47,803 research outputs found

    Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations

    Get PDF
    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the arbitrariness and complexity of manual gating have complicated the issue. Here we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analysed an independent dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Treg

    Plasmodium yoelii infection of BALB/c mice results in expansion rather than induction of CD4+ Foxp3+ regulatory T cells

    Get PDF
    Recently, we demonstrated elevated numbers of CD4(+) Foxp3(+) regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3(+) Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios(+) Foxp3(+) Treg cells remained unchanged. Both Foxp3(+) Nrp‐1(+) and Foxp3(+) Nrp‐1(−) Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3(−) T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3(+) Treg cells

    Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer

    Get PDF
    Background: Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC). Methods and Findings: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival. Conclusions: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression

    FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing

    Get PDF
    FOXP3 promotes the development and function of regulatory T cells mainly through regulating the transcription of target genes. RNA alternative splicing has been implicated in a wide range of physiological and pathophysiological processes. We report here that FOXP3 associates with heterogeneous nuclear ribonucleoprotein (hnRNP) F through the exon 2-encoded region of FOXP3 and the second quasi-RNA recognition motif (qRRM) of hnRNPF. FOXP3 represses the ability of hnRNPF to bind to its target pre-mRNA and thus modulates RNA alternative splicing. Furthermore, overexpression of mouse hnRNPF in in vitro-differentiated regulatory T cells (Tregs) reduced their suppressive function. Thus, our studies identify a novel mechanism by which FOXP3 regulates mRNA alternative splicing to modulate the function of regulatory T cells

    Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    Get PDF
    Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases

    The involvement of T regulatory lymphocytes in a cohort of lupus nephritis patients: a pilot study

    Get PDF
    T regulator lymphocytes (Tregs) play a key role in the maintenance of immune tolerance and in the development of autoimmune diseases. Expression of Foxp3 is specific for Tregs, and can be used for the identification of these cells. This study investigated the variations of Tregs Foxp3? in the kidney biopsies inflammatory infiltrate of different lupus nephritis classes compared to that of ANCA glomerulonephritis, acute tubulointerstitial nephritis and nephroangiosclerosis. Sections of paraffin-embedded tissue have been stained by immunohistochemistry with anti-CD3 and anti-FoxP3 antibodies. We find that the ratio of FoxP3?/CD3? cells is significantly lower in patients with lupus nephritis class IV and in patients with vasculitides than in the course of nephroangiosclerosis, tubulointerstitial nephritis and lupus nephritis class V. The data presented herein demonstrate a decrease of FoxP3? Treg cells in the inflammatory infiltrate of lupus nephritis, particularly during the most active phases of lupus nephritis, as observed in the course of a IV class nephritis

    CD3+CD4+LAP+Foxp3-regulatory cells of the colonic lamina propria limit disease extension in ulcerative colitis

    Get PDF
    Background and Aims: In ulcerative colitis (UC), inflammation begins in the rectum and can extend proximally throughout the entire colon. The extension of inflammation is an important determinant of disease course, and may be limited by the action of regulatory T cells (Tregs). In this cross-sectional study, we evaluated the relationship between UC extension and the proportions of CD3+CD4+Foxp3+ and CD3+CD4+LAP+Foxp3- Tregs in the colonic lamina propria (LP) of 79 UC patients and 29 controls. The role of these cells in UC extension was also investigated in the murine oxazolone-induced colitis model. Methods: Patients: Disease extension was classified according to the Montreal classification. Where possible, endoscopic biopsies of involved and uninvolved tissue were obtained from UC patients. Mouse model: Colitis was induced by intrarectal oxazolone administration. Lamina propria mononuclear cells were isolated from patient biopsies and mouse colon tissue using enzymatic method and the percentage of CD3+CD4+Foxp3+ and CD3+CD4+LAP+Foxp3-cells evaluated by immunofluorescence. Confocal microscopy was applied for the visualization and quantification of CD4+LAP+ cells on tissue histological sections. Results: In UC patients with distal colitis the proportion of LP CD3+CD4+Foxp3+ Tregs was significantly higher in inflamed tissue than uninvolved tissue. As opposite, the proportion of LP CD3+CD4+LAP+ Tregs was significantly higher in uninvolved tissue than involved tissue. Both LP CD3+CD4+Foxp3+ and LP CD3+CD4+LAP+ Tregs proportion in involved tissue was significantly higher than in controls irrespective of the extension of inflammation. In mice with oxazolone-induced distal colitis, treatment with LAP-depleting antibody was associated with the development of extensive colitis. Conclusions: Our findings suggest that CD3+CD4+LAP+Foxp3-Tregs limit the extension of inflammatory lesions in UC patients

    Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC. METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months. RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019). CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies

    Notch and NF-kB: Coach and Players of Regulatory T-Cell Resposnse in Cancer

    Get PDF
    The Notch signaling pathway plays multiple roles in driving T-cell fate decisions, proliferation, and aberrant growth. NF-kB is a cell-context key player interconnected with Notch signaling either in physiological or in pathological conditions. This review focuses on how themultilayered crosstalk between different Notches and NF-kB subunits may converge on Foxp3 gene regulation and orchestrate CD4+ regulatory T (Treg) cell function, particularly in a tumor microenvironment. Notably, Treg cells may play a pivotal role in the inhibition of antitumor immune responses, possibly promoting tumor growth. A future challenge is represented by further dissection of both Notch and NF-kB pathways and consequences of their intersection in tumor-associated Treg biology. This may shed light on themolecularmechanisms regulating Treg cell expansion andmigration to peripheral lymphoid organs thought to facilitate tumor development and still to be explored. In so doing, new opportunities for combined and/or more selective therapeutic Q25 approaches to improve anticancer immunity may be found
    • …
    corecore