124 research outputs found

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    A Survey on Recent Reversible Watermarking Techniques

    Get PDF
    Watermarking is a technique to protect the copyright of digital media such as image, text, music and movie. Reversible watermarking is a technique in which watermark can be removed to completely restore the original image. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the original image. For the last few years, reversible watermarking techniques are gaining popularity due to its applications in important and sensitive areas like military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different latest reversible watermarking techniques are discussed on the basis of various characteristics of watermarking

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Fast Fragile Watermark Embedding and Iterative Mechanism With High Self-Restoration Performance

    Get PDF
    This paper presents a new algorithm to reduce significantly the computational cost of one of the best methods with self-recovery capabilities in the fragile watermarking literature. This is achieved by generating two sequences of reference bits associated to the 5 most significant bit-planes (MSBPs) of the image. The reference bits and some authentication bits are then allocated to the 3 least significant bit-planes (LSBPs) of the image. The receiver uses the authentication bits to localise altered pixel-blocks and then executes an iterative restoration mechanism to calculate the original value of the watermarked pixels. Experimental results demonstrate that the embedding method executes significantly faster compared to the state-of-the-art method while achieving a high restoration performance

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely

    Digital watermarking in medical images

    Get PDF
    This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read
    corecore