with no more than
30mn early/late. Results are given for 16, 18 and 20 trains on one subdivision (Revelstoke ↔
Kamloops). We observe that a shift of a few minutes is often sufficient to reduce the number
of train meets and therefore to reduce the average travel times. Numbers in parenthesis
indicate the number of trains leaving earlier/later than expected.

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 119

6 Conclusions

Following the scarce resources of freight train companies, efficient scheduling tools are required
in order to optimize the track usage, minimize the train travel times and evaluate/anticipate
the saturation of a railway network. In this study, we propose an enhanced optimization
model which includes the siding/station capacities, as well as an algorithm which allows a
proper management of the constraints and variables in order to remain scalable even for large
data instances. Indeed, it is able to solve accurately instances for up to 61 siding/stations
and 30 trains within few hours.

Acknowledgements B. Jaumard was supported by NSERC (Natural Sciences and Engi-
neering Research Council of Canada) and by a Concordia University Research Chair (Tier I).
T.H. Le and H. Tian were each supported by a FQRNT-NSERC-CPR fellowship.

References
1 A. Caprara, L.G. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger railway opti-

mization. In C. Barnhart and G. Laporte, editors, Handbooks in Operations Research and
Management Science, volume 14, chapter 3, page 129–187. Elsevier, 2007.

2 M. Carey and D. Lookwood. A model, algorithms and strategy for train pathing. Journal
of Operation Research Society, 46(8):988–1005, 1995.

3 J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing
and scheduling. Transportation Science, 32:380 – 404, April 1998.

4 M. Dessouky, Q. Lu, J. Zhao, and R.C. Leachman. An exact solution procedure for deter-
mining the optimal dispatching times for complex rail networks. IIE Transactions, 38:141–
152, 2006.

5 A. Higgins, E. Kozan, and L. Ferreira. Optimal scheduling of trains on a single line track.
Transportation Research B, 30(2):147–161, 1996.

6 P. Ireland, R. Case, J. Fallis, C. Van Dyke, J. Kuehn, and M. Meketon. The Canadian
Pacific Railway transforms operations by using models to develop its operating plans. In-
terfaces, 34(1):5–14, 2004.

7 D. Kraay and P.T. Harker. Real-time scheduling of freight railroads. Transportation
Research, 29B(3):213–229, 1995.

8 S. Mu and M. Dessouky. Scheduling freight trains traveling on complex networks. Trans-
portation Research Part B: Methodological, 45:1103–1123, 2011.

9 X. Zhou and M. Zhong. Single-track train timetabling with guaranteed optimality: Branch-
and-bound algorithms with enhanced lower bounds. Transportation Research Part B,
41:320–341, 2007.

ATMOS’12

	Introduction
	Problem Statement
	Optimization Model
	Input Parameters
	Variables
	Minimize the Train Travel Times
	Constraints
	Travel and Dwell Time Constraints
	Safety Distance Constraints
	Segment Conflict Constraints
	Capacity constraints

	Solving the stts_m (Single Track Train Scheduling) Model
	Numerical Results
	Data Instances
	Efficiency of the stts_a Algorithm
	Travel Times vs. Number of Trains

	Conclusions

