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Abstract 1	
 2	
CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded 3	
as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in 4	
tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the 5	
evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced 6	
by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype 7	
FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T 8	
cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the 9	
arbitrariness and complexity of manual gating have complicated the issue. Here we report a 10	
computational method to automatically identify and classify FOXP3+ T cells into subsets using 11	
clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method 12	
showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 13	
expressions was increased in melanoma patients, whereas manual gating did not produce significant 14	
results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ 15	
subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low 16	
cells by manual gating. Furthermore, the proposed method successfully analysed an independent 17	
dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, 18	
validating the method. Collectively, the proposed method successfully captured an important feature 19	
of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden 20	
association between the T cell profile and melanoma, and providing new insights into FOXP3+ T 21	
cells and Treg. 22	
 23	
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Introduction 1	
Regulatory T cells (Treg) are defined as the immunosuppressive T cells that suppress the activities of 2	
other T cells through undefined mechanisms, and are identified by the transcription factor FOXP3 3	
(1). While Treg are reported to be increased in tumour-bearing patients or animals, and thereby 4	
suppress anti-tumour immunity (2-4), the evidence is in fact mixed (5): the increase of FOXP3+ T 5	
cells is associated with poor prognosis in hepatocellular cancer	(6), whereas it is related to good 6	
prognosis in colorectal cancer	(7).	The discrepancy may be explained by that FOXP3+ T cells include 7	
not only regulatory but also non-regulatory T cells that produce proinflammatory cytokines (8). In 8	
fact, accumulating evidence indicates that FOXP3 is not the definitive marker for the 9	
immunosuppressive T cells in humans. The expression of FOXP3 can be induced in naïve T cells by 10	
conventional anti-CD3 stimulation (9, 10). In addition, some FOXP3+ T cells, especially memory-11	
phenotype CD45RO+FOXP3low cells, produce effector cytokines, and are not suppressive by an in 12	
vitro assay, suggesting that they are enriched with effector and activated T cells (9).  13	
 14	
Accordingly, the subclassification of FOXP3+ T cells has been a major issue in human Treg research 15	
(8, 9, 11-17). It was proposed that FOXP3+ T cells could be classified into three functionally 16	
different subpopulations: CD45RO+(equivalent to CD45RA-) FOXP3high T cells as classical Treg 17	
with suppressive activity (9, 11); CD45RO- (or CD45RA+) FOXP3low naïve Treg (9, 12, 13); and 18	
FOXP3lowCD45RO+ non-regulatory T cells (9, 14, 15). This classification has been used to analyse 19	
FOXP3+ T cells in autoimmune diseases and cancers (8, 9, 16, 17). Unfortunately, however, the 20	
definition of FOXP3+ subpopulations varies between studies, complicating the problem (18). 21	
Meanwhile, recently Abbas et al proposed not to use new terms for Treg subpopulations, until a new 22	
population has been extensively demonstrated to be unique, distinct from other populations and 23	
stable, because it is likely to lead to more confusion and the further ‘jargonisation’ of immunology 24	
(19). This opinion, however, ignores the fact that a clustering (classification) approach, whether 25	
manual or automatic gating, is indispensable for summarising and analysing flow cytometric data 26	
and thereby relating immunological profiles to biological response or disease status (20, 21). 27	
 28	
Currently in experimental immunology, any cellular populations, including FOXP3+ T cells, are 29	
almost always identified and analysed by manual gating, which is a process of identifying a cluster 30	
of cells by manually drawing regions, or gates, in two-dimensional (2D) graphical representations of 31	
the data (22-24). Obviously, manual gating is subjective and cannot fully use multidimensional flow 32	
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cytometry data, and therefore, the automatic gating using clustering methods has become an active 1	
research area of bioinformatics over the past several years (23, 25). In fact, a preceding study 2	
proposed a computational approach to identify a regulatory T cell population, precisely 3	
CD4+CD25+DR+FOXP3+ cells (26), but it did not address the immunological significance of the 4	
approach and that of the identified Treg population.  5	
 6	
In this study, we aimed to establish a computational approach to identify and classify FOXP3+ T cells 7	
into subpopulations, addressing the immunological and clinical significance of the method, and 8	
thereby to revisit the fundamental subclassification of FOXP3+ T cells. In order to establish the 9	
method, we used a dataset of PBMC from melanoma patients and healthy controls, which previously 10	
identified that total FOXP3+ T cells increased in melanoma patients, and that FOXP3low naïve Treg 11	
and FOXP3low non-regulatory T cells increased as the stage progressed (8). Furthermore, in the 12	
current study, we have newly obtained a flow cytometric dataset of FOXP3+ T cells from melanoma 13	
patients and healthy controls (designated as the second dataset), in order to address the efficiency of 14	
the proposed method. Thus, we firstly show the clinical and immunological significance of a data-15	
oriented clustering approach to the subclassification of the FOXP3+ T cells. 16	
 17	
Materials and Methods 18	
Patient samples  19	
All PBMC datasets were obtained from patients with malignant melanoma who were treated in the 20	
Department of Dermatology of Kyoto University Hospital. The first dataset analysed 23 individuals 21	
by FACS Calibur (BD Biosciences) (8). The second dataset analysed 19 individuals by LSR Fortessa 22	
(BD Biosciences). The patients’ characteristics in the second dataset are summarised in Table I. We 23	
also obtained data from age- and sex-matched healthy controls (first dataset, n=28; second dataset, 24	
n=15). This study was approved by the Medical Ethics Committee of Kyoto University, and 25	
conducted in accordance with the principles of the Declaration of Helsinki. All participants provided 26	
written informed consent.  27	
 28	
Flow cytometric analysis 29	
PBMC were isolated with Ficoll-Isopaque (Lymphoprep™; Axis-Shield, Oslo, Norway) gradient 30	
centrifugation. All cells were freshly stained with the following monoclonal antibodies and analysed 31	
promptly as previously described (9): FITC-conjugated anti-CD45RO (UCHL1; BD Biosciences); 32	
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PE-conjugated anti-CD25 (M-A251; BD Biosciences); PerCP-Cy5.5-conjugated anti-CD4 (SK3; BD 1	
Biosciences); and biotinylated anti-FOXP3 (236A/E7; eBioscience, San Diego, CA) and 2	
allophycocyanin–streptavidin (BD Biosciences). The second dataset (Table I) was obtained by LSR 3	
Fortessa (BD Biosciences), using the following settings for voltage: FSC-A (319), SSC-A (335), 4	
FL1-A (CD45RO, 582), FL2-A (CD25, 478), FL3-A (CD4, 742), and FL4-A (FOXP3, 676). FlowJo 5	
(Tree Star) was used for manual gating. 6	
 7	
Automatic gating of FOXP3+ T cell subpopulations 8	
For data preprocessing, boundary values were removed (i.e. 1000 >= or < 100 [FSC], 1000 >= 9	
[SSC], >= 4 or < 0.3 [fluorescence channels, logged] in the case of analogue data; 800 >= or < 100 10	
[FSC], 1000 >= [SSC], and >= 3.5 or < 0.1 [fluorescence channels, logged] in the case of digital 11	
data), as they were considered meaningless events representing cellular debris or large non-12	
lymphocytes, or noise (27). Subsequently, all fluorescence data were log-transformed, and each 13	
variable was normalised by the standardised scaling. In the established classification method (the 14	
HKK clustering), FOXP3+ T cell subpopulations were identified by the following three steps: [1] 15	
CD4+ T cells were clustered by a high-dimensional data clustering function, hddc, of a CRAN 16	
package, HDclassif (28) using FSC, SSC, and CD4 (k = 3). [2] FOXP3+ T cells were clustered by a 17	
k-means clustering of FOXP3 values using kmeans of a CRAN package, Stats	(29), and the cluster 18	
containing the centroid with the highest FOXP3 value was designated as FOXP3+ T cells. The 19	
number of clusters (k = 3) was determined by examining the barplot of the loss-variability	(30), and 20	
also, taking into account the identification of the FOXP3+ cluster that has higher FOXP3 values than 21	
the FOXP3-negative cloud. [3] Finally, FOXP3+ T cell subpopulations were identified by a k-means 22	
clustering, using CD45RO, CD25, and FOXP3 with k = 3, and subsequently assigned to the Effector-23	
Treg-like, Naïve-Treg-like, and Non-Treg-like clusters as follows: [1] compute the centroid of each 24	
cluster and designate the cluster containing the centroid with the highest value for FOXP3 as 25	
effector-Treg-like, [2] among the two other clusters, the one with the smallest value for CD45RO as 26	
naïve-Treg-like, and the last one as non-Treg-like. All computational analyses were done using a 27	
laptop with an Intel Core i5-3360 M CPU - 2.80 GHz or a Mac desktop with 3.5 GHz Intel Core i5, 28	
OS10.10.4. 29	
 30	
Statistical analysis 31	
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A Mann-Whitney-Wilcoxon test was used for analysing two groups, testing the null hypothesis that 1	
the two statuses (i.e. HC or melanoma) have equal medians. A Kruskal-Wallis test, a non-parametric 2	
alternative to ANOVA, was used for analysing more than two groups, testing the null hypothesis that 3	
the medians are equal across the groups (HC and disease stages), followed by pairwise comparisons 4	
using a Mann-Whitney-Wilcoxon test. P-values were adjusted by a Bonferroni procedure for 5	
multiple comparisons in all the analyses.  6	
 7	
Results 8	
1. Manual gating approach to FOXP3+ T subpopulations 9	
This section shows how the standard approach, manual gating, identified and classified FOXP3+ T 10	
cells into three subsets: CD45RO+FOXP3high effector (memory) Treg (“effector-Treg population” 11	
hereafter), CD45RO-FOXP3low naïve Treg (“naïve-Treg population”), and CD45RO+FOXP3low non-12	
regulatory T cells (“non-Treg population”) (8, 9) (Fig. 1a). These subpopulations were identified in a 13	
sequential manner using the following four gates: [1] the lymphocyte gate using Forward Scatter 14	
(FSC), and Side Scatter (SSC, Fig. 1b); [2] the CD4+ gate using CD4 and SSC (Fig. 1c); and [3] the 15	
FOXP3+ gate using FOXP3 and CD45RO to visually identify a “groove” of the FOXP3 distribution 16	
(Fig. 1d); [4] the FOXP3/CD45RO gate to identify the FOXP3+ T cell subpopulations (Fig. 1e). The 17	
level of FOXP3 by which FOXP3high and FOXP3low cells were separated was determined so that 18	
CD45RO-FOXP3high cells were < 0.2% of CD4+ lymphocytes using healthy controls (Fig. 1e). 19	
 20	
2. Data-oriented clustering (automatic gating) of FOXP3+ T cell subpopulations 21	
We aimed to establish an automated clustering method for identifying FOXP3+ T cells and 22	
classifying them into three subpopulations, and thereby to revisit the immunological significance of 23	
the FOXP3+ T cell classification. Importantly, there is no major controversy regarding the 24	
identification of the total FOXP3+ CD4+ T cells, while there are multiple ways to classify FOXP3+ T 25	
cells, which we aimed to address in this study. Thus, we used the following approach to identify the 26	
FOXP3+ T cell subpopulations: [1] to identify FOXP3+CD4+ T cells, and [2] to classify 27	
FOXP3+CD4+ T cells into three subpopulations without using the manual gating strategy. We used 28	
the flow cytometric dataset in our previous report, which was obtained by a FACS Calibur (8) (“the 29	
first dataset”), in order to establish a clustering method. 30	
 31	
Automatic gating of FOXP3+ CD4+ T cells 32	
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The aim of this step is to efficiently and robustly identify FOXP3+ CD4+ T cells as described above. 1	
CD4+ cells are distinct from CD4- cells in the space of FSC, SSC, and CD4 (Fig. 1b, 1c), while the 2	
distribution of FOXP3 expression is continuous in CD4+ T cells (Fig. 1d). In fact, a preliminary 3	
analysis showed that CD4+ T cells were efficiently identified using a model of high-dimensional data 4	
clustering (HDDC, (28)), but not by a common clustering method, k-means. HDDC is based on 5	
Gaussian mixtures with restricted covariance matrices (28), and can efficiently identify elliptic 6	
populations such as CD4+ T cells in the space of FSC, SSC, and CD4. On the other hand, FOXP3+ 7	
cells are not as discrete as CD4+ T cells, and it was not obvious what method was suitable.  8	
 9	
Thus, we compared different combinations of the clustering methods using a resampling approach, 10	
addressing the sensitivity and the accuracy of the methods. Here we compared the following 11	
methods: [1] HK clustering: CD4+ T cell selection by HDDC, followed by FOXP3+ T cell selection 12	
by k-means; [2] HH clustering: CD4+ T cell selection by HDDC, followed by FOXP3+ T cell 13	
selection by HDDC; and [3] one-step H clustering: FOXP3+CD4+ T cell selection by one-step 14	
HDDC. Using several random number seeds, the HK clustering showed the highest sensitivities and 15	
accuracies across different cell numbers comparing to the other methods (Fig. 2a-2g). 16	
  17	
Automatic classification of the three FOXP3+ T cell subpopulations 18	
Next, we aimed to establish a method that subclassifies the FOXP3+CD4+ T cells into three 19	
subpopulations without relying on the manual gating criteria, and thereby to readdress the 20	
significance of FOXP3+CD4+ T cell subpopulations. We compared k-means and HDDC (k = 3; 21	
designated as HKK and HKH clustering methods, respectively) by a resampling approach, in order to 22	
identify a method that consistently assigns similar cells to each cluster, using CD45RO, CD25, and 23	
FOXP3. The resampling experiment showed that the HKK clustering had smaller variations in both 24	
the percentage and the mean fluorescence intensities (MFI) of CD45RO, CD25, and FOXP3 of each 25	
subpopulation, than the HKH clustering (Fig. 3a-3d). Thus, the HKK clustering has been chosen as 26	
the method for identifying and classifying the FOXP3+ T cell subpopulations. 27	
 28	
The three clusters identified by the HKK clustering were partially overlapped with the three 29	
subpopulations identified by manual gating. In order to make the clusters and the subpopulations 30	
comparable, the cluster with the highest FOXP3 expressions was designated as effector-Treg-like, 31	
and those with low and high CD45RO expressions were designated as naïve-Treg-like and non-Treg-32	
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like clusters, respectively (Fig. 3e-3f). Obviously, the effector-Treg-like cluster contained not only 1	
the cells that were identified as effector-Treg but also some of the FOXP3low cells that were 2	
identified as non-Treg by manual gating (Fig. 3e-3f). The HKK clustering was not computationally 3	
expensive: it took 45 seconds per patient on average to perform all the 3 clustering steps using a 4	
conventional laptop.  5	
 6	
Statistical comparisons of FOXP3+ T cell subpopulations between manual and automatic gating 7	
We compared the subpopulations that were identified by the HKK clustering with those by the 8	
manual gating, in order to understand the similarities and dissimilarities of the two approaches. 9	
Obviously, the HKK clustering included more cells in the effector-Treg-like cluster than manual 10	
gating, while the latter included more in the non-Treg-like cluster (Fig. 4a-4d). The effector-Treg-11	
like and the non-Treg-like clusters showed relatively low correlations with their corresponding 12	
manually-gated populations (r = 0.6236 and 0.7782, respectively) (Fig. 4e, 4f). On the other hand, 13	
the naïve-Treg-like cluster and all FOXP3+ T cells had high correlations with their corresponding 14	
manually-gated populations (r = 0.9168 and 0.8947, respectively, Fig. 4g, 4h). All results were 15	
statistically significant (p < 0.0001).  16	
 17	
Next, the HKK clustering and the manual gating approaches were compared for association with 18	
melanoma. As we previously reported, the manually-gated three subpopulations, effector-Treg, 19	
naïve-Treg, and non-Treg, showed a significant difference between HC and melanoma patients (p < 20	
0.05)	(8). However, assuming that the three subpopulations might be related to each other, when p-21	
values were adjusted for multiple comparisons using a Bonferroni method, all the adjusted p-values 22	
exceeded 0.05, and thus, the manually-identified subpopulations did not show significant difference 23	
using the conservative approach. On the other hand, among the automatically-identified clusters, the 24	
effector-Treg-like cluster was significantly increased in melanoma patients comparing to controls 25	
(adjusted p-value = 0.027, Fig. 5). This result suggested that the effector-Treg-like cluster by the 26	
HKK clustering more efficiently captured the characteristics of melanoma patients. 27	
   28	
Application of automatic gating to an independent dataset 29	
Lastly, we attempted to apply the established method to an independent dataset. We have generated a 30	
new dataset using a different flow cytometer, LSR Fortessa, analysing 12 healthy controls and 19 31	
melanoma patients (“the second dataset”, Table I). When p-values were adjusted for the multiple 32	
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comparisons of the three clusters, the effector-Treg-like cluster only showed a significant increase in 1	
melanoma patients comparing to HC by a Mann-Whitney-Wilcoxon test (adjusted p-value = 0.0015, 2	
Fig. 6), confirming the results of the first dataset. Furthermore, a Kruskal-Wallis test showed that the 3	
effector-Treg-like cluster only was significantly different across HC and three disease stages 4	
(adjusted p-value = 0.0014, Fig. 6a). Pairwise comparisons of the 4 different statuses using a Mann-5	
Whitney-Wilcoxon test showed that the effector-Treg-like cluster was significantly increased in stage 6	
III and stage IV comparing to HC (adjusted p-values = 0.0127 and 0.0325, respectively; Fig. 6b). 7	
 8	
Discussion 9	
This study has proposed to use a clustering approach to reveal the immunological profiles of 10	
FOXP3+ T cells without invoking the concept of the immunosuppressive phenotype of FOXP3+ T 11	
cells (19), and thereby to correlate them with disease phenotype or biological response. The current 12	
dogma of Treg (i.e. the lineage perspective(31)) considers that a Treg population can be defined only 13	
when it has been shown to be unique and distinct from other T cells and stable as a lineage (19). To 14	
be compatible with the lineage perspective, the threshold level of FOXP3 for defining the effector-15	
Treg subpopulation by manual gating has been determined based on the result of a suppressive assay 16	
(9), the gold standard for assessing the immunosuppressive function of Treg (32, 33). Alarmingly, 17	
however, recent studies indicate that the “suppressive activity” by the assay is mostly explained by 18	
the absorption of IL-2 in the culture by CD25 (IL-2 receptor α chain) on the surface of anergic Treg 19	
(34, 35). Since FOXP3 has positive correlations with CD25 and anergy (36), it is not surprising that 20	
FOXP3highCD45RO+CD25high T cells (i.e. effector-Treg by manual gating) show a high suppressive 21	
activity in the in vitro assay.  22	
 23	
The proposed method revealed that the effector-Treg-like cluster only was significantly increased in 24	
melanoma patients in both of the datasets, suggesting that this cluster captured an important 25	
immunological feature. These results encourage the computational clustering approach to reveal the 26	
immunological features of T cells in tumour-bearing patients. On the other hand, the computationally 27	
identified effector-Treg-like cluster included some memory-phonotype CD45RO+FOXP3low non-Treg 28	
cells by manual gating (Fig. 3e, 3f, 4a-4d) (8, 9). While the result is difficult to be interpreted by the 29	
lineage perspective, our recently proposed model of Treg and FOXP3, feedback control perspective 30	
(31), may be useful for reconciling the results in this study with findings on Treg in the literature. 31	
Under this new perspective, the increase of the effector-Treg-like cluster in melanoma patients is 32	
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interpreted that FOXP3 was more frequently induced in tumour-bearing patients as a consequence of 1	
antigen recognition and a negative feedback mechanism of T cell activation, which also explains the 2	
memory phenotype of the effector-Treg-like cluster. Interestingly, the second dataset analysis showed 3	
that the effector-Treg-like cluster was increased in higher stages of melanoma (stage III and IV, Fig. 4	
6), which is interpreted by the new model that reactive FOXP3+ cells accumulated in the immune 5	
system as a result of prolonged chronic stimulation by cancer cells. Although the present study is not 6	
conclusive as to which perspective should be used, certainly the new perspective allows a more 7	
flexible interpretation of clinical and experimental data, because it does not assume stable and 8	
distinct lineages but is more concerned with the dynamics at the cellular and molecular levels. In 9	
fact, a recent study demonstrated an extensive TCR overlap between FOXP3+ cells and 10	
CD25+FOXP3- cells at the site of inflammation (37), further confirming that T cells may dynamically 11	
change the expression of FOXP3, especially in disease conditions. Importantly, this view leads to a 12	
question whether the negative feedback mechanism is stronger than the positive feedback mechanism 13	
in melanoma patients, encouraging further investigations on the latter in future studies.  14	
 15	
The proposed clustering method provided reproducible results between two independent datasets. 16	
Note that the first dataset is in FCS2.0 format, obtained by an analogue system, FACS Calibur, while 17	
the second dataset is in FCS3.0 format, and was obtained by a digital acquisition system, LSR 18	
Fortessa (38). While data normalisation method for such different datasets is yet to be established 19	
and is a big issue in flow cytometric data analysis	(39), the present study encourages the use of the 20	
proposed method or similar clustering methods for the analysis of complex flow cytometric data. In 21	
our analysis, CD4+ T cell selection was almost identical between the manual and the automatic 22	
approaches (Fig. 2a). While the manual gating commonly creates a lymphocyte gate using FSC and 23	
SSC, and subsequently identifies CD4+ T cells (Fig. 1), our investigation showed that it was more 24	
efficient to identify CD4+ T cells by a one-step HDDC clustering approach using all FSC, SSC and 25	
CD4. This indicates that CD4+ T cells are the most distinct when all the three dimensions are used. In 26	
fact, it is a common practice in manual gating to use either FSC or SSC to create a CD4-gate (e.g. 27	
Fig. 1c). This result confirms that flow cytometric data analysis in a higher dimensional space 28	
enables more efficient analysis (23, 25), which is widely accepted but yet-to-be further demonstrated 29	
by addressing real immunological problems. On the other hand, there is a small discordance in 30	
FOXP3+ T cells by the manual gating and by the automatic clustering (Fig. 2b, left panel), although 31	
the overall correlation was high (r = 0.8947, Fig. 4h). This small discordance may be related to either 32	
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or both of the inherent arbitrariness of the manual gating approach to the FOXP3+ selection and the 1	
variations by k-means. Since FOXP3 is measured by intranuclear staining and therefore its 2	
autofluorescence background is high (Fig 1, (9, 40)), it is experimentally difficult to precisely 3	
determine the boundary between the negative cloud and positive cells without using FOXP3-4	
deficient T cells from mutant humans	(41), which are practically difficult to be obtained in most 5	
laboratories. In addition, even using such negative controls, it is not obvious where to set the 6	
boundary. This is why the manual gating approach visually identifies a ‘groove’ between the negative 7	
cloud and positive cells and sets it as a boundary for FOXP3+ cells (Fig. 1d). On the other hand, k-8	
means is a method to determine clusters by minimising the within-cluster sum of squares (42), and 9	
thus can be affected by the distribution of cells and also by outliers, which can introduce variations. 10	
The small discordance of the boundary for FOXP3+ cells may have contributed to those of the non-11	
Treg-like and naïve-Treg-like clusters as well, as both clusters faced the boundary of FOXP3 positive 12	
and negative cells, while it presumably did not directly affect the effector-Treg-like cluster (Fig. 3e). 13	
However, considering that the proposed automatic gating only identified a significant increase of the 14	
FOXP3+ T cell subpopulation in melanoma patients, and that the manual gating did not produce any 15	
significant results on the analysed subpopulations including non-Treg and naïve-Treg, the 16	
immunological feature of melanoma patients most probably is in the cells with higher FOXP3 17	
expressions, and the discordance in the FOXP3 boundary is probably not important in the setting. 18	
Yet, it is hoped that future studies will develop data analytic and modelling methods to better deal 19	
with the problem of where to set the boundary between negative and positive cells in continuous 20	
distributions. 21	
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Figure Legends 1	
Fig. 1. Manual gating approach to classify the FOXP3+ T cell subpopulations. 2	
The manual gating approach to identify and classify FOXP3+ T cell subpopulations is depicted. (a) 3	
Representative flow cytometric data showing the three subsets of FOXP3+ T cells in PBMC: 4	
CD45RO+FOXP3high effector Treg; CD45RO-FOXP3low naïve Treg; and CD45RO+FOXP3low non-5	
regulatory T cells (non-Treg). These subpopulations are classified in a sequential manner using the 6	
following three gates: (b) the lymphocyte gate on the window displaying FSC and SSC; (c) the CD4+ 7	
gate using CD4 and SSC; (d) the FOXP3+ gate using FOXP3 and CD45RO; and (e) the FOXP3+ T 8	
cell subpopulation gate using FOXP3 and CD45RO. The level of FOXP3high and FOXP3low cells was 9	
determined so that CD45RO-FOXP3high cells were < 0.2% of CD4+ T cells. 10	
 11	
Fig. 2. Automatic gating of FOXP3+CD4+ T cells. 12	
Three clustering methods were compared for identifying FOXP3+CD4+ T cells: (1) CD4+ T cell 13	
selection by High-Dimensional Data Clustering (HDDC), followed by FOXP3+ T cell selection by k-14	
means (“HK clustering”); CD4+ T cell selection by HDDC, followed by FOXP3+ T cell selection by 15	
HDDC (“HH clustering”); and (3) FOXP3+CD4+ T cell selection by one step-HDDC (“one-step H 16	
clustering”). Various random number seeds were used to resample events from a flow cytometric 17	
data, and resampling was repeated 100 times for each random number seed, in order to address the 18	
robustness and the efficiency of the three clustering methods. Sensitivities and accuracies were 19	
calculated by assuming that the manual gating provides a gold standard. (a - c) Sensitivities and 20	
accuracies of HK and HH: (a) Sensitivities and accuracies for identifying CD4+ T cells by HDDC 21	
(shared by HK and HH). (b - c) Sensitivities and accuracies of (b) k-means and (c) HDDC for 22	
identifying FOXP3+ T cells from the identified CD4+ T cell cluster (HK and HH, respectively). (d) 23	
Sensitivities and accuracies of HDDC for identifying FOXP3+ T cells from all cells (one-step H). (e - 24	
g) Representative plots of automatically gated FOXP3+CD4+ T cells by the HK clustering method for 25	
(e, f) CD4+ T cells and (g) FOXP3+ T cells. The clustered cells are shown by black dots. 26	
 27	
Fig. 3. Automatic clustering of FOXP3+ CD4+ T cell subpopulations. 28	
K-means and HDDC were used for classifying the computationally clustered FOXP3+ T cells into 29	
three subpopulations, and compared them for stability using a resampling approach, which was 30	
repeated 100 times. (a - d) Boxplots showing (a) the percentages and the mean fluorescence 31	
intensities (MFI) of (b) CD45RO, (c) CD25, or (d) FOXP3 of each FOXP3+ T cell subcluster in 32	
CD4+ T cells by either k-means or HDDC in the 100 resampled samples (i.e. HKK or HKH, 33	
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respectively). (e - f) Representative plots of FOXP3+ T cell subpopulations (e) by the HKK clustering 1	
(automatic) and (f) by manual gating.  2	
 3	
Fig. 4. Comparison of the FOXP3+ T cell clusters/populations identified by the automatic and 4	
manual gating approaches. 5	
(a-d) The automatic (the HKK clustering) and manual gating approaches were compared by 6	
Spaghetti plots of the percentage of the cells that were classified as (a) effector-Treg(-like), (b) non-7	
Treg(-like) and (c) naïve-Treg(-like), and (d) all FOXP3+ T cells, in all samples including healthy 8	
controls and melanoma patients. (e-h) Scatter plots showing the percentages of each FOXP3+ T cell 9	
cluster/population by automatic (the HKK clustering) and manual gating: (e) effector-Treg(-like), (f) 10	
non-Treg(-like) and (g) naïve-Treg(-like), and (h) all FOXP3+ T cells. Closed and open circles 11	
represent melanoma and healthy control samples, respectively. All percentages are in CD4+ T cells. 12	
Pearson’s correlation coefficient (r) was calculated using all the samples for each cluster. 13	
 14	
Fig. 5. Effector-Treg-like cluster in HC and melanoma patients by the automatic HKK 15	
clustering or manual gating. 16	
(a) Boxplot showing %(effector-Treg-like)/CD4 of HC and melanoma patients by the automatic 17	
HKK clustering. * Adjusted p < 0.05. (b) Boxplot showing %(effector-Treg)/CD4 of HC and 18	
melanoma patients by manual gating.  19	
 20	
Fig. 6. Application of the automatic gating approach to an independent dataset. 21	
The established automatic gating method, the HKK clustering, was applied to an independent dataset 22	
(the second dataset, see Table I). (a) Boxplots showing %(effector-Treg-like)/CD4 in healthy control 23	
(HC) and melanoma patients (*** adjusted p = 0.0015). (b) Boxplots showing %(effector-Treg-24	
like)/CD4 in healthy control (HC) and different disease stages of melanoma patients (I-II, III, or IV). 25	
A Kruskal-Wallis test showed that the percentages were significantly different across different 26	
statuses (adjusted p = 0.0014). Pairwise comparisons were done by a Mann-Whitney-Wilcoxon test, 27	
showing significant differences (adjusted p < 0.05) as indicated by (*). 28	
 29	
 30	
  31	



Table I. Patient characteristics in the second dataset 

Patient Age(years) ⁄ sex  Type*  Stage TNM classification Previous 
treatment** 

1 82/M SSM IA pT1aN0M0 - 
2 62/F SSM IB T1bN0M0 - 
3 52/M SSM IB T2aN0M0 - 
4 59/F SSM IB pT2aN0M0 - 
5 63/F ALM IIA pT2bN0M0 - 
6 60/M ALM IIC pT4bN0M0 OP, Rec 
7 78/F SSM IIC T4bN0M0 - 
8 64/M SSM IIIA pT4N2aM0 - 
9 53/F SSM IIIA pT2aN1aM0 - 

10 54/F SSM IIIB pT1bN1aM0 OP, Rec 
11 63/M NM IIIB pT4bN1aM0 - 
12 71/F SSM IIIB T1aN1bM0 - 
13 33/F ALM IIIB pT3bN2aM0 - 
14 78/M ALM IIIC pT4bN3M0 - 
15 71/M ALM IV T4bN3M1c OP, CT 

16 62/M MU IV pTxN0M1c OP, CT 

17 56/F MU IV pTXN0M1c OP, CT 

18 39/F SSM IV pTxNxM1c OP, CT, RT 

19 59/F ALM IV TxN3M1c  OP 

* Type: ALM, acral lentiginous melanoma; LMM, lentigo maligna melanoma; NM, nodular 

melanoma; MU, mucosal melanoma; SSM, superficial spreading melanoma 

** OP: operation; CT: chemotherapy; RT: radiotherapy; Rec: recurrence. 

!
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