1,599 research outputs found

    Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    Get PDF
    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000–2002 combined summer drought–dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000–2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000–2001, 2005 and 2009) were characterized by negative anomalies with peak values between �1.5 and �0.5 and were statistically different (P \u3c 0:001) from relatively wet years (2003, 2004 and 2007). Conversely, the frequency distributions of the dry years were not statistically different (p \u3c 0:001) from those of the relatively wet years for the grassland biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI \u3c �1) in Inner Mongolia (IM) and Outer Mongolia (OM), showing that droughts substantially reduced vegetation activity. The correlation was stronger for the desert biome (R2 D 65 and 60, p \u3c 0:05) than for the IM grassland biome (R2 D 53, p \u3c 0:05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the desert and grassland biomes on the Plateau

    Evapotranspiration estimation using Landsat-8 data with a two-layer framework

    Get PDF
    This work was partially supported by the National Natural Science Foundation of China (41401042), National Key Basic Research Program of China (973 Program) (Grant No. 2015CB452701) and National Natural Science Foundation of China (Grant Nos. 41571019 and 41371043).Peer reviewedproo

    Remote Sensing of Land Surface Phenology

    Get PDF
    Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been routinely generated and play prominent roles in modeling crop yield, ecological surveillance, identifying invasive species, modeling the terrestrial biosphere, and assessing impacts on urban and natural ecosystems. Recent advances in field and spaceborne sensor technologies, as well as data fusion techniques, have enabled novel LSP retrieval algorithms that refine retrievals at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Meanwhile, rigorous assessment of the uncertainties in LSP retrievals is ongoing, and efforts to reduce these uncertainties represent an active research area. Open source software and hardware are in development, and have greatly facilitated the use of LSP metrics by scientists outside the remote sensing community. This reprint covers the latest developments in sensor technologies, LSP retrieval algorithms and validation strategies, and the use of LSP products in a variety of fields. It aims to summarize the ongoing diverse LSP developments and boost discussions on future research prospects

    Responses and adaptation strategies of terrestrial ecosystems to climate change

    Get PDF
    Terrestrial ecosystems are likely to be affected by climate change, as climate change-induced shift of water and heat stresses patterns will have significant impacts on species composition, habitat distribution, and ecosystem functions, and thereby weaken the terrestrial carbon (C) sink and threaten global food security and biofuel production. This thesis investigates the responses of terrestrial ecosystems to climate change and is structured in four main chapters.;The first chapter of the thesis is directed towards the impacts of snow variation on ecosystem phenology. Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm•yr-1 (p=0.07) during the period 1982-1998, and decreased at a rate of 0.36 cm•yr-1 (p=0.09) during the period 1998-2005. Correspondingly, the SGS advanced at a rate of 0.68 d•yr-1 (p\u3c0.01) during 1982 to 1998, and delayed at a rate of 2.13 d•yr-1 (p=0.07) during 1998 to 2005, against a warming trend throughout the entire study period of 1982-2005. Spring air temperature strongly regulated the SGS of both deciduous broad-leaf and coniferous forests; whilst the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. Additionally, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation\u27s SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the soil thermal conditions.;The second chapter further addresses snow impacts on terrestrial ecosystem with focus on regional carbon exchange between atmosphere and biosphere. Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying micro-climate, but the impacts of snow cover change on the annual C budget at the large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Here, we used site-based eddy covariance flux data to investigate the relationship between snow cover depth and ecosystem respiration (Reco) during winter. We then used the Biome-BGC model to estimate the effect of reductions in winter snow cover on C balance of Northern forests in non-permafrost region. According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028-1.53 gC•m-2•day-1, accounting for 44 +/- 123% of the annual C budget. Model simulation showed that over the past 30 years, snow driven change in winter C fluxes reduced non-growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter ecosystem respiration (Reco) significantly decreased by 0.33 gC•m-2•day -1•yr-1 in response to decreasing snow cover depth, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Soil temperature was primarily controlled by snow cover rather than by air temperature as snow served as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model-simulated results showed that both Reco and NEE were significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming through emitting less C to the atmosphere.;The third chapter focused on assessing drought\u27s impact on global terrestrial ecosystems. Drought can affect the structure, composition and function of terrestrial ecosystems, yet the drought impacts and post-drought recovery potential of different land cover types have not been extensively studied at a global scale. Here, we evaluated drought impacts on gross primary productivity (GPP), evapotranspiration (ET), and water use efficiency (WUE) of different global terrestrial ecosystems, as well as the drought-resilience of each ecosystem type during the period of 2000 to 2011. We found the rainfall and soil moisture during drought period were dramatically lower than these in non-drought period, while air temperatures were higher than normal during drought period with amplitudes varied by land cover types. The length of recovery days (LRD) presented an evident gradient of high (\u3e 60 days) in mid- latitude region and low (\u3c 60 days) in low (tropical area) and high (boreal area) latitude regions. As average GPP increased, the LRD showed a significantly decreasing trend among different land covers (R 2=0.53, p\u3c0.0001). Moreover, the most dramatic reduction of the drought-induced GPP was found in the mid-latitude region of north Hemisphere (48% reduction), followed by the low-latitude region of south Hemisphere (13% reduction). In contrast, a slightly enhanced GPP (10%) was showed in the tropical region under drought impact. Additionally, the highest drought-induced reduction of ET was found in the Mediterranean area, followed by Africa. The water use efficiency, however, showed a pattern of decreasing in the north Hemisphere and increasing in the south Hemisphere.;The last chapter compared the differences of performance in trading water for carbon in planted forest and natural forest, with specific focus on China. Planted forests have been widely established in China as an essential approach to improving the ecological environment and mitigating climate change. Large-scale forest planting programs, however, are rarely examined in the context of tradeoffs between carbon sequestration and water yield between planted and natural forests. We reconstructed evapotranspiration (ET) and gross primary production (GPP) data based on remote-sensing and ground observational data, and investigated the differences between natural and planted forests, in order to evaluate the suitability of tree-planting activity in different climate regions where the afforestation and reforestation programs have been extensively implemented during the past three decades in China. While the differences changed with latitude (and region), we found that, on average, planted forests consumed 5.79% (29.13mm) more water but sequestered 1.05% (-12.02 gC m-2 yr -1) less carbon than naturally generated forests, while the amplitudes of discrepancies varied with latitude. It is suggested that the most suitable lands in China for afforestation should be located in the moist south subtropical region (SSTP), followed by the mid-subtropical region (MSTP), to attain a high carbon sequestration potential while maintain a relatively low impact on regional water balance. The high hydrological impact zone, including the north subtropical region (NSTP), warm temperate region (WTEM), and temperate region (TEM) should be cautiously evaluated for future afforestation due to water yield reductions associated with plantations

    Present-day and future contribution of climate and fires to vegetation composition in the boreal forest of China

    Get PDF
    This is the final version of the article. Available from Ecological Society of America via the DOI in this recordClimate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study, we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang Province, China, and their response to climate change using four warming scenarios (+1.5°, 2°, 3°, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a SErgey VERsion Dynamic Global Vegetation Model (SEVER-DGVM), and remote sensing datasets of global land cover (GLC2000) and the third version of Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors such as precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage; for example, composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.This work was supported by the National Natural Science Foundation of China (31570475) and China Scholarship Council

    Spatiotemporal Variations of Ecosystem Service Indicators and the Driving Factors Under Climate Change in the Qinghai–Tibet Highway Corridor

    Get PDF
    In recent decades, the influence of climate change and human activities on the ecosystem services (ES) in the Qinghai–Tibet Plateau (QTP) has been extensively investigated. However, few studies focus on linear traffic corridor area, which is heavily affected by human activities. Taking the Golmud–Lhasa national highway corridor as a case, this study investigated the land-use and land-cover change (LUCC) and spatiotemporal variations of ES indicators using ecosystem indices of fractional vegetation cover (FVC), leaf area index (LAI), evapotranspiration (ET), and net primary productivity (NPP) from 2000 to 2020. The results indicated that LUCC was faster in the last decade, mostly characterized by the conversion from grassland to unused land. In buffer within 3000 m, the proportions of productive areas represented the increased trends with distance. In terms of ES variations, the improved areas outweighed the degraded areas in terms of FVC, LAI, and NPP from 2000 to 2020, mostly positioned in the Qinghai Province. In addition, FVC, LAI, and NPP peaked at approximately 6000 m over time. With regard to influencing factors, precipitation (20.54%) and temperature (14.19%) both positively influenced the spatiotemporal variation of FVC. Nearly 60% of the area exhibited an increased NPP over time, especially in the Qinghai Province, which could be attributed to the temperature increase over the last two decades. In addition, the distance effects of climatic factors on ES indicators exhibited that the coincident effects almost showed an opposite trend, while the reverse effects showed a similar trend. The findings of this study could provide a reference for the ecological recovery of traffic corridors in alpine fragile areas
    corecore