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Abstract. We describe a complete pipeline for the detection and accurate automatic segmentation of the optic
disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting
of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour
models at increasing resolutions using information related to inpainted images and vessel masks. Validation
experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts
and partially graded with a quality label, demonstrate the good performances of the proposed approach. The
method is able to detect the optic disc and trace its contours better than the other systems presented in
the literature and tested on the same data. The average error in the obtained contour masks is reasonably
close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline
is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel pro-
perties from fundus camera images (VAMPIRE). © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JMI.1.2.024001]
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1 Introduction
Locating and segmenting the optic disc (OD) is important in
retinal image analysis. OD is a fundamental landmark to estab-
lish retinal coordinates, and its dimensions and relative position
with respect to other landmarks are sometimes used to calibrate
measurements. OD analysis is used to determine the severity of
some diseases, most importantly, glaucoma. The disc can also be
used as a starting point for vessel tracking methods.

OD localization and segmentation in digital fundus images
may seem an easy task, due to the fact that the OD appears in
most of the images as the brightest spot, approximately circular.
This means that common segmentation methods, such as thresh-
olding and pixel classification model fitting, should, in principle,
provide sufficiently good results. However, even the most recent
algorithms proposed in the literature, if tested on large datasets of
retinal images, are not always able to trace boundaries or to locate
the OD. Failures may be caused by the fact that images are some-
times heavily inhomogeneous, the OD is covered by vessels
irregular and variable in shape, and lesions may create false tar-
gets or change the expected OD features, especially near its bor-
ders. The relevant variability of anomalous cases makes it difficult
to find methods working well in general.

The recent survey by Winder et al.1 cites 38 papers on locali-
zation of OD and identification of its boundary. Localization and
segmentation are usually two separate tasks in the literature.
Several authors define the location of OD as its center, specify-
ing either its estimated coordinates or a likelihood mask located
on the center estimate. Segmentation of OD usually refers to
the subsequent task of determining the contour.1 OD is usually

the brightest component of the fundus; therefore, early methods
based on the identification of clusters of bright pixels proved
simple and effective with images of healthy retinas; for instance,
Sinthanayothin et al.2 employed simply the intensity variance
as a localizing feature. However, algorithms that rely solely on
identifying the brightest region often fail in images containing
white lesions or other confounding anomalies. Lalonde et al.3

used a pyramidal decomposition and Hausdorff-based template
matching. Yu et al.4 used three simple detectors to roughly
localize the OD center, showing that a simple circular binary
mask performs as well as more complex ones for OD detection
with template matching.

Many robust methods for OD localization are based on
context, e.g., the presence of vascular structures and their orienta-
tion. For instance, Hoover and Goldbaum5 proposed the compu-
tation of a map describing a “fuzzy convergence of blood
vessels” to generate candidate positions for the optic nerve center.
Foracchia et al.6 exploited the convergence of the retinal vascula-
ture through a parametric model estimation. A similar method,
using two-dimensional Gaussian matched filters, was presented
by Abdel-Razik et al.7 Rangayyan et al.8 detected the blood vessels
using Gabor filters and the phase portrait analysis to detect points
of convergence of the vessels. A different, effective approach using
multiple cues in a K-NN regression model has been proposed by
Niemeijer et al.9 In the work of Perez-Rovira and Trucco,10 several
weak hypotheses for the location of arcades, fovea, and OD are
computed and subsequently combined using anatomical con-
straints to obtain a robust OD location.

The main issue with contextual methods using the vascular
structure is that they often require an accurate vessel segmenta-
tion, which is, in general, a difficult task. Furthermore, these
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methods include a set of control parameters that must be opti-
mized using training images. Consequently, performance may
depend on the similarity of the test images to those in the train-
ing set. Predicting this similarity, and ultimately performance
given training and testing sets, is very difficult and remains
unapproached so far. A recent paper by Duanggate et al.11 pre-
sented a parameter-free method to overcome this issue, which
appears to be fast and robust, especially on blurred and noisy
images or images having different characteristics.

Another popular method, investigated by many authors, is
the Hough transform (HT), providing a parametric contour
based on precomputed edges. Fleming et al.12 deployed a gen-
eralized HT to detect the circular shape of OD. In Ref. 13, the
OD is localized using the circular HT and the parabolic HT.
HT is highly tolerant of gaps in feature contour descriptions
and relatively unaffected by image noise; however, it tends to
be sensitive to the image resolution. Aquino et al.,14 however,
obtained very good results for the OD contour segmentation
using circular HTafter OD center rough estimation and morpho-
logical postprocessing of the image in the region of interest.
This work is particularly interesting in that it shows that with
a careful preprocessing, a simple circular model driven by
edges actually provides lower OD mask overlapping error than
complex deformable shape/appearance models.

Active contours have been largely applied for OD segmen-
tation,15–17 even if the results are often not very good due to
noise and anomalies, and algorithms require a preliminary
manual or automatic identification of a region of interest con-
taining the OD. Lowell et al.18 performed first OD location with
a template matching approach and then segmentation with a
constrained deformable model. Validation was done on a set
of 100 images, with results graded by an ophthalmologist as
excellent-fair in 83% of cases. Recent applications of active con-
tours have been focused on region-based approaches. Joshi et al.19

proposed a segmentation method that integrates the local image
information around each point of interest in a multidimensional
feature space. Yu et al.4 presented a very fast and robust OD
boundary segmentation technique. It employs a hybrid level
set model, which combines region and local gradient informa-
tion with simple automatic initialization. The average OD area
intersection error obtained is, however, surprisingly higher than
that obtained with Hough circles on the same images.14

The analysis of the literature reveals that both the problems of
locating and segmenting the optic nerve head are more complex
than they may appear. This is mainly due to the variable appearance
of the OD in different subjects, making quite difficult to obtain
robust automatic location and segmentation methods that can be
applied in the clinical practice. Intensity-based segmentation
approaches do not easily handle the problem of varying image
color, unpredictable intersections of vessels with the bright region,
and effects of different pathologies. Model-based approaches, like
active shape models, face the impossibility of creating a reliable
point-to-point correspondence in training contours, and also para-
metric models for vascularization and relative positions of features
cannot predict new anomalous cases well. Training-based methods
suffer from the impossibility of representing the variable aspect of
anomalous spots due to pathologies and risk of creating overfitting
related to anomalous cases in the training set.

For all these reasons, we tried to find a simpler approach to
use contextual information, considering only qualitative charac-
teristics that are consistently found in all the images of the vari-
ous datasets we had the opportunity to work with.

The result is a method based on two simple assumptions
about the OD.

• Its shape is approximately elliptic. It is not always the
brightest part of the retina, but, even in many anomalous
cases, it is the bright part with the highest radial (circular)
symmetry.

• There is a high vessel density inside its contour. The struc-
ture of the vasculature may not be easy to model, but ves-
sels can always be seen near/inside the OD and a rough
segmentation of them can be used to estimate a local
density.

These characteristics appear rather stable in the different
datasets analyzed, more than other features commonly used for
the task (highest brightness, color features matching a set of
training examples, shape of vascular tree near OD).

Our OD location method is, therefore, based on a simple
combination of a radial symmetry detector and a vessel density,
and the accurate segmentation is based on an iteratively refined
model based on contour search constrained by vessel density.
Another simple observation that we used in our approach is
that, as suggested in Ref. 20, instead of making a deformable
model or an OD pattern sufficiently complex to handle relevant
discontinuities or modeling the vascular paths, it is better to
perform OD search and contour location on inpainted images
obtained by removing the rough vessel mask and propagating
neighboring information in the masked region.

In our opinion, the advantages of this approach are twofold.
First, experimental results show that the method is able to accu-
rately segment the OD in more images with respect to other
state-of-the-art methods. Second, the simple assumptions made
could, in principle, be checked as a first step in the processing
pipeline, and alternative methods specifically designed for
specific pathological cases could be applied accordingly.

2 Materials and Methods
We implemented our complete OD location and segmenta-
tion pipeline as a MATLAB® module to be included in the
VAMPIRE software suite.21 To validate the segmentation
results, we employed a large public dataset, MESSIDOR
(Ref. 22), including images with pathologies (exudates,
microaneurysms).

It consists of 1200 images acquired in three different centers
using a color video 3CCD camera on a Topcon TRC NW6 non-
mydriatic retinograph with a 45-deg field of view and varying
image resolutions (2304 × 1536, 2240 × 1488, and 1440 × 960)
and with a depth of 8 bits per color plane. Images are graded
according to the risk of macular edema and retinopathy.

This dataset has been used in recent works4,14,23 and it is very
useful if we consider that most results reported in the previous
literature were tested on very small or nonpublic datasets (and
cannot be, therefore, compared directly or significantly). A
public archive with OD contours traced by an expert for these
images is available at the University of Huelva.24 We used
these annotations for comparison with other methods (Sec. 3).

To compare automatic method performances with human
ones (results reported in Sec. 3.2), we also collected different
annotations on a subset of 300 images of the dataset. On these
images, three experienced ophthalmologists traced the OD
contour using the annotation tool included in the VAMPIRE
software suite (Fig. 1).
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The tool draws parametric ellipses given 5 to 10 clicked
points and allows a simple interactive modification of the con-
tour. This choice was motivated by the feedback of experts who
considered the annotation with freeform contours too slow and
difficult to obtain.

These images have also been annotated by the experts with
an image quality grade.

• Easy: disc contour clearly visible with high contrast; inter-
rupted only by vessel widths; any peripapillary atrophy
(PPA) or scleral rim clearly distinguishable from
disc margin; no other obscuring pathology;

• Intermediate: in between other two categories; margin
interrupted by vessels running obliquely or bifurcating;

• Hard: disc contour too hazy/blurred/indistinct to trace;
subtle PPA or scleral rim; interrupted by other pathology;
myelinated nerve fibers; disc margin appears to be com-
posed of two or more discontinuous ellipses.

In the following, we describe our segmentation pipeline,
while validation results are presented in Sec. 3.

2.1 Processing Pipeline

The procedure basically finds optimal OD contours in a coarse-
to-fine refinement scheme. Important aspects of our approach
are as follows:

• We use a radial symmetry prior derived by the work of
Loy and Zelinsky25 to locate the OD and initialize the
segmentation.

• To drive the contour optimization, we use two separate
maps: the grayscale converted and vessel-inpainted
image and the density of the segmented vessels.

• In the coarse-to-fine scheme, we not only increase image
resolution but also parametric model complexity starting
with an initial circle and then using elliptic shapes. A free-
form contour (snake) is used as a final step only for rel-
atively small corrections using locally adaptive forces.

The scheme of the procedure is represented in Fig. 2. We first
preprocess the image in order to obtain a decoupled vessel and
OD information at different scales; then we localize and

Fig. 1 The simple VAMPIRE user-friendly interface for elliptic contour annotation.

Fig. 2 Flow chart showing the steps of the multiscale optic disc localization and segmentation.
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iteratively refine the OD contour with successive steps. Let us
describe the entire procedure in more detail.

2.2 Preprocessing

First, we resize the image (using bicubic interpolation) so that
the field of view (45 deg in MESSIDOR) spans a constant num-
ber of pixels (480). This avoids the necessity of adapting the
parameters of the subsequent algorithms. The scale factor
used can be obtained from the typology and field of view of
the original image, and according to our tests performed on dif-
ferent datasets, it does not need to be very accurate to ensure
a stable output.

On this resized image, we perform a rough vessel segmen-
tation on the green channel by subtracting the top-hat filtered
version from the original component image and thresholding
the result using the Otsu algorithm.26

The vessel mask is then processed with morphological oper-
ators (dilation and removal of small areas), and the vessel-
removed grayscale image is finally obtained by taking the
original grayscale-converted image and inpainting the mask
pixels. Inpainting algorithms usually try to fill missing parts in
an image by propagating external information so that structure
continuity is preserved. Several approaches have been proposed
for this task; popular ones use gradient information27 or patch
similarity.28 For our application, we obtained good results with
the following iterative procedure:

• Remove vessel pixel from the image. Select the border set
composed of the empty pixels close to valued ones.

• For each border pixel, compute the median of the valued
pixel in a 5 × 5 neighborhood and fill the pixel with
this value.

• Recompute the border set and iterate until it is empty.

In our tests, the resulting images show a continuous OD
border (Fig. 3), and experimental tests (see Sec. 3) show that
curve-fitting algorithms perform better on inpainted images
rather than on original or top-hat filtered images. This procedure
is similar to that used in fundus images by Bock et al.,20 but
differs in the use of the median instead of the average of the
valued pixels.

Grayscale-inpainted images and vessel masks are then
decomposed into a Gaussian pyramid with three levels of detail,
and the OD detection and segmentation is then performed start-
ing from the coarsest scale.

The reduced image resolutions used for our analysis have
been selected with preliminary experiments, showing that
their choice does not affect the accuracy of results. Our findings
are similar, in this sense, to those of other authors; for example,
the finest resolution used by our segmentation method is slightly
higher than that used by Aquino et al.14 on the same images, and
also, the resolution used in the initial localization is close to
that used in the same paper (slightly lower).

2.3 Robust OD Location

To obtain an approximate location of the OD center, we use both
vascular and brightness related priors. But, instead of creating
complex models to link OD center position to the feature data,
we use a simple probabilistic approach based on combining the
output of two simple detectors, one related to radial symmetry
and the other related to vessel density. This approach is rather
robust and can also be applied with few modifications for fovea
detection.29

The vessel density, avoiding false detections of bright spots
in avascular regions, is obtained from the output of a vessel
enhancement filter. This density, computed at the finest scale,
is thresholded in order to capture only major vessels, with an
adaptive threshold computed automatically in order to take a
fixed percentage of vessel pixels. The result is then downsized
at the coarsest resolution. The resulting map is then convolved
with a disc-shaped kernel with the expected approximate size of
the OD at that scale (10 pixels) and normalized dividing the
result by its maximum. We assume that this resulting vessel ker-
nel density estimation ODvð~pÞ encodes a prior probability of
OD location; due to the fact that the OD is located near the con-
vergence of major vessels, a reasonable assumption is that the
OD center is located where this vessel density is high.

The circular symmetry cue is obtained using the fast radial
symmetry transform by Loy and Zelinsky,25 an efficient and
effective method that is widely used for circle detection. It is
based on edge projection at selected distances Ri along direc-
tions perpendicular to the edge itself and the subsequent
increment of a map in the neighborhood of the projected point,
which depends on edge strength and orientation. The map is
here tuned to detect only bright symmetrical regions with a
radius in a range of distances Ri that correspond to the integer
approximations of possible values of the OD radius at the input
image resolution and is taken as the OD center symmetry-base
likelihood ODsð~pÞ.

For each pixel location, we also store, in a separate map, the
value of Ri giving the largest contribution to ODs, which allows

Fig. 3 Image preprocessing. (a) The original RGB image. (b) Estimated vessel mask. (c) Inpainted
gray-scale image, in which the optic disc (OD) is clearly visible and not occluded or cluttered by vessels.
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us to obtain a rough estimate of the OD radius. This value is
used to initialize the subsequent circle fitting. The final approxi-
mate estimate of the OD position is obtained by finding (with
subpixel accuracy) the maximum of the combined likelihood

pODð~pÞ ¼ ODsð~pÞ · max½0.1;ODvð~pÞ�; (1)

where a small minimum value (0.1) for the vessel probability has
been added to give a preference to the symmetry prior when no
regions with relevant values of both ODv and ODs are found.
Figure 4 shows the full rough OD localization procedure. The
vessel density map [Fig. 4(d)] here acts similar to the “fuzzy
vessel convergence” proposed by Hoover and Goldbaum,5

being maximal near the vessel convergence, and can roughly
identify the OD region. The combination of this cue with the
radial symmetry cue results in a localization algorithm that
relevantly outperforms the combination of vessel density and
brightness maps or template matching.29

2.4 Multiresolution Ellipse Optimization

At each level, we refine the image, the contour model, and the
objective (cost) function used by the optimization procedure to
find the contour. At the coarsest level, the parametric contour is a
circle described by its center and radius. The optimal circle is
found by initializing circles in the previously detected OD posi-
tion, running the deterministic Nelder-Mead optimizer; the
overall final result is the solution with minimum value of the
cost function. To build the cost function, we sample the contour
at N discrete positions, with N depending on the image resolu-
tion (30 at the coarsest scale). For each point ~pðiÞ ¼ ðxi; yiÞ,
we consider the unit vector ~nðiÞ perpendicular to the contour
and we sample S equally spaced internal points Cinði; kÞ ¼
~pðiÞ − kα~nðiÞ and S equally spaced external points Coutði; kÞ ¼
~pðiÞ þ kβ~nðiÞ with k ¼ 1: : : S α ¼ R∕S, β ¼ 1.5R∕S. R here is
the currently estimated radius and S was taken equal to 8 at
the coarsest scale.

Sampled values are used to build the function

FðCÞ ¼
XN

i¼1

XS

k¼1

wðiÞminfI½Cinði; kÞ� − I½Coutði; kÞ; D�g;

(2)

where wðiÞ are weights that are maximal for small i to enhance
the effect of edges near the contour border (Fig. 5), and D is a
constant introduced in order to remove the effect of outliers and
was set equal to 25, representing a reasonable difference
between inner intensity and outer intensity in normal cases.
The idea behind these choices is to make the contour attracted
by discontinuities near the border and by global differences
between the internal and the external values without requiring
a specific model for the internal intensity distribution (e.g., con-
stant as done in Chan-Vese region-based active contours30).

We add to the objective functions an additional term, adding
a large fixed penalty when the percentage of vessels in the cen-
tral part of the disc (r < 3R∕4) is <10% of the total OD pixels.
This choice introduces in the method the high vessel density
constraint without introducing a bias on contour position. The
threshold has been set by trial and error working on different
images. A similar choice has been introduced to penalize
very small OD radii (less than half the approximately expected
value).

After the first circular fitting, the final value of the objective
function is checked: if the result is too large, we assume that the
OD initial location failed and restart the procedure from multiple
tentative locations corresponding to most frequent positions in
fundus images (as done in Ref. 31), keeping at the end the result
with the lowest value of the function.

At each new (finer) resolution level, we initialize the contour
using the result obtained at the previous level and start a new
optimization procedure. Increasing the resolution, we also
change the contour model, adding a vertical elongation term.
At the highest resolution, we also add a rotation term, so that

Fig. 4 Approximate OD location. (a) Grayscale converted image. (b) Radial symmetry map tuned for OD-
like structures detection. (c) Major vessels extracted. (d) Kernel smoothed vascular density. (e) Final OD
center location probability estimate. (f) Final OD center estimate superimposed on the original image.
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the finally extracted OD is a generic ellipse described by five
parameters (Fig. 6). Apart from the change in the contour
model, the objective function used in the following steps is
the same, with the addition of a term penalizing extremal OD
eccentricity measures.

2.5 Snake-Based Contour Refinement and
Ellipse Refitting

The goal of the procedure is to estimate a freeform contour that
can be used to analyze the optic nerve and to search for related
biomarkers. As shown in Refs. 4 and 14, the active contour
approach alone, even if region-based and constrained, is rel-
evantly affected by noise and does not provide very good results.

At the finest scale, we then refine the segmented contour with
a snake.32 We have chosen a simple explicit model because our
interest is only to refine locally the previously computed contour
points according to the local image structure. We sample the
elliptic contour with a fixed number of equally spaced points
and let them move iteratively driven by the classical elastic and
bending forces and two image forces, a classical gradient-based
attraction and an additional force adapted to the local image
structure.

This force is defined as a repulsive force with direction
perpendicular to the contour and intensity estimated as follows:
we sample points along each line perpendicular to the initial
contour in a distance range of half the expected OD radius

and we check the intensity profile. If the local variability of
the profile is smaller than a threshold (set to 8 in our experi-
ments), we consider that there is no visible step edge and set
a force value that exactly compensates for the shrinking effect
due to the local curvature. Otherwise a two-means clustering on
the sampled values is performed to classify OD and background.
In this case, an inflating term is added if points outside the con-
tour are classified as OD.

The snake evolution is stopped with the following criteria:
when a point that changes inward/outward direction is detected
and labeled as “oscillating” and when at least three of the five
points in its neighbor are oscillating, the point is stopped. When
>80% of the points are labeled as oscillating, the evolution is
stopped. The thresholds used have been set by trial and error on
images of a different dataset, so that the results could be slightly
improved with a specific optimization.

It is worth noting that if we restore the elliptical shape of the
contour by using a standard ellipse fitting method33 on the
extracted contour points, as we will see in the Experimental
Results, the accuracy of the resulting elliptic segmentation is
(slightly) better than that obtained with the multiscale optimiza-
tion. This is probably due to the limits of the deterministic
optimizer that may end in local minima.

The extraction of the best possible elliptic output for the seg-
mentation is useful for practical applications, because, for exam-
ple, vascular biomarkers are often computed in regions defined
by OD-based coordinates (e.g., the arterial to venular ratio34).

(a) (b)

Fig. 5 The objective functions sum, on selected points of the circular/elliptic contour, values sampled on
the inpainted image (a) along the normal direction, multiplied by weights enhancing discontinuities
near the border (b).

Fig. 6 Example of contours detected at multiple scales. Black line (blue in the electronic version): initial
circular shape. Light gray line (green in the electronic version): intermediate elliptic contour. White line
(yellow in the electronic version): final ellipse fitting result. Dark gray line (red in the electronic version):
freeform contour computed with the snake-based refinement algorithm.
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3 Experimental Results
Most of the OD contours extracted on most images appear close
to the manually annotated ones even if the images are visually
quite different. Figure 7 shows examples of detected contours
that are very close to the manually annotated ones even if
the image quality is poor.

To compare the accuracy of the OD segmentation with other
methods on the MESSIDOR data, we measured the superimpo-
sition of the extracted regions with the ground truth masks using
the Jaccard index.

S ¼ ODsegm ∩ ODref

ODsegm ∪ ODref

:

In the following we will call “overlap error” with respect to
the reference annotation the value 1 − S.

Table 1 shows the average overlap scores obtained with our
method on the MESSIDOR dataset with the Huelva annotations,
compared with the results obtained with the other methods
tested in the literature on these data.

It is possible to see that the multiscale fitting procedure
outperforms other techniques and the contour adjustment
steps slightly improve the accuracy.

Figure 8 shows graphically the overlap error reduction in the
different intermediate steps of our procedure, e.g., simple low-
resolution radial symmetry estimation (with associated radius),
circle fitting, ellipse fitting, snake-based correction, and ellipse

refitting: it is possible to see that even the simple symmetry-
based circle detection provides a reasonable overlap and that
the optimization procedure provides a good result, even before
the snake-based adjustment.

Improvements provided by the snake-based refinement and
problems of the different steps are also shown in Fig. 9. The top
row shows a correctly placed elliptic contour in cyan, visually
close to the manually traced contour shown in green [Fig. 9(a)]
and the improved result obtained with the refinement [Fig. 9(b)].
In some cases, however, the accuracy of the contour is not sim-
ilarly good and a local refinement is not always able to fix prob-
lems or improve the result. The middle row shows a poor elliptic
fit [Fig. 9(c), S ∼ 0.6], where the local correction can improve
the result, but only in the lower part of the disc [Fig. 9(d)]. The
bottom row shows a poor elliptic fit, where the local correction
actually decreases the overlap score [Figs. 9(e) and 9(f)].

Table 2 shows the overlap scores obtained for the images
labeled with all the possible combinations of retinopathy and
macular edema grades given by experts. It appears that the over-
lap is decreasing only very slowly with retinopathy grade, while
the risk of macular edema is probably not correlated with seg-
mentation quality. This seems reasonable, as neither condition
affects the OD severely.

Apart from the improved overlap score, our method provides
further comparative improvements. The method of Aquino
et al.,14 in fact, is based on edge fitting and cannot provide

Fig. 7 Examples of automatically computed contours (bright lines, cyan in the electronic version) versus
manual annotations (dark lines, green in the electronic version). Results are here rather good even if
the image quality is poor. Overlap scores are S ¼ 93.7, S ¼ 90.1, S ¼ 83.8, and S ¼ 94.2 for images
(a), (b), (c), and (d), respectively.

Table 1 Our techniques provide a higher average overlap score than
other methods on the complete MESSIDOR dataset annotated at the
University of Huelva. They also provide relevantly higher percentages
of contours highly overlapped with the manual annotation.

Ell. fit Snake Refitted ell. Ref. 14 Ref. 4

S 0.87 0.88 0.88 0.86 0.84

S ≥ 0.70 92% 94% 94% 93% —

S ≥ 0.75 89% 92% 92% 90% —

S ≥ 0.80 85% 89% 88% 84% —

S ≥ 0.85 78% 81% 82% 73% —

S ≥ 0.90 62% 56% 59% 46% —

S ≥ 0.95 12% 7% 13% 7% —

Fig. 8 The average overlap error is decreased during the different
optimization steps. The result of the ellipse refitting is slightly better
than the snake curves due to the elliptic ground truth constraint.
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OD shape feature (they show that classical ellipse-fitting meth-
ods applied on their edge extraction provide poor results). The
method of Yu et al.4 can provide freeform or elliptic contours,
but has a much lower overlap score.

The method can also be, therefore, used to estimate shape
parameters with good accuracy. Figure 10 shows the Bland-
Altman plot representing differences versus sums of manual
and automatic estimations of the OD area (normalized by the

expected OD radius) for the 1200 MESSIDOR images. The
plot demonstrates that, apart from a few outliers, the measure-
ment procedures are in accordance. AWelch’s t test on the two
sets shows that the measurements are the same within the 1%
confidence level.

3.1 Evaluation of Algorithmic Choices

3.1.1 OD detection

An extremely effective component of our pipeline is the sym-
metry-based automatic OD localization technique. Using the
same rule used in compared papers, where the OD localization
is considered successful if the distance between the estimated
OD center and the ground truth OD center is less than the
expected OD diameter, our localization method fails only in
two images of the set of 1200. On the same dataset, the OD
localization technique proposed by Yu et al.,4 based on a simple
template matching, fails on 11 images, while the method pro-
posed by Aquino et al., based on the combination of simple
detectors (low-pass filter, maximum difference, maximum vari-
ance) fails in 14 cases.14 It is also worth noting that in this last
paper, in the case of localization failure, the results of OD seg-
mentation are obtained with manual initialization. Our segmen-
tation results reported in Table 1 are obtained with a completely
automatic procedure, so that for the two images where the
initialization failed, the overlap score is zero. Figure 11 shows
these two images where our detection failed. It is easy to under-
stand why our method fails: in these cases, the OD is darker than
a larger surrounding area, and the hypotheses used for detection
and segmentation are false.

3.1.2 Inpainting and vessel mask

To evaluate the effect of the inpainting procedure applied, we
compared the accuracy of the segmentation that we obtained
replacing our method with a simple morphological filter or
not using it at all. Table 3 shows that the inpainting method pro-
posed is effective in reducing both the missed detections and
the overlap error, while a morphological filter with a kernel suf-
ficiently large to remove vessels creates corrupted images and
results in decreased detection rates and overlap scores. This

Table 2 Overlap scores appear approximately independent on the
diagnostic annotations provided by the MESSIDOR project. Only a
slight decrease of the score with increasing retinopathy grade is
observed.

Retinopathy grade

0 1 2 3 Any

Risk of macular
edema

0 0.884 0.884 0.876 0.873 0.881

1 — 0.864 0.842 0.869 0.858

2 — 0.878 0.887 0.868 0.873

Any 0.884 0.883 0.873 0.870 0.879

Fig. 10 Bland-Altman plot representing the difference versus average
OD area estimations obtained with manual and automatic procedure.

Fig. 9 When the elliptic OD fit is sufficiently good, (a) the snake-based refinement increases the accu-
racy (d). Estimated contours are the bright ones (cyan in the electronic version), while manual ones are
darker (green). In some cases, the refinement can fix at least partially large differences between cor-
responding manually (b) and automatically traced (e) contours. When the information is poor, the cor-
rection can actually decrease the overlap score [(c) and (f)].
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suggests that a good vessel removal does improve the segmen-
tation procedure and that the method proposed is sufficiently
reliable.

We similarly tested the method used to extract the vessel
mask: in Table 3, it is also possible to see the effect of different
choices on our OD detection and segmentation method. The use
of the symmetry-based vessel mask does not improve the seg-
mentation phase, but removes four detection failures, due to the
higher specificity of the method with respect to simple morpho-
logical procedure (difference between image and top-hat filtered
image and thresholding).

Fig. 11 The only two images of the 1200 where our algorithm fails: the OD region is darker than the
surroundings.

Fig. 12 Histograms showing the number of automatic contours (dark gray, blue in the electronic version)
and manual ones (light gray, red in the electronic version) within increasing area overlap error ranges, for
different image quality labels. (a) Easy images, (b) intermediate images, (c) hard images, (d) all images. It
is possible to see that the behavior is similar (error increasing with the expected difficulty) with a slightly
lower error for the manual procedure and a few outliers for the automatic detector making the average
errors in this case larger.

Table 3 The inpainting procedure reduces the number of failed
detections and improves the segmentation accuracy. Also, the sym-
metry-based vessel extraction is effective in improving the detector
performances.

Vessel removal Vessel estimation

None Morph. Inpainting Morph. Symmetry

Failed det. 8 5 2 6 2

S 0.865 0.807 0.879 0.875 0.879
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3.2 Comparison with Inter- and Intraobserver Errors

Unlike the MESSIDOR diagnostic annotation, the quality grade
given by the experts is strongly correlated with both the quality
of the automatic segmentation and interobserver errors, as
shown in Fig. 12. This may indicate that the visual cues used
by human observers are similar to those applied in the automatic
algorithm.

Interoperator errors obtained by our experts are lower than
those reported in Ref. 4 on a smaller (100 images) subset of
the complete dataset. Interoperator variability between our
experts are similar to interoperator variability between our
experts and the expert from Huelva.

Table 4 shows overlap errors and Hausdorff distances (e.g.,
the maximal value of the distance between a point of one
contour and its closest point in the other one) comparing inter-
operator contour tracing, intraoperator contour tracing, and
automatically versus manually traced contours. It is possible
to see that even if our system outperforms the other methods
tested in the literature, differences between annotators are
still lower, and this is particularly evident in easy images.
This fact suggests that it is still possible to improve the perfor-
mance of the automatic system. Results presented so far in the
literature show, however, that it is really difficult to create more
effective appearance model of the contour, for example, using
learning-based approaches, due to the huge variability of image
cues and contextual information. A possible alternative way to
improve the contour segmentation on which we plan to concen-
trate our efforts consists of learning from the analysis of human
heuristics rather than simply on traced contours. To reach this
goal, we plan to develop ad hoc protocols and software tools to
record annotation procedures and analyze how the expert oph-
thalmologists trace the OD boundaries. The understanding of
what is actually annotated by the experts as OD contour and

how the same result could be obtained automatically is partic-
ularly interesting, also considering that recent research works
based on the use of three-dimensional optical coherence
tomography (OCT) revealed that the optic disc margins seen
in fundus images are actually composed of different anatomical
structures.35

3.3 Limits

The algorithm proposed provides good results on the vast major-
ity of the MESSIDOR set, including the case of lesions due to
the pathologies considered in MESSIDOR; however, perfor-
mance decreases when the assumptions are violated. The failure
of our hypotheses is sufficiently easy to detect, enabling the
application of disease-specific detectors.

The algorithm, currently, is designed mainly for population
studies, e.g., retinal biomarkers for a variety of eye and systemic
conditions (a field attracting a high volume of research). In these
cases, and in cases where pathologies affect part of the eye
other than the OD, our tool seems appropriate and effective.
Obviously, it would need adapting in case of OD-specific alter-
ations. Notice that Table 2 reports results with imaging graded at
various levels of diabetic retinopathy and risk of macular edema,
although neither condition affects the OD contour severely.

Another limit is that the accuracy of the contour detection,
compared with annotations, is still inferior to the interannotator
consistency. We notice that this is a common situation in several
retinal image analysis algorithms, e.g., Ref. 36. Multimodal
analysis of the OD borders and manual annotation procedures
will be investigated in the future to improve the quality of the
segmentation procedure.

3.4 Computational Complexity

The complete segmentation procedure has been implemented in
MATLAB® and included in the VAMPIRE software suite. A
single complete segmentation takes ∼8 s for a 2304 × 1536
image on a DELL XPS 17 laptop (CPU Intel Core i7-
740QM), including ∼2 s for preprocessing and inpainting
and ∼2 s for the vessel segmentation. This time is already suit-
able for interactive use on the VAMPIRE software tool,37 even if
it could be easily reduced by optimizing and compiling the code.

4 Conclusion
In this paper, we presented a complete pipeline for the locali-
zation and accurate segmentation of the OD in digital fundus
images and the results of its validation performed on a large
set of images, including examples of different pathologies.
The results obtained show that the proposed method provides
a robust localization, and a segmentation of the contour close
to the manual accuracy in most cases, allowing a reasonable esti-
mate of shape parameters. On the largest annotated dataset used
in recent works, our method outperforms the ones demonstrated
in the literature for both detection rate and segmentation accu-
racy. Even if our tests performed with three expert annotators on
a large subset show that the interoperator contour overlap error
is still lower than the automatic one, the use of the automatic
algorithms, now fully included in the interactive VAMPIRE
software suite,37 is extremely useful even if we need a very
high precision. Users, in fact, can perform automatic segmenta-
tion and manually correct the few bad results obtained, saving
a huge amount of time.

Table 4 Average area overlap errors and Hausdorff distances for
the automatic procedure compared with average intraoperator and
interoperator errors.

Avg auto
versus human

Avg
interop.

Avg
intraop.

All images

Overlap err. (std. dev.) 13.9 (11.0) 8.0 (3.3) 6.8 (2.8)

Hauss. dist. (std. dev.) 18.8 (18.7) 9.3 (3.7) 8.7 (3.9)

Easy

Overlap err. (std. dev.) 13.1 (11.4) 6.2 (1.9) 5.5 (1.7)

Hauss. dist. (std. dev.) 17.1 (18.5) 7.3 (2.3) 7.2 (2.9)

Intermediate

Overlap err. (std. dev.) 13.8 (10.1) 7.9 (2.6) 6.7 (2.4)

Hauss. dist. (std. dev.) 18.0 (14.7) 9.1 (3.0) 8.5 (3.4)

Hard

Overlap err. (std. dev.) 15.7 (12.7) 12.3 (9.9) 9.9 (2.9)

Hauss. dist. (std. dev.) 20.7 (20.7) 14.3 (3.6) 12.3 (4.6)
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