1,058 research outputs found

    Automated retinal analysis

    Get PDF
    Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Long-term complications of diabetes can affect many different systems of the body including the retina of the eye. In the retina, diabetes can lead to a disease called diabetic retinopathy, one of the leading causes of blindness in the working population of industrialised countries. The risk of visual loss from diabetic retinopathy can be reduced if treatment is given at the onset of sight-threatening retinopathy. To detect early indicators of the disease, the UK National Screening Committee have recommended that diabetic patients should receive annual screening by digital colour fundal photography [2]. Manually grading retinal images is a subjective and costly process requiring highly skilled staff. This thesis describes an automated diagnostic system based oil image processing and neural network techniques, which analyses digital fundus images so that early signs of sight threatening retinopathy can be identified. Within retinal analysis this research has concentrated on the development of four algorithms: optic nerve head segmentation, lesion segmentation, image quality assessment and vessel width measurements. This research amalgamated these four algorithms with two existing techniques to form an integrated diagnostic system. The diagnostic system when used as a 'pre-filtering' tool successfully reduced the number of images requiring human grading by 74.3%: this was achieved by identifying and excluding images without sight threatening maculopathy from manual screening

    Optic nerve head segmentation

    Get PDF
    Reliable and efficient optic disk localization and segmentation are important tasks in automated retinal screening. General-purpose edge detection algorithms often fail to segment the optic disk due to fuzzy boundaries, inconsistent image contrast or missing edge features. This paper presents an algorithm for the localization and segmentation of the optic nerve head boundary in low-resolution images (about 20 /spl mu//pixel). Optic disk localization is achieved using specialized template matching, and segmentation by a deformable contour model. The latter uses a global elliptical model and a local deformable model with variable edge-strength dependent stiffness. The algorithm is evaluated against a randomly selected database of 100 images from a diabetic screening programme. Ten images were classified as unusable; the others were of variable quality. The localization algorithm succeeded on all bar one usable image; the contour estimation algorithm was qualitatively assessed by an ophthalmologist as having Excellent-Fair performance in 83% of cases, and performs well even on blurred image

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Automatic analysis of retinal images to aid in the diagnosis and grading of diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) is the most common complication of diabetes mellitus and one of the leading causes of preventable blindness in the adult working population. Visual loss can be prevented from the early stages of DR, when the treatments are effective. Therefore, early diagnosis is paramount. However, DR may be clinically asymptomatic until the advanced stage, when vision is already affected and treatment may become difficult. For this reason, diabetic patients should undergo regular eye examinations through screening programs. Traditionally, DR screening programs are run by trained specialists through visual inspection of the retinal images. However, this manual analysis is time consuming and expensive. With the increasing incidence of diabetes and the limited number of clinicians and sanitary resources, the early detection of DR becomes non-viable. For this reason, computed-aided diagnosis (CAD) systems are required to assist specialists for a fast, reliable diagnosis, allowing to reduce the workload and the associated costs. We hypothesize that the application of novel, automatic algorithms for fundus image analysis could contribute to the early diagnosis of DR. Consequently, the main objective of the present Doctoral Thesis is to study, design and develop novel methods based on the automatic analysis of fundus images to aid in the screening, diagnosis, and treatment of DR. In order to achieve the main goal, we built a private database and used five retinal public databases: DRIMDB, DIARETDB1, DRIVE, Messidor and Kaggle. The stages of fundus image processing covered in this Thesis are: retinal image quality assessment (RIQA), the location of the optic disc (OD) and the fovea, the segmentation of RLs and EXs, and the DR severity grading. RIQA was studied with two different approaches. The first approach was based on the combination of novel, global features. Results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity using the private database. We developed a second approach aimed at RIQA based on deep learning. We achieved 95.29% accuracy with the private database and 99.48% accuracy with the DRIMDB database. The location of the OD and the fovea was performed using a combination of saliency maps. The proposed methods were evaluated over the private database and the public databases DRIVE, DIARETDB1 and Messidor. For the OD, we achieved 100% accuracy for all databases except Messidor (99.50%). As for the fovea location, we also reached 100% accuracy for all databases except Messidor (99.67%). The joint segmentation of RLs and EXs was accomplished by decomposing the fundus image into layers. Results were computed per pixel and per image. Using the private database, 88.34% per-image accuracy (ACCi) was reached for the RL detection and 95.41% ACCi for EX detection. An additional method was proposed for the segmentation of RLs based on superpixels. Evaluating this method with the private database, we obtained 84.45% ACCi. Results were validated using the DIARETDB1 database. Finally, we proposed a deep learning framework for the automatic DR severity grading. The method was based on a novel attention mechanism which performs a separate attention of the dark and the bright structures of the retina. The Kaggle DR detection dataset was used for development and validation. The International Clinical DR Scale was considered, which is made up of 5 DR severity levels. Classification results for all classes achieved 83.70% accuracy and a Quadratic Weighted Kappa of 0.78. The methods proposed in this Doctoral Thesis form a complete, automatic DR screening system, contributing to aid in the early detection of DR. In this way, diabetic patients could receive better attention for their ocular health avoiding vision loss. In addition, the workload of specialists could be relieved while healthcare costs are reduced.La retinopatía diabética (RD) es la complicación más común de la diabetes mellitus y una de las principales causas de ceguera prevenible en la población activa adulta. El diagnóstico precoz es primordial para prevenir la pérdida visual. Sin embargo, la RD es clínicamente asintomática hasta etapas avanzadas, cuando la visión ya está afectada. Por eso, los pacientes diabéticos deben someterse a exámenes oftalmológicos periódicos a través de programas de cribado. Tradicionalmente, estos programas están a cargo de especialistas y se basan de la inspección visual de retinografías. Sin embargo, este análisis manual requiere mucho tiempo y es costoso. Con la creciente incidencia de la diabetes y la escasez de recursos sanitarios, la detección precoz de la RD se hace inviable. Por esta razón, se necesitan sistemas de diagnóstico asistido por ordenador (CAD) que ayuden a los especialistas a realizar un diagnóstico rápido y fiable, que permita reducir la carga de trabajo y los costes asociados. El objetivo principal de la presente Tesis Doctoral es estudiar, diseñar y desarrollar nuevos métodos basados en el análisis automático de retinografías para ayudar en el cribado, diagnóstico y tratamiento de la RD. Las etapas estudiadas fueron: la evaluación de la calidad de la imagen retiniana (RIQA), la localización del disco óptico (OD) y la fóvea, la segmentación de RL y EX y la graduación de la severidad de la RD. RIQA se estudió con dos enfoques diferentes. El primer enfoque se basó en la combinación de características globales. Los resultados lograron una precisión del 91,46% utilizando la base de datos privada. El segundo enfoque se basó en aprendizaje profundo. Logramos un 95,29% de precisión con la base de datos privada y un 99,48% con la base de datos DRIMDB. La localización del OD y la fóvea se realizó mediante una combinación de mapas de saliencia. Los métodos propuestos fueron evaluados sobre la base de datos privada y las bases de datos públicas DRIVE, DIARETDB1 y Messidor. Para el OD, logramos una precisión del 100% para todas las bases de datos excepto Messidor (99,50%). En cuanto a la ubicación de la fóvea, también alcanzamos un 100% de precisión para todas las bases de datos excepto Messidor (99,67%). La segmentación conjunta de RL y EX se logró descomponiendo la imagen del fondo de ojo en capas. Utilizando la base de datos privada, se alcanzó un 88,34% de precisión por imagen (ACCi) para la detección de RL y un 95,41% de ACCi para la detección de EX. Se propuso un método adicional para la segmentación de RL basado en superpíxeles. Evaluando este método con la base de datos privada, obtuvimos 84.45% ACCi. Los resultados se validaron utilizando la base de datos DIARETDB1. Finalmente, propusimos un método de aprendizaje profundo para la graduación automática de la gravedad de la DR. El método se basó en un mecanismo de atención. Se utilizó la base de datos Kaggle y la Escala Clínica Internacional de RD (5 niveles de severidad). Los resultados de clasificación para todas las clases alcanzaron una precisión del 83,70% y un Kappa ponderado cuadrático de 0,78. Los métodos propuestos en esta Tesis Doctoral forman un sistema completo y automático de cribado de RD, contribuyendo a ayudar en la detección precoz de la RD. De esta forma, los pacientes diabéticos podrían recibir una mejor atención para su salud ocular evitando la pérdida de visión. Además, se podría aliviar la carga de trabajo de los especialistas al mismo tiempo que se reducen los costes sanitarios.Escuela de DoctoradoDoctorado en Tecnologías de la Información y las Telecomunicacione

    Detection and Classification of Diabetic Retinopathy Pathologies in Fundus Images

    Get PDF
    Diabetic Retinopathy (DR) is a disease that affects up to 80% of diabetics around the world. It is the second greatest cause of blindness in the Western world, and one of the leading causes of blindness in the U.S. Many studies have demonstrated that early treatment can reduce the number of sight-threatening DR cases, mitigating the medical and economic impact of the disease. Accurate, early detection of eye disease is important because of its potential to reduce rates of blindness worldwide. Retinal photography for DR has been promoted for decades for its utility in both disease screening and clinical research studies. In recent years, several research centers have presented systems to detect pathology in retinal images. However, these approaches apply specialized algorithms to detect specific types of lesion in the retina. In order to detect multiple lesions, these systems generally implement multiple algorithms. Furthermore, some of these studies evaluate their algorithms on a single dataset, thus avoiding potential problems associated with the differences in fundus imaging devices, such as camera resolution. These methodologies primarily employ bottom-up approaches, in which the accurate segmentation of all the lesions in the retina is the basis for correct determination. A disadvantage of bottom-up approaches is that they rely on the accurate segmentation of all lesions in order to measure performance. On the other hand, top-down approaches do not depend on the segmentation of specific lesions. Thus, top-down methods can potentially detect abnormalities not explicitly used in their training phase. A disadvantage of these methods is that they cannot identify specific pathologies and require large datasets to build their training models. In this dissertation, I merged the advantages of the top-down and bottom-up approaches to detect DR with high accuracy. First, I developed an algorithm based on a top-down approach to detect abnormalities in the retina due to DR. By doing so, I was able to evaluate DR pathologies other than microaneurysms and exudates, which are the main focus of most current approaches. In addition, I demonstrated good generalization capacity of this algorithm by applying it to other eye diseases, such as age-related macular degeneration. Due to the fact that high accuracy is required for sight-threatening conditions, I developed two bottom-up approaches, since it has been proven that bottom-up approaches produce more accurate results than top-down approaches for particular structures. Consequently, I developed an algorithm to detect exudates in the macula. The presence of this pathology is considered to be a surrogate for clinical significant macular edema (CSME), a sight-threatening condition of DR. The analysis of the optic disc is usually not taken into account in DR screening systems. However, there is a pathology called neovascularization that is present in advanced stages of DR, making its detection of crucial clinical importance. In order to address this problem, I developed an algorithm to detect neovascularization in the optic disc. These algorithms are based on amplitude-modulation and frequency-modulation (AM-FM) representations, morphological image processing methods, and classification algorithms. The methods were tested on a diverse set of large databases and are considered to be the state-of the art in this field

    Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy

    Get PDF
    Purpose To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). Methods A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. Results Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. Conclusions High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment

    A system for computerised retinal haemorrhage analysis

    Get PDF
    Our aim was to develop an objective computerised system for measuring different types of retinal haemorrhages in differing digital images, for use as a research tool. Despite developing various fully automated systems of retinal haemorrhage measurement we ultimately found user interaction to be necessary to achieve satisfactory validity of segmentation, and developed an interactive system of haemorrhage assessment based on this
    corecore