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Director Dr. D. Maŕıa Garćıa Gadañón
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Abstract

Many eye-related diseases and conditions where the blood circulation or the brain

are affected manifest themselves in the retina. This is the case of diabetic retinopa-

thy (DR), the most common complication of diabetes mellitus (DM), with a preva-

lence above 22% among the diabetic population. DR has become one of the leading

causes of preventable blindness in the adult working population. In this condition,

the hyperglycemia induced by DM is known to damage the walls of the retinal ves-

sels causing several abnormalities in the retina. During the initial stages, these

abnormalities include red lesions (RLs), such as hemorrhages (HEs) and microa-

neurysms (MAs), and hard exudates (EXs), yellowish-white deposits of lipopro-

teins and other proteins.

Visual loss cannot be recovered but can be prevented from the early stages of

DR, when the treatments are effective. Therefore, early diagnosis is paramount.

However, DR may be clinically asymptomatic until the advanced stage, when

vision is already affected and treatment may become difficult. For this reason,

diabetic patients should undergo regular eye examinations through screening pro-

grams. Due to its safety and cost-effectiveness, fundus imaging is the most estab-

lished retinal imaging modality to conduct these examinations aimed at identifying

the DR clinical signs. Traditionally, DR screening programs are run by trained

specialists through visual inspection of the retinal images. However, this manual

analysis is time consuming and expensive. With the increasing incidence of DM

and the limited number of clinicians and sanitary resources, the early detection

of DR becomes non-viable. Additionally, there is a certain subjectivity related to

diagnosis (around 11% discrepancy between specialists). For all of these reasons,

computed-aided diagnosis (CAD) systems are required to assist specialists for a

fast, reliable diagnosis, allowing to reduce the workload and the associated costs.

The complexity of DR diagnosis suggests that CAD systems should be divided

into several stages, leading to an extremely wide field of research. Although mul-
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tiple methods can be found in the literature to carry out each of these stages, they

are not exempt from limitations and there is still room for improvement and tech-

niques to explore. In this context, we hypothesize that the application of novel,

automatic algorithms for fundus image analysis could contribute to the early di-

agnosis of DR. Consequently, the main objective of the present Doctoral Thesis

is to study, design and develop novel methods based on the automatic analysis of

fundus images to aid in the screening, diagnosis, and treatment of DR.

In order to achieve the main goal, we collected 2107 fundus images to build a

private database provided by the Instituto de Oftalmobioloǵıa Aplicada (IOBA) of

the University of Valladolid (Valladolid, Spain) and the Hospital Cĺınico Universi-

tario de Valladolid (Valladolid, Spain). Additionally, we used five retinal databases

publicly available: DRIMDB, DIARETDB1, DRIVE, Messidor and Kaggle. Since

all these databases have different characteristics and purposes, they have been

used in different stages of the Thesis. This has allowed us to validate the proposed

methods with variable fundus images obtained with different protocols, cameras,

resolution and quality. The stages of fundus image processing covered in this

Thesis are: retinal image quality assessment (RIQA), the location of the optic

disc (OD) and the fovea, the segmentation of RLs and EXs, and the DR severity

grading.

RIQA was studied with two different approaches. The first approach was based

on the combination of novel, global features derived from the spatial and spectral

entropy-based quality (SSEQ) and the natural images quality evaluator (NIQE)

methods together with sharpness and luminosity measures based on the continu-

ous wavelet transform (CWT) and the hue-saturation-value (HSV) color model.

Results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity using

the private database. We developed a second approach aimed at RIQA based on

deep learning due to the great potential that this field is showing in computer

vision in recent years. A convolutional neural network (CNN) with InceptionRes-

NetV2 architecture was used to detect retinal images with satisfactory quality.

Data augmentation and transfer learning were also part of this approach. We

achieved 95.29% accuracy with the private database and 99.48% accuracy with

the DRIMDB database.

The location of the OD and the fovea was performed using a combination of

saliency maps. Spatial relationships between the main anatomical structures of

the retina as well as their visual features were considered. The proposed meth-

ods were evaluated over the private database and the public databases DRIVE,

DIARETDB1 and Messidor. For the OD, we achieved 100% accuracy for all
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databases except Messidor (99.50%). As for the fovea location, we also reached

100% accuracy for all databases except Messidor (99.67%).

The joint segmentation of RLs and EXs was accomplished by decomposing the

fundus image into layers. Novel indicators, such as the reflective features of the

retina and the choroidal vasculature visible in tigroid retinas, were proven useful for

the classification of retinal lesions. Results were computed per pixel and per image.

Using the private database, 88.34% per-image accuracy (ACCi), 91.07% per-pixel

positive predictive value (PPVp), and 85.25% per-pixel sensitivity (SEp) were

reached for the detection of RLs. Using the public database DIARETDB1, 90.16%

ACCi, 96.26% PPVp, and 84.79% SEp were obtained. As for the detection of EXs,

95.41% ACCi , 96.01% PPVp, and 89.42% SEp were reached with the private

database. Using the public database, 91.80% ACCi, 98.59% PPVp, and 91.65%

SEp were obtained. An additional method was proposed for the segmentation

of RLs based on superpixels. The Entropy Rate Superpixel algorithm was used

to segment the potential RL candidates, which were classified using a multilayer

perceptron neural network. Evaluating this method with the private database, we

obtained 81.43% SEp, 86.59 PPVp, 84.04% SEi, 85.00% SPi, and 84.45% ACCi.

Using the DIARETDB1 database, we achieved 88.10% SEp, 93.10% PPVp, 84.00%

SEi, 88.89% SPi, and 86.89% ACCi.

Finally, we proposed an end-to-end deep learning framework for the automatic

DR severity grading. The method was based on a novel attention mechanism

which performs a separate attention of the dark and the bright structures of the

retina. The framework includes data augmentation, transfer learning and fine-

tuning. We used the Xception architecture as a feature extractor and the focal

loss function to deal with data imbalance. The Kaggle DR detection dataset was

used for development and validation. The International Clinical DR Scale was

considered, which is made up of 5 DR severity levels. Classification results for all

classes achieved 83.70% accuracy and a Quadratic Weighted Kappa of 0.78.

The combination of the different stages developed in this Doctoral Thesis form

a complete, automatic DR screening system, contributing to aid in the early de-

tection of DR. In this way, diabetic patients could receive better attention for their

ocular health avoiding vision loss. In addition, the workload of specialists could

be relieved while healthcare costs are reduced.
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Chapter 1

Introduction

The present Doctoral Thesis focuses on the automatic analysis of fundus images

to aid in the diagnosis of diabetic retinopathy (DR). With this purpose, a private

retinal database was collected during the course of the Thesis and several image

processing methods were studied. As a consequence of this research work, four

articles in journals indexed in the Journal Citation Reports (JCR) from the Web

of Science�were published between March 2019 and November 2020. Furthermore,

an additional article was sent for publication and is currently under review. This

set of articles resulting from the current research allows this Doctoral Thesis to be

presented as a compendium of publications.

The structure of this introduction is shown below. Section 1.1 justifies the

thematic consistency of the papers included in the Doctoral Thesis. A brief con-

text about biomedical engineering and medical image processing is exposed in

section 1.2. Section 1.3 introduces the main concepts regarding fundus anatomy

while section 1.4 describes the imaging modality with which we have worked:

fundus images. In section 1.5, DR is explained covering causes, consequences, di-

agnosis and treatment. Finally, section 1.6 is devoted to analyze the state of the

art in the context of automatic fundus image analysis.

1.1 Compendium of publications: thematic con-

sistency

The retina is the only part in the human body where blood vessels can be directly

visualized non-invasively in vivo. Many eye-related diseases and conditions where

1
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the blood circulation or the brain are affected manifest themselves in the retina

before showing any other visible sign (Abramoff et al., 2010; Patton et al., 2006).

Among the mentioned ocular diseases, macular degeneration, glaucoma and DR

are included, which are the most important causes of blindness in the developed

countries. Imaging the retina allows any of these diseases to be properly detected,

diagnosed and managed. For this reason, the ability to image the retina and

develop techniques for retinal image analysis is of great interest (Abramoff et al.,

2010).

Due to its safety and cost-effectiveness, fundus imaging is the most established

retinal imaging modality (Abramoff et al., 2010). This modality is a 2-D rep-

resentation of the retinal tissues obtained using reflected light. In color fundus

photography, a specific category of fundus imaging, image intensities represent

the amount of reflected red-green-blue (RGB) wavebands, as determined by the

spectral sensitivity of the sensor. This type of image has been widely used for

population-based, large scale detection of DR, the condition covered in this Thesis

(Abramoff et al., 2010).

Multiple Computer Aided Diagnosis (CAD) systems have been developed to aid

in the diagnosis of DR using color fundus images. The complexity of this challenge

involves that these systems are usually divided into several stages. First, image

quality assessment should be performed to prevent inaccurate diagnosis (Paulus

et al., 2010). Second, a preprocessing step is required to prepare the image for the

subsequent stages. Third, the identification of retinal landmarks such as the optic

disc (OD), the fovea and the retinal vessels as reference coordinates is a prerequisite

before systems can achieve more complex tasks regarding the identification of

pathological entities (Patton et al., 2006). Next, the segmentation of abnormalities

should be accomplished. The main visible lesions of interest characterizing the DR

are the red lesions (RLs) and the exudates (EXs). Finally, severity grading is the

last stage of automatic detection systems.

The present Doctoral Thesis aims to contribute to this research field by propos-

ing novel methods for each of the stages comprising an automatic DR detection

system. With this purpose, a number of image processing techniques were applied

over color fundus images. Each paper of the compendium covers one of the men-

tioned stages and, therefore, they have a clear sequential relationship. This way,

the set of publications can be seen as a whole, forming a complete CAD system to

aid in DR diagnosis. The thematic consistency between the papers is illustrated

in Figure 1.1.

The papers of the compendium are listed below in chronological order. The
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Figure 1.1: Schematic diagram of the methods proposed in the compendium of pub-
lications: image quality assessment, optic disc and fovea location, segmentation of red
lesions and hard exudates and severity grading.

first paper (Jiménez-Garćıa et al., 2019) was focused on the automatic quality

assessment of retinal images, which is the first stage in any CAD system (Entropy

2019 in Figure 1.1). For this purpose, we combined features derived from the

spatial and spectral entropy-based quality (SSEQ) and the natural images qual-

ity evaluator (NIQE) with novel sharpness and luminosity measures based on the

continuous wavelet transform (CWT) and the hue-saturation-value (HSV) color

model. The second paper (Romero-Oraá et al., 2019) was aimed at developing a

method to automatically detect RLs in retinal images, including hemorrhages and

microaneurysms. This is part of the third stage in Figure 1.1. For this task, the

Entropy Rate Superpixel (ERS) method was applied in combination with a mul-

tilayer perceptron (MLP) neural network. In this study, we also proposed a novel

preprocessing stage to normalize the image appearance and enhance the retinal

structures. In the third paper (Romero-Oraá et al., 2020), the main objective was

to develop robust methods for the automatic location of the OD and the fovea

in retinal images. This aligns with the second stage of the global CAD system

(CMPB 2020 in Figure 1.1). The proposed method was based on the combina-

tion of novel saliency maps representing the spatial relationships between some

structures of the retina and the visual appearance of the OD and the fovea. The

fourth paper of the compendium (Romero-Oraá et al., 2020) was aimed at the

automatic detection of RLs and EXs (the third stage in Figure 1.1). As the main

contribution, the fundus image was decomposed into various layers, including the

lesion candidates, the reflective features of the retina, and the choroidal vascula-

ture visible in tigroid retinas. The last paper written during the Thesis, still under



4 Chapter 1. Introduction

review, is focused on the severity grading of DR, which completes the whole DR

CAD system (CMPB 2022 in Figure 1.1). In this study, we proposed a deep learn-

ing framework based on the separate attention for dark and bright structures in

the retina. Independent detection of dark lesions and bright lesions facilitates the

optimization of the classification task and, consequently, can improve the results.

It is important to note that the methods developed in the studies carried out

during the course of this Thesis served as the basis for the subsequent publications.

This fact evidences the close relationship and thematic consistency of the papers

presented in this compendium of publications. Since the present Doctoral Thesis

is presented as a compendium of publications, the original papers are provided

in Appendix ??. The main information about these papers is exposed below,

showing titles, authors, abstracts and journals:

Combination of Global Features for the Automatic Quality Assessment

of Retinal Images (Jiménez-Garćıa et al., 2019).

Jorge Jiménez-Garćıa, Roberto Romero-Oraá, Maŕıa Garćıa, Maŕıa I. López, and

Roberto Hornero. Entropy, vol. 21 (3), p. 311, March, 2019. Impact factor in

2019: 2.494, Q2 in “PHYSICS, MULTIDISCIPLINARY” (Journal Citation

Reports - Web of Science, JCR-WOS).

Diabetic retinopathy (DR) is one of the most common causes of visual loss in

developed countries. Computer-aided diagnosis systems aimed at detecting DR

can reduce the workload of ophthalmologists in screening programs. Nevertheless,

a large number of retinal images cannot be analyzed by physicians and automatic

methods due to poor quality. Automatic retinal image quality assessment (RIQA)

is needed before image analysis. The purpose of this study was to combine

novel generic quality features to develop a RIQA method. Several features were

calculated from retinal images to achieve this goal. Features derived from the

spatial and spectral entropy-based quality (SSEQ) and the natural images quality

evaluator (NIQE) methods were extracted. They were combined with novel

sharpness and luminosity measures based on the continuous wavelet transform

(CWT) and the hue saturation value (HSV) color model, respectively. A subset

of non-redundant features was selected using the fast correlation-based filter

(FCBF) method. Subsequently, a multilayer perceptron (MLP) neural network

was used to obtain the quality of images from the selected features. Classification

results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity.

Results suggest that the proposed RIQA method could be applied in a more
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general computer-aided diagnosis system aimed at detecting a variety of retinal

pathologies such as DR and age-related macular degeneration.

Entropy Rate Superpixel Classification for Automatic Red Lesion De-

tection in Fundus Images (Romero-Oraá et al., 2019).

Roberto Romero-Oraá, Jorge Jiménez-Garćıa, Maŕıa Garćıa, Maŕıa I. López,

Javier Oraá-Pérez, and Roberto Hornero. Entropy, vol. 21 (4), p. 417, 2019.

Impact factor in 2019: 2.494, Q2 in “PHYSICS, MULTIDISCIPLINARY”

(JCR-WOS).

Diabetic retinopathy (DR) is the main cause of blindness in the working-age

population in developed countries. Digital color fundus images can be analyzed

to detect lesions for large-scale screening. Thereby, automated systems can be

helpful in the diagnosis of this disease. The aim of this study was to develop

a method to automatically detect red lesions (RLs) in retinal images, including

hemorrhages and microaneurysms. These signs are the earliest indicators of DR.

Firstly, we performed a novel preprocessing stage to normalize the inter-image and

intra-image appearance and enhance the retinal structures. Secondly, the Entropy

Rate Superpixel method was used to segment the potential RL candidates.

Then, we reduced superpixel candidates by combining inaccurately fragmented

regions within structures. Finally, we classified the superpixels using a multilayer

perceptron neural network. The used database contained 564 fundus images. The

DB was randomly divided into a training set and a test set. Results on the test

set were measured using two different criteria. With a pixel-based criterion, we

obtained a sensitivity of 81.43% and a positive predictive value of 86.59%. Using

an image-based criterion, we reached 84.04% sensitivity, 85.00% specificity and

84.45% accuracy. The algorithm was also evaluated on the DiaretDB1 database.

The proposed method could help specialists in the detection of RLs in diabetic

patients.

A robust method for the automatic location of the optic disc and the

fovea in fundus images (Romero-Oraá et al., 2020).

Roberto Romero-Oraá, Maŕıa Garćıa, Javier Oraá-Pérez, Maŕıa I. López, and

Roberto Hornero. Computer Methods and Programs in Biomedicine, vol. 196,

p. 105599, 2020. Impact factor in 2020: 5.428, Q1 in “COMPUTER SCI-

ENCE, THEORY & METHODS”, “ENGINEERING, BIOMEDICAL”,
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“COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS”

and “MEDICAL INFORMATICS” (JCR-WOS).

Background and objective. The location of the OD and the fovea is usually

crucial in automatic screening systems for diabetic retinopathy. Previous methods

aimed at their location often fail when these structures do not have the standard

appearance. The purpose of this work is to propose novel, robust methods for the

automatic detection of the OD and the fovea. Methods. The proposed method

comprises a preprocessing stage, a method for retinal background extraction, a

vasculature segmentation phase and the computation of various novel saliency

maps. The main novelty of this work is the combination of the proposed saliency

maps, which represent the spatial relationships between some structures of the

retina and the visual appearance of the OD and fovea. Another contribution is the

method to extract the retinal background, based on region-growing. Results. The

proposed methods were evaluated over a proprietary database and three public

databases: DRIVE, DiaretDB1 and Messidor. For the OD, we achieved 100%

accuracy for all databases except Messidor (99.50%). As for the fovea location,

we also reached 100% accuracy for all databases except Messidor (99.67%).

Conclusions. Our results suggest that the proposed methods are robust and

effective to automatically detect the OD and the fovea. This way, they can be

useful in automatic screening systems for diabetic retinopathy as well as other

retinal diseases.

Effective Fundus Image Decomposition for the Detection of Red Le-

sions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopa-

thy (Romero-Oraá et al., 2020).

Roberto Romero-Oraá, Maŕıa Garćıa, Javier Oraá-Pérez, Maŕıa I. López, and

Roberto Hornero. Sensors, vol. 20 (22), p. 6549, 2020. Impact factor in 2020:

3.576, Q1 in “INSTRUMENTS & INSTRUMENTATION”, Q2 in “ENGI-

NEERING, ELECTRICAL & ELECTRONIC” and “CHEMISTRY, AN-

ALYTICAL” (JCR-WOS).

Diabetic retinopathy (DR) is characterized by the presence of red lesions (RLs),

such as microaneurysms and hemorrhages, and bright lesions, such as exudates

(EXs). Early DR diagnosis is paramount to prevent serious sight damage.

Computer-assisted diagnostic systems are based on the detection of those lesions

through the analysis of fundus images. In this paper, a novel method is proposed

for the automatic detection of RLs and EXs. As the main contribution, the
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fundus image was decomposed into various layers, including the lesion candidates,

the reflective features of the retina, and the choroidal vasculature visible in

tigroid retinas. We used a proprietary database containing 564 images, randomly

divided into a training set and a test set, and the public database DiaretDB1 to

verify the robustness of the algorithm. Lesion detection results were computed

per pixel and per image. Using the proprietary database, 88.34% per-image

accuracy (ACCi), 91.07% per-pixel positive predictive value (PPVp), and 85.25%

per-pixel sensitivity (SEp) were reached for the detection of RLs. Using the public

database, 90.16% ACCi, 96.26% PPVp, and 84.79% SEp were obtained. As for

the detection of EXs, 95.41% ACCi, 96.01% PPVp, and 89.42% SEp were reached

with the proprietary database. Using the public database, 91.80% ACCi, 98.59%

PPVp, and 91.65% SEp were obtained. The proposed method could be useful to

aid in the diagnosis of DR, reducing the workload of specialists and improving

the attention to diabetic patients.

1.2 Context: biomedical engineering and medical

image processing

Biomedical engineering is an interdisciplinary field involving the design, develop-

ment, and utilization of materials, devices and techniques for clinical research and

use. It can be seen as the link between engineering and medicine, where technol-

ogy brings new solutions for difficult healthcare problems confronting our society

(Bronzino and Peterson, 2017). Biomedical engineers apply electrical, mechanical,

chemical, optical, and other engineering principles to understand, modify, or con-

trol biologic systems. Likewise, assistance in diagnosing and treating patients is

also covered through the design and manufacturing of products for physiological

functions monitoring (Bronzino and Peterson, 2017). Therefore, biomedical engi-

neering covers various career areas including, among others, the computer analysis

of patient-related data and clinical decision-making (i.e., medical informatics and

artificial intelligence) and medical imaging (the graphic display of anatomic de-

tail or physiologic function) (Bronzino and Peterson, 2017). Both of these areas

perfectly fit the context of the present Doctoral Thesis.

Since the discovery of the X-ray radiation in 1895, the field of medical imaging

has developed into a huge scientific discipline (Ritter et al., 2011). Pathologies

can be observed directly rather than inferred from symptoms, allowing specialists
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to make accurate diagnoses and provide appropriate treatments (Angenent et al.,

2006). Therefore, the recent introduction of advanced imaging techniques in clin-

ical practice has meant a significant improvement in patient care. In the context

of medical image processing, the following fundamental classes of algorithms can

be found (Bankman, 2000):

� Enhancement. This type of algorithms is used to reduce image noise and

increase the contrast of structures of interest. In many cases, enhancement

improves the quality of the image and facilitates diagnosis.

� Segmentation. It consists of delineating structures of interest and discrim-

inating them from the background. In the medical field, segmentation is

applied to separate the anatomical structures and tissues.

� Quantification. Quantification algorithms are applied to segmented struc-

tures to extract the essential diagnostic information such as shape, size,

texture, angle, and motion.

� Registration. The purpose of the registration is to find the correspondences

between homologous points of the images to be registered. In this way, if

images of the same area are captured at different moments of time, the

evolution of a certain disease can be followed. Additionally, a complete

image can be created from other images that cover a small area of a certain

body structure.

� Visualization. This kind of algorithm is meant to facilitate visual inspec-

tion of medical and biological data.

� Compression, storage, and communication. Storing medical images

requires efficient algorithms for posterior retrieval. When it comes to com-

munication purposes, compression, specialized formats, and standards need

to be considered.

Among the available image modalities for retinal imaging, in this Doctoral

Thesis color fundus images are processed to aid in the diagnosis of DR. The study

and use of proper algorithms has allowed us to build novel methods for every stage

of an automatic detection system, including an image quality assessment filter, a

preprocessing step, the segmentation of important landmarks and lesions in the

retina, and the classification of the DR severity degree. The next sections provide

a detailed overview about the eye fundus, fundus images and DR, which is essential
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to understand the characteristics of the disease and how it manifests on fundus

images.

1.3 The eye fundus

The retina is the layer of the eye that is intended to be visualized through imaging.

To understand the visual complications induced by DR, it is important to first

introduce the main anatomical structures of a healthy retina which are visible in

fundus images.

The human eyeball consists of three primary layers: (1) the outermost sup-

porting layer of the eye, which consists of clear cornea and the opaque sclera; (2)

the middle uveal layer of the eye, constituting the central vascular layer of the

globe, which encompasses the iris, the ciliary body, and the choroid; and (3) the

interior layer of the eye, commonly designated as the retina (Kels et al., 2015).

The function of the retina is to transform light into electrical neural impulses to

the brain to create visual perception. At the macroscopic level, different elements

can be observed in the eye fundus: (Abramoff et al., 2010):

� Optic disc or papilla. It is the entry point of the optic nerve into the

eyeball. Due to the absence of photoreceptors, it is also known as the blind

spot. Under ophthalmological examination, the papilla is seen as a circular

or slightly oval disk with an approximate diameter of 1.5 mm and yellow

pigment. The OD is also the entry point for the major blood vessels that

supply the retina.

� Blood vessels. Arteries are responsible for providing oxygen and nutrients

to the retina. The central retinal artery enters the eye through the optic

nerve and separates into two branches, which in turn diverge to form an

extensive network of capillaries. The central retinal vein exits the retina

through the OD. The arteries have a light red color, while the veins appear

with a more intense red color. Many eye diseases affect the blood vessels,

blocking them or making them more fragile.

� Macula. This region has a darker appearance than the rest of the retinal

tissue due to its high pigmentation and is characterized by the absence of

vasculature. It is located in the center of the retina and has an approximate

diameter of 5 mm. It is in charge of both the central vision and the vision

in detail and in movement.
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� Fovea. It is a small slit located in the center of the macula with an approx-

imate diameter of 1 mm. It is the area of greatest visual acuity due to the

presence of a large number of photoreceptors.

Figure 1.2 shows the main anatomical structures visible on a retina.

1.4 Fundus images

The study of the eye fundus has become a routine and essential examination for

the diagnosis and treatment of numerous ocular and systemic pathological pro-

cesses, producing a rapid development of retinal imaging (Abramoff et al., 2010).

Given the great relevance of regular eye examinations, there are several factors

that motivate automatic retinal screening. First, clinicians are scarce and costly

Figure 1.2: Main anatomical structures on a fundus image at a macroscopic level: optic
disc, blood vessels, macula and fovea.
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experts. The expense associated with the manual inspection of the eye fundus

is very high. Therefore, the time devoted to each patient should be optimized.

Second, the growing number of patients needing eye examinations and the devel-

opment of new imaging technology rapidly increases the amount of retinal images

to be reviewed. This situation is already exceeding the limit of sanitary resources

and capacity of clinicians. Third, there is a certain subjectivity related to the

decisions of clinicians, resulting in inter- and intra-observer variability. Therefore,

there is an additional need for reliable automatic analysis to increase the accuracy

and objectivity of the diagnosis (Abramoff et al., 2010).

Currently, retinal screening is carried out using two different retinal imaging

modalities: Optical Coherence Tomography (OCT) imaging and fundus imaging.

OCT scans are hard to obtain since OCT cameras are not easily accessible. The

high price of these cameras has prevented their spread among primary care screen-

ing centers (Sharafeldin et al., 2018). Conversely, fundus cameras can easily be

found in many primary care centers. They are easy-to-use and relatively low-cost,

which explains the popularity of this imaging modality (Abramoff et al., 2010).

Therefore, the use of fundus images is more suitable for screening purposes, since

it can take advantage of the currently available sanitary resources.

In the context of fundus imaging for retinal screening, the most obvious ap-

plication is the early detection of retinal diseases. Important screening programs

for the detection of glaucoma and age-related macular degeneration already exist

(Abramoff et al., 2010). However, main screening application focuses on early

detection of DR (Abramoff et al., 2010). In addition to the screening of retinal

diseases, fundus photography allows the detection of cardiovascular risk factors,

such as strokes, hypertension or myocardial infarcts.

Fundus images are defined as a 2-D representation of the 3-D retinal semi-

transparent tissues projected onto the imaging plane using reflected light. The

following modalities/techniques belong to this category (Abramoff et al., 2010):

� Fundus photography (including so-called red-free photography).

Image intensities represent the amount of reflected light of a specific wave-

band.

� Color fundus photography. Image intensities represent the amount of

reflected red, green, and blue wavebands, as determined by the spectral

sensitivity of the sensor.

� Stereo fundus photography. Intensities represent the amount of reflected

light from two or more different view angles for depth resolution.
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� Hyperspectral imaging. Intensities represent the amount of reflected light

of multiple specific wavelength bands.

� Scanning laser ophthalmoscopy (SLO). Intensities represent the

amount of reflected single wavelength laser light obtained in a time sequence.

� Adaptive optics SLO. Intensities represent the amount of reflected laser

light optically corrected by modeling the aberrations in its wavefront.

� Fluorescein angiography and indocyanine angiography. Image in-

tensities represent the amounts of emitted photons from the fluorescein or

indocyanine green fluorophore that need to be injected into the subject.

In this Doctoral Thesis, color fundus images were used. These images are cap-

tured using a non-invasive and painless procedure. Moreover, they are the most

accessible retinal imaging modality worldwide and the most widespread imaging

modality for DR diagnosis, the condition covered in this Thesis (Mookiah et al.,

2013). Additionally, color fundus images stand out for being easy to obtain and

multiple public databases can be found in the literature. In order to perform some

of our experiments, we built a completely annotated private database composed

of fundus images obtained from the clinical environment. The details about this

database are exposed in section 3.1. To complete our experiments, various fundus

image datasets publicly available were considered: DRIMDB (Sevik et al., 2014),

DIARETDB1 (Kauppi et al., 2007), DRIVE (Staal et al., 2004), Messidor (De-

cencière et al., 2014) and Kaggle (Kaggle, 2015). These databases are described

in detail in section 3.2.

1.5 Diabetic retinopathy

Diabetes mellitus (DM) is a serious, long-term condition with a major impact

worldwide, being one of the 10 most frequent causes of death in the world (Saeedi

et al., 2019). It is a metabolic disorder characterized by hyperglycemia, the pres-

ence of elevated blood glucose, resulting from defects in insulin secretion, insulin

action, or both. This disease can be divided into 2 types. Type 1 DM is caused

by an absolute deficiency of insulin secretion. Type 2 DM, which is much more

prevalent, is caused by the combination of resistance to insulin action and an

inadequate compensatory insulin secretory response (American Diabetes Associa-

tion, 2014). The causes of DM are not fully understood, but genetic background,

obesity, and sedentary lifestyle all confer increased risk of developing diabetes.
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Treatment is primarily through diet changes and the administration of insulin

and/or anti-hyperglycemic drugs (Abramoff et al., 2010). The International Dia-

betes Federation (IDF) estimates the global population with DM to be 463 million

and projected it to be 700 million by 2045 (Saeedi et al., 2019). Furthermore, the

rapid aging global population, the increasing lifespan of people with DM, and the

lifestyle changes are leading to an increased risk for DM (Teo et al., 2021).

The progress of DM is associated with long-term damage, dysfunction, and

failure of different organs, especially the eyes, kidneys, nerves, heart, and blood

vessels (American Diabetes Association, 2014). The most common of these com-

plications is the DR, one of the leading causes of preventable blindness in the

adult working population (Teo et al., 2021). The prevalence of DR is estimated

to be 22.27% globally within the DM population. The global number of adults

with DR in 2020 was estimated to be 103.12 million. Meanwhile, the prevalence

of vision-threatening DR was estimated to be 6.17% with 28.54 million of adults.

In addition, the global prevalence of clinically significant macular edema was esti-

mated to be 4.07% within the DM population, with a global population of 18.83

million (Teo et al., 2021).

1.5.1 Pathogenesis

Hyperglycemia, the result of DM, is known to damage the walls of the retinal

vessels (Abramoff et al., 2010). This fact causes several abnormalities in the retina,

producing the following clinical signs visible in the eye fundus (Mookiah et al.,

2013):

� Microaneurysms are the earliest visible lesions of DR. They look like round

red spots less than 125 µm in size with sharp margins. Microaneurysms

are caused by abnormal permeability and/or non-perfusion of retinal blood

vessels.

� Hard exudates are yellowish-white deposits of lipoproteins and other pro-

teins leaking through abnormal retinal vessels. They have sharp edges and

are often arranged in clumps.

� Soft exudates or cotton-wool spots are shown as fluffy white lesions and

occur due to occlusion of arteriole as a consequence of the ischemia caused

by reduced blood flow.

� Hemorrhages are red spots with irregular margin and/or uneven density.

They occur due to the leakage of weak capillaries.
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� Neovascularization is the abnormal growth of new blood vessels on the

inner surface of the retina. The problem is that these new vessels tend to

bleed into vitreous cavity, obscuring the vision.

� Macular edema is a relevant sign, characterized by the swelling of the

retina, which directly affects the central vision. The permeability of ab-

normal retinal capillaries causes the leakage of fluid and solutes around the

macula.

Figure 1.3 shows the aspect of some of these clinical lesions on a fundus image.

Depending on the progress of the disease, DR can be divided into 2 stages:

nonproliferative and proliferative. The earliest visible signs in nonproliferative DR,

the initial stage, are microaneurysms and retinal hemorrhages, collectively known

Figure 1.3: Example of a fundus image showing some of the main lesions associated
with DR: microaneurysms, hard exudates, cotton-wool spots and hemorrhages.
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as RLs. Progressive capillary nonperfusion is accompanied by the development of

cotton-wool spots, venous beading, and intraretinal microvascular abnormalities.

Proliferative DR, the most advanced stage, occurs with further retinal ischemia

and is characterized by the growth of new blood vessels (the above-mentioned

neovascularization) and connective tissue on the surface of the retina or the optic

nerve head and into the vitreous. The proliferative stage is a consequence of retinal

damage during the preceding stage (Engerman, 1989; Mohamed et al., 2007).

1.5.2 Diagnosis

Early stages of DR may be clinically asymptomatic and the disease may not be

detected until the advanced stage, when vision is already affected and treatment

may become difficult (Mookiah et al., 2013). There is enough scientific evidence

that blindness and visual loss in DR patients can be prevented through regular

screening and early diagnosis (Abramoff et al., 2010). For this reason, DR pa-

tients should undergo periodical examinations where fundus images are analyzed

to identify DR clinical signs.

Initially, DR screening programs are run by trained specialists through visual

inspection of the retinal images. However, this manual analysis is time consuming

and expensive. With the increasing incidence of DM and the limited number of

clinicians and sanitary resources, the early detection of DR becomes non-viable

(Stolte and Fang, 2020). Additionally, the level of agreement between specialists

tends to be moderate (around 11% discrepancy), which implies a certain subjec-

tivity related to diagnosis (Krause et al., 2018). This level of concordance varies

depending on the DR severity degree. For all of these reasons, CAD systems are

required to assist specialists for a fast, reliable diagnosis, allowing to reduce the

workload and the associated costs (Abramoff et al., 2010; Stolte and Fang, 2020).

Clinical decision making requires a standard set of definitions to describe the

severity of DR. Practical clinical standard terminology is also useful for communi-

cation among medical doctors (Wilkinson et al., 2003). Different treatment recom-

mendations might be followed in different regions around the world. However, an

uniform criteria is necessary to classify and treat DR. In this sense, various severity

scales have been proposed. The scale introduced in the Early Treatment Diabetic

Retinopathy Study (ETDRS) was based on the modified Airlie House classification

of DR and is recognized as the “gold standard” for DR severity grading in clinical

trials (Diabetic Retinopathy Study Research Group, 1981). Nevertheless, its use

in everyday clinical practice has not proven to be easy or practical. The ETDRS
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scale has more levels than might be necessary for clinical care and is too complex

(Wilkinson et al., 2003). Consequently, several simplified severity scales have been

developed in different countries until the arrival of a single standardized practi-

cal clinical classification system: the International Clinical DR Scale (Wilkinson

et al., 2003). This classification system is a consensus based on the ETDRS and

the Wisconsin Epidemiologic Study of DR publications. It should be mentioned

that the latest studies aimed at automatic screening of DR use the International

Clinical DR Scale. It consists of five stages with increasing risks of DR (Wilkinson

et al., 2003):

� No apparent retinopathy. No abnormalities.

� Mild nonproliferative diabetic retinopathy. Microaneurysms only.

� Moderate nonproliferative diabetic retinopathy. More than just mi-

croaneurysms but less than severe nonproliferative diabetic retinopathy.

� Severe nonproliferative diabetic retinopathy. Any of the following:

more than 20 intraretinal hemorrhages in each of 4 quadrants; definite venous

beading in 2 quadrants; prominent intraretinal microvascular abnormalities

in 1 quadrant and no signs of proliferative retinopathy.

� Proliferative diabetic retinopathy. One or more of the following: neo-

vascularization; vitreous/preretinal hemorrhage.

1.5.3 Treatment

The management of DM primarily involves reducing the blood sugar through diet,

lifestyle changes and anti-diabetic drugs (American Diabetes Association Profes-

sional Practice Committee, 2022). Patients with mild DR do not require any

particular treatment other than optimal control of DM and the associated risk

factors like hypertension, anemia, and renal failure (Mookiah et al., 2013). In-

tensive glycemic and blood pressure control, known as primary interventions, can

definitely reduce the incidence of DR (Mohamed et al., 2007).

In the advanced stage of DR, secondary interventions, such as laser photoco-

agulation, may be required to prevent blindness from vitreous hemorrhages and

tractional retinal detachment. In most of the treated eyes, stable vision can be

maintained once the disease becomes inactive but the patients must be regularly

re-examined (Mohamed et al., 2007). Vitrectomy, a type of surgery where the

vitreous is replaced with another solution, can prevent blindness in patients with
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advanced stages of DR. Both laser photocoagulation and vitrectomy carry a risk of

additional vision loss. A specific treatment for macular edema is the anti-Vascular

Endothelial Growth Factors (anti-VEGF). VEGF angiogenic activity is inhibited

using VEGF protein and the receptor activation is prevented (Mookiah et al.,

2013).

Considering the available treatments for DR management, it is clear that early

detection of clinical signs associated with DR is essential for effective treatment of

the disease and to prevent significant vision loss in diabetic patients.

1.6 State of the art: automatic analysis of retinal

images in DR diagnosis

The main contributions of this Doctoral Thesis are related with the automatic

analysis of fundus images to aid in the early diagnosis of DR. As previously ex-

plained, CAD systems divide the problem into several independent stages: image

quality assessment, retinal landmark detection, lesion segmentation, and severity

grading. We can find in the literature that previous research has been accomplished

for each of those stages. Therefore, the next subsections reflect a comprehensive

state of the art revision of the mentioned stages.

1.6.1 Image quality assessment

The quality of the input image is important for an observer or an automated

system to be able to interpret the pathological signs. Although fundus cameras

have greatly improved in performance and ease of use, there are several factors

affecting the image quality, including the experience of the operator, the camera

model or the possible ocular pathology of the patient (Paulus et al., 2010). In

these situations, the retinal structures and possible lesions related to DR are not

clearly visible. For this reason, not all images captured in a clinical setting are of

sufficient quality to be analyzed, which could lead to misdiagnosis (Paulus et al.,

2010). The most frequent causes of ungradable fundus images are inadequate

focus, blurring, or insufficient illumination (Besenczi et al., 2016). Some large-

scale studies reported an ungradable image rate of 10–20% due to insufficient

quality (Besenczi et al., 2016). Given this context, it seems clear that objective

and automatic quality assessment of fundus images should be performed before

they are analyzed by automatic systems or human graders. Thus, an image quality

assessment stage should be included as the first step in any CAD system (Paulus
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et al., 2010). Nonetheless, this stage is also useful as a stand-alone algorithm. The

automated and immediate assessment of the quality of fundus images would allow

to repeat the capture of the image of insufficient quality in the same consultation

avoiding the need to repeat the appointment (Zago et al., 2018).

Numerous methods have been proposed for retinal image quality assessment

(RIQA). They can be categorized into structural methods and generic methods

(Fleming et al., 2012; Paulus et al., 2010; Pires Dias et al., 2014; Welikala et al.,

2016). Structural methods are based on the segmentation of some structures of

the retina. Some authors computed the area of the vasculature (Usher et al.,

2003) or the density of small vessels around the macula (Fleming et al., 2006).

Niemeijer et al. (2006) divided the image into clusters to separate the background

from the vessels and the OD. Quality assessment was then performed using a

support vector machine (SVM) classifier. In another study, the areas of clearly

visible vessels were analyzed by means of a vessel enhancement operator (Fleming

et al., 2012). Local vessel density was also studied in different regions of the image

(Giancardo et al., 2010). A more recent approach was based on the area, frag-

mentation, and complexity of the vasculature to train a SVM classifier (Welikala

et al., 2016). Unlike structural approaches, generic methods avoid the structure

segmentation stage (Pires Dias et al., 2014). Some previous generic methods fo-

cused on histogram analysis and edge detection (Lalonde et al., 2001a; Lee and

Wang, 1999). In other studies, the width of the image edges Lin et al. (2017a)

or the local sharpness and illumination were considered (Bartling et al., 2009).

Entropy, texture, and the analysis of blurred areas have also been investigated

(Davis et al., 2009; Fasih et al., 2014; Remeseiro et al., 2017; Wang et al., 2016).

Anisotropy-related focus measures based on the Rényi entropy and the discrete

cosine transform (DCT) have also been studied (Marrugo et al., 2012; Marrugo

Hernández et al., 2011). Pires Dias et al. (2014) combined color, focus, contrast,

and illumination features and used a MLP neural network. More recent studies

focused on the analysis of illumination, homogeneity, saturation, and sharpness

using the wavelet transform (Abdel-Hamid et al., 2016, 2017). Wavelet trans-

form was also applied to estimate focus in (Veiga et al., 2014), where Chevyshev

moments, and a median filter-based statistical measure were additionally stud-

ied. Hybrid methods have also emerged in the context of RIQA as a combination

of the generic and structural methods. Some authors complemented a previous

clustering approach (Niemeijer et al., 2006) using texture features to improve the

results (Paulus et al., 2010). Sevik et al. (2014) segmented the vasculature, the

OD, and the macula, and extracted features related to form, texture, and intensity.
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The OD was also detected in (Shao et al., 2017) to complement an illumination

measure and a general-purpose quality evaluator. Latest studies aimed at RIQA

are based on deep learning approaches. In some of them, the pretrained AlexNet

architecture (Raj et al., 2019; Saha et al., 2018) was considered while, in others,

VGG19, ResNet18, ResNet50 and DenseNet121 were studied (Pan and Yang, 2010;

Tennakoon et al., 2016). (Zago et al., 2018) used the convolutional neural network

(CNN) Inception v3 and compared training from scratch with the use of transfer

learning.

Structural and hybrid methods are limited by segmentation algorithms, which

are usually inaccurate and error prone (Paulus et al., 2010; Pires Dias et al., 2014).

Conversely, generic methods achieve great performance while being computation-

ally simpler (Bartling et al., 2009; Pires Dias et al., 2014). Recent generic methods

combined wavelets and alternative color models (Abdel-Hamid et al., 2016, 2017).

However, they are based on simple quality features which frequently differ from

the opinion of the human graders (Wang et al., 2016). Therefore, more accu-

rate image quality measurements need to be explored. Previous research applied

general-purpose quality metrics to develop generic RIQA methods (Fasih et al.,

2014; Wang et al., 2016). In this context, general-purpose no-reference image

quality assessment (NR-IQA) methods inspired by the Natural Scenes Statistics

(NSS) approach have shown promising results for image quality assessment (Liu

et al., 2014; Mittal et al., 2012, 2013; Moorthy and Bovik, 2010). Among the most

popular NSS-based NR-IQA methods, NIQE (Mittal et al., 2013) and SSEQ (Liu

et al., 2014) have gained relevance in the last years. NIQE and SSEQ quality-

aware features are being used to build robust NR-IQA methods in a variety of

applications (Li et al., 2017). However, to the best of our knowledge, only one

NSS-based NR-IQA method has been successfully applied in the context of fundus

image analysis (Shao et al., 2017).

1.6.2 Optic disc and fovea location

The OD and the fovea are the most important anatomical landmarks in fundus

images, together with the vascular network. The detection of these structures is

usually crucial in CADs (Niemeijer et al., 2009). The OD has the appearance of

a bright yellow disc in fundus images. Consequently, it could be easily confused

with EXs (Niemeijer et al., 2009). Additionally, the vasculature emerges from the

OD and its center is a reference point for the detection of other retinal structures,

like the fovea (Al-Bander et al., 2018). For these reasons, the detection of the OD
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is highly recommended before further processing (Harangi and Hajdu, 2015). The

macula appears darker than the rest of the retinal background (Welfer et al., 2011).

The fovea is the central area of the macula and responsible for sharp central vision.

For this reason, lesions affecting this region are especially relevant. Therefore, the

location of the fovea also plays an important role in CADS (Niemeijer et al., 2009).

The detection of the OD has received considerable attention in the literature.

Exclusively locating the OD center allows estimating the OD by means of a cir-

cumference, which is enough to differentiate OD and lesions (Garćıa et al., 2009;

Lalonde et al., 2001b). In some studies, the pixel intensity variation was con-

sidered (Sinthanayothin et al., 1999). Other authors applied template matching

(Lalonde et al., 2001b) or morphological filtering and watershed transformation

(Walter et al., 2002). Several previous methods rely on the vasculature to locate

the OD (Chalakkal et al., 2018; Foracchia et al., 2004; Hoover and Goldbaum,

2003; Niemeijer et al., 2009). In the work developed by Niemeijer et al. (2009), a

k-nearest neighbor (k-NN) classifier was additionally included. Later, Lu (2011)

used a circular transformation while Qureshi et al. (2012) proposed a combination

of techniques comprising pyramidal decomposition, edge detection and entropy

filter. A spatial weighted graph was defined in (Harangi and Hajdu, 2015) and an

illumination correction method was studied by Hsiao et al. (2012). Other studies

were based on swarm techniques, including the ant colony technique (Pereira et al.,

2013), firefly algorithms (Rahebi and Hardalaç, 2016) and different swarm intelli-

gence algorithms (Abed et al., 2016; Zhang and Lim, 2020). Finally, deep learning

techniques have also been applied in some recent studies (Al-Bander et al., 2018;

Bhatkalkar et al., 2021; Hasan et al., 2021).

Various methods can also be found in the literature for the automatic location

of the fovea. Some authors studied the anatomical position of the fovea rela-

tive to the OD and the vasculature (Aquino, 2014; Gegundez-Arias et al., 2013;

Welfer et al., 2011). Additionally, some of them applied mathematical morphology

(Aquino, 2014; Welfer et al., 2011). Li and Chutatape (2004) modeled the main

vessel arcades using a parabolic curve and focused on the low intensity pixels.

Feature extraction techniques were applied in some works to find the center of

the fovea (Gegundez-Arias et al., 2013; Niemeijer et al., 2007b). Other authors

improved the performance of individual algorithms by applying special geometric

rules to combine different methods (Qureshi et al., 2012). The method proposed

in (Giachetti et al., 2013) was based on the fast radial symmetry transform and

the vascular density. The use of machine learning has also been considered over

hand-crafted features (Harangi and Hajdu, 2015; Niemeijer et al., 2009; Qureshi
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et al., 2012). In recent studies, deep CNNs and heuristic based clustering have

achieved a high accuracy (Al-Bander et al., 2018; Bhatkalkar et al., 2021; Hasan

et al., 2021).

1.6.3 Detection of red lesions and exudates

The most important clinical signs characteristic of the DR are the RLs, such as

microaneurysms and hemorrhages, and the bright lesions, such as EXs. MAs are

the earliest visible sign of DR and appear as reddish, small, and circular dots. HEs

generally look like bigger red spots with irregular shapes. Finally, EXs appear as

yellowish, bright patches of varied shapes and sizes with sharp edges (Kar and

Maity, 2018; Mookiah et al., 2013).

Several approaches have been proposed in the last years aimed at the detection

of DR-related lesions in fundus images (Xiao et al., 2019). Some methods were

aimed at detecting MAs alone and can be divided into four groups (Mookiah et al.,

2013): mathematical morphology-based (Abràmoff et al., 2013), region growing-

based (Fleming et al., 2006), wavelet-based (Quellec et al., 2008), and hybrid

approaches (Lazar and Hajdu, 2013; Wu et al., 2017). Other methods were aimed

at exclusively detecting HEs and can be divided into two categories (Mookiah

et al., 2013): mathematical morphology (Fleming et al., 2008; Hatanaka et al.,

2008) and pixel classification (Zhang and Chutatape, 2005). However, both MAs

and HEs usually look similar and tend to be detected together, which is enough to

determine the presence of DR (Abramoff et al., 2010). Therefore, algorithms for

the joint detection of all RLs are common in the literature. In this context, Seoud

et al. (2016) proposed a technique based on dynamic shape features that represent

the evolution of the shape during image flooding. Other authors divided the image

into superpixels to detect RLs (Romero-Oraá et al., 2019; Zhou et al., 2017a). In

the work conducted by Srivastava et al. (2017), several filters were applied on

patches of different sizes and multiple kernel learning was used to combine the

results. Finally, deep learning architectures have also received attention for the

detection of RLs (Abràmoff et al., 2016; Huang et al., 2022; Lam et al., 2018;

Orlando et al., 2018).

Numerous approaches have also been proposed to detect EXs. Generally, they

can be divided into three groups: clustering-based (Hsu et al., 2001; Osareh et al.,

2009; Sopharak et al., 2009); mathematical morphology, thresholding, and region

growing-based (Imani and Pourreza, 2016; Sánchez et al., 2009; Walter et al.,

2002); and pixel classification-based (Niemeijer et al., 2007a; Sánchez et al., 2008).
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Among the most relevant studies, an unsupervised approach based on the ant

colony optimization algorithm has been proposed (Pereira et al., 2015). Supervised

learning approaches, such as SVM and neural networks, have also been explored

(Theera-Umpon et al., 2019). Superpixel segmentation has been implemented

by Zhou et al. (2017b). Other authors have employed deep learning techniques

for the segmentation of EXs (Adem, 2018; Guo et al., 2019; Huang et al., 2022;

Khojasteh et al., 2019; Prentašić and Lončarić, 2016). In this context, Guo et al.

(2019) introduced a novel loss function which focuses on the hard-to-classify pixels

to deal with class-unbalance and loss-unbalance.

1.6.4 Severity grading

In practice, DR severity grading is performed as a global estimation based on the

type and extension of the overall retinal lesions (Araújo et al., 2020). In the end,

the decision about the treatment is based on this graduation and, consequently,

DR grading is the ultimate goal for CADSs (Araújo et al., 2020).

In the literature, several approaches to automatically detect the DR severity

degree can be found (Abramoff et al., 2010; Stolte and Fang, 2020). Traditional

methods were based on manually designed features (Li et al., 2021b). In recent

years, deep learning methods have achieved better performance and have become

the preferred solution for many automatic classification tasks, including DR grad-

ing. Unlike traditional methods, deep learning models allow for automatically

optimizing the features in an end-to-end manner (Li et al., 2021b). For these

reasons, the number of publications that reference DR and deep learning has in-

creased dramatically in the last years (Li et al., 2021b; Stolte and Fang, 2020).

However, DR grading is a complex challenge and, consequently, most DR research

has generally focused on the binary classification of referable DR. For instance,

Gulshan et al. (2016) developed a deep learning algorithm for automated detection

of referable DR based on an ensemble of 10 CNNs with Inception-v3 architecture

(Szegedy et al., 2016). The method was trained using 128,175 images and was val-

idated over 2 datasets. Similarly, other authors proposed an algorithm composed

of 2 CNNs to detect referable DR while detecting the pathological pixels (Quellec

et al., 2017). In the study conducted by Abràmoff et al. (2016), a hybrid system

was proposed: several deep learning models were used to extract DR related fea-

tures to be integrated into a classic system. Other authors applied a pretrained

fully convolutional network (FCN) to build a weakly-supervised model (Costa

et al., 2019). They were able to produce patch-level predictions for DR lesions
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and to detect DR while using image labels only. In the literature, some studies

aimed at graduating the DR in several stages can be found. These studies use

the International Clinical DR Scale described in section 1.5.2. González-Gonzalo

et al. (2018) proposed an iterative approach which obtains a refined localization

of abnormalities using a VGG16 network architecture. In (Krause et al., 2018),

1,665,151 images were used to train the same CNN architecture exposed in (Gul-

shan et al., 2016). The method included a cascade of thresholds on the output

probabilities to obtain the final classification. In another study, de la Torre et al.

(2018) introduced a weighted kappa loss function for multi-class classification prov-

ing effectiveness in DR grading. Later, the same authors proposed an interpretable

classifier based on a novel pixel-wise score propagation model (de la Torre et al.,

2020). Recently, Araújo et al. (2020) published a method that, together with the

DR grading, provides a medically interpretable explanation and an uncertainty

estimation. For this task, a novel Gaussian-sampling approach based on a Mul-

tiple Instance Learning framework was proposed. All mentioned approaches were

built upon a certain CNN architecture that extracted a set of features over the

whole image. However, some parts of the image are more relevant than others

when determining the DR severity. For this reason, attention mechanisms enter

the picture allowing learning to focus on the areas of the image most useful for

classification and ignoring the less relevant areas (Chen et al., 2016; Vaswani et al.,

2017). Based on this mechanism, Wang et al. (2017) proposed a CNN algorithm

that mimicked the zoom-in process of a clinician to examine the retinal images.

This method could generate attention maps for suspicious regions and predict DR

severity degree based on both the whole image and its high-resolution suspicious

patches. However, the approach required the images of both eyes, which are not

always available.

After this introduction to the Doctoral Thesis, the organization of the rest of

this manuscript is described below. Chapter 2 exposes the hypothesis and the

objectives covered in this research work. Chapter 3 describes the databases that

were used for the development of the proposed methods. The methodological con-

tributions are shown in chapter 4, separately explaining each of the algorithms

proposed for the different stages of the automatic diagnostic system to aid in the

diagnosis of DR. Chapter 5 exhibits the results obtained in this research work,

which are thoroughly discussed in chapter 6. Finally, chapter 7 describes the main

conclusions extracted from the Doctoral Thesis. The content of the manuscript
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is completed with the following additional sections: appendix ?? gathers the pa-

pers included in the compendium of publications, appendix B shows the scientific

achievements reached during the course of the Doctoral Thesis, and appendix C

exposes an abstract of the Thesis in Spanish.
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Hypotheses and objectives

The proposal of the present Doctoral Thesis is aimed at contributing to the early

diagnosis of DR. To this end, retinal fundus images need to be analyzed by means

of advanced image processing techniques.

Section 2.1 contains the main hypothesis that has motivated the development of

this Doctoral Thesis, and the particular hypotheses that have guided the individual

studies carried out. The main objective as well as the specific goals of this research

work are exposed in section 2.2.

2.1 Hypotheses

The rising incidence of DM is causing its associated complications to require a

growing attention. Among these complications, DR is already a primary cause of

blindness and vision loss globally (Grzybowski et al., 2020). The high prevalence,

social impact and sanitary costs associated with this condition corroborates the

great relevance of this issue today.

There is enough scientific evidence that most visual loss associated with DR

can be prevented through early diagnosis and adequate treatment (Abramoff et al.,

2010; Araújo et al., 2020; Grzybowski et al., 2020). However, this condition is

asymptomatic in its early stages and tends to remain undetected until an advanced

vision-threatening stage (Islam et al., 2020). For this reason, diabetic patients

should undergo periodic eye exams via screening programs (Abramoff et al., 2010).

In these programs, DR detection is performed by trained specialists through visual

inspection of fundus images (Araújo et al., 2020). However, the vast number of

diabetic population and the limited resources in personnel and technology make
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the number of images to analyze unwieldy, producing a work overload for the

clinicians. Consequently, the manual analysis of fundus images is non-viable in

practice (Stolte and Fang, 2020). Additionally, there is a well-known discrepancy in

DR diagnosis between specialists due to the subjective character of their decisions

(Krause et al., 2018). For these reasons, there is a great need for CAD systems

aimed at the automatic analysis of fundus images to assist ophthalmologists (Islam

et al., 2020). This way, DR diagnosis can be improved in terms of accuracy, speed

and objectivity, while reducing the workload of specialists and the health costs

(Abramoff et al., 2010).

In this context, we hypothesize that the development of novel, automatic meth-

ods for fundus image analysis could contribute to the early diagnosis of DR. Fur-

thermore, the combination of such methods could provide a complete CAD system

that could be used as a diagnostic tool in clinical practice. As explained before,

CAD systems divide the diagnostic process into several stages. In this Doctoral

Thesis, we conducted several studies to cover each of these stages. The particular

hypotheses that motivated these studies are set out below.

In the first of the studies of the compendium of publications of this Thesis

(Jiménez-Garćıa et al., 2019), a new RIQA method was proposed. It is important

to ensure that input images are of sufficient quality for analysis. Otherwise, the

CAD system could lead to misdiagnoses. Given the state of the art for image

quality assessment exposed in section 1.6.1, where individual generic features were

separately studied, we hypothesized that combining NSS-based NR-IQA methods

with generic features based on sharpness and luminosity can be useful to assess the

quality of fundus images.

An additional RIQA method was developed during the course of the present

Thesis, which was presented in an international conference (Romero Oraá et al.,

2020). In recent years, deep learning architectures, such as CNNs, have gained

importance in image processing and, in particular, in quality assessment of fundus

images. In this context, we hypothesized that the use of transfer learning and

fine-tuning with the InceptionResNetV2 architecture could lead to robust results

and outperform conventional methods in RIQA.

The preprocessing stage is a paramount process in fundus images to normalize

the inter-image and intra-image appearance as well as to enhance the retinal struc-

tures. With the preprocessing method proposed in (Romero-Oraá et al., 2019), we

hypothesized that the sequential application of certain operations would allow us

to highlight the lesions (in particular, the RLs), avoid border effects in subsequent

stages and achieve inter-image normalization. This set of operations is: bright
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border artifact removal, background extension, illumination and color equaliza-

tion, denoising and contrast enhancement.

The third paper of the compendium of publications (Romero-Oraá et al., 2020)

covers the location of the OD and the fovea, the most important anatomical land-

marks of the retina together with the vascular network. These structures serve as

reference in the retinal image for further processing. Multiple previous methods

were proposed to accomplish this task automatically, as stated in section 1.6.2.

However, most of them focus on specific criteria that are insufficient to represent

the OD and the fovea in all images, such as the highest variation in intensity of

adjacent pixels (Lalonde et al., 2001b; Sinthanayothin et al., 1999). Some studies

combine several indicators, like the entropy of the image or the convergence of

the main vessels, but the way that those indicators are used is very restrictive.

Hence, these algorithms fail when any of these indicators deviates from the stan-

dard pattern (Giachetti et al., 2013; Qureshi et al., 2012). We hypothesized that

the combination of novel complementary indicators would allow us to accurately

represent the areas where both the OD and the fovea are located. This way, the

computation of certain saliency maps would be enough to detect the center loca-

tions even for the specific cases where the OD and the fovea do not show a standard

appearance.

The detection of EXs and RLs was jointly studied in (Romero-Oraá et al.,

2020). These two types of lesions are characteristic signs of the early stages of

DR. This is why its detection is relevant for DR screening purposes. Even though

numerous methods can be found in the literature (see section 1.6.3), none of them

have individually considered other structures of the retina beyond OD, the fovea,

and the vasculature. We hypothesized that the reflective features of the retina

and the choroidal vasculature visible in tigroid retinas could also be useful for the

detection of retinal lesions. This way, fundus images could be decomposed into

several layers to facilitate the segmentation of EXs and RLs.

The detection of RLs was additionally covered in (Romero-Oraá et al., 2019).

Almost all previous methods considered pixels as the basic unit in the image.

However, the superpixel approach, as a group of pixels representing natural enti-

ties, is more consistent with human visual cognition and contains less redundancy

(Zhou et al., 2017a). This kind of approach has been used through Simple Linear

Iterative Clustering (SLIC). However, this technique has important limitations in

terms of accuracy and boundary adherence (Xie et al., 2019). In (Romero-Oraá

et al., 2019), we hypothesized that the ERS segmentation algorithm could be useful

to segment RLs in fundus images, outperforming the SLIC algorithm.
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Finally, the last study conducted during the course of the present Doctoral

Thesis, which is currently under review, was aimed at the ultimate goal in a CAD

system: the severity grading. All previous studies aimed at DR severity grading

considered the joint detection of all the DR signs at the same time. We hypothe-

sized that this joint detection makes the classification task harder to optimize than

a separate detection of the bright and the dark lesions.

2.2 Objectives

The main objective of the present Doctoral Thesis is to study, design and develop

novel methods based on the automatic analysis of fundus images to aid in the

screening, diagnosis, and treatment of DR. The proposed methods cover image

quality assessment, OD and fovea detection, RL and EX segmentation, and DR

severity grading. In order to achieve the main objective, the following specific

objectives arise:

I. To review the state of the art in medical image processing and, in particular,

fundus image analysis useful for the diagnosis of DR. This review involves

the study of methods for the different stages of a DR CAD system.

II. To build a private fundus image database with varied quality levels and

diverse types of lesions, including DR patients and healthy controls.

III. To select the publicly available databases of fundus images useful for the

development and validation of the studies involved in this Doctoral Thesis.

IV. To implement and optimize the existing image processing techniques studied

for every stage of the DR detection process. This goal includes image quality

assessment, OD and fovea detection, RL and EX segmentation, and DR

severity grading.

V. To obtain the results that allow evaluating the performance of the proposed

methods.

VI. To discuss and compare the obtained results with those reviewed in the state

of the art.

VII. To extract the proper conclusions based on the previous discussion.

VIII. To disseminate the main results and conclusions of the conducted studies in

JCR indexed journals and in scientific forums such as national and interna-

tional conferences.
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Fundus image databases

The fundus image databases that were used during the course of the Doctoral

Thesis are described in this chapter. Section 3.1 shows the information related to

the private database that was built as a goal of this research. Section 3.2 gathers

the set of public databases that were used in one or more of the studies carried

out during this Thesis.

3.1 Private database

In order to build a private database, we collected 2107 fundus images from 688

patients provided by the Instituto de Oftalmobioloǵıa Aplicada (IOBA) of the

University of Valladolid (Valladolid, Spain) and the Hospital Cĺınico Universitario

de Valladolid (Valladolid, Spain). All participants gave their informed consent

to participate in the research. The Ethics Committee of the Hospital Cĺınico

Universitario de Valladolid approved the studies conducted using this database in

accordance with the Code of Ethics of the World Medical Association (Declaration

of Helsinki).

All images were captured using the Topcon TRC-NW400 automatic fundus

camera (Topcon Medical Systems, Inc., Oakland, NJ, USA) with 45-degree field

of view (FOV), and were stored using the 24-bit JPEG format with a size of 1956

Ö 1934 pixels. Figure 3.1 shows this camera model as well as an example of a

color fundus image obtained with it. Images were obtained using the two-field

protocol adopted by the National Service Framework for Diabetes in the United

Kingdom for DR screening (Department of Health and Social Care (Government

of the United Kingdom), 2002). This protocol involves the acquisition of a fovea-
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(a) (b)

Figure 3.1: (a) Topcon TRC-NW400 automatic retinal camera (Topcon Medical Sys-
tems, Inc., Oakland, NJ, USA). (b) Example of a color fundus image obtained with it.

centered image and an OD-centered image per eye. Thereby, four images were

captured for every patient (except for those cases where there was some capture-

related problem).

Two experienced ophthalmologists determined, for each image, whether they

had enough quality to be analyzed or not. Four criteria were considered by the

specialists to assess the image quality: (i) The OD edges were well defined, (ii)

the blood vessels (especially the main arcades) were well defined, (iii) the retinal

parenchyma (i.e., retinal nerve fiber layer) was visible, and (iv) the macula was

distinguishable. In general, an image was considered to have an adequate quality

when all requirements were met. Based on these criteria, 1810 out of the 2107

images were considered as adequate quality images, while the remaining 297 images

had inadequate quality. This manual classification of image quality served as the

gold standard for our studies devoted to the automatic assessment of the quality

of fundus images (Jiménez-Garćıa et al., 2019; Romero Oraá et al., 2020).

Among the fundus images having enough quality to be analyzed, a reduced sub-

set was selected for lesion annotation. Both mentioned ophthalmologists manually

drew the outlines of the RLs and EXs on 564 images. To carry out this task, an

ad-hoc software tool was developed using the proprietary programming language

and numeric computing environment Matlab®. While 270 out of 564 fundus im-

ages showed DR signs, the remaining 294 lacked any type of lesion. Among the 270
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pathological images, 183 showed EXs, 239 showed RLs, and 152 images included

both EXs and RLs. The manual annotation of these lesions served us as the gold

standard for the study aimed at the detection of RLs (Romero-Oraá et al., 2019),

and for the study aimed at the joint detection of RLs and EXs (Romero-Oraá

et al., 2020).

Finally, the ophthalmologists manually annotated the OD and fovea centers

in the same subset of fundus images selected for lesion annotation. This way, we

also had the gold standard coordinates for these two important landmarks. This

allowed us to use this database to carry out our study (Romero-Oraá et al., 2020),

aimed at the automatic location of the OD and the fovea.

Table 3.1 summarizes the content of the collected private database.

3.2 Public databases

Several public databases of fundus images can be found in the literature, and

many of them were created as research material for the automatic diagnosis of DR

(Decencière et al., 2014). However, they were created for different purposes. For

example, some were aimed at conducting studies on automatic quality assessment,

thus including the manual annotation of the quality level of the images (Sevik

et al., 2014). Other databases include the annotation of the main DR lesions (RLs

and EXs) (Kauppi et al., 2007). There are also databases with the severity degree

of each retina (Decencière et al., 2014; Kaggle, 2015). Even other databases include

the manual annotation of the vasculature (Staal et al., 2004). This section details

all the public databases used in the studies carried out during the course of this

Doctoral Thesis. These were selected for being the most widespread databases,

which allows direct comparisons to be made with other previous studies.

Table 3.1: Private database summary.

Total Quality Annotation DR

2107
1810 Adequate quality

564 Annotated
270 Pathological
294 Control

1246 Non annotated
297 Inadequate quality
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3.2.1 DRIMDB

The Diabetic Retinopathy Image Database (DRIMDB) was provided by the Retina

Department of Ophthalmology, Medical Faculty, Karadeniz Technical University

(Sevik et al., 2014). All images were obtained with a Canon CF-60UVi fundus

camera at 60 degree FOV and were stored in JPEG files at 570 Ö 760 pixels

resolution. This database consists of 216 fundus images. An expert identified

three quality classes: “good”, “bad”, and “outlier”. The “outlier” class (22 images)

covers the nonretinal images that could have been obtained for several reasons,

such as wrong focus or patient absence. The “good” class (125 images) is associated

with medically suitable image candidates. The rest (69 images) were considered

in the “bad” class (Sevik et al., 2014).

The DRIMDB dataset was used in our study (Romero Oraá et al., 2020), aimed

at fundus image quality assessment. However, the outlier class was not employed.

Therefore, only 194 images were considered, corresponding to the 125 images of

the good class and 69 images of the bad class. It is important to note that this

database was only used for validation purposes.

3.2.2 DIARETDB1

The DIARETDB1 database is composed of 89 images captured in the Kuopio

University Hospital and divided into a training set (28 images) and a test set (61

images) (Kauppi et al., 2007). They were captured at a 50-degree FOV and had

a resolution of 1500 Ö 1552 pixels. Only one image per eye was captured, which

was fovea-centered. In this database, four medical experts annotated any sign of

microaneurysms, hemorrhages, and hard and soft EXs. However, it is important

to note that the ground truth of the lesions was only roughly annotated using

circles, ellipses, and polygons. According to the lesion annotations, 27 images

were associated with healthy retinas, 7 images with mild DR, 28 images with

moderate and severe non-proliferative DR, and 27 images with proliferative DR

(Kauppi et al., 2007).

We used the DIARETDB1 database in three studies: (Romero-Oraá et al.,

2019), (Romero-Oraá et al., 2020), and (Romero-Oraá et al., 2020). The first

study was aimed at the detection of RLs, the second one focused on the location

of the OD and the fovea, and the third study was aimed at the joint detection

of RLs and EXs. For the second study, one of our ophthalmologists had to add

to this database the ground truth of the centers of the OD and the fovea. It

important to mention that DIARETDB1 was not used for model building in either
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of the mentioned studies. Instead, this database was exclusively used to assess the

performance of the final methods on a new set of images obtained with different

protocols, resolution and quality.

3.2.3 DRIVE

The Digital Retinal Images for Vessel Extraction (DRIVE) (Staal et al., 2004)

dataset consists of 40 images obtained from a diabetic screening program con-

ducted in the Netherlands. Images were captured from a Canon CR5 nonmydriatic

3 charge-coupled device at 45 degree FOV, and compressed in 24-bit JPEG format.

The size of the images was 768 Ö 584 pixels and all of them were fovea-centered.

In this dataset, 7 out of the 40 images showed pathological signs.

This database was intended to carry out studies for the automatic segmentation

of the vascular network. This is why three observers marked all pixels associated

with blood vessels (Staal et al., 2004). However, we used this database to evaluate

the performance of our method (Romero-Oraá et al., 2020), aimed at the location

of the OD and the fovea. For this task, one of our ophthalmologists annotated the

corresponding centers. In our experiments for the detection of the fovea, 3 images

were excluded from the study for not showing a visually detectable fovea (Welfer

et al., 2011) (see Figure 3.2). In our study, the DRIVE dataset was not used for

the development of the method but for validation purposes.

3.2.4 Messidor

The Messidor database comprises 1,200 images captured using a Topcon TRC

NW6 retinal camera at a 45-degree FOV (Decencière et al., 2014). They were

(a) (b) (c)

Figure 3.2: Images from DRIVE database that were excluded for the detection of the
fovea since this structure is not visually detectable.
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stored in 24-bit TIFF format at three different resolutions: 1440 Ö 960, 2240 Ö

1488 and 2304 Ö 1536 pixels. All the images were fovea-centered. The database

contains a medical diagnosis for each image (severity degree), but no manual an-

notations on the images, such as lesions contours or position (Decencière et al.,

2014).

As for DRIVE, the Messidor database was used in our study designed for OD

and fovea location (Romero-Oraá et al., 2020). Likewise, one of our ophthal-

mologists annotated the corresponding centers of both structures. The Messidor

dataset was only applied to assess the robustness of the proposed method.

3.2.5 Kaggle

This retinal image dataset was provided by EyePACS, a company devoted to DR

screening solutions, for the Diabetic Retinopathy Detection competition published

on Kaggle (Kaggle, 2015), hence the name by which it is known. It is the largest

public DR-related database available with 88,702 images: 35,126 images meant for

training and 53,576 for testing. In this database, a clinician rated the DR severity

degree according to the International Clinical DR Scale (Wilkinson et al., 2003),

which classifies the data into 5 levels: 65,343 images with no DR, 6,205 images

with Mild NPDR, 13,153 images with Moderate NPDR, 2,087 images with Severe

NPDR, and 1,914 images with Proliferative DR. As noted above, the dataset is

highly imbalanced. A fundus image was included from both eyes of every patient.

The images in the dataset come from different models and types of cameras, which

can affect its visual appearance and the output resolution. Additionally, they may

contain artifacts, be out of focus, underexposed, or overexposed. This way, it

represents a real-world scenario where images are affected by noise (Kaggle, 2015).

However, we have noticed that many of the images are not suitable for analysis,

as stated in other studies (Rakhlin, 2018). These cases should not be considered

for diagnosis and, therefore, were discarded using the RIQA algorithm proposed

in this Thesis and described in section 4.1.2. After discarding the poor-quality

retinal images, this dataset contains 52973 fundus images with adequate quality.

The Kaggle database was used in the last of the studies included in the present

Doctoral Thesis, aimed at DR severity grading. In this study, Kaggle was the only

dataset employed because it is the most widely used in the literature and contains a

much larger number of images than other databases. Kaggle was divided into three

groups, preserving the original division after discarding the poor-quality images:

training (18,860 images), validation (2,096 images), and test (32,017 images).
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Methods

This chapter is devoted to explain the different methods that have been developed

during the course of this Doctoral Thesis. These methods have been grouped in

the following sections according to the stage of image analysis in the diagnosis of

DR. Section 4.1 describes the method proposed for the image quality assessment of

fundus images as well as a newer alternative based on deep learning. The method

corresponding to the preprocessing stage is detailed in section 4.2. The method

for the automatic location of the OD and the fovea is presented in section 4.3.

Section 4.4 provides two methods aimed at RL segmentation while section 4.5

explains the method for EX segmentation. Finally, section 4.6 shows the proposed

approach for DR severity grading.

4.1 Image quality assessment

A large number of retinal images are not suitable for manual nor automatic analysis

due to poor quality. The development of RIQA methods is necessary to prevent

misdiagnosis (Paulus et al., 2010). In this Doctoral Thesis we have conducted

two studies with this purpose. The first one is included in the compendium of

publications and is based on novel generic quality features (Jiménez-Garćıa et al.,

2019). The second study was presented in an international conference and was

based on deep learning techniques (Romero Oraá et al., 2020). Both methods

are included in this manuscript due to the great relevance of this stage. RIQA

is essential to form a complete CAD system. Both methods are described in the

following subsections.
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4.1.1 Method based on the combination of global features

This method was proposed in (Jiménez-Garćıa et al., 2019) as part of the com-

pendium of publications of the present Doctoral Thesis. Our methodology was

composed of four stages. First, a preprocessing stage was implemented to adapt

the images for subsequent processing. Second, various generic features were ex-

tracted for every image. Third, the set of extracted features was reduced using

a feature selection algorithm. Finally, an MLP neural network was trained using

this reduced subset of features to assess the quality of images.

Preprocessing

The processing of fundus images tends to produce unwanted border effects around

the FOV. Moreover, the black pixels outside the FOV should not be considered

for analysis. To solve these issues, a preprocessing stage needs to be applied.

However, this stage is not required to enhance the retinal structures or normalize

the appearance since the purpose of the study was to only assess the image quality.

Hence, a specific preprocessing stage was applied.

First, the circular region that represents the FOV was segmented by estimating

its diameter and center (Garćıa et al., 2010). The FOV diameter was estimated

using the intensity profile along one diagonal of the image. Then, the circular

Hough transform was used to find the FOV center (Garćıa et al., 2010). These

two parameters allowed us to generate a circular mask (MFOV ) of the FOV. Then,

the retinal fundus was extended outside of the FOV to reduce the influence of

border effects near the FOV boundaries (Soares et al., 2006). For this task, we

applied an iterative algorithm using the original image, IORIG, and MFOV . For

each iteration of the algorithm, the following operations were performed (Soares

et al., 2006):

1. The border of MFOV was extended using a dilation operator with a 4-

neighborhood diamond-shaped structuring element.

2. The pixel values of IORIG associated with the dilated border were replaced

with the average value of the neighbor pixels inside the dilated mask of the

previous iteration.

This workflow was iteratively repeated on every channel of the RGB image

until the black pixels outside the FOV were completely replaced. It is important

to note that the pixels inside the FOV remained unaltered but the border effects

around the FOV were prevented.
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Feature extraction based on spatial and spectral entropies

SSEQ is a NR-IQA method based on features related to spatial and spectral en-

tropies computed in small non-overlapped regions (blocks) of the image (Liu et al.,

2014). In order to apply this technique, first, three input images were obtained:

the green channel of IPREP and 2 down-sampled versions of the same image ob-

tained with using bicubic interpolation. In this study, scale factors 1 (1956 Ö 1934

pixels), 1/2 (978 Ö 967 pixels), and 1/3 (652 Ö 645 pixels) were used to perform

a multi-scale analysis (Liu et al., 2014). Next, images were divided into blocks of

size M Ö M pixels (Liu et al., 2014).

Spatial entropy (SpacEn) was then computed for each block as the Shannon’s

entropy (Liu et al., 2014). Spectral entropy (SpecEn) was also computed for

each block. To obtain an spectral representation of the image blocks, we applied

the 2-D DCT to obtain the normalized power spectral density (PSD) (Liu et al.,

2014). SpecEn was then calculated for each block as the Shannon’s entropy of the

normalized PSD (Liu et al., 2014).

After computing SpacEn and SpecEn in all blocks, values between percentiles

15% and 85% were exclusively considered, based on the original work (Liu et al.,

2014). This way, only the central part of each distribution was analyzed and

SpacEn and SpecEn were less sensitive to outliers (Liu et al., 2014). Finally,

the mean and the skewness of both entropies through all the selected blocks were

calculated, obtaining the features SpacEnMEAN , SpacEnSKEW , SpecEnMEAN ,

and SpecEnSKEW (Liu et al., 2014). This process was repeated for the rescaled

images. Hence, 12 features were extracted using the SSEQ method (2 mean values

and 2 skewness values for each of the 3 scales). It should be noted that the block

size M must be fixed. Although M is not a critical parameter, it has been selected

as 1/60 of the image size in previous studies (Liu et al., 2014). Following this

approach, we set M = 32 pixels according to the size of the images in the training

set.

Feature extraction based on naturalness

NIQE is a NR-IQA method based on the comparison of an image with a reference

model which represents the characteristics of images of adequate quality (Mittal

et al., 2013). Prior knowledge about the potential distortions is not required to

build the reference model. Adequate quality images are expected to have similar

features to those in the reference model, while the distorted images are expected to

show larger differences. Image quality assessment using NIQE was performed by
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comparing two NSS models: one that represented the reference model and another

that characterized the image to be assessed (Mittal et al., 2013).

To build the reference model, we built a NSS model using the adequate quality

fundus images in the training set of our database. For this task, a set of parameters

was extracted from the blocks in these images. The process to obtain the reference

NSS model is as follows (Mittal et al., 2013):

1. The image IPREP was normalized to obtain the image INORM : the local

mean was subtracted for each pixel and the result was divided by the local

standard deviation (Mittal et al., 2013).

2. The image INORM was divided into blocks of size P Ö P pixels. Then, we

selected a subset of the blocks that exceeded a minimum local sharpness

(Mittal et al., 2013).

3. Each of the selected blocks was subsequently characterized by a zero-mean

generalized Gaussian distribution (GGD). Additionally, in each of the se-

lected blocks, the products between adjacent pixels along 4 directions were

calculated and characterized by four asymmetric generalized Gaussian dis-

tributions (AGGD). The process was repeated with a rescaled version of the

same image in order to perform multi-scale analysis (978 Ö 967 pixels). A

total of 36 parameters characterized each block (2 from the GGD and 16

from 4 AGGDs) using 2 scales.

4. Steps 1–3 were repeated for each image used to build the reference model.

5. The parameters from selected blocks in all the images were fitted to a 36-D

multivariate Gaussian (MVG) model. The MVG probability distribution is

defined as (Mittal et al., 2013):

fX(χ) =
1

(2π)k/2|Σ|1/2
e−

1
2 (χ−ν)TΣ−1(χ−ν), (4.1)

where the vector ν and the covariance matrix Σ define the MVG model

(Mittal et al., 2013). In this work, the parameters of the reference NSS

model were denoted by νM and ΣM.

To build the NSS model that characterizes the image to be assessed, the process

was identical except for that fact that only the image under study was considered.

Thus, the resulting NSS model is another MVG model defined by the parameters

νI and ΣI
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Once both models were built, we computed the NIQE quality index (QNIQE)

of the image to be assessed as the distance (Mittal et al., 2013):

QNIQE =

√
(νM − νI)T

(
ΣM +ΣI

2

)−1

(νM − νI). (4.2)

This metric, which represents the quality of the whole image, is the only feature

extracted and passed to the subsequent classifier using the NIQE method. It can

be seen that a low value of the NIQE quality index is associated to an image that

resembles the reference model. Therefore, this quality index can be considered a

measure of the naturalness of an image (Mittal et al., 2013).

During the development of the NSS models, block size P and the threshold

T had to be fixed. Previous studies proposed that values of P between 32–160,

as well as values of T between 0–1, were adequate for quality assessment (Mittal

et al., 2013). For our images, we empirically found that the greater differences

between adequate quality and inadequate quality images in the training set were

obtained with P = 64 pixels and T = 0.1, which is consistent with previous studies

(Liu et al., 2014).

Feature extraction based on the continuous wavelet transform

Another set of features extracted in this study were derived from the CWT. The

2D CWT decomposes the image IPREP into several representations related with

a scale factor s (Antoine et al., 1993). As the mother wavelet, we selected the

Mexican hat since it is proven suitable for the detection of sharp edges in medical

images (Antoine and Murenzi, 1996; Rangayyan, 2004).

The CWT was applied to the green channel of IPREP at scales s = 2, 4, 8,

16, 32 and 64. These scales were specifically selected to detect the borders of

retinal structures (blood vessels, OD, and macula) (Niemeijer et al., 2006, 2007b).

Then, the variability of the CWT was calculated using the Shannon’s entropy

(ENTCWT ) (Abdel-Hamid et al., 2016).

It has been observed that the amplitude of the CWT around the vessels and

the OD was directly related to the sharpness of their edges (Jiménez-Garćıa et al.,

2019). Thus, the CWT can be useful to identify if the retinal structures are

clearly visible in the images. We assessed edge sharpness by calculating the local

variance (Aja-Fernández et al., 2006). For this task, standard deviation filters were

applied and the distributions of the obtained local variance maps were analyzed

(Aja-Fernández et al., 2006; Gonzalez and Woods, 2009). Since different scales of
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the CWT emphasize the borders of objects of different sizes, a circular standard

deviation filter with radius s was selected for each scale (Aja-Fernández et al.,

2006). Therefore, a circular filter with radius r = s was selected. For each scale,

the mean (MEANCWT ) and the standard deviation (SDCWT ) of the local variance

maps were computed inside the FOV. Consequently, the CWT analysis resulted

in 18 new features: ENTCWT , MEANCWT , and SDCWT for each of the 6 scales.

Feature extraction based on luminosity

Often, fundus images are unexposed or underexposed. Similarly, images are fre-

quently captured with uneven illumination. In these scenarios, the retinal struc-

tures and lesions may not be properly appreciated (Bartling et al., 2009; Shao

et al., 2017; Wang et al., 2016). Therefore, luminosity features can be useful to

identify poorly illuminated images. When luminosity is to be analyzed, the HSV

color model is more appropriate than RGB (Davis et al., 2009; Shao et al., 2017;

Wang et al., 2016). The luminosity (V ) channel of HSV separates luminosity from

color information and is designed to represent the differences between light and

dark areas (Zhou et al., 2018). Using this channel, the background of the image

can be estimated. First, noise was removed by applying a median filter with a

square neighborhood of size 5 Ö 5 pixels (Gonzalez and Woods, 2009). Then,

the background of the images, B(x, y), was extracted using a large Gaussian filter

(Foracchia et al., 2005; Gonzalez and Woods, 2009). The standard deviation, σ,

of this filter should be large enough to estimate the background and remove the

vasculature and the rest of dark structures (Maŕın et al., 2011). We empirically

set σ = 19 according to the image size in our training set.

In order to obtain the luminosity level of the darkest areas of the image, we

computed the percentiles 1% (Lum1), 5% (Lum5), 10% (Lum10), 15% (Lum15),

and 20% (Lum20) of the pixel values in B(x, y). For those images with a lighter

and more uniform background, these percentiles would be higher than for images

where darker background areas appear. In order to detect the uneven illumination,

the differences between consecutive luminosity percentiles were also calculated

(Lum5−1, Lum10−5, Lum15−10, and Lum20−15). These differences can represent

intensity variations along the background. The luminosity analysis resulted in 9

additional features.
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Feature selection: Fast Correlation-Based Filter

A total number of 40 features were finally extracted for each image. Some of them

may be redundant or irrelevant for our specific problem (Guyon and Elisseeff, 2003;

Saeys et al., 2007). It is also important to note that a large number of features

may lead to overfitting and reduce the performance of the classifier (Saeys et al.,

2007). Instead, learning can be achieved more efficiently and effectively with

just relevant and non-redundant features (Yu and Liu, 2004). Feature selection

algorithms try to overcome these difficulties by obtaining a reduced and optimum

subset of features for a certain problem (Saeys et al., 2007).

The fast correlation-based filter (FCBF) feature selection algorithm was used

to identify relevant and non-redundant features (Yu and Liu, 2004). This is a

classifier-independent method. This way, different classifiers could be explored

using the same selection of features. Moreover, the algorithms based on the subset

evaluation approach can become very inefficient for high-dimensional data. FCBF

performs an efficient, explicit relevance and redundancy analysis which has shown

a great effectiveness (Yu and Liu, 2004).

FCBF has two stages. In the first stage, features are ordered according to

their relevance. In the second stage, redundant features are removed. FCBF

uses symmetrical uncertainty (SU) to assess both relevance and redundancy. It is

defined as (Yu and Liu, 2004):

SU(Xi|Xj) = 2
H(Xi)−H(Xi|Xj)

H(Xi) +H(Xj)
, (4.3)

where H(Xi) is the Shannon entropy of the feature Xi, and H(Xi|Xj) is the

Shannon entropy of the feature Xi after the observation of the feature Xj .

The relevance of feature Xm is defined as the SU between the class C (in this

case, image quality) and Xm. In the same way, redundancy is defined as the SU

between pairs of features (Xm and Xn). Feature Xm is considered redundant with

Xn, and thus removed, if (Yu and Liu, 2004):

SU(Xn|C) ≥ SU(Xm|C), and SU(Xm|Xn) ≥ SU(Xm|C). (4.4)

In order to improve the robustness of the feature selection process, a boot-

strapping procedure was implemented (Witten et al., 2016). Instances from the

training set were randomly selected using the sampling with replacement technique

to form bootstrap replicates (Witten et al., 2016). For each replicate, instances

from the training set were sampled with uniform probability (repeated instances
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were allowed) until the original training set size was reached (Witten et al., 2016).

We formed 1000 bootstrap replicates and applied the FCBF algorithm to each

one. Features that were selected on at least half (500) of the runs formed the

final optimum subset. Using bootstrapping, the feature selection stage was less

dependent on the particularities of training set data (Guyon and Elisseeff, 2003).

Classification: Multilayer Perceptron Neural Network

Once a reduced subset of selected features was obtained, we employed an MLP

neural network to classify the images into two categories: adequate quality and in-

adequate quality. This type of network has been widely used in classification tasks

in the field of retinal image processing (Garćıa et al., 2009; Maŕın et al., 2011;

Pires Dias et al., 2014). MLPs are feed-forward networks consisting of various

fully connected layers of neurons (Bishop, 1995; Haykin, 1999). They map a set of

input variables onto a set of output variables using a nonlinear function (Bishop,

1995). An MLP is composed of one input layer, one output layer and, at least, one

hidden layer of neurons (Bishop, 1995; Haykin, 1999). Optionally, more hidden

layers can be added between the input layer and the output layer (Bishop, 1995).

Nevertheless, an MLP with a single hidden layer of neurons is capable of universal

approximation (Huang et al., 2000). Therefore, a three-layer MLP network (input,

hidden, and output layers) was implemented in this study to solve the classifica-

tion task (Bishop, 1995). The input layer had a number of neurons equal to the

number of selected features. The output layer had only one neuron to perform

binary classification (Bishop, 1995; Witten et al., 2016). The number of hidden

neurons (NHIDDEN ) was experimentally obtained to optimize the classification

performance (Bishop, 2006; Witten et al., 2016). Hyperbolic tangent sigmoid ac-

tivation function (Bishop, 1995) was used in the hidden layer since it has been

successfully applied in similar MLP networks from previous studies (Garćıa et al.,

2009). The logistic sigmoid activation function was selected in the output neu-

ron since it is defined in the range (0–1) and, consequently, MLP outputs can be

interpreted as posterior probabilities (Bishop, 1995).

The training process of the MLP was aimed at minimizing an error function.

We selected a cross-entropy error function for the minimization process (Bishop,

1995). Additionally, the scaled conjugate gradient was used for optimization in this

study, since it generally converges faster than other techniques (Bishop, 1995). It

is necessary to note that MLP training may result in overfitting, leading to errors

when the network is tested on new data. To overcome this problem, weight decay

regularization was implemented during training (Bishop, 2006). This technique
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redefines the error function by adding a penalty term that increases as the magni-

tude of weights increases (Bishop, 2006). The modified error function depends on

a regularization parameter (λ) that balances the contribution of the cross-entropy

error function and the sum of the squares of the weights (Bishop, 2006). The value

of this parameter was also experimentally obtained.

As described in chapter 3, the training set of the private database employed in

this study had 148 inadequate quality images, considerably less than the number

of adequate quality images (905 images). In order to deal with class imbalance

during training, we increased the number of instances corresponding to inadequate

quality images using the synthetic minority oversampling technique (SMOTE)

method (Chawla et al., 2002). This method creates synthetic instances of the

data by combining the k-NN of each sample in the minority class (Chawla et al.,

2002). The number of synthetic samples depends on the number of neighbors (k)

(Chawla et al., 2002). We set k = 5 in the training stage to obtain 740 synthetic

minority class training samples. Thus, the training set was finally comprised of

905 adequate quality instances and 888 inadequate quality instances.

4.1.2 Method based on deep learning

The second approach aimed at RIQA was based on deep learning. The proposed

method required a minimal preprocessing step to normalize the input images.

Next, a CNN was used to separate fundus images of adequate quality from the rest.

It is important to highlight the use of data augmentation and transfer learning.

Finally, the training procedure is specified.

Preprocessing

As for the method based on the combination of global features, a minimal pre-

processing step was required. However, this stage was not intended to inspect the

image but to adapt it to the input of the method. For this reason, a specific pre-

processing stage was applied for this study. In this stage, all images were resized

to 299x299 pixels to fit the CNN input layer later used (the CNN architecture em-

ployed in this study was built for these image dimensions) (Zago et al., 2018). If

the input image was not square (as in DRIMDB database), this operation changed

the aspect ratio. Second, the images were normalized to the interval [−1, 1] by

subtracting 0.5 and dividing by 0.5 the [0, 1] intensity image (Zago et al., 2018). It

should be noted that the preprocessing stage is independent of the database used,

and can be adapted to images of various characteristics.
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Data augmentation

Deep neural networks are proven to work better when trained with a large amount

of data. In order to increase the number of training samples, we applied online data

augmentation. This technique involves generating new random, fake samples from

the original data to feed the model in every training batch with new images (Perez

and Wang, 2017). In this study, we applied the following simple transformations

(Zago et al., 2018):

� Rotations in the range [−20,+20] degrees.

� Vertical and horizontal shifts up to a maximum of 7% of the image width.

� Horizontal and vertical flips.

� Zoom in the scale range [0.85, 1.15].

Transfer learning

Training a deep network from scratch could be very slow. Additionally, when the

training data is limited, the model may not converge or may achieve poor results.

In these situations, the use of transfer learning is a common practice that has

proven to work remarkably well (Pan and Yang, 2010). This technique allows the

resolution of a machine learning problem in a particular domain of interest with

the knowledge learned from the training data of another domain of interest (Pan

and Yang, 2010). In practice, the easiest way to apply transfer learning is the

use of pretrained networks, where the model is initialized with a set of pretrained

weights. Then, fine-tuning is applied. This operation consists of retraining all or

some of the final layers of the CNN with a training set adapted to the specific

problem. In this way, the weights are better adapted to the given task (Coyner

et al., 2018).

The concept of transfer learning and pretrained networks has already been

successfully used in RIQA (Coyner et al., 2018; Saha et al., 2018; Yu et al., 2017;

Zago et al., 2018). In this work, we used a CNN pretrained on the images from the

project ImageNet (Jia Deng et al., 2009). This database is made up of more than

14 million generic images belonging to more than 20,000 different classes, such

as dogs, strawberries and airplanes. We used the pretrained weights of ImageNet

because is the largest image database publicly available and it has been extensively

tested (Jia Deng et al., 2009).
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Convolutional neural network architecture

CNNs are neural networks composed of convolutional layers, as well as others such

as pooling and fully connected layers. They are capable of extracting represen-

tative features from a large set of raw images in an optimized way (Saha et al.,

2018; Zago et al., 2018). In conventional neural networks, each neuron is con-

nected to all the neurons in the next layer. When the network input is an image,

that is, a matrix composed of a large number of pixels, these connections involve

a huge number of internal parameters, which is not feasible for training. On the

contrary, in CNNs each neuron is only connected to a neighboring subset, which

allows to significantly reduce the parameters of the network to be trained. This

property is known as sparse interactions (Wang et al., 2019). Additionally, CNNs

are characterized by weight sharing, where all units in a layer use the same weights

and deviations. This feature reduces the network training parameters to a greater

extent, which can effectively prevent the network from overfitting and improve the

efficiency of network operation (Wang et al., 2019).

In this work, a CNN with InceptionResNetV2 architecture was used, which

was adapted to our binary classification problem. This hybrid architecture is a

combination of Inception (Szegedy et al., 2015) and ResNet (He et al., 2016).

On one hand, the Inception architecture includes filters of multiple sizes oper-

ating at the same level. This allows better learning of the information that is

distributed in regions of various sizes on the image without excessively increasing

the computational cost (Szegedy et al., 2015). The latest version of this network

is known as Inception v4 and has a simpler architecture than previous versions

(Szegedy et al., 2017). On the other hand, ResNet facilitates the learning process

by adding residual connections between the output and input of each Inception

module (Sevik et al., 2014). In this way, hybrid InceptionResNet models combine

the advantages of both networks, being possible to obtain higher accuracies in

earlier epochs (Szegedy et al., 2017). For this reason, the architecture used in this

work is InceptionResNetV2, which is 572 layers deep (Szegedy et al., 2017). In

order to adapt this architecture to our binary classification problem, we replaced

the last 3 layers by 3 fully connected layers of 1024, 512 and 1 neuron, respectively

(Zago et al., 2018). The first two had a ReLU activation function (Zago et al.,

2018). For the latter, a sigmoid activation function was used, which provides an

output between 0 and 1 and can be interpreted as a posterior probability.
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Training procedure

All layers of our CNN were fine-tuned for 100 epochs (Coyner et al., 2018). Binary

cross-entropy was applied as the loss function and stochastic gradient descent as

the optimization algorithm (Coyner et al., 2018; Saha et al., 2018; Zago et al.,

2018). The learning rate was set to 0.001 and the momentum value to 0.9 (Cha-

lakkal et al., 2019; Zago et al., 2018). To avoid overfitting in advanced epochs, the

learning rate was reduced by a factor of 10 every time the validation error reached

a plateau and remained constant (Chalakkal et al., 2019; Zago et al., 2018). In

addition, a batch size of 16 images was established (Zago et al., 2018).

4.2 Preprocessing

This section details the preprocessing method proposed in (Romero-Oraá et al.,

2019), which is part of the compendium of publications of this Doctoral Thesis.

This method deserves special attention because it was employed in the methods

for the location of the OD and the fovea and the segmentation of DR lesions, which

are presented in the following sections of this chapter.

The appearance of the fundus images relies on the intrinsic features of the

patient, such as his skin or iris color, among others (Osareh et al., 2009; Sánchez

et al., 2009). Furthermore, local illumination and contrast are often non-uniform

within the retinas. Therefore, we can find a wide variability of images in terms of

color, luminosity, contrast and quality (Sánchez et al., 2009).

When processing fundus images, the black pixels in the border cause unwanted

border effects. For this reason, it is important to separate the FOV from the

surrounding black border. This way, only the pixels of the image belonging to

the retina are considered. In this study, the FOV was automatically determined

from the original image, Iorig, prior to preprocessing, by estimating its diameter

and center. The diameter, D, was estimated analyzing the intensity profile along

one image diagonal in the red component (Garćıa et al., 2010). Then, FOV edges

were found using a Canny edge detector and the FOV center was estimated with

a circular Hough transform (Garćıa et al., 2010).

Once the mask of the FOV was obtained, we proceed to intra-image and inter-

image normalization. Additionally, retinal landmarks were enhanced, with a spe-

cial attention on improving the visualization of the lesions. For this task, we

performed five sequential operations on Iorig, shown in Figure 4.1a:
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Preprocessing stage: (a) original image, Iorig; (b) image after bright border
artifact removal, Irem; (c) effect of background extension, Iext; (d) result after illumina-
tion and color equalization, Ieq; (e) final preprocessed image with contrast enhancement,
Iprep; (f) zoom of the final preprocessed image.

� Bright border artifact removal. Some images present excessively bright

regions along the FOV border. This is generally due to inadequate illumina-

tion during image acquisition. While they do not prevent image visualization,

these bright regions may be problematic in the remaining stages of the pro-

posed method due to their color and border features (Zhang et al., 2014).

Bright border artifacts were removed using the blue channel, Borig, in the

RGB color space (Zhang et al., 2014). First, a mask of bright pixels was

computed as Bmask = Borig −Bmean, where Bmean is a mean-filtered version

of Borig (Zhang et al., 2014). Second, a morphological reconstruction was

applied using the FOV contour as the marker and Bmask as the mask (Zhang

et al., 2014). Then, the binary mask of the bright border artifacts was ob-

tained by applying a threshold and a morphological opening (Zhang et al.,

2014). Figure 4.1b shows the resulting image after the artifact removal, Irem,

over the original image shown in Figure 4.1a.
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� Background extension. The strong contrast between the retinal fundus

and the black pixels outside the FOV may produce border effects in later

operations (Soares et al., 2006). For each RGB channel of Irem, retinal fundus

was extended outside of the FOV using an iterative algorithm. Pixels outside

the aperture were replaced with the mean value of the neighboring pixels

inside the FOV (Soares et al., 2006), as described in section 4.1.1. The result

of this operation, Iext, can be seen in Figure 4.1c.

� Illumination and color equalization. Retinal images have often non-

uniform illumination and different color ranges. Equalizing illumination as

well as overall color is necessary to obtain standardized images. For this

task, we used the HSV image version of Iext. First, local variations of in-

tensity within the image were equalized over the intensity channel (IextI )

by applying (Hoover and Goldbaum, 2003):

IeqI = IextI + µ− IextI ∗ hm1, (4.5)

where hm1 is a large mean filter, similar in size to the OD (Seoud et al., 2016),

and the parameter µ is the average pixel intensity of IextI inside the FOV for

all the images of the training set. This allowed us to normalize the overall

illumination among images. To normalize hue (IextH ) and saturation (IextS )

channels, we applied:

Ieqcolor = Iin + µ1 − µ2, (4.6)

where µ1 is the average pixel intensity of Iin inside the FOV of the images

of the training set, and µ2 is the average pixel intensity inside the FOV

of the input image (IextH or IextS ). Given that IextH represents an angle,

the following equation was required to compute the average hue:

µhue = atan2
[ ∑
i=1...N

sin IextH (i),
∑

i=1...N

cos IextH (i)
]
, (4.7)

where N is the total number of pixels in the image. Finally, converting the

HSI image back to the RGB space, we obtained the image Ieq shown in

Figure 4.1d.

� Denoising. This step allowed us to reduce the noise associated with image

capture and compression. The noise was eliminated by applying an additional

mean filter over Ieq to obtain Iden (Seoud et al., 2016). The size of this filter
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was very small, empirically set to 3 pixels, with the purpose of preserving the

smallest lesions (Seoud et al., 2016).

� Contrast enhancement. Some fundus images show poor contrast. In this

cases, retinal structures and lesions can not be clearly inspected. The contrast

limited adaptive histogram equalization (CLAHE) method was applied to

enhance local contrast. This is a histogram processing technique that operates

on small regions, highlighting the edges of the DR-related lesions to be later

segmented (Rasta et al., 2015). Contrast enhancement was the last step to

obtain the final preprocessed image Iprep, which can be seen in Figure 4.1e.

Figure 4.1f shows an zoomed-in region of the image, where several lesions are

present.

The different operations in the preprocessing stage allowed us to highlight the

retinal lesions and avoid border effects in subsequent stages. Inter-image normal-

ization was also achieved, as it can be seen in Figure 4.2. Two original images

from our private database show different illumination, contrast and color. How-

ever, their corresponding preprocessed images have a more similar appearance.

For a better understanding of the complete preprocessing method, the pseu-

docode in Algorithm 1 is provided:

Algorithm 1: Preprocessing

1 Irem = brightBorderArtifactRemoval(Iorig);
2 Iext = backgroundExtension(Irem);
3 IextHSI

= Iext → HSI color space;
4 IeqI = IextI + µ - IextI * hm1;
5 IeqH = IextH + µ1H - µ2H ;
6 IeqS = IextS + µ1S - µ2S ;
7 Ieq = (IeqI ,IeqH ,IeqS ) → RGB color space;
8 Iden = meanFilter(Ieq);
9 Iprep = CLAHE(Iden);

4.3 Location of the optic disc and the fovea

In this section we describe our algorithm proposed in (Romero-Oraá et al., 2020),

aimed at the automatic location of the OD and the fovea. Figure 4.3 shows an

overview of the method, which starts by obtaining the preprocessed image, Iprep,

using the algorithm described in section 4.2. Next, three images were obtained
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(a) (b)

Figure 4.2: Preprocessing for fundus images with different illumination, contrast and
color. (a) Example 1. (b) Example 2.

from the retinal background extraction: Ibg is the estimated background of the

fundus image after removing both bright and dark structures; Ibg−bri is the esti-

mated background after removing the dark structures while preserving the bright

ones; and Ibg−dark is the estimated background after removing the bright struc-

tures while preserving the dark ones. The image Mvess is the vascular network

Figure 4.3: Overview of the proposed method. The image Iprep is the result of the
preprocessing stage. Ibg is the estimated background of the fundus image after removing
both bright and dark structures. Ibg−bri is the estimated background after removing the
dark structures while preserving the bright ones. Ibg−dark is the estimated background
after removing the bright structures while preserving the dark ones. The image Mvess

corresponds to the vessel segmentation result from Ibg−dark. For the subsequent detec-
tion of the OD and the fovea, various saliency maps were computed using the previous
obtained images. Finally, the saliency maps were combined to obtain the final centers.

.
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segmented from Ibg−dark. For the final detection of the OD and the fovea, various

saliency maps were computed using the previous obtained images and were com-

bined to obtain the coordinates of their centers. All these stages are detailed in

the following subsections.

4.3.1 Background extraction

Fundus images can be decomposed into a background, referring to the retinal

tissue, and a foreground, which covers the retinal structures and the visible lesions

(Foracchia et al., 2005). This foreground can be divided into dark and bright

pixels. In this stage, the aim was to estimate the background of the fundus image,

Ibg, as if it was free of any vascular structures or visible lesions. Additionally,

we obtained an estimated background where only the bright pixels were preserved

(Ibg−bri) and another version where only the dark pixels remained (Ibg−dark).

First, we detected the dark pixels in Iprep by applying a multiscale algorithm to

obtain the image Idark. For this task, a two-step process was carried out (Romero

Oraá et al., 2018):

1. The Alternating Sequential Filtering (ASF) method was applied on Iprep to

roughly remove all of the dark pixels from the image (mainly blood vessels

and RLs) (Zhang et al., 2014). As a result, the image Iasf was obtained.

Next, a multiscale operation was applied over the three color channels of Iasf

to obtain Ibriinit
, an initial estimate of the bright pixels (Romero Oraá et al.,

2018):

Ibriinit
= max

s

(
αs

(
Iasf − Ibgasf (s)

))
, (4.8)

where the parameter s represents a scale that depends on D (FOV diameter).

In this study, s =
{

D
48 ,

D
24 ,

D
12 ,

D
6 ,

D
3

}
. The parameter Ibgasf (s) is the back-

ground of Iasf , estimated with a mean filter of size s. Finally, the parameter

αs was empirically calculated as (Romero Oraá et al., 2018):

αs = 1−
(
3.84

s

D

)
. (4.9)

Image Ibriinit
was used in the next step to prevent the pixels surrounding

bright structures from being considered as dark regions.

2. Dark pixels in the image were detected (Idark) (Romero Oraá et al., 2018).

This image represents the level of darkness of the pixels with respect to the

background of the retina. Similarly to the previous step, we calculated Idark
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as (Romero Oraá et al., 2018):

Idark = max
s

(
αs

(
(Iprep − Ibriinit

)− Ibgasf (s)

))
. (4.10)

The term Iprep − Ibri prevents false detections of dark pixels at the edges

of the bright structures. We considered all three color channels avoiding

losing information. This highlighted the color difference of the dark pixels

in contrast to the background.

After detecting the dark pixels, we detected the bright pixels in Iprep (Ibri) by

applying an adaption of the same multiscale operation:

Ibri = max
s

αs(Iprep + Idark − Ibgdark(s)). (4.11)

The parameter s represents a scale dependent on D (FOV diameter). It was

empirically settled to s =
{

D
48 ,

D
24 ,

D
12 ,

D
6 ,

D
3

}
(Romero-Oraá et al., 2019). The

parameter Ibgdark(s) is the background of Idark, estimated with a mean filter of

size s. Finally, the parameter αs was defined in equation 4.9.

The next step was to binarize the high intensity pixels (peak pixels) in the

images Idark and Ibri. The thresholds were empirically set by inspecting multiple

images from the training set to guarantee that all peak pixels were selected:

Mdark =

0, Idark < 0.005

1, Idark ≥ 0.005
. (4.12)

Mbri =

0, Ibri < 0.01

1, Ibri ≥ 0.01
. (4.13)

Finally, Ibg−dark was calculated. First, we eliminated the pixels in Iprep that

matchedMbri and we filled them using a region-growing algorithm. This algorithm

iteratively dilated the image r pixels in order to fill the eliminated pixels with new

values. To calculate the value for each new filled pixel, we computed the average

value of its surrounding pixels in a neighborhood of w Ö w pixels. In this work, r

was in the range [ D
1000 ,

D
8 ] and w in the range [ D

1000 ,
D
4 ]. Both r and w grew by an

empirical factor of 1.3 in each iteration. The increase in the value of r allowed us to

accelerate the algorithm significantly. The increase of w allowed us to soften the

background estimate as the growing region progressed. Dilation was performed

iteratively until all the eliminated pixels had been filled.
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The image Ibg−bri was obtained in a similar way. We eliminated the pixels

in Iprep that matched Mdark and we filled them by applying the region-growing

algorithm described above.

Finally, the image Ibg was obtained following the same idea. We eliminated

the pixels in Iprep that matched both Mdark and Mbri. Then, we filled them by

applying the region-growing algorithm previously explained.

An example of all three images obtained in the background extraction stage

is exposed in Figure 4.4. In Ibg−dark, the bright structures are smoothly removed

from Iprep while preserving the dark structures. The image Ibg−bri also adequately

estimates the retinal background ignoring the dark structures while preserving

the bright structures. Image Ibg represents the background of the fundus image

removing both bright and dark structures. Obtaining these images was useful for

the computation of subsequent saliency maps. The image Ibg−dark was also useful

for blood vessel segmentation.

4.3.2 Blood vessel segmentation

The vasculature is an important reference landmark in fundus images. The ori-

entation and distribution of the blood vessels over the retina is useful to detect

the OD and the fovea (Niemeijer et al., 2009). The aim of this stage was to de-

tect the pixels associated with the vascular network in the fundus image, Mvess.

For this task, we developed an improved version of (Mendonça et al., 2006). The

original method in (Mendonça et al., 2006) was based on the extraction of vessel

centerlines and the application of region growing and morphological filters. When

using the original method, the edges of the exudates and other bright regions were

frequently detected as blood vessel segments (Figure 4.5b). In order to decrease

false detections, we used the image Ibg−dark, which lacks bright structures, as in-

put image for he method. This allowed us to improve the segmentation notably,

as shown in Figure 4.5c.

4.3.3 Optic disc location

The bright appearance of the OD often hinders the segmentation of certain ab-

normalities, such as EXs in a DR context (Niemeijer et al., 2009). Therefore, the

location of the OD in this Doctoral Thesis is useful for the subsequent detection

of EXs exposed in section 4.5. Moreover, monitoring other retinal conditions such

as the glaucoma relies on the evolution of the OD area (Niemeijer et al., 2009).

Thus, OD detection may have additional applications by itself. For these reasons,
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(a) (b)

(c) (d)

Figure 4.4: Background extraction stage. (a) Preprocessed image within the FOV. (b)
Estimated retinal background preserving dark structures (Ibg−dark). (c) Estimated reti-
nal background preserving bright structures (Ibg−bri). (d) Estimated retinal background
removing both bright and dark structures (Ibg).

the location of the OD may be useful for further image analysis. In this stage, the

OD center was automatically detected and the OD was modeled as a circle with

radius ROD = D
12 pixels (Hsiao et al., 2012).

Since the main blood vessels emerge almost vertically from the OD, this struc-

ture is always located around the area where more vertical vessels are found

(Sánchez et al., 2008). In order to represent this region, we first applied a morpho-

logical opening over the vessel mask (Mvess) using a linear morphological operator

with vertical orientation. The size of this operator was empirically set to D
50 pixels
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(a) (b) (c)

Figure 4.5: Blood vessel segmentation stage. (a) Original image. (b) Segmented mask
using Iprep as input. The edges of the bright lesions are incorrectly detected as blood
vessel segments. (c) Segmented mask using Ibg−dark as input. The edges of the bright
lesions are not detected as part of the vasculature.

with the purpose of selecting the main segments of the vertical vessels. Next, a

rectangular shaped spatial filter was applied. A width of ROD pixels and a height

of 4ROD pixels were empirically determined for this filter to ensure that the main

arcades were covered. The resulting image (Ivvr) can be seen in Figure 4.6b. The

next step was based on template matching. We computed the correlation between

the image Ibg−bri and a circle with radius ROD used as template, obtaining the

color image Icorr−OD (Figure 4.6c). After this, we noticed that the red channel

of Iprep frequently showed a high local standard deviation where the OD was lo-

cated. Therefore, we also applied a local standard deviation filter using a disk

element with radius ROD over the red channel of Iprep to obtain the image Istd

(Figure 4.6d). This radius was empirically chosen to cover the area of the OD.

In order to combine the previous saliency maps, we computed the following

probability map:

IOD = Ivvr · IGcorr−OD · IBcorr−OD · Istd, (4.14)

where the symbol “·” represents the element-wise multiplication. The parameters

IGcorr−OD and IBcorr−OD correspond to the green and blue channels of the image

Icorr−OD, respectively (Figure 4.6e).

Finally, we binarized the 1%-top pixel values in IOD (see Figure 4.6f). This

percentage was empirically obtained. In most cases, these pixels formed a single

connected component. However, when more than one connected component was

detected, we selected the one with the largest area. The definitive center of the

OD was then the centroid of that region (Figure 4.6g).
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.6: Saliency maps for the detection of the OD. (a) Preprocessed image Iprep. (b)
Image Ivvr, representing the area around the vertical blood vessels. (c) Image Icorr−OD,
representing the correlation between the image Ibg−bri and a circle. (d) Image Istd, the
local standard deviation over the red channel of Iprep. (e) Image IOD as a combination
of the previous saliency maps. (f) Brightest pixels in IOD. (g) Centroid of the region
IOD: final location of the OD. The complete OD was approximated by a circle.

4.3.4 Fovea location

The appearance of the fovea is dark with respect to the retinal background, which

may hinder the detection of RLs. Furthermore, the lesions near the fovea are

especially critical (Niemeijer et al., 2009). For these reasons, fovea location is useful

for the diagnosis of DR. In this method, the center of the fovea was automatically

detected and was used for the subsequent detection of RLs explained in section 4.4.

The macular area, whose center is the fovea, is characterized by the absence of

blood vessels. For this reason, we started detecting the areas without vaculature

in the fundus. For this task, we first dilated the vessel segmentation (Mvess) using

a disk with a small radius of ROD

50 pixels to make it slightly thicker. Second, we

applied a disk-shaped spatial filter with a radius of 2
3ROD pixels. This size allowed

us to cover the vicinity of the vasculature without reaching the fovea. Third, the

complement of the processed image was computed to obtain the image Ivn, which
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represents the avascular areas of the image (Figure 4.7a).

The next step was based on template matching (Gonzalez and Woods, 2009).

Since the fovea is located at the center of a darker area, we first subtracted the

images Ibg and Ibg−dark to get the dark pixels in Ibg−dark. Second, we calculated

the correlation between the image resulting from this subtraction and a disk with

radius ROD

2 , used as the template. This way, we estimated that the radius of the

fovea is approximately half the radius of the OD. Then, we obtained the image

Icorr−f as the maximum, computed pixel by pixel, of the red and green channels

of the correlation image (Figure 4.7b).

Next, we considered the fact that the fovea is always located at an approxi-

mately constant distance from the OD (Niemeijer et al., 2009). After analyzing

the training dataset, we noticed that the fovea is always located between three

and seven times ROD from the OD. Therefore, we built a ring centered at the

OD center, with the minor radius 3ROD pixels and the major radius 7ROD pixels

(Mring), which can be observed in Figure 4.7c.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4.7: Saliency maps for the detection of the fovea. (a) Image Ivn, where the white
pixels represent the avascular areas. (b) Image Icorr−f , the correlation of (Ibg−Ibg−dark)
with a disk. (c) Image Mring, representing a ring centered at the OD center. (d) Image
Mband, representing a horizontal band vertically aligned with the OD center. (e) Image
Iden−1, blood vessel density within Mband. (f) Image Iden−2, blood vessel density outside
Mband. (g) Image IFOV EA, combination of the previous saliency maps. (h) Brightest
pixels in IFOV EA. (i) Centroid of the region IFOV EA: final location of the fovea. The
complete fovea was approximated by a circle.
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The next saliency map was obtained assuming that the fovea is always ap-

proximately located at the same vertical level as the OD in the fundus images.

Accordingly, we built another mask, Mband, covering a horizontal band with 3ROD

pixels high and vertically aligned with the center of the OD (Figure 4.7d). This

estimated height was set by analyzing the training dataset.

The subsequent step of the fovea location method allowed us to detect the

temporal side (where the fovea is), based on the density of blood vessels. For this

task, the image was divided into two regions, R = A,B, with a vertical separation

in the center of the OD (Figure 4.7e). The pixel values for both regions were set

as the blood vessel density within Mband, computed as:

V Din−bandR
=

Mvess ×Min−bandR

AreaR
, R = A,B, (4.15)

leting Min−bandR
be the pixels of Mband in the region R and AreaR the area of

the region R. In this way, we obtained the image Iden−1 (Figure 4.7e). We then

computed the blood vessel density outside Mband as:

V Dout−bandR
=

Mvess ×Mout−bandR

AreaR
, R = A,B, (4.16)

being Mout−bandR
the pixels outside Mband in the region R. For each part of the

divided image (A/B), we assigned all of its pixels the value V Dout−bandR
. Thus,

the image Iden−2 was obtained (Figure 4.7f).

Finally, all of the previous complementary information was combined as:

IFOV EA = Ivn · Icorr−f ·Mring ·Mband · Iden−1 · Iden−2, (4.17)

where the symbol “·” refers to the element-wise multiplication. The image IFOV EA

can be seen as a probability map (see Figure 4.7g). We selected the 0.2% of

the pixels in IFOV EA with the highest value (see Figure 4.7h). This percentage

was empirically obtained. In most cases, those pixels formed a single connected

component. However, when more than one connected component was detected,

we selected the biggest one. The centroid of that region was considered the center

of the fovea (see Figure 4.7i).
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4.4 Detection of red lesions

RLs, such as microaneurysms and hemorrhages, are among the first signs of DR.

Consequently, RL detection is an important step in the automated screening of

DR (Niemeijer et al., 2005). In the present Doctoral Thesis, two different methods

were proposed for RL segmentation as part of the compendium of publications.

The first method (Romero-Oraá et al., 2019) was based on superpixel classification

and is described in section 4.4.1, while the second method (Romero-Oraá et al.,

2020), which offers an improved performance, was based on the decomposition of

the fundus image into layers and is detailed in section 4.4.2.

4.4.1 Method based on the classification of superpixels

The proposed method was published in (Romero-Oraá et al., 2019) and comprises

three sequential stages, as shown in Figure 4.8. First, the image was preprocessed

using the method described in section 4.2. Second, we segmented the candidate

regions to be RLs using superpixel segmentation. Third, we used an MLP neural

network to classify the true RLs. These last two stages are explained in the

following subsections.

Candidate Segmentation

The aim of this stage was to segment the candidate regions to be RLs. Since these

lesions appear as dark regions in contrast with the background, every dark region

in the fundus image was considered an RL candidate in this work (Niemeijer et al.,

2005). Then, the segmentation of the dark regions was performed in three steps.

First, the dark pixels in the image were detected. Second, all pixels of the image

were grouped in superpixels. Finally, the candidate regions were computed as the

generated superpixels belonging to the detected dark pixels.

� Dark Pixel Detection

The detection of the dark pixels was carried out using the multiscale algorithm

proposed for retinal background extraction in section 4.3.1. The resulting image

(Idark) highlighted the dark structures of the retina, such as the vasculature, the

fovea and the RLs, as can be seen in Figure 4.9b.
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Figure 4.8: Block diagram of the proposed approach based on superpixel classification
to detect red lesions.

.

� Entropy Rate Superpixel Segmentation

The next step was to group the pixels of Idark into superpixels that separated

the different elements of the image. A superpixel is a perceptually uniform region

in the image. It groups pixels with similar color and texture and adapts to the

image borders (Zhou et al., 2017a). Since it represents natural entities in the image,

the superpixel is an appropriate region from which to extract features (Zhou et al.,

2017a). In addition, it reduces the complexity of subsequent image processing tasks

and improves the computational efficiency (Achanta et al., 2012; Liu et al., 2011).

With this purpose, we applied the ERS method, which is regarded as a cluster-

ing problem solved using graph partitioning (Liu et al., 2011). First, an undirected
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Candidate segmentation. (a) original image with some RLs; (b) dark pixel
detection computed using the multiscale algorithm; (c) segmented superpixels using the
Entropy Rate Superpixel method; (d) reduced candidates on Idark; (e) combined, reduced
candidates shown over Iprep; (f) zoom of combined, reduced candidates shown over Iprep.

graph was constructed mapping its vertices (V = {v1, v2, ...}) to the pixels of Idark.

The weights (w) of the edges (E = {e1, e2, ...}) of the graph were the pairwise sim-

ilarities between vertices. They were calculated using a Gaussian kernel as (Liu

et al., 2011):

wi,j = e−
d(vi,vj)

2

2σ , (4.18)

where σ is the user-defined Gaussian kernel bandwidth and d(vi, vj) is the intensity

difference between pixels vi and vj multiplied by the spatial distance between them.

Since the graph was undirected, the edge weights were symmetrical (wi,j = wj,i)

(Liu et al., 2011). In addition, every vertex of the graph had a self loop. Then,

a subset of edges A ⊆ E was selected such that the resulting graph contained

exactly K connected disjoint subgraphs {S1, S2, ..., SK}. These subgraphs must

also satisfy that Si ∩ Sj = ∅ for i ̸= j and ∪iSi = V (Liu et al., 2011). For the

non-selected edges, the edge weight of the self loop of the associated vertices was
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increased so that the total incident weight for each vertex remained constant (Liu

et al., 2011).

Thus, the graph partitioning problem results in the selection of a subset of

edges A that represents the superpixels in the image. The sequential selection of

edges was based on the random walk of a particle through the graph (Cover and

Thomas, 1991). First, the particle is positioned at a random node of the graph.

Second, the particle randomly moves from node to node forming a sequence of

vertices (Cover and Thomas, 1991). At every step, the next vertex is chosen from

among the nodes connected to the last vertex of the sequence with a probabil-

ity proportional to the weight of the edge (Cover and Thomas, 1991). In this

way, we searched for the graph topology that maximized the following objective

function (Cover and Thomas, 1991):

max
A

H(A) + γB(A), (4.19)

subject to A ⊆ E and NA ≥ K, being NA the number of connected vertices in the

graph. The parameter H(A) is the entropy rate, defined as (Liu et al., 2011):

H(A) = −
∑
i

µi

∑
j

pi,j(A)log(pi,j(A)), (4.20)

where µi is (Liu et al., 2011):

µi =
wi∑|V |
i=1 wi

, (4.21)

and pi,j is the transition probability (Liu et al., 2011):

pi,j(A) =


wi,j

wi
, if i ̸= j and ei,j ∈ A,

0, if i ̸= j and ei,j /∈ A,

1−
∑

j:ei,j∈A wi,j

wi
, if i = j,

(4.22)

where wi is the sum of incident weights to the vertex vi.

Additionally, the parameter B(A) in equation 4.19 is called the balancing func-

tion and is defined as (Liu et al., 2011):

B(A) = −
∑
j

pZA
(i)log(pZA

(i))−NA, (4.23)
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where pZA
is a probability distribution defined as (Liu et al., 2011):

pZA
(i) =

|Si|
|V |

, i = {1, ..., NA}. (4.24)

The remaining parameter in equation 4.19 is the weight of the balancing term,

γ ≥ 0, given by (Liu et al., 2011):

γ = βKλ, (4.25)

where β is defined as (Liu et al., 2011):

β =
maxei,j H(ei,j)−H(∅)

maxei,j B(ei,j)−B(∅)
. (4.26)

In this equation, the difference H(ei,j)−H(∅) refers to the entropy rate increase

when including a single edge into the graph. Likewise, the difference B(ei,j)−B(∅)

refers to the balancing term increase when including a single edge into the graph.

Therefore, β is the ratio of the maximal entropy rate increase and the maximal

balancing term increase upon including a single edge into the graph.

It should be noted that the parameter H(A) favors the formation of compact

and homogeneous clusters. It makes the superpixels adjust to the edges of the

structures, resulting in the division of images on perceptual boundaries (Liu et al.,

2011). However, in most cases, it induces several superpixels to overlap with a

single object. To overcome this issue, B(A) is introduced. This parameter encour-

ages the formation of clusters (superpixels) with similar sizes (Liu et al., 2011).

Another parameter that should be taken into account is K, which favors the bal-

ancing term (Liu et al., 2011). Additionally, β compensates for the magnitude

difference H(A) and B(A) (Liu et al., 2011). Finally, λ is a user-specified con-

stant and should be empirically determined (Liu et al., 2011). Applying ERS to

fundus images requires properly adjusting the parameters K, λ and σ. K should

be large enough to isolate every structure, paying special attention to the smallest

RLs. Meanwhile, the parameter σ should be selected to ensure that the superpix-

els adjust robustly to the edges of the objects in the image. λ should compen-

sate the fragmentation effect to avoid over-segmentation within retinal structures.

In this study, these parameters were experimentally adjusted using the images in

the training set. The result of this stage is an image map, L, of K labels that

identify the superpixels that compose the image. Figure 4.10 provides the super-

pixel segmentation results with different values for each parameter. As shown in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: Entropy Rate Superpixel Segmentation with different parameter values.
(a) K = 100, λ = 0.1 and σ = 5; (b) K = 500, λ = 0.1 and σ = 5; (c) K = 2000, λ = 0.1
and σ = 5; (d) K = 2000, λ = 0.8 and σ = 2; (e) K = 2000, λ = 0.01 and σ = 2; (f)
K = 2000, λ = 0.001 and σ = 2; (g) K = 2000, λ = 0.1 and σ = 0.5; (h) K = 2000,
λ = 0.1 and σ = 2; (i) K = 2000, λ = 0.1 and σ = 5.
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Figure 4.10a, we properly separated the large HEs with K = 100. However, we

missed all the MAs. With K = 500, as shown in Figure 4.10b, we did not de-

tect the smallest MAs yet. Therefore, a larger K should be selected to detect all

the RLs, including MAs. By visual inspection of our results for different values

of K (see Figure 4.10a–c), we chose K = 2000 as adequate to detect every RL.

Regarding the value of λ, we encountered that a large value of this parameter pre-

vented sizeable structures to be over-segmented in tiny regions (see Figure 4.10d).

On the contrary, the smallest MAs were more easily detected when λ was small (see

Figure 4.10e,f). Therefore, we chose λ = 0.08 as an optimal commitment value.

Regarding σ, we found that, when this parameter was too large, the smallest MAs

could not be adequately segmented (see Figure 4.10i). On the other hand, if σ was

too small, the superpixels did not adjust accurately to the edges of the structures.

We experimentally found that σ = 2 provided a good compromise between both

situations (see Figure 4.10h).

In conclusion, to properly separate the retinal RLs, we considered the following

parameter values: K = 2000, λ = 0.08 and σ = 2. The result of this stage on the

example image can be seen in Figure 4.9c.

� Candidate Reduction

All superpixels in which the image was divided were initially considered RL candi-

dates. However, most of them did not correspond to dark regions. Instead, these

superpixels covered black pixels in Idark and should be removed as RL candidates.

Reducing the number of lesion candidates simplifies the classification task. With

this purpose, we eliminated the superpixels in L that were not dark, thus obtain-

ing Lred. For this task, the average value of the pixels within each superpixel was

computed on the green channel of the image Idark and those that did not exceed

a threshold equal to 0.3 were removed (Romero Oraá et al., 2018). This threshold

was empirically obtained considering that lower values corresponded to non-RL

structures. An accurate value for this parameter was not crucial since our objec-

tive was to coarsely discard the superpixels in the image whose pixel intensities did

not correspond to dark structures. Figure 4.9d shows Lred over the Idark image.

Finally, neighboring superpixels with a similar color were combined in an iter-

ative process. To quantify color similarity among the superpixels, we calculated

the average value of the pixels contained in each superpixel in the image Idark.

Then, the Euclidean distances between the average values were measured over the

CIELAB color space (Romero Oraá et al., 2018). This color space was designed to

approximate human vision, representing the nonlinear response of the eye. There-
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fore, the relative perceptual difference between any two colors defined in CIELAB

can be approximated taking the Euclidean distance between them (Jain, 1989).

In this study, the maximum color distance for two neighboring superpixels to be

combined was settled to 0.24 during training. We empirically noticed that using

higher values for this parameter may combine superpixels belonging to different

retinal structures. Figure 4.9e shows the definitive RL candidates after this stage.

The following pseudocode summarizes the proposed segmentation technique:

Algorithm 2: Candidate segmentation technique

1 Iasf = ASF(Iprep);

2 Ibri = 0;

3 for s =
{

D
48 ,

D
24 ,

D
12 ,

D
6 ,

D
3

}
do

4 Ibgasf
(s) = meanFilter(Iasf , size=s);

5 αs = 1−
(
3.84 s

D

)
;

6 Ibri = max
(
Ibri, αs(Iasf − Ibgasf

(s))
)
;

7 end

8 Idark = 0;

9 for s =
{

D
48 ,

D
24 ,

D
12 ,

D
6 ,

D
3

}
do

10 Ibgasf
(s) = meanFilter(Iasf , size=s);

11 αs = 1−
(
3.84 s

D

)
;

12 Idark = max
(
Idark, αs((Iprep − Ibri)− Ibgasf

(s))
)
;

13 end

14 L = entropyRateSuperpixelSegmentation( Idark, K, λ, σ );

15 Gdark = greenChannel(Idark);

16 Lred = L where Gdark¿threshold;

17 Lcand = colorSimilarityGrouping( Lred, color distance );

Classification

Once the RL superpixel candidates were obtained, we used an MLP to separate

the true RLs from non-RL candidate superpixels. This type of NN has been used

in previous studies for the automatic detection of RLs (Garćıa et al., 2008, 2010;

Usher et al., 2004). The classification stage comprises three procedures:
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� Feature Extraction

Superpixel candidates were required to be differentiated among RLs and any other

dark regions in the image, such as blood vessel segments. Even though the detec-

tion of the vasculature presented in section 4.3.2 could serve to previously remove

the candidates corresponding to blood vessel fragments, in this study we decided

to maximize the number of true RLs reaching the classification stage by avoiding

the possible errors derived from this phase. For each superpixel, a set of 39 fea-

tures was extracted to represent the visual characteristics of RLs. These features

include measures related to the shape of the region, the value of the pixels inside

the region and the distance to the OD and the fovea. The extracted features are

specified in Table 4.1.

� Feature Selection

Some of the extracted features may be correlated or irrelevant for the given prob-

lem. Therefore, an automated feature selection stage was implemented to filter

the optimal features. Reducing the number of features decreases classification

errors and simplifies the structure of the classifier (Bishop, 1995). In this work,

we applied the FCBF method described in section 4.1.1 (Yu and Liu, 2004). It

is a classifier-independent feature selection technique based on the SU to find

the most relevant and non-redundant features (Yu and Liu, 2004). The features

selected from this stage are indicated in the last column of Table 4.1.

� MultiLayer Perceptron Neural Network

Supervised learning was applied in order to separate true RLs from non-RLs. A

three-layer MLP neural network was trained using the features previously selected.

This type of classifier was explained in section 4.1.1. The input layer consisted of

as many neurons as features were selected by the FCBF method. The output layer

was formed by a single neuron since we tried to resolve a dichotomous problem.

The number of hidden units, nhid, was experimentally settled during the training

stage. The activation function used in the hidden layer was the hyperbolic tangent

sigmoid (tanh) (Bishop, 1995), since it has been successfully applied in similar

MLP networks from previous studies (Garćıa et al., 2009). The logistic sigmoid

was used as the activation function in the output neuron. Since it is defined

in the range [0-1], we could interpret the output of the network as a posterior

probability (Bishop, 1995; Haykin, 1999).
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Table 4.1: Extracted features for the RL segmentation method based on superpixels.
The last column indicate the selected features.

.
Feature
Number

Description Selected

1 Area of the region. 1

2
Width of the bounding box (smallest rectangle containing the
region).

-

3 Heigh of the bounding box. -

4
Area of the smallest convex hull (smallest convex polygon that
can contain the region).

-

5
Eccentricity of the ellipse that has the same second-moments as
the region.

5

6 Number of holes in the region. 6
7 Ratio of pixels in the region to pixels in the total bounding box. 7

8
Length of the major axis of the ellipse that with same normalized
second central moments as the region.

8

9
Length of the minor axis of the ellipse that with same normalized
second central moments as the region.

-

10 Distance around the boundary of the region (perimeter length). -

11
Proportion of the pixels in the convex hull that are also in the
region (solidity).

11

12–14
Mean of the pixels inside the region computed in the RGB
channels of the image Iprep.

12,13

15–17
Median of the pixels inside the region computed in the RGB
channels of the image Iprep.

-

18–20
Standard deviation of the pixels inside the region computed in
the RGB channels of the image Iprep.

19

21–23
Entropy of the pixels inside the region computed in the RGB
channels of the image Iprep.

21

24–26
Mean of the pixels inside the region computed in the RGB chan-
nels of the image Idark.

-

27–29
Median of the pixels inside the region computed in the RGB
channels of the image Idark.

27,28

30–32
Standard deviation of the pixels inside the region computed in
the RGB channels of the image Idark.

-

33–35
Entropy of the pixels inside the region computed in the RGB
channels of the image Idark.

-

36
Mean of the pixels calculated in the border of the region apply-
ing Prewitt operator in the image Iprep (Gonzalez and Woods,
2009).

36

37
Mean of the pixels inside the region calculated in the result of
applying multiscale line operator filters (Nguyen et al., 2013).

37

38
Distance to the center of the optic disc, calculated us-
ing (Romero Oraá et al., 2016).

38

39
Distance to the center of the fovea, calculated using (Romero
Oraá et al., 2016).

39
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We chose the cross-entropy error function since it simplifies the optimization

process when the output layer activation function is the logistic sigmoid (Garćıa

et al., 2010). Regarding the learning function used to update the weight and

bias values, we applied the scaled conjugate gradient backpropagation method.

This algorithm has been shown considerably faster than other supervised learning

algorithms (Moller, 1993).

In order to avoid overfitting and improve generalization, we applied weight de-

cay regularization by penalizing large weights during the learning process (Bishop,

1995). The regularization parameter, λ, was experimentally determined dur-

ing training.

4.4.2 Method based on the decomposition of the fundus im-

age into layers

This method was published in (Romero-Oraá et al., 2020) and was aimed at the

joint detection of RLs and EXs. However, this section focuses on the first type

of lesion. Figure 4.11 shows an overview of the proposed algorithm. First, we

applied the preprocessing stage explained in section 4.2 to obtain the image Iprep,

a normalized version of the input image where the retinal structures are enhanced.

Second, we obtained an estimation of the retinal background, the segmentation of

the vasculature, and the location of the OD and the fovea using the algorithms

previously described in section 4.3. The rest of the stages are detailed in the next

subsections: the image was decomposed into several layers, multiple RL candidates

were segmented, various features were extracted using the obtained layers, feature

selection was performed and, finally, a classification stage was conducted.

Red lesion candidate segmentation

This stage was aimed at processing the fundus image to segment the potential RL

candidate regions and obtain additional data for the later detection of RLs. For

this task, the image was decomposed into several layers. Each layer represented a

different structure of the retina and provided useful information for the detection of

retinal lesions. Since RLs are shown as dark regions, we calculated the complement

of the subtraction Ibg−dark − Ibg in order to select the dark pixels (Idark). In

this image, the color difference between the dark pixels and the background was

highlighted, while leaving the rest of the pixels black (see Figure 4.12a).

The preprocessing stage in section 4.2 allowed reducing inter- and intra-image

variability. This way, the color of the visible structures in Idark looked always
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Figure 4.11: Diagram of the proposed method. (1) Preprocessing. (2) Retinal back-
ground extraction. (3) Vessel segmentation, optic disc location, and fovea location. (4)
Layer decomposition. (5) Feature extraction and selection. (6) Multilayer Multilayer
perceptron (MLP) classification

.

(a) (b) (c) (d)

Figure 4.12: Red lesion candidate segmentation. (a) Image Idark. (b) Image Idark−2.
(c) Image Lchor−dark. (d) Image Lrl−cand. These images are shown with enhanced
contrast for an easier readability.

consistent. Therefore, they could be directly separated using color and spatial

information. The blood vessels, the choroidal vasculature, and the rest of dark

pixels, which are RL candidates, are the structures of interest in Idark that should

be taken into account for RL detection.

As expected, the color of the blood vessels in Idark is very similar to the color of

RLs. Thus, we eliminated the pixels belonging to the vasculature using the vessel

segmentation (Mvess) obtained in section 4.3.2. The result, Idark−2, can be seen

in Figure 4.12b. There is another type of structure that is easily distinguishable
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in Idark: the underlying choroidal vasculature visible in tigroid retinas (Lyu et al.,

2017). This is caused by the lack of pigments in the retinal pigment epithelium

and is common in aged or myopic patients (Lyu et al., 2017). It has pink tones

in Idark and can hinder the detection of RLs due to the high contrast it shows

against the background. Separating the choroidal vasculature is useful to classify

the RLs in the image, since images featuring very marked choroidal vessels tend to

present false positives (Romero-Oraá et al., 2019). For this reason, the next step

was to separate the layer corresponding to the choroidal vessels in Idark−2. For this

task, we used the color information in the HSV color space. This color space was

designed to approximate the eye perception and is useful to replicate human in-

terpretation (Gonzalez and Woods, 2009). It decouples the brightness component

from the color-carrying information. Using HSV, we analyzed the pixels belonging

to the choroidal vessels using the training set. This way, we empirically selected the

ranges of values that represented those pixels for each channel. In this work, these

ranges were determined to be H = [0.75, 0.1], S = [0.2, 1.0], and V = [0.05, 1.0].

Then, we segmented the pixels in Idark−2 that were between the selected ranges,

obtaining the image Lchor−dark, which represented the layer of choroidal vessels

(see Figure 4.12c). In the same way, we selected the HSV color ranges associated

with RLs. For this task, we analyzed all the pixels belonging to RLs in the images

of the training set annotated by the ophthalmologist. The selected ranges in this

work were H = [0.1, 0.45], S = [0.1, 1.0], and V = [0.2, 1.0]. Then, we segmented

the pixels in Idark−2 that were between the selected ranges, obtaining the layer

Lrl−cand, associated to potential RLs (see Figure 4.12d). Finally, the mask of po-

tential RL candidates was obtained binarizing the layer Lrl−cand in order to obtain

the candidate binary mask Mrl−cand. The obtained layers of interest in this phase,

Lchor−dark (Figure 4.12c) and Lrl−cand (Figure 4.12d), were also useful for lesion

candidate classification in later stages.

Red lesion classification

Once the RL candidates were obtained, we used an MLP neural network to classify

the RLs from the rest of candidate regions. This type of neural network has been

used in previous studies for the automatic detection of RLs, including our method

based on superpixel classification (Garćıa et al., 2008; Romero-Oraá et al., 2019).

This stage comprises three steps:
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1. Feature extraction. For each region candidate in Mlr−cand, a set of 100

features was extracted mostly using the decomposed layers previously ob-

tained. This way, we computed from these layers measures related to the

shape of the region, the pixel values inside and around the region, and the

distance to the OD and the fovea. These whole set of features is specified in

Table 4.2.

2. Feature selection. Reducing the number of features to a set of relevant,

low-correlated ones decreases classification errors and simplifies the structure

of the classifier (Bishop, 1995). For this task, the FCBF method was applied

(Yu and Liu, 2004). FCBF is classifier-independent and computes SU to find

the most relevant and non-redundant features for a certain problem (Yu and

Liu, 2004), as explained in section 4.1.1. Among the original 100 features,

only 24 were selected and are specified in Table 4.2. Features of different

nature were selected, including shape, distance, intensity, and variability

around the candidates in different layers.

3. Multilayer Perceptron Neural Network. The chosen classifier was an

MLP neural network (see section 4.1.1). The number of neurons in the input

layer was the number of selected features. We used a single neuron in the

output layer, since our problem was dichotomous. The number of hidden

units was experimentally optimized during the training stage. The activa-

tion function used in the hidden layer was the hyperbolic tangent sigmoid

(tanh) (Bishop, 1995) since it has been successfully applied in similar MLP

networks from previous studies (Garćıa et al., 2009). The logistic sigmoid

was used as the activation function in the output neuron. We used the

scaled conjugate gradient backpropagation method as the learning function.

The cross-entropy was the chosen error function to minimize during training

(Bishop, 1995; Romero-Oraá et al., 2019). In addition, we used the regular-

ization parameter weight decay, experimentally optimized during training,

to avoid overfitting and improve generalization (Bishop, 1995).

4.5 Detection of hard exudates

Based on our previous experience with the detection of RLs, the approach based on

the decomposition of the fundus image into layers outperformed the classification of

superpixels. For this reason, although the concept of superpixel is very interesting,
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Table 4.2: Extracted features for lesion classification. .

Feature
Number

Description
Selected for
red lesion
detection

Selected for
exudate
detection

1 Area of the region - -
2 Width of the bounding box (smallest rectangle containing the region) - -
3 Height of the bounding box - -
4 Area of the smallest convex hull (smallest convex polygon that can contain the region) - -
5 Eccentricity of the ellipse that has the same second moments as the region 5 5
6 Number of holes in the region - -
7 Ratio of pixels in the region to pixels in the total bounding box - 7
8 Length of the major axis of the ellipse that has the same normalized second central moments as the region - -
9 Length of the minor axis of the ellipse that hast the same normalized second central moments as the region - -
10 Distance around the boundary of the region (perimeter length) - -
11 Proportion of the pixels in the convex hull that are also in the region (solidity) 11 -

12–14 Mean of the pixels inside the region computed in the Red-Green-Blue (RGB) channels of the image Iprep 13 -

15–17 Median of the pixels inside the region computed in the RGB channels of the image Iprep - 17

18–20 Standard deviation of the pixels inside the region computed in the RGB channels of the image Iprep 18, 19 18–20

21–23 Entropy of the pixels inside the region computed in the RGB channels of the image Iprep 22, 23 21–23

24–26 Mean of the pixels inside the region computed in the Hue-Saturation-Value (HSV) channels of the image Lrl−cand/Lex−cand 24, 26 26

27–29 Median of the pixels inside the region computed in the HSV channels of the image Lrl−cand/Lex−cand 28, 29 27, 29

30–32 Standard deviation of the pixels inside the region computed in the HSV channels of the image Lrl−cand/Lex−cand 32 30, 32

33–35 Entropy of the pixels inside the region computed in the HSV channels of the image Lrl−cand/Lex−cand 35 34, 35

36–38 Mean of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lrl−cand - -

39–41 Median of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lrl−cand - -

42–44 Standard deviation of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lrl−cand 44 42

45–47 Entropy of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lrl−cand - -

48–50 Mean of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lchor−dark - -

51–53 Median of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lchor−dark - -

54–56
Standard deviation of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image

Lchor−dark
- -

57–59 Entropy of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lchor−dark 59 57

60–62 Mean of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lchor−bri - 62

63–65 Median of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lchor−bri 63–65 64, 65

66–68
Standard deviation of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image
Lchor−bri

66 -

69–71 Entropy of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lchor−bri - -

72–74 Mean of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lex−cand - 73, 74

75–77 Median of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lex−cand - -

78–80 Standard deviation of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lex−cand - 78–80

81–83 Entropy of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lex−cand - 83

84–86 Mean of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lbm - -
87–89 Median of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lbm - -

90–81 Standard deviation of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lbm 90 91
93–95 Entropy of the pixels inside a circle with radius RDO centered on the region computed in the HSV channels of the image Lbm - 93

96 Mean of all the pixels the V channel of the image Lbm 96 96
97 Mean of the pixels calculated in the border of the region applying Prewitt operator in the image Iprep 97 97

98 Mean of the pixels inside the region calculated in the result of applying multiscale line operator filters 98 98

99 Distance to the center of the optic disc - 99
100 Distance to the center of the fovea 100 100
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we decided to guide the detection of EXs towards the decomposition of the fundus

image into layers.

As mentioned before, the study published in (Romero-Oraá et al., 2020) and

included in the compendium of publications of this Doctoral Thesis was aimed at

the joint detection of RLs and EXs. This section focuses on the part devoted to

the detection of EXs. However, we refer again to Figure 4.11 for an overview of

the whole algorithm. As indicated in section 4.4.2, the preprocessing stage, the

estimation of the retinal background, the segmentation of the vasculature, and the

location of the OD and the fovea were explained in sections 4.2 and 4.3. The rest of

stages required for EX segmentation are detailed in the next subsections, following

the same steps as RL detection: the image was decomposed into several layers,

multiple EX candidates were segmented, various features were extracted using the

obtained layers, feature selection was performed and, finally, a classification stage

was conducted.

Exudate candidate segmentation

EXs appear as bright regions in contrast with the background. Therefore, we

subtracted the image Ibg from the Ibg−bri image in order to select the bright pixels.

In the obtained image, Ibri, the color difference of the bright pixels with respect to

the retinal background was enhanced, while the rest of the pixels remained black

(see Figure 4.13a).

Following the same idea as for the segmentation of RLs, Ibri was divided into

different layers of information. The proposed method relied in the idea that the

color of the pixels in Ibri for each type of structure is constant. This way, we sepa-

rated the different structures of interest in Ibri using color and spatial information.

(a) (b) (c) (d)

Figure 4.13: Exudate candidate segmentation. (a) Image Ibri. (b) Image Lchor−bri.
(c) Image Lbm. (d) Image Lex−cand. These images are shown with enhanced contrast for
an easier readability.
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The HSV color space was also employed here (Gonzalez and Woods, 2009). The

structures of interest in Ibri are the choroidal vasculature, the reflective features,

and the EX candidates.

In tigroid retinas, the prominent choroid pigmentation contrasts with the

attenuated pigment epithelium showing a spotted or striped appearance (Lyu

et al., 2017). This particular appearance, which reflects as red tones in Ibri

(Figure 4.13a), may make nearby EXs less prominent and, consequently, affect

the performance for EX detection. We analyzed the pixels in Ibri belonging to

choroidal vessels in tigroid retinas using the training set. We empirically selected

the ranges in HSV representing those pixels. In this study, those ranges were

H = [0.75, 0.15], S = [0, 1.0], and V = [0, 1.0]. Then, the layer of choroidal ves-

sels, Lchor−bri, was obtained segmenting the pixels in Ibri that were between the

selected ranges (Figure 4.13b). Other structures visible in Ibri were the reflective

features caused by the nerve fiber layer (Giancardo et al., 2009). They are very

common when it comes to retinas in young patients and cannot be considered

as abnormalities. Most of these marks are concentrated along the widest vessels

(Giancardo et al., 2009) and tend to be green and blue in Ibri (Figure 4.13a).

Due to their color, they can be confused with EXs. Therefore, separating the

reflective features is useful to classify the true EXs. To separate reflective features

from lesions, we selected the pixels associated with reflective features using the

HSV color space in the training set. The selected ranges were H = [0.25, 0.85],

S = [0, 1.0], and V = [0, 1.0], obtaining the image Ibm1. Next, we selected the

pixels surrounding the main vessels in the vascular network. For this task, we first

performed a morphological opening over the image Mvess to roughly remove the

thin vessels. A disk of radius ROD/10 pixels was applied. Second, a morphological

dilation was performed using a disk of radius D/60 pixels, obtaining the image

Ibm2. Finally, the reflective features layer, Lbm, was obtained by multiplying Ibm1

and Ibm2 to select the bright marks surrounding the vasculature (Figure 4.13c).

Using the same idea, the layer of potential EXs was also extracted from Ibri. We

used the HSV color space and, for each component, selected the ranges of values

among which the EXs were. For this task, we analyzed all the pixels belonging

to EXs in the images of the training set annotated by the ophthalmologist. The

selected ranges were H = [0.15, 0.45], S = [0.1, 1.0], and V = [0.1, 1.0]. Thus, we

obtained the layer Lex−cand (Figure 4.13d). Finally, to obtain the binary mask of

potential EX candidates, Mex−cand, we binarized Lex−cand. The obtained layers of

interest in this phase, Lchor−bri (Figure 4.13b), Lbm (Figure 4.13c), and Lex−cand

(Figure 4.13d), were also useful for candidate classification in later stages.
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Exudate classification

After detecting all EX candidate regions, an MLP neural network was used to

differentiate the true EXs from the rest. This type of network has also been used

in previous studies for the automatic detection of EXs (Garćıa et al., 2009). This

classification stage comprises three steps:

1. Feature extraction. For each region candidate in Mex−cand, a set of fea-

tures was extracted using the layers obtained in the previous stages. It

should be noted that the same set of 100 features used for RL candidate

classification were also used in the case of EXs. This is adequate to simplify

the method and evaluate the suitability of the features depending on the

type of lesion. The extracted features are collected in Table 4.2.

2. Feature selection. As for the RL classification, we used the FCBF method

to select a reduced number of features. The 34 selected features in this stage

are specified in Table 4.2. Again, features of a different nature were selected,

including shape, distance, intensity, and variability around the candidate in

different layers.

3. Multilayer Perceptron Neural Network. In this step, EX candidates

were classified using an MLP with the same configuration as the one used

for RL candidate classification 4.4.2. However, a joint classification for both

types of lesions would not be possible in our approach, since the selected

features were different. Moreover, it is interesting to separately classify the

lesions from a clinical point of view. They often appear at different times

and have implications in determining the severity of the disease (Abramoff

et al., 2010). In this case, the number of neurons in the input layer was the

number of selected features in the previous step. The number of neurons

in the hidden layer and regularization parameter were also experimentally

optimized during the training process.

4.6 Diabetic retinopathy severity grading

In this section, we explain the proposed method for DR severity grading, which

is based on a deep learning framework. It is important to mention that the In-

ternational Clinical DR Scale was considered. This is the standardized practical

clinical classification system used in the latest studies in the literature aimed at

automatic screening of DR. The International Clinical DR Scale specifies 5 DR
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stages (see section 1.5.2). Therefore, the severity grading challenge consisted of a

5-class classification problem.

For a better understanding of the proposed method, the diagram in Figure 4.14

is provided. Initially, the input image was evaluated in terms of quality using the

algorithm previously described in section 4.1.2. Only those images with enough

quality for analysis underwent the DR grading stage. Then, we applied a minimal

preprocessing stage, which is detailed in section 4.6.1, to prepare the image for

the CNN architecture. Next, we decomposed the preprocessed image into 2 new

images, as described in section 4.6.2: the first image (Ibri) represented the bright

structures of the retina and the second one (Idark) represented the dark ones.

These 2 new images, together with the original preprocessed image, were the inputs

of the CNN architecture. Each of these inputs were processed by a pretrained

FCN allowing optimal feature extraction. Next, the features extracted from the

preprocessed image (feature matrix Mpre) were combined, separately, with the

features extracted from the other images (features matrices Mbri and Mdark) using

an attention mechanism. This mechanism, detailed in section 4.6.5, selects the

relevant elements from the matrices. Finally, the proposed architecture included a

set of fully connected layers to classify the image into the different severity degrees

based on the complete set of extracted features (section 4.6.6).

In addition to the deep architecture, the use of data augmentation and transfer

learning, described in sections 4.6.3 and 4.6.4, should be highlighted. Finally, the

training procedure is detailed in section 4.6.7.

4.6.1 Preprocessing

Deep learning approaches are designed to process raw images. Hence, a complex

preprocessing stage, like the algorithm exposed in section 4.2, is not required

(Saha et al., 2018; Zago et al., 2018). Instead, in this work we applied a minimal

preprocessing stage before using the CNN architecture. First, input color images

were cropped around the FOV by trimming the black external background borders,

which makes the retinal diameter equal to the width of the image (Araújo et al.,

2020; de la Torre et al., 2020). This step allowed us to remove useless information

for the classification task. Then, they were resized to a resolution of 640 Ö 640

pixels. As proved in (de la Torre et al., 2020), the optimal size for DR grading is a

retina diameter equal to 640 pixels. Finally, we normalized the pixel values to the

interval [-1, 1] for a better training process (Goodfellow et al., 2016), obtaining

the preprocessed image (Iprep).
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Figure 4.14: Overview of the proposed method. First, we applied an image quality
assessment stage to check if the input image was gradable. Second, a minimal prepro-
cessing step was performed (Iprep). Then, we decomposed the resulting image to obtain
the images Ibri and Idark. These images, together with Iprep, were processed using a
pretrained Fully Convolutional Network (FCN). The resulting feature matrices Mbri and
Mdark underwent an attention mechanism, producing the feature matrices Mbri−att and
Mdark−att. Next, the extracted features from Iprep and Mprep were separately multiplied
by Mbri−att and Mbri−att, and then combined. Finally, the final classification was per-
formed using a set of 3 fully connected layers

.

4.6.2 Image Decomposition to Separate the Dark and the

Bright Regions

The main purpose of this stage is to separate the dark and the bright pixels in the

fundus images. This allowed us to obtain 2 different versions of the image: the

first version (Ibri) preserved the bright regions of the retina while removing the

dark ones. Conversely, the second version (Idark) highlighted the dark regions in

the fundus image while ignoring the bright areas. These two new images served

us to feed the CNN. In this way, we were able to separate attention from dark

structures (e.g., red lesions) from bright structures (e.g., hard exudates). In order

to perform the image decomposition, we applied the multi-scale algorithm defined

in sections 4.4.2 and 4.5. Figures 4.12a and 4.13a show an example of the images

obtained in this stage. In Ibri, the color difference of the bright pixels with respect

to the retinal background was enhanced, while the rest of pixels remained black.

In the same way, the color difference between the dark pixels and the background

was highlighted in Idark, while leaving the rest of the pixels black.
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4.6.3 Data Augmentation

Having a larger database to train offers better results and increases the general-

ization ability of the method (Zago et al., 2018). In this study, we applied the

technique data augmentation, introduced in section 4.1.2, to increase the num-

ber of training samples. This technique acts as a regularizer and helps reduce

overfitting when training a machine learning model. Fake images were obtained

applying the following simple transformations (Perez and Wang, 2017): rotations

in the range [−50,+50] degrees, zoom in the scale range [−0.1,+0.1] and hori-

zontal and vertical flips. The proposed transformations were chosen to produce

realistic results.

4.6.4 Feature Extraction with Transfer Learning

In the proposed method, we applied a FCN as a feature extractor for all 3 in-

put images (Iprep, Ibri and Idark). The architecture selected for this network was

Xception (eXtreme version of Inception) (Chollet, 2017). This architecture re-

places the Inception modules with depthwise separable convolutions. Xception

outperforms many other architectures such as VGG16, ResNet152 or InceptionV3

on large image classifications datasets (Chollet, 2017).

Feature extraction was performed using transfer learning (see section 4.1.2).

This technique has already been successfully applied for DR grading (Costa et al.,

2019; Wang et al., 2017). In this work, we used an FCN pretrained on the images

from the project ImageNet (Jia Deng et al., 2009).

4.6.5 Attention Mechanism

The extracted features for Iprep, Ibri and Idark are the matrices Mprep, Mbri and

Mdark, respectively, all of them having dimensions 14 Ö 14 Ö 1556. This is the

output size of the Xception backbone for the input size 640 Ö 640 Ö 3. The

advantage of using an FCN is that the extracted features preserve the spatial

information, which allows interpreting the mentioned matrices as a set of 14 Ö 14

image patches with 1556 features each. This way, we can focus on those features

associated with the spatial locations of the image (patches) that are more relevant

for our classification task. In this case, attention mechanisms produce a weight

map which assigns a factor to the features based on their relevance (Chen et al.,

2016). In this work, we applied an attention model for the matrices Mbri and

Mdark, which, in turn, were computed from the input images Ibri and Idark. This
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approach allowed us to produce separate attention maps for bright lesions and red

lesions. Additionally, these maps were useful to reduce the impact of unneeded

lesion information for identifying different DR grades.

The architecture of the proposed attention mechanism can be seen in Fig-

ure 4.15. It takes a feature matrix as input and outputs an attention map. It

is composed of a set of 4 Conv2D layers with kernel (1Ö1). The first 3 layers

included a ReLU activation function. The last one had a sigmoid activation func-

tion, producing an output between 0 and 1, which is the weight of every patch

based on their relevance for the classification task.

Once both attention maps were computed, they were applied over Mprep using

the element-wise multiplication on every channel (layer in the last dimension),

obtaining the feature matrices Mbri−att and Mdark−att. Finally, these matrices

were concatenated on channel dimension (depth direction) as the input to the

fully connected layers.

4.6.6 Fully connected layers

The last part of the proposed architecture takes the combined features obtained

with the attention mechanism as inputs and is responsible for the final DR clas-

sification. It is composed of 3 fully connected layers. The first 2 layers had 1024

and 512 neurons, respectively, and a ReLU activation function (Goodfellow et al.,

2016). Additionally, they included a L2 regularization penalty with a factor of

0.005. The last layer had 5 neurons, one for each DR severity degree. The activa-

tion function for this layer was softmax, which represents the output probability of

every class to be predicted (in our study, each severity degree) (Goodfellow et al.,

2016).

Figure 4.15: Architecture of the attention mechanism.

.
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4.6.7 Training procedure

As shown in section 3.2.5, the database used in this study contains a greater

number of images associated with one severity degree than others. In particular,

the class corresponding to no DR is represented by many more images than the

rest of classes. In order to deal with class imbalance, we used the focal loss error

function (Lin et al., 2017b). This approach is a modification of the standard cross

entropy loss function used for training. It down-weighs the loss assigned to well-

classified examples. The focal loss function introduces 2 hyperparameters: the

focusing parameter γ, that controls the strength of the modulating term, and the

weighing factor α, which balances the importance of positive/negative examples.

Focal loss is defined as (Lin et al., 2017b):

FL(pt) = −α(1− pt)
γ log pt, (4.27)

where pt is the probability of the ground truth class. In this work, γ was set to 2

and α was set to 1 (Lin et al., 2017b).

The model was trained for 100 epochs using a batch size of 8 images. We used

the stochastic gradient descent as the optimization algorithm with a momentum of

0.9 (González-Gonzalo et al., 2018) and learning rate of 0.005. To avoid overfitting

in advanced epochs, the learning rate was reduced by a factor of 10 when the

validation error reached a plateau. Additionally, to avoid exploding gradients, the

L2 norm of the gradient vector was limited to 1 (Goodfellow et al., 2016).

4.6.8 Ablation studies

In order to evaluate the effectiveness of the proposed architecture, we performed

2 additional ablation studies:

1. We built another architecture with no attention mechanism, directly feeding

the fully connected layers with the matrix Mprep. The rest of the hyperpa-

rameters were identical to the proposed method. This approach can be seen

as a standard deep classification network.

2. We modified the attention mechanism such that it was applied to the matrix

Mprep, which has joint information about the bright and dark pixels. The

rest of the hyperparameters were identical to the proposed method.





Chapter 5

Results

This chapter is dedicated to presenting the results obtained in the studies con-

ducted during the course of this Doctoral Thesis. The next sections are or-

ganized according to the hypotheses outlined in section 2.1. This way, sec-

tions 5.1.1 and 5.1.2 gather the results for the RIQA methods (Jiménez-Garćıa

et al., 2019; Romero Oraá et al., 2020). The results associated with the location

of de OD and the fovea (Romero-Oraá et al., 2020) are shown in section 5.2. The

results for both of the proposed methods aimed at RL detection (Romero-Oraá

et al., 2019, 2020) are exposed in section 5.3 while the results of the method aimed

at EX detection (Romero-Oraá et al., 2020) are exposed in section 5.4. Finally,

we present the results for the DR severity grading method in section 5.5.

5.1 Image quality assessment

5.1.1 Method based on the combination of global features

Performance evaluation

An MLP neural network was used to separate the images with adequate quality

and inadequate quality. Classification performance was evaluated in terms of sen-

sitivity (Se), specificity (Sp), accuracy (Acc), positive predictive value (PPV ),

and F-Score (F1) (Fawcett, 2006). Additionally, we obtained the receiver operat-

ing characteristic (ROC) curve and computed the area under the curve (AUC) to

measure the robustness of the classifier (Fawcett, 2006). This value is expected to

be close to 1 when the achieved results were robust (Fawcett, 2006).
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Feature selection results

The FCBF algorithm was applied over 1000 bootstrap replicates of the features

extracted from the training set. Features selected on, at least, 500 runs of the

bootstrap method were finally selected as optimum features for the classification

task. A total of 10 features formed the reduced subset. It should be noted that

features from all proposed feature extraction methods were selected: six features

from SSEQ (SpacEnSKEW , SpecEnMEAN , and SpecEnSKEW in the scales 1 and

3), the NIQE index QNIQE, one feature from the CWT analysis (ENTCWT at

s = 4), and two features from the luminosity analysis (Lum5−1 and Lum15−10).

Multilayer perceptron optimization

In order to optimize the parameters of the network, we experimented with values of

NHIDDEN ranging from 1 to 100 and values of λ ranging from 0 (no regularization)

to 0.9 in steps of 0.1. For each combination, we applied 10-fold cross validation

and averaged the validation accuracy across the 10 iterations (Witten et al., 2016).

Figure 5.1 shows the obtained performance in terms of Acc for different combi-

nations of NHIDDEN and λ. Maximum Acc was reached with NHIDDEN = 21

neurons and λ = 0.1. Therefore, this combination of hyper-parameters was used

to train the final model. Once the hyper-parameters NHIDDEN and λ were fixed,

the MLP network was trained using the complete training set.

Finally, the obtained ROC curve can be seen in Figure 5.2 and the AUC showed

a value of 0.9803. The optimum point of operation was selected during training

as the point in the ROC curve closest to (0,1).

Figure 5.1: Some accuracy curves obtained for multilayer perceptron (MLP) optimiza-
tion during the training stage.
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Figure 5.2: Receiver operating characteristic (ROC) curve for retinal image quality
assessment based on the combination of global features.

Classification results on the test set

Once all the parameters of the classification stage were fixed, the final results of the

proposed method were obtained using the test set of the private database (1,054

images). Table 5.1 summarizes the results for the test set in terms of Se, Sp, Acc.

Additional results showed PPV = 97.88%, F1 = 0.9487%, and AUC = 0.9803.

Table 5.1: Results for fundus image quality assessment using the proposed methods.

.

Method Database Se (%) Sp (%) Acc (%)

Global features Private 92.04 87.92 91.46
Deep learning Private 96.82 91.00 95.29
Deep learning DRIMDB 99.20 100.00 99.48
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5.1.2 Method based on deep learning

The CNN training was carried out with the 2,348 images from the private database

training set. A Workstation with an Intel Xeon CPU E5-1620 v4 @ 3.5GHz Ö 8

processor, 32GB of RAM and two NVIDIA TITAN X (Pascal) graphics cards was

used. CNN took 128 minutes to train.

Once the CNN was trained using the training set of the private database, the

method was evaluated on the test set of the private database (425 images) and on

all the images of the public database DRIMDB (194 images) (Sevik et al., 2014).

Classification performance was evaluated in terms of sensitivity (Se), specificity

(Sp), and accuracy (Acc). Table 5.1 collects these results.

5.2 Location of the optic disc and the fovea

The methods for the OD and fovea location were evaluated over the test set of

the private dataset (283 images) and the public databases DIARETDB1 (89 im-

ages), DRIVE (40 images) and Messidor (1200 images). Accuracy was computed

comparing the automatically detected center with the center annotated by the

ophthalmologist as (Harangi and Hajdu, 2015):

Acc =
C

N
, (5.1)

where C is the number of correct detections and N is the total number of tested

images. We considered a correct detection when the Euclidean distance between

both points (distance error) was lower than a certain threshold (DEmax). Oth-

erwise, the detection was considered incorrect (Welfer et al., 2011). As in other

studies for both OD and fovea location, we considered DEmax = ROD pixels

(Hsiao et al., 2012; Medhi and Dandapat, 2015; Niemeijer et al., 2009). This way,

we can establish a direct comparison with the rest of the methods in literature.

The results of the proposed methods for the OD and fovea location are shown in

Table 5.2.

Additionally, we calculated the overlapping area between the ground truth and

the estimated OD. Given that the edges of the fovea are undefined, this measure

was not calculated for the detected fovea. Since the ophthalmologist only provided

us with the ground truth center, both the ground truth and the estimated OD were

modeled as a circle with radius D
12 pixels (Hsiao et al., 2012). Then, we computed

the overlapping ratio between both circles as (Chalakkal et al., 2018; Lupaşcu
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Table 5.2: Results for the location of the optic disc and the fovea.

.

Database
Number of
test images

Optic disc
location accuracy

Fovea location
accuracy

Proprietary 283 100% 100%
DiaretDB1 89 100% 100%
DRIVE 40* 100% 100%
Messidor 1200 99.5% 99.67%

* 3 images did not show the fovea and were discarded for the fovea detection method (Kauppi
et al., 2007; Welfer et al., 2011).

et al., 2008; Morales et al., 2013; Salazar-Gonzalez et al., 2011):

S =
Area(T ∩D)

Area(T ∪D)
, (5.2)

where T is the ground truth circle and D is the estimated OD circle obtained using

the proposed method. For all the images in test set of the proprietary database,

the average overlapping ratio was 0.826.

5.3 Detection of red lesions

5.3.1 Method based on the classification of superpixels

Performance Assessment

The optimal parameters of the proposed algorithm were determined using the

training set of our private database, composed of 281 fundus images. The number

of hidden neurons and the regularization parameter value were experimentally ad-

justed. We varied the value of those free parameters using 10-fold-cross-validation.

We chose the parameter values that maximized the average accuracy (ACCNN )

over the validation set from the first fold, keeping the balance between the average

sensitivity (SENN ) and the average specificity (SPNN ).

Once the parameters of the algorithm were optimized and the classifier was

trained, we evaluated the performance of our approach using the test set of our

private database (283 images) and the test set of the DIARETDB1 database (61

images). We obtained the results on both databases in terms of two different

criteria (Garćıa et al., 2010):

� Pixel-based criterion: a lesion was correctly identified when, at least,

one of its pixels was detected as a lesion. Additionally, we considered all
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the pixels belonging to a correctly detected lesion to be correct. Based on

this criterion, we calculated the positive predictive value (PPVp) and the

sensitivity (SEp) (Osareh, 2004).

� Image-based criterion: frequently, the detection of very small regions

correspond to noisy spots. These are clinically non-significant but may be

detected as lesions in some images belonging to healthy retinas. Following

the same approach used in previous studies (Garćıa et al., 2010; Osareh,

2004), we considered an image pathological when, at least, 30 pixels in the

whole image were detected as lesions. This corresponds to a very small

fraction of the pixels of the image (less than 0.00001%), similar in size to

that of a microaneurysm. Based on the image-based criterion, the average

sensitivity (SEi), specificity (SPi) and accuracy (ACCi) over the test set

were calculated.

Training

� Feature selection

All 39 features described in section 4.4.1 were studied in terms of relevancy

and redundancy applying the FCBF algorithm. A total of 54,233 superpixels

were extracted from the training set, of which only 1,783 corresponded to

RLs. To balance the two classes considered during training, we also ran-

domly selected another 1,783 superpixels that did not correspond to RLs.

Thus, a vector of 39 features was calculated for each of the 3,566 considered

superpixels. It is important to note that feature vectors where normalized

(mean = 0, standard deviation = 1) to improve the classification results

(Bishop, 1995).

After applying FCBF, the 16 features indicated in Table 4.1 were selected.

It should be noted that the reduced feature set contained features related to

shape, pixel intensities or the distance to the retinal structures. Hence, the

selected features take into account the different distinctive characteristics of

RLs.

� MLP Configuration

We experimentally determined the number of neurons in the hidden layer

(nhid) and the value of the regularization parameter λ. The number of

hidden neurons was analyzed in the range nhid = [1 : 1 : 100]. The regu-

larization parameter values were varied in the range λ = [0 : 0.1 : 1]. For
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each combination of nhid and λ, we obtained ACCNN , SENN and SPNN .

The values of ACCNN are shown in Figure 5.3. It can be seen that ACCNN

stabilizes from nhid = 30 when λ < 0.6. For larger values of λ, ACCNN

decreases. Thus, we selected nhid = 30 and λ = 0.6. At this operating point,

we obtained ACCNN = 94.50%, SENN = 93.24% and SPNN = 95.76%.

Subsequently, we trained an MLP with nhid = 30 and λ = 0.6 using the

complete training set.

Results on the test sets

After parameter setting and final training of the classifier, the method was applied

on the images of the test sets of the private database and the public database DI-

ARETDB1. The results of the automatic method were compared with the anno-

tations of the ophthalmologist in terms of a lesion-based criterion and an image-

based criterion (Garćıa et al., 2010). The results are summarized in Table 5.3.

The performance of the proposed method is illustrated in Figure 5.4.

Figure 5.3: Average accuracy for RL classification over the validation set obtained
during MLP training for varying the number of hidden neurons and the regularization
parameter.

.
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Table 5.3: Results for the detection of red lesions.

Method Database
Pixel-Based Criterion Image-Based Criterion
SEp PPVp SEi SPi ACCi

Superpixels Private 81.43 86.59 84.04 85.00 84.45
Superpixels DIARETDB1 88.10 93.10 84.00 88.89 86.89

Decomposition Private 82.25 91.07 85.00 90.80 88.34
Decomposition DIARETDB1 84.79 96.25 88.00 91.67 90.16

(a) (b)

Figure 5.4: Detected red lesions after classification stage. (a) example of the private
database; (b) zoom in previous example.

5.3.2 Method based on the decomposition of the fundus im-

age into layers

All optimal values for the parameters of the proposed method were obtained using

the 281 images from the training set of the proprietary database. We obtained the

final results using the test set of the proprietary database (283 images) and the

test set of the DiaretDB1 database (61 images).

We extracted 4,889 RL candidates from the training set. Only 2,029 of them

were true RLs. We randomly selected another 2,029 non-RL regions to balance

the two classes. The extracted features over the RL candidates were normalized

(mean = 0, standard deviation = 1) to improve the classification results (Bishop,

1995).
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MLP configuration on the training set

We experimented with the number of hidden neurons in the range [1 : 1 : 100]. The

regularization parameter values were varied in the range [0 : 0.1 : 1]. For this task,

we applied 10-fold-cross-validation exclusively using the training set of the private

database. This technique is a powerful preventative measure against overfitting.

The chosen values for those parameters were 51 and 0.5, respectively, since they

maximized the average accuracy over the validation test (see Figure 5.5).

Red lesion detection on the test sets

The results for RL detection using both the private database and the public

database can be seen in Table 5.3. These results show the performance of the

complete algorithm and were obtained according to the criteria defined in sec-

tion 5.3.1: lesion-based criterion and image-based criterion.

Figure 5.5: Average accuracy for RL classification over the validation set obtained
during MLP training for varying the number of hidden neurons and the regularization
parameter.



92 Chapter 5. Results

5.4 Detection of hard exudates

Parameter optimization was performed using the 281 images from the training set

of the proprietary database. We obtained the final results using the test set of the

private database (283 images) and the test set of the DIARETDB1 database (61

images).

We extracted 4,782 EX candidates from the training set. Only 2,072 of them

were true EX. Thus, we randomly selected another 2,072 non-EX regions to bal-

ance the two classes. The extracted features over the EX candidates were also

normalized to improve the classification results (mean = 0, standard deviation =

1) (Bishop, 1995).

MLP configuration on the training set

Like the RL classification, we varied the number of hidden neurons in the range

[1 : 1 : 100] and the regularization parameter values in the range [0 : 0.1 : 1]. We

applied 10-fold-cross-validation exclusively using the training set of the private

database allowing to control overfitting. The chosen value for those parameters

was 55 and 0.4, respectively, since they maximized the average accuracy over the

validation test (see Figure 5.6).

Exudate detection on the test sets

The results for EX detection using both the proprietary database and the public

database are presented in Table 5.4. These results show the performance of the

complete algorithm and were obtained by applying the criteria in section 5.3.1:

lesion-based criterion and image-based criterion.

Table 5.4: Results for the detection of exudates.

.

Database
Pixel-Based Criterion Image-Based Criterion
SEp PPVp SEi SPi ACCi

Proprietary 89.42 96.01 88.04 98.95 95.41
DiaretDB1 91.65 98.59 95.00 90.24 91.80
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Figure 5.6: Average accuracy for EX classification over the validation set obtained
during MLP training for varying the number of hidden neurons and the regularization
parameter.

5.5 Diabetic retinopathy severity grading

In the final stage of this PhD Thesis, we dealt with the DR grading multiclass

classification problem. We evaluated the proposed method on the test set of 32,017

images from the EyePACS for the Diabetic Retinopathy Detection dataset. As

described in section 3.2.5, the dataset was highly imbalanced. For this reason,

the proper evaluation of the performance of the proposed method requires an

adequate metric. The Cohen’s Kappa (Cohen, 1960) is one of the most commonly

used statistics to test inter-rate reliability. However, it does not take into account

the degree of disagreement (Cohen, 1968). When the categories are ordered, it is

preferable to use the Weighted Kappa since it allows disagreements to be weighted

differently (Cohen, 1968). This is the case of DR severity degrees, where each

class can be seen as an evolution of the previous one. Three matrices are involved

in the calculation of the Weighted Kappa: the matrix of observed scores (O), the

matrix of expected scores based on chance agreement (E), and the weight matrix

(ω). The metric can range from -1 to +1 and is defined as (Cohen, 1968):

κ = 1− Σi,jωi,jOi,j

Σi,jωi,jEi,j
, (5.3)
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where ωi,j , Oi,j and Ei,j are elements in the weight, observed, and expected matri-

ces, respectively. Quadratic Weighted Kappa (QWK) is the particular case with

quadratic weighting (Cohen, 1968):

ωi,j =
(i− j)1

(N − 1)2
, (5.4)

where N is the number of classes. This is the most common metric for DR grading

(Araújo et al., 2020; Costa et al., 2019; González-Gonzalo et al., 2018; Krause

et al., 2018; Wang et al., 2017). For this reason, we computed QWK, allowing us

to compare our results with those in other studies. The QWK achieved with the

proposed method was 0.78 on the test set, which corresponds to 83.7% accuracy.

When it comes to the first ablation study, where no attention mechanism was

applied, the network did not converge adequately due to the class imbalance.

The model learnt to classify every sample as the most dominant class (no DR).

The second ablation study, where the attention mechanism was applied but the

information about the dark and the bright pixels was not separated, showed QWK

= 0.76.

However, when dealing with class unbalance, QWK is dominated by the most

representative classes, which is the class 0 (No DR) in our dataset. This is why the

confusion matrix is also important to evaluate the results. Figure 5.7 shows the

confusion matrix obtained with our method. The color intensity of each matrix

element is a visual representation of the relative frequency: the ratio of images

classified as the predicted class (element value) to the total number of images of

the actual class (row sum).
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Figure 5.7: Confusion matrix for DR severity grading. The color intensity of each
matrix element is a visual representation of the relative frequency: the ratio of images
classified as the predicted class (element value) to the total number of images of the
actual class (row sum).
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Discussion

In the present Doctoral Thesis, several automatic methods have been developed

to build a CAD system aimed at the early diagnosis and severity grading of DR.

The motivation for the conducted studies has been guided by the hypotheses dis-

played in section 2.1. In this sense, we believed that the development of novel,

automatic methods for fundus image analysis could contribute to this research

field and the limitations of the previous studies could be overcome. Firstly, fundus

image quality assessment was achieved with two different approaches, discussed in

section 6.1. The results for the first approach, based on the combination of various

global features, were outperformed by the second approach, which was based on

deep learning. Secondly, the automatic location of the OD and the fovea centers

was performed using a set of novel saliency maps. The results of the proposed

method were robust and effective, as discussed in section 6.2. Thirdly, the joint

segmentation of RLs and EXs was accomplished by decomposing the fundus image

into layers. Novel indicators, such as the reflective features of the retina and the

choroidal vasculature visible in tigroid retinas, were proven useful for the classifica-

tion of retinal lesions, as discussed in sections 6.3 and 6.4. An alternative method

was also developed for the detection of RLs based on superpixel classification.

The technique ERS allowed a precise segmentation of the lesions (section 6.3.2).

Finally, the severity grading of DR was addressed with a deep learning framework

which performs separate attention for the bright and the dark pixels in the retinal

image. Section 6.5) is devoted to discuss the results of this proposed method in

detail.

The discussion of the aforementioned studies is exhibited in the next sections

of this chapter following the sequence of hypothesis and results previously pre-

97
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sented. At the end of this chapter, the main limitations of this Doctoral Thesis

are presented.

6.1 Image quality assessment

6.1.1 Method based on the combination of global features

In this study, a novel RIQA method was proposed. It was based on generic features

extracted from two different general-purpose NR-IQA methods, the CWT, and

the luminosity of images using the HSV color model. Features were selected and

subsequently classified using the FCBF algorithm and a MLP neural network,

respectively. Results were obtained on a database of 2107 fundus images, reaching

Se = 92.04%, Sp = 87.92%, Acc = 91.46%, PPV = 97.88%, and F1 = 0.9487 on

the test set.

Preprocessing

A preprocessing step was included to enhance the images in our database and

to improve the results in the subsequent processing stages. This preprocessing

method has been successfully applied in previous studies for retinal vessels seg-

mentation (Fathi and Naghsh-Nilchi, 2013; Soares et al., 2006). However, in pre-

vious studies, the FOV extension did not cover the whole area of the image (Fathi

and Naghsh-Nilchi, 2013; Soares et al., 2006). In this work, we propose a novel

modification of this FOV extension algorithm in order to cover the whole image.

This approach has advantages for subsequent retinal image processing algorithms.

One of them is that we could employ SSEQ and NIQE methods to analyze all the

areas in the image before the block selection step (Liu et al., 2014; Mittal et al.,

2013). Furthermore, the preprocessing method prevented border effects when the

CWT and the Gaussian filter employed in luminosity analysis were applied. The

absence of border effects increased the robustness of the features analyzed in this

study.

Feature extraction and selection

After preprocessing, four different feature extraction methods were applied to char-

acterize the images. A total of 40 features were extracted using SSEQ, NIQE,

CWT, and luminosity in the HSV color model. Feature selection was subsequently

applied to discard redundant or irrelevant features using the FCBF algorithm (Yu
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and Liu, 2004). Besides, we combined FCBF with bootstrapping to improve the

robustness of this stage. To the best of our knowledge, this feature selection

approach has not been previously used in RIQA methods. A reduced set of 10 fea-

tures was finally selected and included features of the different feature extraction

approaches analyzed in this study, which demonstrates that the proposed features

are complementary. The general-purpose NR-IQA methods used in this work were

found useful to characterize the quality of the images. Moreover, the CWT ap-

proach was found appropriate to assess the sharpness of the retinal blood vessels

and the OD. Finally, the HSV color model was useful to assess the luminosity of

images.

The complete set of features included 12 features from the SSEQ method.

To the best of our knowledge, SSEQ method has not been previously applied in

RIQA. Measurements of SpacEn and SpecEn through the blocks of the images

provided relevant information, especially in scales 1 and 3. Specifically, mea-

sures of SpacEnSKEW , SpecEnMEAN , and SpecEnSKEW for these scales were

selected by FCBF to form the final feature subset. However, we observed that

SpacEnMEAN was not selected. This may indicate that SpacEnMEAN was found

redundant with respect to other features. Regarding the SSEQ method, we found

that SpacEnSKEW and both SpecEn-derived features can be useful to distinguish

images of adequate quality from inadequate quality ones. This result is consistent

with other studies that successfully employed entropy-based measurements in the

context of RIQA (Abdel-Hamid et al., 2016; Davis et al., 2009; Marrugo Hernández

et al., 2011), biomedical signal processing (Bachiller et al., 2015; Poza et al., 2007),

and strategic decision making (Rodger, 2019).

A naturalness feature derived from the NIQE method was also considered. The

quality feature QNIQE is relevant for quality assessment since it was selected

in all the bootstrap runs of the FCBF algorithm, together with SpecEnSKEW .

Therefore, QNIQE is complementary to all other features proposed in this study.

Our results correlate with previous studies (Shao et al., 2017), where the NIQE

index was used in combination with illumination and structural-based methods

for RIQA.

Another set of features was extracted using the CWT. This method has been

previously used to perform retinal vessel segmentation tasks and to discriminate

healthy and diseased retinal images (Fathi and Naghsh-Nilchi, 2013; Koh et al.,

2017; Soares et al., 2006). We calculated the CWT representations for retinal

images at six scales using the Mexican hat mother wavelet. This wavelet was useful

to identify sharp edges at varying scales, which are indicative of sharp images.



100 Chapter 6. Discussion

Representations for s = 4–16 showed stronger responses along thin-to-thick blood

vessels. Sharp edges were found mainly in the OD and blood vessels and were

associated with stronger CWT responses. Previous works that used the wavelet

transform also stated the usefulness of this technique to assess the sharpness on

fundus images (Abdel-Hamid et al., 2016, 2017; Bartling et al., 2009). In our study,

sharpness of CWT representations was assessed with three novel features based on

Shannon’s entropy and local variance, showing promising results. Characterization

of the CWT representations was comprehensive, but these features were found

redundant and only one of them (ENTCWT at s = 4) was finally selected using

the FCBF algorithm.

Finally, luminosity features were also included in the analysis. This type of

feature has been previously used to identify poorly illuminated fundus images.

Luminosity of retinal images was widely studied using different color models, such

as RGB, YUV, or L*a*b* (Davis et al., 2009; Shao et al., 2017; Wang et al., 2016).

In this study, we have found that the HSV color model is also useful to characterize

poorly illuminated fundus images. The HSV color model allowed us to represent

the luminosity of retinal images independently of their color. The color of retinal

images is closely associated to the physical features of the patients (such as skin

or iris color) and also to the acquisition process (Abdel-Hamid et al., 2016; Zhou

et al., 2018). Therefore, separating the luminosity and chromatic information of

the image is useful to study brightness-related features. We observed that the

luminosity channel of the HSV color model performed better than illumination

components of YUV and L*a*b* color models for the images in our database.

More specifically, we found that the differences between light and dark areas were

more prominent in the V color channel of HSV. This finding can be due to the

larger separation of the color information in the hue and saturation channels from

the luminosity (V ) (Zhou et al., 2018). Therefore, the V channel was less depen-

dent on the color of retinal images. Previous studies have also employed the HSV

color model in order to assess retinal image quality (Abdel-Hamid et al., 2016). In

that study, color information was more relevant and was extracted from a mod-

ified saturation channel. Alternatively, we found relevant features derived from

luminosity contained in retinal images. We analyzed several features related to

luminosity percentiles and their differences extracted from the V channel. Two of

these features (Lum5− 1 and Lum15− 10) were selected by the FCBF algorithm,

which indicates the relevance of luminosity features for RIQA.
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Results

Results on the test set achieved Acc = 91.46%, Se = 92.04%, Sp = 87.92%,

PPV = 97.88%, F1 = 0.9487, and AUC = 0.9803. Since the number of adequate

quality images was much greater than the number of inadequate quality images,

synthetic samples of the minority class were obtained using SMOTE. Despite this

class imbalance, this technique allowed us to obtain almost balanced Se and Sp

values, which means that our approach was able to model the particularities of

both good quality and bad quality images. Besides, the vast majority of images

were correctly classified, while PPV and F1 were also high. The latter measure

represents the tradeoff between a high detection rate and high probability of correct

detection.

Our results showed 18 false positives and 72 false negatives out of the 1054

images in the test set. Our RIQA method failed to classify images that did not

perfectly fit the ideal characteristics of adequate or inadequate quality images.

Misclassifications were frequent when images did not have a perfect focus or when

a dark but partially sharp image was analyzed. It is important to note that, if

this RIQA method was included as the first stage of a more general retinal im-

age analysis algorithm, inadequate quality images misclassified using the proposed

method would be further processed. This issue may influence the results of the

subsequent image analysis algorithms. Conversely, when an adequate quality im-

age is misclassified, the image would be rejected by the RIQA algorithm. In clinical

settings, this can be inconvenient because the photographer would need to capture

an adequate-quality fundus image again. However, this issue is not likely to have

an important influence over the results of a more general retinal image analysis

method on the image.

Some examples of misclassified images in our study are shown in Figure 6.1. In

Figure 6.1a, the OD and the main arcades are blurred. However, the vessels and

some bright retinal lesions (EXs) are reasonably sharp in other areas of the image.

In the case of Figure 6.1b, the image has some dark areas, but the rest of the image

is sharp. These two images were incorrectly classified as adequate quality images.

The cases shown in Figures 6.1c and 6.1d are examples of false negatives. Both

images appear slightly blurred due to poor focus or artifacts, respectively. Thus,

the automatic method considered them as inadequate-quality images. However,

human graders considered that they had enough quality to be analyzed. These

examples reveal that quality assessment of fundus images is a challenging task,

that may be influenced by the subjectivity or experience of human graders (Wang
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(a) (b) (c) (d)

Figure 6.1: Examples of original images in our database that were misclassified using
the proposed method based on the combination of global features; (a,b): false positives;
(c,d): false negatives.

et al., 2016).

Our final results were similar to those in previous studies. However, compar-

isons should be made with caution since results are generally measured on differ-

ent databases and with varying metrics. We evaluated the results of the proposed

method using the test set of our database, formed by 1054 images. The majority

of studies presented their results using Se and Sp and, in some cases, Acc. In this

work, we also included PPV and F1 in order to better assess the performance of

the proposed method. However, these measures are not commonly used in this

context. Structural and generic methods achieved Se and Sp around 90%, and

Acc was over 90% in most cases. Among structural methods, Fleming et al. (2012)

reached Se = 92.60% and Sp = 90.00% with 98 images. Other authors validated

their method using 400 images, reaching Se = 95.33% and Sp = 91.13% (Welikala

et al., 2016). Wang et al. (2016) achieved Se = 87.45% and Sp = 91.66% using 536

images, while Abdel-Hamid et al. (2017) reached F1 = 0.8780 using 190 images.

Other authors also combined the NIQE index with structural and illumination

features, reaching Acc = 93.60% with 194 images. The best performance among

generic methods was achieved using the MLP neural network (Pires Dias et al.,

2014). Results reached Se = 99.49% and Sp = 99.76% in a database formed by 848

images Pires Dias et al. (2014). Hybrid approaches also showed remarkable results,

although they are more complex than generic methods (Paulus et al., 2010; Sevik

et al., 2014). Paulus et al. (2010) employed 301 images, achieving Acc = 91.70%.

In other studies, F1 reached 0.9960 using 194 images (Sevik et al., 2014). Deep

learning-based methods have been previously used for RIQA, achieving excellent

performances. Among them, the work developed by Saha et al. (2018) should be

remarked, since it achieved a perfect classification over 3425 images. However, it

should be noted that only 123 (3.6%) of these images corresponded to inadequate
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quality images. Therefore, class imbalance should be taken into account when

analyzing these results.

Novel generic features showing great complementarity were found. We achieved

similar results compared to other generic methods, suggesting that our novel fea-

tures form a viable alternative. In fact, the proposed features could be taken into

account as a base for a more advanced RIQA solution. Furthermore, the proposed

features are fully interpretable, which facilitates clinical viability.

6.1.2 Method based on deep learning

In this work, a method based on transfer learning was proposed to evaluate the

quality of fundus images. As a main contribution, we used a CNN with Incep-

tionResNetV2 architecture that, to the best of our knowledge, has never been

used for this task. Likewise, the use of fine-tuning with this architecture was val-

idated. The method has been developed exclusively using fundus images from a

private database. However, high accuracy was obtained with different images from

a public database, which demonstrates its robustness.

The method was evaluated on a test set of our private database (425 images)

and the DRIMDB database (194). The results of Table 5.1.2 indicate that the

proposed method is a simple and effective way to classify fundus images according

to their quality level. However, the results obtained on the DRIMDB database

are superior to those obtained on the private database. This may be because the

DRIMDB database has more separation between classes. In general, there are clear

visual differences between good quality and poor quality images in the DRIMDB

database. However, those differences are less evident in the private database.

Our results are similar to those obtained in previous studies, as shown in Ta-

ble 6.1. The most direct comparison can be established with the work of Zago et al.

(2018) and Chalakkal et al. (2019), where the public database DRIMDB (Sevik

et al., 2014) was also used. The results obtained in this work with the Inception-

ResNetV2 architecture on DRIMDB exceed those obtained in (Zago et al., 2018)

and (Chalakkal et al., 2019), as can be seen in Table 6.1. In other works, different

databases have been used, which influences the results obtained and makes direct

comparison between studies difficult. It is worth highlighting those works where

the use of CNNs has been combined with additional stages that notably increased

accuracy (Coyner et al., 2018; Yu et al., 2017). It also highlights the work of Saha

et al. (2018), where 100% accuracy was obtained. However, they ruled out images

of ambiguous quality, which are the most error-prone, for the study. When com-
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Table 6.1: Comparison of some deep learning methods for image quality assessment.

Study Database CNN Accuracy

Yu et al. (2017) Kaggle Alexnet 95.42%
Saha et al. (2018) Kaggle Alexnet 100%
Zago et al. (2018) DRIMDB Inception v3 98.55%
Chalakkal et al. (2019) DRIMDB Inception v1 95.29%
Proposed method Private InceptionResNetV2 95.29%
Proposed method DRIMDB InceptionResNetV2 99.48%

(a) (b)

Figure 6.2: Examples of original images in our database that were misclassified using
the proposed method based on deep learning; (a): false positive; (b): false negative.

paring our previous method based on hand-crafted features (section 5.1.1), which

achieved Se = 92.04%, Sp = 87.92% and Acc = 91.46%, with our approach based

on deep learning, we can claim that the latter provides better results using the

same private database and the same metrics (Se = 96.82%, Sp = 91.00% and

Acc = 95.29%).

Despite the high accuracy of the results obtained, some classification errors

occur. An example can be seen in Figure 6.2a, considered by the expert to have

poor quality. In this image, the structures are well appreciated in part of the

image, but not in all of it. This may be the reason for the discrepancy between

the expert and the automatic method. Figure 6.2b shows a fundus image classified

as of good quality by the expert and in which the system has failed. As it can be

seen, it is a dark image, which may be the cause of the error.
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It is necessary to mention that the method proposed in this study can be

adapted to different databases, since none of the processing steps depends on the

specific characteristics of the images. In addition, it is easy to apply to new images

once the model has been trained. Therefore, the implementation of the algorithm

would be straightforward in the clinical setting. However, the lack of explanatory

capability, inherent in deep networks, could hinder the viability in real scenarios.

Given this limitation, the application of explainable artificial intelligence (XAI)

techniques would be highly useful. Finally, the comparison between the two RIQA

methods proposed in this Doctoral Thesis reveals the great impact of deep learning,

which is definitely revolutionizing computer vision in medical imaging.

6.2 Location of the optic disc and the fovea

In this study, we proposed automatic methods for OD and fovea location. The

initial preprocessing stage, described in section 4.2, was useful for inter-image

and intra-image normalization, achieving consistent outputs for the operations

applied on every image. The method for the retinal background extraction is

an important contribution in this study. The brightest and darkest pixels were

replaced with the estimated retinal background, obtaining a realistic result. The

retinal background extraction could also be valuable in further studies related to

fundus image processing. In fact, using this algorithm, we improved the vascular

network segmentation, preventing the edges of the EXs and other bright regions

from being wrongly detected as blood vessel segments. The methods to locate

the OD and the fovea formed the main stages of the proposed algorithm. We

introduced novel saliency maps based on the spatial relationships between the

main anatomical structures of the retina and their characteristic visual appearance.

These maps provided a great generalization ability.

The proposed methods for the OD and fovea location were assessed using four

retinal image databases. The test set of the private database was used to evaluate

the performance and the public databases DIARETDB1, DRIVE and Messidor

allowed us to evaluate the robustness and generalization ability of the proposed

method. It should be noted that all the images included in the databases used in

this study were obtained based on a specific capture protocol. According to this

protocol, all images contained the vasculature, the OD and the fovea within the

FOV. Only 3 images from the DRIVE database did not show a visible fovea and

were discarded for the fovea detection method. In addition, both the OD and the

fovea were in the expected region of the OD defined in (Sevik et al., 2014). It is
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also important to mention that all the parameters of the method are defined as

a fraction of D. Therefore, they are relative to the FOV size and the method is

independent to the image resolution.

The results for the OD location method showed 100% accuracy for all

databases, except for Messidor. In this database we achieved 99.5% accuracy,

which means that only 6 detections out of 1200 images were incorrect. These

results are in line with those in other studies, as shown in Table 6.2. The results

for the DRIVE database are the same as in other studies (100% accuracy). As

for DIARETDB1, only two previous studies reported 100% accuracy (Abdullah

et al., 2016; Abed et al., 2016). Our method outperforms the location accuracy

obtained in all the previous methods for the Messidor database, except for (Gia-

chetti et al., 2013) and (Yu et al., 2015). However, no results were provided for

DRIVE and DIARETDB1 databases in (Giachetti et al., 2013). Meanwhile, the

method proposed in (Yu et al., 2015) obtained a lower accuracy than our method

for the DIARETDB1 database (99.88%).

It should be noted that our method failed to locate the OD in certain images.

Table 6.2: Results for the automatic location of the optic disc.

Study DRIVE DIARETDB1 Messidor

Sinthanayothin et al. (1999) 60.00 - -
Walter et al. (2002) 80.00 - -
Welfer et al. (2011) 100 97.50 -
Aquino (2014) - - 99.00
Lu and Lim (2011) 97.50 98.88 -
Lu (2011) - - 98.77
Hsiao et al. (2012) 100 - -
Qureshi et al. (2012) 100 97.79 -
Yu et al. (2012) - - 99.00
Pereira et al. (2013) 100 93.25 -
Giachetti et al. (2013) - - 99.67
Basit and Fraz (2015) 100 98.88 -
Yu et al. (2015) 100 99.88 99.67
Harangi and Hajdu (2015) 100 98.88 98.33
Rahebi and Hardalaç (2016) 100 94.38 -
Abed et al. (2016) 100 100 -
Abdullah et al. (2016) 100 100 99.25
Dı́az-Pernil et al. (2016) 97.50 97.75 -
Alshayeji et al. (2017) 100 97.75 -
Chalakkal et al. (2018) 100 97.70 98.60
Al-Bander et al. (2018) - - 97.00
Proposed method 100 100 99.50



6.2. Location of the optic disc and the fovea 107

In Figure 6.3a there is a bright structure located near the OD area whose shape and

size are easily confused with the OD. In Figure 6.3b we have a very blurred image.

Finally, in Figure 6.3c we have a deformed OD, which extends over a large area.

However, our method succeeded in locating the OD in other complicated cases.

In Figures 6.4a to 6.4e the OD lacks the brightness characteristic. In Figures 6.4f

to 6.4i four poor quality images are shown, where the edge of the OD was not

well defined and some vessels were uncertain. Our method also worked well with

choroidal and retinal thickness showing a large bright peripapillary region (see

Figures 6.4f to 6.4g) or images presenting prominent exudates (see Figure 6.4h).

The results for the fovea location method also showed 100% accuracy for all

databases, except for Messidor (99.66%). These results are in line with those in

other studies, as shown in Table 6.3. We excluded three images that did not

present visually detectable fovea in DRIVE database, as in (Welfer et al., 2011).

All the foveas in the remaining 37 images were correctly detected (100% accuracy).

The same accuracy was obtained by GeethaRamani and Balasubramanian (2018)

but using only 35 out of 40 images. This means that they discarded 2 additional

images whose fovea was probably hard to detect with their method. The accuracy

obtained by Qureshi et al. (2012) was lower using the DRIVE database (91.73%).

As for the DIARETDB1 database, to the best of our knowledge, our method

obtained the highest accuracy in the literature, correctly locating the foveas in

all DIARETDB1 images. Considering the Messidor database, our method also

outperformed the accuracy of previous studies. It should be noted that, although

the fovea location was based on the previous OD location, less false fovea detections

than false OD detections were obtained. This is because some false OD detections

(a) (b) (c)

Figure 6.3: Examples where the optic disc is incorrectly detected. The green circle
represents the ground truth and the blue mark represents the automatic detection. (a)
Image with a bright structure located near the optic disc. (b) Very blurred image. (c)
Image with choroidal and retinal thickness showing a large bright peripapillary region.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.4: Examples where the optic disc is successfully detected. The green circle
represents the ground truth and the blue mark represents the automatic detection. (a-e)
Images where the optic disc lacks the brightness characteristic. (f-i) Poor quality images,
where the edge of the optic disc is not well defined and some vessels are uncertain. (j-k)
Images with choroidal and retinal thickness, showing a large bright peripapillary region.
(l) Image having prominent exudates. The different aspect ratio of the example images
is due to the fact that they belong to different databases.

were not far from the actual center annotated by the ophthalmologist, as shown

in Figure 6.5.

However it should be noted that some false detections of the fovea were also

obtained. The poor quality in Figure 6.6a and the irregular background in Fig-

ure 6.6b make the fovea unclear. In Figure 6.6c we have the same example as in

Figure 6.4b. Since the OD detection was far from the ground truth, the subse-

quent fovea detection was incorrect. However, our method succeeded in detecting

the fovea center in several complicated examples. In Figures 6.7a to 6.7b, correct

detections over poor quality images are shown. In Figures 6.7c to 6.7d, large dark

areas hide the fovea boundaries. Finally, in Figures 6.7e to 6.7h we can see that
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(a) (b)

Figure 6.5: Images where the OD is incorrectly detected. However, since the OD
detection is close to the real center, the automatic detection of the fovea is correct.
The green circles represent the ground truths, the blue mark represents the automatic
detection of the OD and the black mark represents the automatic detection of the fovea.

our method properly locates the fovea even in the presence of different types of

lesions.

The proposed methods for the OD and fovea location have proved effective and

robust. The novel algorithm for the retinal background extraction is valuable for

fundus image processing and the proposed saliency maps showed a great gener-

alization and interpretation ability. These reasons bring the clinical viability of

the proposed solution closer. Since the OD and fovea locations are crucial for the

detection of multiple diseases, such as glaucoma, age-related macular degeneration

Table 6.3: Results for the automatic location of the fovea.

Study DRIVE DIARETDB1 Messidor

Welfer et al. (2011) 100 92.13 -
Qureshi et al. (2012) 91.73 98.74 -
Gegundez-Arias et al. (2013) - - 96.92
Giachetti et al. (2013) - - 99.10
Aquino (2014) - 94.38 98.24
GeethaRamani and Balasubrama-
nian (2018)

100 97.75 99.33

Al-Bander et al. (2018) - - 96.60
Proposed method 100 100 99.67
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(a) (b) (c)

Figure 6.6: Examples where the fovea is incorrectly detected. The green circle repre-
sents the ground truth and the black mark represents the automatic detection. (a) Poor
quality image. (b) Image with irregular background. (c) Image where the fovea detection
is incorrect because of the previous incorrect detection of the OD (see Figure 6.3b).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.7: Examples where the fovea is successfully detected. The green circle rep-
resents the ground truth and the black mark represents the automatic detection. (a-b)
Poor quality images. (c-d) Images where the fovea boundaries are hidden by large dark
areas. (e-h) Images showing different types of lesions. The different aspect ratio of the
example images is due to the fact that they belong to different databases.

and DR, the proposed method could be useful in different CAD systems. This has

a great impact in the context of visual care.
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6.3 Detection of red lesions

6.3.1 Method based on the classification of superpixels

In this study, we proposed an automatic method to detect RLs in fundus images

based on superpixel classification. Firstly, the preprocessing stage detailed in sec-

tion 4.2 was carried out to normalize the inter-image and intra-image appearance

as well as to enhance the retinal structures. Secondly, the potential RL candidates

were segmented. For this task, dark pixel detection was performed. Then, we sep-

arated the different elements of the image on the basis of their edges using the ERS

method. RL candidates were later combined to reduce inaccurate fragmentation

within structures. A set of 39 features related to shape, pixel intensity or struc-

ture distances was extracted from each superpixel. Then, a subset of 16 features

was selected based on their relevancy and redundancy using the FCBF method.

Finally, each candidate was classified by an MLP to yield the final segmentation

of RLs.

The detection of RLs in fundus images has been addressed in previous studies.

Different methods can be found in the literature, including mathematical morphol-

ogy, region growing, wavelet, pixel classification and hybrid approaches (Mookiah

et al., 2013). More recent studies used flooding (Seoud et al., 2016) and deep

learning (Orlando et al., 2018) techniques. Commonly, these algorithms start by

segmenting the normal anatomical structures. Particularly, the blood vessels are

generally extracted since they can be easily detected as RLs (Abramoff et al.,

2010). An important contribution of this study is that non-RL regions are elimi-

nated during the classification stage, avoiding the need for an independent method

for blood vessel segmentation. Additionally, almost all of the previously proposed

methods consider pixels as the basic unit in the image. However, superpixels

are more consistent with human visual cognition. Unlike pixels, the superpixels

provide a novel and meaningful representation of the natural entities of the im-

age (Zhou et al., 2017a). Superpixel segmentation for the detection of RLs in

retinal images has been addressed in previous works since it can provide a signifi-

cant representation of these lesions in the image (Romero Oraá et al., 2018; Zhou

et al., 2017a). In these studies, the SLIC method was chosen to segment image

superpixels. However, this algorithm has important drawbacks, producing some

under-segmented superpixels and poorer accuracy for border segmentation (Xie

et al., 2019). Therefore, we have followed a different approach to extract the su-

perpixels in the image, using the ERS algorithm. To the best of our knowledge,

this algorithm has never been applied in retinal image processing. We have verified
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that the segmentation accuracy improves when comparing the results of the ERS

with the SLIC method (Romero Oraá et al., 2018) on the images in our database.

In order to improve the performance of the method, we have included a novel

improvement to the ERS by combining the superpixels that belong to the same

structure in order to reduce the number of candidates for the classification stage.

The proposed method was evaluated on a set of 283 fundus images, of which 120

presented RLs. Therefore, 163 images belonged to retinas lacking RLs. The images

in our database showed a wide variability in terms of color, luminosity, contrast

and varying levels of quality. Furthermore, different degrees of DR severity could

be found and RLs were very variable in terms of appearance and size. The re-

sults obtained were measured with two different criteria. With the pixel-oriented

criterion, a SEp of 81.43% and a PPVp of 86.59% were reached. With the image-

oriented criterion, we obtained SEi = 84.04%, SPi = 85.00% and ACCi = 84.45%.

These results are similar to those of other studies for RL detection according to the

image-oriented criterion, as shown in Table 6.4. However, comparisons should be

made with caution since the databases and the performance measures vary among

studies.

In the work of Seoud et al. (2016) three different databases were used to eval-

uate their method in a per-image basis. Regarding Messidor database and the

private CARA1006 database, they reached high SEi but an SPi of 50.00%. In the

Erlangen database, the method obtained both a SEi and a SPi of 93.30%. How-

ever, this database was composed of only 45 images. Garćıa et al. (2010) tested

Table 6.4: Performance comparison of some methods for the detection of RLs in fundus
images according to the image-oriented criterion.

Authors Database Nb. im. SEi SPi

Seoud et al. (2016) Messidor 1200 93.90% 50.00%
Seoud et al. (2016) Erlangen 45 93.30% 93.03%
Seoud et al. (2016) CARA1006 1006 96.10% 50.00%
Garćıa et al. (2010) Private 115 100% 56.00%
Zhou et al. (2017a) DIARETDB1 89 83.30% 97.30%
Orlando et al. (2018) Messidor 1200 91.10% 50.00%
Roychowdhury et al. (2012) DIARETDB1 89 75.50% 93.73%
Sánchez et al. (2011) Messidor 1200 92.20% 50.00%
Niemeijer et al. (2005) Private 100 100% 87.00%
Grisan and Ruggeri (2005) Private 260 71.00% 99.00%
Proposed method Private 564 84.04% 85.00%
Proposed method DIARETDB1 89 84.00% 88.89%
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their proposal in 65 fundus images from a private database. They obtained a

SEi of 100% but an unbalanced SPi of 56.00%. In the study where SLIC su-

perpixel segmentation was used, the proposed method reached SEi = 83.30%

and SPi = 97.30% (Zhou et al., 2017a). However, it was evaluated over only 49

images from DIARETDB1. Orlando et al. (Orlando et al., 2018) used the Mes-

sidor data set to evaluate their method. Results showed a SEi = 91.10% when

SPi = 50.00%. In the work of Roychowdhury et al. (2012), the proposed method

was evaluated using the DIARETDB1 database, obtaining SEi = 75.50% and

SPi = 93.73%. Sánchez et al. (2011) validated their method using the Messidor

data set. They reached SPi = 92.20% and SPi = 50.00%. Niemeijer et al. (2005)

obtained SPi = 100% and SPi = 93.73% with pixel classification. However, they

used a private database of only 100 images. The approach proposed by Grisan and

Ruggeri (2005) showed SPi = 99.00% yet SEi = 71.00%. Moreover, they used a

private data set. Since our method has also been assessed on the test set of the

public database DIARETDB1, a direct comparison with the methods proposed by

Roychowdhury et al. (2012) and Zhou et al. (2017a) on the same database can be

made. Roychowdhury et al. (2012) obtained SEi = 75.50%, lower than that ob-

tained with our proposal (SEi = 84.00%). However, they obtained SPi = 93.73%,

which is higher than the results in our study (SPi = 88.89%). Similar results were

obtained in the study by Zhou et al. (2017a). Their SEi reached SEi = 83.30%,

which is slightly lower than in our approach. In addition, their SPi also improves

our results, reaching SPi = 97.30%. When comparing our results with previous

approaches, it should be noted that the proposed method has been configured

and trained using only images from our private database. These images differ

from the images of the public database DIARETDB1 in multiple aspects. Firstly,

the images in our database have a higher resolution. Secondly, they have been

captured using a different protocol. Additionally, the FOV in the images of our

private database is 45 degree, while the FOV in the images of DIARETDB1 is

50 degree. They also were selected with different quality criteria (Kauppi et al.,

2007). In spite of these differences, our results on the test set of DIARETDB1

were reasonably good, which confirms the robustness of the proposed method. It

is also important to point out, for global comparisons, that our private database

consisted of 564 fundus images with a resolution of 1956x1934 pixels. The perfor-

mance criteria are also heterogeneous among studies. This is especially relevant

when a region-based or pixel-based criterion is used. When comparing to the oph-

thalmologist annotations, the detected regions may overlap completely, partially

or not at all with any RL. Thus, there is ambiguity between studies in considering
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whether a RL is correctly detected. In this sense, individual pixels belonging to

an overlapping region could be sometimes considered as RLs or not depending on

the criteria of the study.

The visual inspection of the results on the test images showed that the proposed

approach adjusted considerably well to the edges of the true RLs (see Figure 5.4).

However, in certain images, some regions were wrongly detected as RLs. In Fig-

ure 6.8a, we can see a fundus image corresponding to a healthy retina according to

the expert annotations. Figure 6.8b shows the regions that the proposed method

detects as RLs. In this image, the background shows a number of strongly visible

choroidal vessels as well as a non-uniform texture. As a consequence, many super-

pixels were considered as RL candidates and our method fails to eliminate all of

them as non-RLs.

The proposed method deals with superpixels instead of pixels to identify the

entities of the image. From a clinical point of view, we believe that the concept of

superpixel is suitable to separate the different structures of the image. Moreover,

the extracted features over the superpixels are easily explainable. Although the

algorithm does not work well in the presence of choroidal vessels, our results sug-

gest that the proposed method could be useful for the detection of RLs in retinal

images.

(a) (b)

Figure 6.8: Fundus image example corresponding to a healthy retina. (a) original
image; (b) wrongly detected RLs over the original image.
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6.3.2 Method based on the decomposition of the fundus im-

age into layers

This method was proposed for the joint detection of RLs and EX. In this section, we

focus on RLs. The fundus image was decomposed into various layers representing

different structures of the retina, which is the main contribution of this paper.

Among these layers, the lesion candidates, the choroidal vasculature visible in

tigroid retinas, and the reflective features were included, having proved useful for

the classification of RLs. To the best of our knowledge, there are no previous

studies that have decomposed the image separating the relevant retinal structures

such as the choroidal vessels and the reflective features to detect RLs.

The proposed method for retinal lesion detection was evaluated on a set of

283 fundus images. Among them, 196 showed RLs. The private database was

very heterogeneous, showing variations in color, luminosity, contrast, and quality

among images. In the same way, variable lesions in terms of appearance and size

could be found. The method was also evaluated on the test set of the public

database DIARETDB1, composed of 61 images. The results for the detection of

RLs were measured using a pixel-based criterion and an image-based criterion (see

section 5.3.1). Results can be seen in Table 5.3.

All of these results can be compared to those obtained in previous studies

according to the image-based criterion, as shown in Tables 6.5. However, com-

parisons should be made with caution, since the databases and the performance

measures vary among studies. We have found four methods that have been eval-

uated using the DIARETDB1 database in order to establish a direct compari-

son with the proposed method for RL detection. Jaafar et al. (2011) obtained

a high SEi = 98.80%, yet a SPi = 86.20% lower than ours (SPi = 91.67%).

In addition, they tested their method using the database DIARETDB0 together

with DIARETDB1. In the work of Roychowdhury et al. (2012), they obtained

SPi = 93.73%, but the SEi = 75.50% was lower. In (Zhou et al., 2017a),

SPi = 91.67% was obtained. However, our value of SEi (88.00%) improves their

SEi (83.30%). Table 6.5 also shows that the proposed method achieves better re-

sults than our previous work based on superpixels (Romero-Oraá et al., 2019). For

this reason, the subsequent detection of EXs was carried out using this approach.

The method has been developed based on the indications provided by the

ophthalmologists to identify the different structures of the retina. For this reason,

the interpretability is straightforward and clear. This allowed us to study the

existing relation between the RLs and other structures, such as the choroidal
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Table 6.5: Comparison of some methods for red lesion detection.

Authors Database Nb. im. SEi SPi

Jaafar et al. (2011) 89 DIARETDB1 98.80% 86.20%
Roychowdhury et al. (2012) DIARETDB1 89 75.50% 93.73%
Zhou et al. (2017a) DIARETDB1 89 83.30% 97.30%
Romero-Oraá et al. (2019) DIARETDB1 89 84.00% 88.89%
Garćıa et al. (2010) Private 115 100% 56.00%
Niemeijer et al. (2005) Private 100 100% 87.00%
Grisan and Ruggeri (2005) Private 260 71.00% 99.00%
Seoud et al. (2016) Messidor 1200 93.90% 50.00%
Orlando et al. (2018) Messidor 1200 91.10% 50.00%
Sánchez et al. (2011) Messidor 1200 92.20% 50.00%
Proposed method Private 564 85.00% 90.80%
Proposed method DIARETDB1 89 88.00% 91.67%

vessels and the reflective features. The extracted layers using our decomposition

method have proven to be useful to detect RLs. With further validation, the

proposed method could be used as part of an automatic DR screening system.

Thus, it could be a diagnostic aid for the early detection of DR, reducing the

workload of specialists and improving the management of diabetic patients.

6.4 Detection of hard exudates

As mentioned in the previous section, the detection of EXs was conducted using

the same methodology as for RLs. However, in this section we focus on the discus-

sion about EX detection. The fundus image was decomposed into various layers

including the EX candidates, the choroidal vasculature visible in tigroid retinas,

and the reflective features, which have proved useful for the classification of EXs.

To the best of our knowledge, no previous studies have followed a similar approach.

The proposed method was evaluated on a set of 283 fundus images, of which

168 showed EXs. The method was also evaluated on the test set of the public

database DIARETDB1, composed of 61 images. The results for the detection of

EXs were measured using a pixel-based criterion and an image-based criterion (see

section 5.3.1). Results can be seen in Table 5.4.

We have also found several methods aimed at EX detection that have been

assessed using the DIARETDB1 database (Table 6.6). Walter et al. (2002) ob-

tained SEi = 86.00% and SPi = 69.00%. In (Harangi and Hajdu, 2014), values

of SEi = 92.00% and SPi = 68.00% were obtained. Liu et al. (2016) achieved
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Table 6.6: Comparison of some methods for exudate detection.

Authors Database Nb. im. SEi SPi

Walter et al. (2002) DIARETDB1 89 86.00 69.00
Harangi and Hajdu (2015) DIARETDB1 89 92.00 68.00
Liu et al. (2016) DIARETDB1 89 83.00 75.00
Zhou et al. (2017b) DIARETDB1 89 88.00 95.00
Kaur and Mittal (2018) DIARETDB1 89 91.00 94.00
Adem (2018) DIARETDB1 89 99.20 97.97
Proposed method Private 564 88.04% 98.95%
Proposed method DIARETDB1 89 95.00% 90.24%

SEi = 83.00% and SPi = 75.00%. The method proposed in (Zhou et al., 2017b)

showed a SEi = 88.00% and SPi = 95.00%. Kaur and Mittal (2018) obtained

SEi = 91.00% and SPi = 94.00%. Finally, the work of Adem (2018) presented

high values of SEi = 99.20% and SPi = 97.97%. The value of SEi achieved with

our method (95.00%) is higher than those obtained in previous studies, with only

one exception (Adem, 2018). It should be noted that the test set in (Adem, 2018)

was composed of images from DIARETDB0 and DRIMDB databases in addition

to DIARETDB1. Moreover, the training set of the DIARETDB1 database was

used in the training phase and the appearance of these images is similar to the

ones in the test set of the same database. Therefore, this could facilitate EX detec-

tion, leading to better results but poor robustness. When comparing our results

with previous approaches, it should be noted that the proposed method has been

developed using only images from the private database. This dataset is different

from the public database DIARETDB1 in several aspects. Firstly, the images in

our database have a higher resolution. Secondly, they have been captured using

a different protocol. Thirdly, the FOV in the images of the proprietary database

is 45◦, while the FOV in the images of DIARETDB1 is 50◦. In addition, they

were selected considering different quality criteria (Kauppi et al., 2007). In spite

of these differences, the results on the test set of DIARETDB1 are comparable to

those obtained in previous studies, which proves the robustness of the proposed

method.

The method has been developed based on the indications provided by the

ophthalmologists to identify the different structures of the retina. For this reason,

the interpretability is straightforward and clear. This allowed us to study the

existing relation between the EXs and other structures, such as the choroidal

vessels and the reflective features. The extracted layers using our decomposition



118 Chapter 6. Discussion

method have proven to be useful to detect EXs. With further validation, the

proposed method could be used as part of an automatic DR screening system.

Thus, it could be a diagnostic aid for the early detection of DR, reducing the

workload of specialists and improving the management of diabetic patients.

6.5 Diabetic retinopathy severity grading

This study presents a new deep learning framework for DR grading where the

proposed attention mechanism stands out, which is separately applied to the bright

and dark pixels of the fundus image. The used dataset contained multiple poor-

quality images, which makes them unsuitable for medical analysis. Consequently,

an image quality assessment stage was required. For this task, we applied the

automatic algorithm described in section 4.1.2, discarding 35,729 out of 88,702

images. The number of images discarded by the validated algorithm was very

high. On one hand, this means that the overall quality of the dataset is far from

optimal. On the other hand, we can assume that the quality distribution of the

dataset is close to real clinical scenarios, which makes it a reliable research material.

Other authors estimated that 75% of the dataset was gradable (Rakhlin, 2018).

Before using the CNN architecture, an image decomposition process was re-

quired to separate the bright and the dark structures of the fundus image. For

this task, we applied the multiscale algorithm defined in sections 4.4.2 and 4.5.

Despite the great success of deep learning in computer vision, this study shows

that traditional image processing methods could still be very useful. They can

provide context for the problem at hand and, when combined with the power-

ful optimization capacity of deep networks, they can improve results and allow

more complex problems to be approached. Therefore, the fundamentals of clas-

sical methods can be successfully combined with state-of-the-art deep networks.

This idea has already been proved in the context of automated fundus image clas-

sification by enhancing the performance of CNNs through the use of hand-crafted

features (Bogacsovics et al., 2022).

We achieved a QWK of 0.78 on the test set of the Kaggle DR detection dataset.

Thus, the proposed method achieves similar QWK to other state-of-the-art meth-

ods for DR grading, as shown in Table 6.7. In order to establish a direct com-

parison, the results shown from the other studies were obtained using the same

database and the same metric (QWK). However, the train, validation and test

sets could differ among studies and, therefore, the comparisons should be carefully

considered. With our approach, we achieved a higher QWK than that obtained by
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Table 6.7: Comparison of some methods for DR grading in therms of QWK using the
Kaggle DR detection dataset.

Study QWK

Wang et al. (2017) 0.85
González-Gonzalo et al. (2018) 0.72
de la Torre et al. (2018) 0.72
Krause et al. (2018) 0.84
de la Torre et al. (2020) 0.80
Araújo et al. (2020) 0.74
Proposed method 0.78

González-Gonzalo et al. (2018), de la Torre et al. (2018) and the recent study of

Araújo et al. (2020). The later work of de la Torre et al. (2020) achieved a higher

QWK=0.80 than ours. However, they accomplished the training phase including

part of the images meant for testing and, therefore, they tested their method on

a reduced subset of 10,000 images. Krause et al. (2018) also outperformed our

method in terms of QWK, with a value of 0.84. However, their model was trained

on a large, private dataset with more than 1.6 million fundus images, which is un-

available in most studies. Moreover, their test set was composed of 1,818 images,

much smaller than ours (32,017). Finally, Wang et al. (2017) reported the highest

QWK=0.85. However, their method required the annotated labels of the lesions of

some images and the fundus images of both eyes, which are not always available.

On the contrary, our model feeds exclusively on image labels.

Analyzing the obtained confusion matrix allows us to extract several conclu-

sions on the results for the proposed method. First, the class 0 was detected with

high accuracy: only 2.9% (706 out of 23,962) of those images were over-diagnosed.

More importantly, only 0.0005% (12 out of 23,962) of them were rated class 3

or 4. Conversely, the class 1 was easily misguided with the classes 0 and 2, be-

coming the most misclassified severity degree. On one hand, this is because some

images in this category only present tiny MAs that are hard to detect, as shown

in Figure 6.9a. It should be noted that this issue could have important diag-

nostic consequences depending on the evolution of the lesions (Abramoff et al.,

2010). Regarding class 2, an acceptable detection accuracy of 77.2% (2,636 out

of 3,414 images) was achieved. However, most of the misclassified images were

classified as class 0, which should be taken into account for patient management.

Under-diagnosing the moderate NPDR degree could lead to a risky situation for

the vision if not detected in upcoming screenings (Mookiah et al., 2013). Images of
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(a) (b) (c)

Figure 6.9: Misclassified examples. (a) Class 1 image with a tiny MA on the left part
(see zoomed-in area) and misclassified as class 0. (b) Class 3 image misclassified as class
2 due to the similarity of the lesions (see zoomed-in area). (c) Class 4 image with laser
marks and misclassified as R3.

class 3 were often misclassified as class 2, as the example in Figure 6.9b. However,

only 7.2% (50 out of 694) of the severe NPDR images were classified as any of the

other degrees. The incorrect detection of the class 3 as class 2 is not crucial since

both degrees would involve a manual examination by a specialist. Finally, poor

detection accuracy for class 4 was obtained. As shown in the confusion matrix,

40.2% (193 out of 480) of the class 4 images were diagnosed as class 3. The main

reason for this result is that multiple eye fundus images contain photo-coagulation

treatment and laser marks, hindering the detection of the characteristic signs of

the proliferative DR, such as neovessels and pre-retinal hemorrhages. Figure 6.9c

exhibits one of these examples. Nevertheless, laser-treated retinas should never

reach screening scenarios since they are already under supervision. It is important

to mention that the RIQA stage does not classify this type of images as inade-

quate quality. Just because they have laser marks does not mean they lack image

quality.

As exposed in section 4.6.8, we performed 2 additional ablation studies in order

to evaluate the influence of the proposed attention mechanism on the results:

1. In the first experiment, based on a standard architecture without attention

mechanism, the network did not converge adequately due to class imbalance.

The model learnt to classify every sample as the most dominant class (no

DR). This experiment proved that the attention mechanism helps to deal

with class imbalance.

2. In the second experiment, the attention mechanism was applied but the
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separation of the bright and the dark pixels was not considered. We obtained

QWK=0.76. Results were good, yet inferior to the ones obtained with the

proposed method. This result shows that the separate optimization of bright

and dark regions can improve the results of the classification task.

We propose a novel deep learning framework for DR grading based on an

attention mechanism. Unlike previous methods, our approach performs separate

attention for the bright and the dark pixels in the retinal image. On the one hand,

this separation allows to improve model optimization. On the other hand, dividing

the problem makes the model easier to manage. For these reasons, the proposed

solution makes a great impact. However, the model performance should be taken

into account. As previously mentioned, the proposed approach tends to fail in the

classification of classes 1 and 4. Additionally, class 2 tends to be under-diagnosed.

This is especially critical when the automatic estimation misclassifies the images

as class 0 (no DR), since it would prevent patients with threatened vision from

being seen by a doctor, putting their vision at risk. For clinical viability, the

detection of referable DR needs to be optimized, assuring that no referable case

remains undetected. Finally, the use of XAI techniques is required to provide

explanatory capability. Despite the room for improvement, our results suggest

that the proposed method could be a diagnostic aid for the early detection of DR.

In this way, diabetic patients could receive better attention for their ocular health

avoiding vision loss.

6.6 Limitations of the study

Despite the relevance of the contributions presented in this Doctoral Thesis for

the automatic diagnosis of DR, some limitations should be pointed out.

One of the main limitations is related to the databases used in our studies.

First of all, it would be desirable to increase the number of available images with

which to develop the methods and evaluate the results. This is particularly rele-

vant for the studies based on deep learning techniques. Although we have applied

data augmentation and transfer learning to alleviate the issue, deep learning tech-

niques usually require large amounts of data. Secondly, it is important to have

a great variability of images, captured with different protocols, resolutions, and

using diverse fundus cameras. We have used different databases, especially in the

study of the location of the OD and the fovea, where four databases were used.

However, it would be desirable to have more images with different visual charac-
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teristics. Increasing the number and variability of the images would improve the

generalization ability of the methods. Another important aspect is that the ground

truths provided by human graders are not free from subjectivity. In this regard, it

would be interesting to have the opinion of different evaluators to correctly analyze

the results obtained with the automatic methods. Nevertheless, we are aware of

the difficult challenge of building a large database annotated by multiple experts.

Efforts to create an annotated database of these characteristics would be highly

beneficial. However, at present, the only way to validate the robustness of the

methods is to use public databases, which offer considerable variability but are

not exempt from limitations. The lack of appropriate clinical validation is com-

mon to all CAD systems developed to date, which conditions their practical utility

(Bellemo et al., 2019; Li et al., 2021a).

Regarding the methods developed to assess the quality of fundus images, it

should be noted that the two classes of images (adequate and inadequate quality)

were quite unbalanced, showing a small number of poor quality images. In this

scenario, classifiers tend to get biased towards the prediction of adequate quality

images. Therefore, it would be desirable to have a similar number of images for

both classes. This way, we can focus our efforts on optimizing the classification

without having to deal with the imbalance problem.

The proposed methods for the location of the OD and the fovea have also some

specific limitations that should be mentioned. We have assumed the presence of

both the OD and the fovea within the FOV, giving an estimation of the centers

even if any of the landmarks were not present. In addition, the OD and the fovea

must be approximately located at the same vertical level in the fundus image.

If a different capture protocol is considered, the proposed method would have to

be adapted. Moreover, the method for the automatic fovea location relies on the

previous OD detection. Nonetheless, a close estimation of the center of the OD is

sufficient.

When it comes to the detection of RLs based on superpixel classification, it

should be noted that the ERS algorithm does not always properly manage to

isolate the MAs or RLs of small size. The size of the superpixels is a commitment

parameter. Small superpixels approximate small lesions better. However, they

also become closer to the concept of individual pixels, losing the representation

of the entities of the image. A separate detection of MAs and HEs would allow

adjusting the parameters of the method more properly.

The study associated with the image decomposition for the joint detection of

RLs and EXs has additional limitations. First, segmenting the blood vessels as
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an independent stage has some drawbacks. When an RL is detected as part of

the vascular network, it is discarded as a possible lesion, regardless of the later

stages. Second, various parameters of the method were empirically set using the

training images of our private database, so they may not adapt properly to other

images with different characteristics. However, the value of these parameters is

not critical, and the performance is not significantly affected as long as they are

around the selected values. We noticed that small deviations of these values hardly

produced changes in the output. Third, the classification stage is based on a

set of handcrafted features. Exploring deep learning-based approaches would be

desirable to find useful features in an optimized way.

Finally, the proposed algorithm for DR severity grading shows also some lim-

itations that should be mentioned. The image decomposition algorithm previous

to the CNN is time-consuming, requiring approximately 3 seconds per image. This

time would not be a very important problem in a clinical setting, since the time

required for image capture is considerably longer. However, it would be desirable

to find a faster algorithm for this task. Another limitation is directly related to

model performance. As previously mentioned, the proposed approach tends to fail

in the classification of classes 1 and 4. Additionally, class 2 tends to be under-

diagnosed. This is especially critical when the automatic estimation misclassifies

the images as class 0 (no DR), since it would prevent patients with threatened vi-

sion from being seen by a doctor, putting their vision at risk. Therefore, it would

be desirable to improve the results by focusing on ensuring that no patient with

DR remains undetected.
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Conclusions

The present Doctoral Thesis aims to contribute to the early diagnosis and grading

of DR. The studies conducted during this research share a common thread covering

all the stages of a complete, automatic CAD system. These include the image

quality assessment, the preprocessing stage, the detection of the OD, the fovea and

the vasculature, the segmentation of RLs and EXs, and the DR severity grading.

Given the clear sequential relationship, the set of proposed methods can be seen

as a single framework for DR screening. However, it is important to mention that

each of the methods is very useful separately. In fact, several of the algorithms

could also be helpful in diagnosing other diseases such as age-related macular

degeneration or glaucoma.

This research work has been carried out to overcome some of the limitations of

the previous studies found in the literature. Two different approaches have been

proposed to automatically assess the quality of fundus images. The first approach

allowed us to find a new set of global image features that complement each other

satisfactorily. However, the second method showed a superior performance using

a deep CNN. This fact justifies the current trend towards deep learning-based ap-

proaches in almost any automatic image classification and analysis task. Another

study developed during the Thesis was aimed at the automatic location of the

OD and the fovea. The proposed method demonstrated great robustness with

different databases. The superpixel classification-based approach to detect RLs

also showed interesting results. The ERS technique made it possible to separate

the natural entities from the image and thus facilitate the segmentation of the

lesions. The study devoted to the joint detection of RLs and EXs proved the

usefulness of novel image indicators, such as the reflective features of the retina
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and the choroidal vasculature visible in tigroid retinas. Finally, the study focused

on the severity grading provided a novel attention mechanism which contribute to

increase the diagnostic ability DR.

This chapter gathers the original contributions of the present Doctoral Thesis

in section 7.1. Section 7.2 states the main conclusions that can be extracted from

all the studies carried out. Finally, future research lines are outlined in section 7.3.

7.1 Contributions

The main contributions obtained from the present research work are described

below:

1) Creation of a private database of fundus images with different quality levels

and types of DR-related lesions. A total number of 2773 images were cap-

tured. Two experienced ophthalmologists manually annotated the quality

level, the centers of the OD and the fovea, and the presence of RLs and EXs.

2) New generic features extracted from fundus images for automatic quality

assessment (Jiménez-Garćıa et al., 2019). These are related to SSEQ, which

has never been applied to this task, NIQE, sharpness and luminosity. The

combination of the mentioned features proved to provide relevant and com-

plementary information.

3) Novel deep learning model based on a InceptionResNetV2 CNN and transfer

learning to automatically assess the quality in fundus images (Romero Oraá

et al., 2020). To the best of our knowledge, the mentioned architecture has

never been used with this purpose.

4) Novel preprocessing stage to normalize the inter-image and intra-image ap-

pearance in fundus images as well as to enhance the retinal structures

(Romero-Oraá et al., 2019). It was based on five sequential operations:

bright border artifact removal, background extension, illumination and color

equalization, denoising, and contrast enhancement.

5) Retinal background extraction based on region-growing (Romero-Oraá et al.,

2020). The estimation of the retinal background is valuable to isolate the

structures of interest, such as lesions or anatomical landmarks. In addition

to this estimation, we provided a background version which exclusively pre-

serves the bright structures and another version which exclusively preserves

the dark structures.
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6) Development and combination of novel saliency maps with direct inter-

pretability to create a robust method for the automatic location of the OD

and the fovea in fundus images (Romero-Oraá et al., 2020).

7) The use of the ERS algorithm for RL detection (Romero-Oraá et al., 2019).

Although superpixel segmentation has been slightly explored in fundus image

analysis, the mentioned algorithm and its advantages have never been taken

into account.

8) Novel algorithm for the segmentation of RLs and EXs based on the decom-

position of the fundus image into various layers (Romero-Oraá et al., 2020).

For the first time, the choroidal vasculature visible in tigroid retinas and

the reflective features of the retina were considered to aid in the classifica-

tion of DR-related lesions. The proposed method was founded on the clues

observed by the ophthalmologists to identify the different structures of the

retina, which allowed us to study the existing relation between the lesions

and other retinal structures.

9) End-to-end deep learning framework for automatic DR grading. Our ap-

proach is based on a novel attention mechanism which performs a separate

attention of the dark and the bright structures of the retina. The proposed

method integrates a multiscale algorithm, based on traditional image pro-

cessing techniques, into a deep neural network architecture.

7.2 Main conclusions

The comprehensive analysis and discussion of the results obtained in the studies

conducted during the course of this Doctoral Thesis lead to extract the following

conclusions:

1) The feature selection analysis performed using the FCBF technique allowed

us to conclude that the SSEQ and NIQE methods are useful to assess retinal

image quality, and can be complementary with sharpness and luminosity

features.

2) Deep learning approaches are outperforming the traditional techniques for

many image processing problems and, in particular, for fundus image qual-

ity assessment. In this context, the architecture InceptionResNetV2 together

with transfer learning has allowed to achieve great results and a high gener-

alization ability without the need for an excessively large database.
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3) The saliency maps proposed for the automatic location of the OD and fovea

have shown a high accuracy even in the images where those structures did

not have the standard appearance. The evaluation over various databases

has proven that the proposed method is very robust and effective.

4) The decomposition of the fundus image in various layers has allowed to ex-

tract a set of features relevant for the detection of RLs and EXs, as analyzed

using the FCBF technique. In this decomposition, the choroidal vascula-

ture visible in tigroid retinas and the reflective features of the retina have

demonstrated to be useful.

5) The concept of the superpixel, as opposed to the pixel, is suitable to repre-

sent the natural entities and separate the different structures of the retina.

In particular, the ERS algorithm has proven fast and effective for RL seg-

mentation, outperforming the SLIC method.

6) The proposed deep learning framework for DR grading achieved results com-

parable to previously published methods. The separate attention for the

bright and the dark pixels in the retinal image allowed to improve model

optimization and made it easier to manage.

7) The results for any of the proposed methods in this Doctoral Thesis suggest

that they could be used, separately or together, as part of an automatic DR

screening system, being a diagnostic aid for the early detection of DR. In this

way, diabetic patients could receive better attention for their ocular health

avoiding vision loss.

7.3 Future research lines

Despite the numerous contributions that have emerged from this Doctoral Thesis,

much research work remains to be done in the future to improve diagnostic aid in

DR. Further efforts must be done to care for the eye health of diabetic patients.

The most interesting future research lines are discussed below.

In this research work, a relatively large private database of fundus images has

been built. However, the classes are unbalanced and more images are needed to

provide more generalizable results. In addition, it would be desirable to have im-

ages captured with different protocols and cameras to evaluate the robustness of

the methods. In this regard, several public databases are available in the litera-

ture. However, they are usually small databases and obtained with old cameras.
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Larger databases have some important limitations. For these reasons, it would be

important in the future to increase the number of images in the database, covering

a greater variety of patients, cameras and capture protocols.

Performing t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis in

our studies is another future line to consider. This technique allows to visual-

ize high-dimensional data by giving each datapoint a location in a two or three-

dimensional map (Van Der Maaten and Hinton, 2008). t-SNE is capable of captur-

ing much of the local structure of the high-dimensional data very well, while also

revealing global structure such as the presence of clusters at several scales (Van

Der Maaten and Hinton, 2008). In some of our studies, where feature selection

is involved, this type of analysis would be beneficial to show the discriminative

power of the selected features.

Deep learning is revolutionizing artificial vision in recent years. Automatic

analysis of fundus images is already benefiting from the enormous potential of this

field. However, it is experiencing rapid growth and much remains to be explored.

In this context, the development of new, more advanced deep learning architectures

is definitely the most important future line in the coming years. Among these

architectures, vision transformers are a good example of innovative solutions that

can bring great results.

Another interesting future research line would be to combine the most success-

ful traditional methods with deep learning architectures. Traditional methods are

more easily interpretable and have been developed based on clinical indicators,

so they are more similar to human diagnosis. In this way, retinal image analysis

problems could be solved from a clinical perspective yet taking advantage of the

great optimization capacity of deep networks.

To deal with the lack of interpretability characterizing the deep architectures

(the well-known ”black box” problem), another interesting future research line

could be the application of XAI techniques. They would make it possible to explain

automatic decisions and discover unknown patterns that influence diagnosis. In

the context of fundus images, we could detect the relevant pixels and check if the

segmentation/classification task is misguided by artifacts or undetected lesions, for

instance. Understanding the decisions of the automatic model would also allow to

solve potential issues and improve the performance of the method.

Along with fundus images, OCT images are the diagnostic method for DR used

in clinical practice. In fact, some signs of this disease can be detected earlier with

this imaging modality. Therefore, a future line of research that combines fundus

image analysis with OCT would be very interesting.
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5. Roberto Romero-Oraá, Maŕıa Garćıa, Maŕıa I. López, Roberto Hornero,

“Attention-based Deep Learning Framework for Automatic Fundus Image
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Processing to Aid in Diabetic Retinopathy Grading”, Computer Methods

and Programs in Biomedicine, Under review.

B.1.2 International conferences

1. Roberto Romero-Oraá, Maŕıa Garćıa, Javier Oraá-Pérez, Maŕıa I. López,

Roberto Hornero, “Automatic fundus image quality assessment: diagnostic

accuracy in clinical practice”, The Association for Research in Vision and

Ophthalmology Annual Meeting (ARVO 2020), pp. 2033, Baltimore (United

States), May 3 - May 7, 2020.

B.1.3 National conferences

1. Roberto Romero-Oraá, Maŕıa Garćıa, Maŕıa I. López, Félix Manco

Lavado, Roberto Hornero, “Localización automática de la papila y la fóvea

en retinograf́ıas”, XXXIV Congreso Anual de la Sociedad Española de Inge-

nieŕıa Biomédica (CASEIB 2016), ISBN: 978-84-9048-531-6, pp. 173-176,

Valencia (Spain), November 23 - November 25, 2016.

2. Roberto Romero-Oraá, Maŕıa Garćıa, Jorge Jiménez-Garćıa, Maŕıa I.

López, Roberto Hornero, “Detección de lesiones rojizas en imágenes de

fondo de ojo aplicando diferencias de color en el espacio CIELAB”, XXXV

Congreso Anual de la Sociedad Española de Ingenieŕıa Biomédica (CASEIB

2017), ISBN: 978-84-9082-797-0, pp. 525-528, Bilbao (Spain), November 29

- December 1, 2017.

3. Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-

Gozal, Daniel Álvarez, Fernando Vaquerizo-Villar, Roberto Romero-

Oraá, Andrea Crespo, Félix del Campo, David Gozal, Roberto Hornero,

“Análisis de diferencias de segundo orden aplicado a la señal de flujo aéreo

monocanal para la ayuda al diagnóstico del śındrome de la apnea-hipopnea

del sueño en niños”, XXXV Congreso Anual de la Sociedad Española de In-

genieŕıa Biomédica (CASEIB 2017), ISBN: 978-84-9082-797-0, pp. 481-484,

Bilbao (Spain), November 29 - December 1, 2017.

4. Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gon-

zalo C. Gutiérrez-Tobal, Verónica Barroso-Garćıa, Roberto Romero-

Oraá, Andrea Crespo, Félix del Campo, David Gozal, Roberto Hornero,

“Análisis de fluctuaciones sin tendencias (DFA) en los registros de oximetŕıa
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para la ayuda en el diagnóstico del śındrome de la apnea-hipopnea del sueño

infantil”, XXXV Congreso Anual de la Sociedad Española de Ingenieŕıa

Biomédica (CASEIB 2017), ISBN: 978-84-9082-797-0, pp. 209-212, Bilbao

(Spain), November 29 - December 1, 2017.

5. Jorge Jiménez-Garćıa, Roberto Romero-Oraá, Maŕıa Garćıa, Maŕıa I.

López, Roberto Hornero, “Evaluación automática de la calidad en retino-

graf́ıas mediante clasificación de caracteŕısticas globales de imágenes”,

XXXVI Congreso Anual de la Sociedad Española de Ingenieŕıa Biomédica

(CASEIB 2018), ISBN: 978-84-09-06253-9, pp. 29-32, Ciudad Real (Spain),

November 21 - November 23, 2018.

6. Roberto Romero-Oraá, Maŕıa Garćıa, Jorge Jiménez-Garćıa, Maŕıa I.

López, Roberto Hornero, “Clasificación de superṕıxeles para la detección au-

tomática de lesiones rojizas en imágenes de fondo de ojo”, XXXVI Congreso

Anual de la Sociedad Española de Ingenieŕıa Biomédica (CASEIB 2018),

ISBN: 978-84-09-06253-9, pp. 25-28, Ciudad Real (Spain), November 21 -

November 23, 2018.

7. Roberto Romero-Oraá, Maŕıa Garćıa, Javier Oraá-Pérez, Maŕıa I. López,

Roberto Hornero, “Transfer learning para evaluar de forma automática la

calidad en imágenes de fondo de ojo”, XXXVII Congreso Anual de la So-

ciedad Española de Ingenieŕıa Biomédica (CASEIB 2019), ISBN: 978-84-

09-16707-4, pp. 175-178, Santander (Spain), November 27 - November 29,

2019.

8. Roberto Romero-Oraá, Cristina Pinar Muñoz-Zamarro, Maŕıa Garćıa,

Javier Oraá-Pérez, Maŕıa I. López, Roberto Hornero, “Detección automática

de patoloǵıa en imágenes de fondo de ojo utilizando técnicas de deep learn-

ing”, XXXVIII Congreso Anual de la Sociedad Española de Ingenieŕıa

Biomédica (CASEIB 2020), ISBN: 978-84-09-25491-0, pp. 484-487, Val-

ladolid (Spain), November 25 - November 27, 2020.

B.2 International internship

Three-month research internship at Biomedical Imaging Lab at the Institute for

Systems and Computer Engineering, Technology and Science (INESC TEC) of the

University of Porto, Portugal.
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i. Purpose of the internship

The main objective of the research stay was to deepen into advanced methods

of fundus image processing to aid in the diagnosis of DR. In order to achieve

this general objective, the following specific objectives were proposed: (i)

Investigate the latest deep learning techniques for the analysis of medical

images and, in particular, fundus images. (ii) Propose a study to help diag-

nose diabetic retinopathy. (iii) Develop and evaluate an automatic fundus

image analysis method. Another important purpose of the stay was to be-

gin a significant collaboration between the Biomedical Engineering Group of

the University of Valladolid and prestigious international institutions such

as the Institute for Systems and Computer Engineering, Technology and Sci-

ence of the University of Porto. This cooperation will not only improve the

quality of the future research, but will also favor potential collaborations in

international research projects.

ii. Quality indicators of the institution

The University of Porto was founded in 1911, although its origins date back

to the 18th century. It is the largest university in Portugal and is among

the top 300 universities in the world according to the Academic Ranking

of World Universities. It currently has fourteen faculties, a Business School

and more than 70 scientific research units that serve nearly 28,000 students,

2,300 teachers and researchers, and 1,700 non-teaching staff. This university

is recognized internationally for the scientific research it produces. Its labo-

ratories subscribe to more than a fifth of the Portuguese scientific articles. In

addition, the University of Porto has cooperation protocols with more than

500 foreign universities, so it has extensive experience in hosting students

through mobility programs.

C-BER is one of the research centers of the Institute for Systems and Com-

puter Engineering, Technology and Science (INESC TEC), which currently

has more than 700 researchers and is directly associated with the University

of Porto. The Biomedical Imaging Lab is one of three C-BER laboratories.

The main focus of the laboratory is the development of advanced image

processing and analysis methodologies, particularly medical and biological

images, with the aim of creating computer-aided diagnostic tools to support

medical decision-making. Among his lines of research, it is worth highlight-

ing those related to the processing of ophthalmological images. In this sense,

it has three important active projects (Screen-DR, RetinaCAD and Choroid-
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CAD) and numerous publications of great impact.

The supervisor during the stay was Dr. Ana Maŕıa Mendonça, a researcher

at the Biomedical Imaging Lab of INESC TEC who obtained a PhD in Elec-

trical Engineering from the Faculty of Engineering of the University of Porto

(FEUP) in 1994. She is currently an associate professor in the Department

of Engineering Electrical and Computer Science (DEEC) of FEUP. From

2006 to 2014, she was a member of the Executive Board of DEEC, where she

was Deputy Director from 2010 to 2014. She was also director of the Master

in Biomedical Engineering and is now a member of the Scientific Committee

of the Doctoral Program in Biomedical Engineering. Since October 2014,

she has been Vice-Dean of FEUP. Ana Maria Mendonça was a researcher at

the Institute of Biomedical Engineering (INEB) from 1989 to 2014, where

she was also a member of the Board of Directors from 2002 to 2014 and

President of the Board from 2012 to 2014. Her research work has focused

mainly on the development of medical image analysis methods with the aim

of extracting essential information to aid diagnosis. Thus, her research on

retinal pathologies stands out, having published numerous articles in indexed

journals and international conferences, currently reaching an h-index of 20.

B.3 Awards and honors

05/2017: Prize to the best poster at “III Jornada de Investigación en Tec-

noloǵıas de la Información y las Telecomunicaciones” carried out by

Roberto Romero Oraá.

12/2017: Prize to the best poster at “II Jornada de doctorandos en Investigación

Biomédica’ awarded by the ’Instituto de Bioloǵıa y Genética Molecular

(IBGM)” and carried out by Roberto Romero Oraá.

11/2019: Winner of the Three Minute Thesis (3MT®) competition for

the work “Avoiding blindness: diabetic retinopathy under control”,

awarded by the Doctoral School of the University of Valladolid (Es-

DUVa). Roberto Romero Oraá.
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Resumen en castellano

C.1 Introducción

La diabetes mellitus (DM) es una enfermedad grave, sin cura y de gran impacto

a nivel mundial que se ha convertido en una de las diez causas de muerte más

frecuentes en el mundo (Saeedi et al., 2019). Se trata de un trastorno metabóli-

co caracterizado por la hiperglucemia, es decir, la presencia de niveles elevados

de glucosa en sangre, como resultado de la producción insuficiente o anormal de

insulina. La Federación Internacional de Diabetes (FID) estima que la población

mundial con DM es de 463 millones y calcula que será de 700 millones para 2045

(Saeedi et al., 2019). Además, el rápido envejecimiento de la población mundial,

el aumento de la esperanza de vida de las personas y los cambios en el estilo de

vida conducen a un mayor riesgo de DM (Teo et al., 2021). El progreso de la

DM implica daños a largo plazo, disfunción e insuficiencia de diferentes órganos,

especialmente los ojos, los riñones, los nervios, el corazón y los vasos sangúıneos

(American Diabetes Association, 2014). La más común de estas complicaciones es

la retinopat́ıa diabética (RD), una de las principales causas de ceguera evitable

en la población adulta con edad de trabajar (Teo et al., 2021). Se estima que la

prevalencia de la RD es del 22.27% a nivel mundial dentro de la población con

DM (Teo et al., 2021).

Muchas enfermedades oculares y otras relacionadas con la circulación sangúınea

se manifiestan inicialmente en la retina. Entre las enfermedades oculares se in-

cluyen la degeneración macular, el glaucoma y la RD, que son las causas más

importantes de ceguera en el mundo desarrollado. En el caso de la RD, se sabe

que la hiperglucemia, fruto de la DM, daña las paredes de los vasos de la retina

139
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(Abramoff et al., 2010). Esto provoca diversas anomaĺıas en la retina, produciendo

los siguientes signos cĺınicos visibles en el fondo de ojo: microaneurismas (MAs),

exudados duros (EXs), exudados algodonosos, hemorragias (HEs), neovasculari-

zación y edema macular. Las lesiones rojizas (LRs), que abarcan MAs y HEs,

junto con los EXs, son las lesiones que aparecen durante las primeras etapas de la

enfermedad, antes de que la visión se haya visto afectada.

La pérdida de visión asociada a la RD no se puede recuperar pero śı se puede

prevenir desde las primera etapas de la enfermedad, cuando los tratamientos son

efectivos y permiten retrasar su evolución. Por esta razón, es importante diagnos-

ticar la RD de manera precoz. Sin embargo, esta enfermedad es asintomática hasta

etapas avanzadas y el paciente no es consciente de padecerla hasta que la visión ya

se ha visto afectada y el tratamiento puede resultar complicado (Mookiah et al.,

2013). Por estos motivos, los pacientes con RD deben someterse a exámenes ocu-

lares periódicos a través de programas de cribado, con el objetivo de identificar

los signos cĺınicos de la RD. Debido a su seguridad y rentabilidad, la imagen de

fondo de ojo o retinograf́ıa es la modalidad de imagen retiniana más establecida en

la cĺınica para realizar estos exámenes (Abramoff et al., 2010). Tradicionalmente,

los programas de cribado se basan en la inspección visual de estas imágenes por

parte de un especialista capacitado. Sin embargo, este análisis manual requiere

mucho tiempo y es costoso. Con la creciente incidencia de la DM y el limitado

número de médicos y recursos sanitarios existentes, la detección precoz de la RD

está saturando las consultas sin llegar a tener bajo control la enfermedad (Stolte

and Fang, 2020). Además, existe cierta subjetividad relacionada con el diagnóstico

(alrededor del 11% de discrepancia entre especialistas). Por todo ello, los sistemas

de diagnóstico asistido por ordenador (CAD) son necesarios para ayudar a los es-

pecialistas a realizar un diagnóstico rápido y fiable, que permita reducir la carga

de trabajo y los costes asociados (Abramoff et al., 2010; Stolte and Fang, 2020).

Se han desarrollado múltiples sistemas CAD como ayuda a la detección au-

tomática de la RD utilizando retinograf́ıas. La complejidad de este diagnóstico

sugiere que estos sistemas se dividan en varias etapas. En primer lugar, se debe

realizar una evaluación de la calidad de la imagen para evitar diagnósticos erróneos

(Paulus et al., 2010). En segundo lugar, se requiere una etapa de preprocesado para

preparar la imagen para las etapas posteriores. En tercer lugar, deben identificarse

las principales estructuras de referencia del fondo de ojo normal, que son el disco

óptico (DO), la fóvea y los vasos de la retina, como paso previo a la detección

de los signos patológicos (Patton et al., 2006). A continuación, se debe realizar

la segmentación de las anomaĺıas. Las principales lesiones visibles de interés que
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caracterizan a la RD son las LRs y EXs. Finalmente, en la práctica, el tratamiento

potencialmente necesario depende del grado de severidad de la enfermedad. En

consecuencia, la graduación de la severidad de la RD es la última etapa de los

sistemas de detección automática. En este contexto, existen distintas escalas pu-

blicadas. En esta Tesis Doctoral se utilizó la Escala cĺınica internacional de la RD,

puesto que es la más utilizada en la literatura (Wilkinson et al., 2003). Esta escala

clasifica la enfermedad en 5 niveles: sin RD, RD No Proliferativa (NPDR) leve,

NPDR moderada, NPDR severa y RD proliferativa (Wilkinson et al., 2003).

La presente Tesis Doctoral se presenta como un compendio de cuatro publi-

caciones indexadas en el Journal Citation Reports (JCR) entre los años 2019 y

2020. Además, se ha enviado un quinto art́ıculo que se encuentra actualmente en

fase de revisión. El objetivo de esta investigación fue desarrollar nuevos métodos

automáticos de análisis de retinograf́ıas para la ayuda al diagnóstico de la RD.

La primera publicación se centró en la evaluación automática de la calidad de

las retinograf́ıas (Jiménez-Garćıa et al., 2019). Combinamos caracteŕısticas deri-

vadas de los métodos spatial and spectral entropy-based quality (SSEQ) y natural

images quality evaluator (NIQE) junto con otras novedosas métricas de nitidez

y luminosidad basadas en la transformada wavelet continua (CWT) y el modelo

de color tono-saturación-valor (HSV). Además de este método, presentamos un

nuevo enfoque basado en deep learning en una conferencia internacional (Romero

Oraá et al., 2020). Utilizamos una red neuronal convolucional (CNN) con arqui-

tectura InceptionResNetV2 y las técnicas data augmentation, transfer learning y

fine tuning. El segundo art́ıculo teńıa como objetivo desarrollar un método para

detectar automáticamente las LRs en retinograf́ıas, incluyendo HEs y MAs, en

base al concepto de superpixels (Romero-Oraá et al., 2019). Se aplicó el algoritmo

Entropy Rate Superpixel (ERS) en combinación con una red neuronal perceptrón

multicapa (MLP). En este estudio, también propusimos una etapa de preprocesa-

do novedosa para normalizar la apariencia de la imagen y realzar las estructuras

de la retina. En el tercer art́ıculo publicado, el objetivo principal fue desarrollar

métodos robustos para localizar automáticamente los centros del DO y la fóvea

(Romero-Oraá et al., 2020). El método propuesto se basó en la combinación de

nuevos mapa de saliencia que representan las relaciones espaciales entre algunas

estructuras de la retina y la apariencia visual del DO y la fóvea. En este art́ıculo,

se propuso además un método para extraer el fondo retiniano basado en region

growing. La cuarta publicación del compendio se centró en la segmentación con-

junta de LRs y EXs y se basó en la descomposición de la imagen en varias capas

(Romero-Oraá et al., 2020). Entre estas capas, se incluyeron las caracteŕısticas
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reflectantes de la retina y la vasculatura coroidea visible en las retinas atigradas.

El último art́ıculo escrito durante la Tesis, aún en fase revisión, teńıa por objetivo

desarrollar un método automático para clasificar el grado de severidad de la RD.

Propusimos un enfoque de deep learning basado en un novedoso mecanismo de

atención que separa las estructuras brillantes de la retina de las oscuras.

C.2 Hipótesis y objetivos

El diagnóstico automático de la RD normalmente implica dividir el problema en

varias etapas. Aunque se pueden encontrar en la literatura numerosos métodos

para llevar a cabo cada una de estas etapas, estos no están exentos de limitaciones

y todav́ıa quedan margen de mejora y técnicas por explorar. En este contexto,

planteamos la hipótesis de que el desarrollo de nuevos métodos automáticos de

análisis de retinograf́ıas podŕıa contribuir al diagnóstico precoz de la RD. Además,

la combinación de dichos métodos podŕıa proporcionar un sistema CAD completo

como herramienta de diagnóstico en la práctica cĺınica. No obstante, aunque este

sistema seŕıa muy beneficioso, es importante destacar que cada uno de los métodos

que cubren las distintas etapas de diagnóstico tiene utilidad en śı mismo. En esta

Tesis Doctoral llevamos a cabo varios estudios para cubrir cada una de esas etapas.

Las hipótesis particulares que motivaron estos estudios se exponen a continuación.

En el primero de los estudios del compendio de publicaciones de esta Tesis

(Jiménez-Garćıa et al., 2019), se propuso un nuevo método para la evaluación

de la calidad de las retinograf́ıas. Es importante asegurarse de que las imágenes

de entrada tengan calidad suficiente para su análisis. De lo contrario, se podŕıan

obtener diagnósticos erróneos. En los trabajos previos con el mismo objetivo, se es-

tudiaron individualmente caracteŕısticas genéricas de imagen que son insuficientes

para representar la calidad de la imagen. Nosotros planteamos la hipótesis de que

combinar métodos no-reference image quality assessment (NR-IQA) basados en

Natural Scenes Statistics (NSS) con caracteŕısticas genéricas basadas en la nitidez

y la luminosidad puede ser útil para evaluar la calidad de las retinograf́ıas.

Durante el transcurso de la presente Tesis, se desarrolló un método adicional

para la evaluación de la calidad de las retinograf́ıas, que se presentó en un congreso

internacional (Romero Oraá et al., 2020). En los últimos años, las arquitecturas de

deep learning, como las CNN, han cobrado importancia en el procesado de imáge-

nes. En este contexto, planteamos la hipótesis de que el uso de transfer learning

y fine tuning con la arquitectura InceptionResNetV2 podŕıa alcanzar resultados

sólidos y superar los métodos convencionales.
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La etapa de preprocesado es primordial para normalizar la apariencia entre

imágenes y dentro de cada imagen, aśı como para realzar las estructuras de la

retina. Con el método de preprocesado propuesto en (Romero-Oraá et al., 2019),

planteamos la hipótesis de que la aplicación secuencial de ciertas operaciones nos

permitiŕıa resaltar las lesiones, evitar efectos de borde en etapas posteriores y nor-

malizar la apariencia de todas las imágenes.

El tercer art́ıculo del compendio de publicaciones (Romero-Oraá et al., 2020)

teńıa por objetivo localizar los centros del DO y la fóvea. La mayoŕıa de los métodos

propuestos anteriormente se centran en criterios espećıficos que son insuficientes

para representar el OD y la fóvea en todas las imágenes (Lalonde et al., 2001b;

Sinthanayothin et al., 1999). Algunos estudios combinan varios indicadores, como

la entroṕıa de la imagen o la convergencia de los vasos principales, pero la forma

en que se utilizan esos indicadores es muy restrictiva. Por lo tanto, estos algorit-

mos fallan cuando cualquiera de estos indicadores se desv́ıa del patrón estándar

(Giachetti et al., 2013; Qureshi et al., 2012). Partimos de la hipótesis de que la

combinación de nuevos indicadores complementarios permitiŕıa representar con

precisión las áreas donde se encuentran tanto el OD como la fóvea. De esta for-

ma, el cálculo de ciertos mapas de prominencia seŕıa suficiente para detectar las

ubicaciones de los centros incluso para los casos espećıficos en los que el OD y la

fóvea no muestran una apariencia estándar.

La detección conjunta de EXs y LRs se estudió en (Romero-Oraá et al., 2020).

Ninguno de los estudios previos ha considerado individualmente la presencia de

otras estructuras de la retina más allá del DO, la fóvea y la vasculatura. Nuestra

hipótesis es que las caracteŕısticas reflectantes de la retina y la vasculatura coroidea

visible en las retinas atigradas también podŕıan ser útiles para la detección de

lesiones retinianas. De esta forma, las retinograf́ıas podŕıan descomponerse en

varias capas para facilitar la segmentación de EXs y LRs.

La detección de LRs también se estudió en (Romero-Oraá et al., 2019). Ca-

si todos los métodos anteriores consideraban los ṕıxeles como unidad básica de

la imagen. Sin embargo, el concepto de superṕıxeles, entendido como un grupo

de ṕıxeles que representan entidades naturales, es más consistente con la cogni-

ción visual humana y contiene menos redundancia (Zhou et al., 2017a). Este tipo

de enfoque ya se ha utilizado con Simple Linear Iterative Clustering (SLIC). Sin

embargo, esta técnica tiene limitaciones importantes en términos de precisión y

adherencia a los ĺımites (Xie et al., 2019). En (Romero-Oraá et al., 2019), plan-

teamos la hipótesis de que el algoritmo de segmentación Entropy Rate Superpixel

(ERS) podŕıa ser útil para segmentar RL en retinograf́ıas, superando al algoritmo
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SLIC.

Finalmente, el último estudio realizado durante esta Tesis se centró en la gra-

duación de la severidad. Todos los estudios previos con el mismo propósito estima-

ban la severidad detectando al mismo tiempo todos los signos de RD presentes en

la imagen, independientemente de su tipo. Según nuestra hipótesis, esta detección

conjunta hace que la tarea de clasificación sea más dif́ıcil de optimizar que una

detección separada de las lesiones claras y las oscuras.

Definidas las hipótesis, el objetivo principal de la Tesis es estudiar, diseñar y

desarrollar nuevos métodos basados en el análisis automático de retinograf́ıas para

ayudar en la detección, el diagnóstico y el tratamiento de la RD en cada una de

las etapas. Para llevar a cabo este objetivo, se plantearon los siguientes objetivos

espećıficos:

I. Revisar el estado del arte acerca del procesado de imágenes médicas y, en

particular, del análisis de retinograf́ıas orientado al diagnóstico de la RD.

Esta revisión involucra el estudio de métodos para las diferentes etapas de

un sistema CAD para la RD.

II. Construir una base de datos privada de retinograf́ıas con distintos niveles de

calidad y diversos tipos de lesiones, incluidos pacientes con RD y controles

sanos.

III. Seleccionar las bases de datos públicas de retinograf́ıas útiles para el desa-

rrollo y validación de los estudios involucrados en esta Tesis Doctoral.

IV. Implementar y optimizar las técnicas de procesado de imagen existentes es-

tudiadas para cada etapa del proceso de detección de RD. Este objetivo

incluye la evaluación de la calidad de la imagen, la detección del DO y la

fóvea, la segmentación de LRs y EXs y la graduación de la severidad de RD.

V. Obtener los resultados que permitan evaluar el rendimiento de los métodos

propuestos.

VI. Discutir y comparar los resultados obtenidos con los de los estudios del estado

del arte.

VII. Extraer las conclusiones adecuadas en base a la discusión anterior.

VIII. Difundir los principales resultados y conclusiones de los estudios realizados

en revistas indexadas al JCR y en foros cient́ıficos como congresos nacio-

nales e internacionales. Asimismo, se pretende realizar otras actividades de
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divulgación como presentarse al concurso universitario Three Minute Thesis

(3MT®) o asistir a distintas jornadas de investigación.

C.3 Materiales

Durante el desarrollo de la Tesis Doctoral, se creó una base de datos privada for-

mada por 2107 retinograf́ıas pertenecientes a 688 pacientes y proporcionadas por

el Instituto de Oftalmobioloǵıa Aplicada (IOBA) de la Universidad de Valladolid

y el Hospital Cĺınico Universitario de Valladolid. Todas las imágenes se captu-

raron utilizando la cámara Topcon TRC-NW400 (Topcon Medical Systems, Inc.,

Oakland, NJ, EE. UU.) con un campo de visión (FOV) de 45 grados y se alma-

cenaron utilizando el formato JPEG de 24 bits con un tamaño de 1956 Ö 1934

ṕıxeles. Por cada ojo, se capturó una imagen centrada en la fóvea y una imagen

centrada en el DO.

Dos oftalmólogos especialistas determinaron, para cada imagen, si teńıa calidad

suficiente para ser analizada o no. De esta manera, 1810 de las 2107 imágenes

se consideraron imágenes de calidad adecuada, mientras que las 297 imágenes

restantes teńıan una calidad inadecuada. Esta clasificación manual de la calidad

de las imágenes sirvió como gold standard para nuestro estudio (Jiménez-Garćıa

et al., 2019), destinado a la evaluación automática de la calidad de las retinograf́ıas.

Entre las retinograf́ıas con calidad suficiente para ser analizadas, se seleccionó

un subconjunto reducido para anotar las lesiones. Los oftalmólogos dibujaron ma-

nualmente los contornos de las LRs y los EXs en 564 imágenes. De este subcon-

junto, 270 retinograf́ıas mostraban signos de RD mientras que las 294 imágenes

restantes carećıan de cualquier tipo de lesión. Entre las 270 imágenes patológicas,

183 mostraban EXs, 239 mostraban LRs y 152 imágenes inclúıan tanto EXs como

LRs. La anotación manual de estas lesiones nos sirvió como gold standard para

el estudio (Romero-Oraá et al., 2019), orientado a la detección de LRs, y para el

estudio (Romero-Oraá et al., 2020), centrado en la detección conjunta de LRs y

EXs.

Finalmente, los oftalmólogos anotaron manualmente los centros del DO y la

fóvea en el mismo subconjunto de retinograf́ıas seleccionadas para la anotación de

lesiones. De esta manera, también contábamos con las coordenadas gold standard

para estas dos importantes estructuras de referencia. Esto nos permitió utilizar esta

base de datos para realizar nuestro estudio (Romero-Oraá et al., 2020), orientado

a la localización automática del DO y la fóvea.

Además de la base de datos privada, en esta Tesis Doctoral se utilizaron cinco
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bases de datos públicas de retinograf́ıas:

� DRIMDB. Esta base de datos fue proporcionada por el Departamento de

Oftalmoloǵıa de Retina de la Facultad de Medicina de la Universidad Técnica

de Karadeniz (Turqúıa) (Sevik et al., 2014). Todas las imágenes se obtuvieron

con una cámara Canon CF-60UVi con un FOV de 60 grados y se almacenaron

en archivos JPEG con una resolución de 570 Ö 760 ṕıxeles. Esta base de

datos consta de 216 retinograf́ıas. Un experto identificó tres clases de calidad:

buena (125 imágenes), mala (69 imágenes) y outlier (22 imágenes). Esta base

de datos se utilizó en nuestro estudio (Romero Oraá et al., 2020).

� DIARETDB1. Esta base de datos está compuesta por 89 imágenes cap-

turadas en el Hospital Universitario de Kuopio (Finlandia) (Kauppi et al.,

2007). Fueron capturadas con un FOV de 50 grados y teńıan una resolución

de 1500 Ö 1552 ṕıxeles. Solo se capturó una imagen por ojo (centrada en la

fóvea). En esta base de datos, cuatro expertos médicos anotaron cualquier

signo de MAs, HEs y EXs. Según las anotaciones, 27 imágenes se asociaron

con retinas sanas, 7 imágenes con RD leve, 28 imágenes con RD no prolife-

rativa moderada y grave y 27 imágenes con RD proliferativa (Kauppi et al.,

2007). Esta base de datos se utilizó en nuestros estudios (Romero-Oraá et al.,

2019) y (Romero-Oraá et al., 2020).

� DRIVE. Esta base de datos consta de 40 imágenes obtenidas en un pro-

grama de cribado de la RD llevado a cabo en los Páıses Bajos (Staal et al.,

2004). Las imágenes se capturaron con la cámara no midriática 3 Canon

CR5 con un FOV de 45 grados y se comprimieron en formato JPEG de 24

bits. El tamaño de las imágenes es de 768 Ö 584 ṕıxeles y todas ellas están

centradas en la fóvea. En este conjunto de datos, 7 de las 40 imágenes pre-

sentan signos patológicos. Esta base de datos se utilizó para nuestro estudio

(Romero-Oraá et al., 2020).

� Messidor. Esta base de datos contiene 1200 imágenes capturadas con la

cámara Topcon TRC NW6 con un FOV de 45 grados (Decencière et al.,

2014). Se almacenaron en formato TIFF de 24 bits a tres resoluciones dife-

rentes: 1440 Ö 960, 2240 Ö 1488 y 2304 Ö 1536 ṕıxeles. Todas las imágenes

estaban centradas en la fóvea. La base de datos contiene un diagnóstico

médico para cada imagen, pero no la anotación de las lesiones. Esta base de

datos se empleó en nuestro estudio (Romero-Oraá et al., 2020).
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� Kaggle. Este conjunto de retinograf́ıas fue proporcionado por EyePACS pa-

ra el concurso de detección de la RD publicado en Kaggle (Kaggle, 2015),

de ah́ı el nombre por el que se conoce. Es la base de datos pública relacio-

nada con DR más grande disponible con 88,702 imágenes. En esta base de

datos, un médico determinó el grado de gravedad de la RD según la Esca-

la cĺınica internacional de RD (Wilkinson et al., 2003), que tiene 5 niveles:

65,343 imágenes sin RD, 6,205 imágenes con NPDR leve, 13,153 imágenes

con NPDR moderada, 2,087 imágenes con NPDR severa y 1914 imágenes con

RD proliferativa. Para cada paciente, se incluyó una retinograf́ıa de cada ojo.

Esta base de datos se utilizó en el último estudio de esta Tesis, destinado a

la graduación automática de la severidad de la RD.

C.4 Métodos

Los métodos propuestos en esta Tesis Doctoral pueden agruparse de acuerdo a las

distintas etapas de diagnóstico de la RD: evaluación de la calidad de las imágenes,

preprocesado, localización del DO y la fóvea, segmentación de LRs, segmentación

de EXs y graduación de la severidad.

C.4.1 Evaluación de la calidad de las imágenes

La evaluación de la calidad de las retinograf́ıas se llevó con dos enfoques distintos.

El primero se basó en caracteŕısticas globales de las imágenes. El segundo enfoque

consistió en una arquitectura de deep learning.

Método basado en la combinación de caracteŕısticas globales

Este método se propuso en (Jiménez-Garćıa et al., 2019) como parte del compendio

de publicaciones y se compone de cuatro etapas:

1. Preprocesado

En esta etapa se aplicó un algoritmo iterativo para rellenar el borde negro que

rodea el FOV con una estimación del fondo retiniano basada en los ṕıxeles

vecinos. Esto permitió reducir los efectos de borde en etapas posteriores

(Soares et al., 2006).

2. Extracción de caracteŕısticas

En primer lugar se utilizó el método SSEQ sobre la imagen preprocesada en

tres escalas diferentes (1, 1/2 y 1/3). Las imágenes se dividieron en bloques
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no superpuestos y se calculó la entroṕıa espacial y la entroṕıa espectral en

cada uno de ellos (Liu et al., 2014). A continuación, se calculó la media y

la oblicuidad de ambas medidas sobre los bloques para cada escala de la

imagen, extrayendo aśı 12 caracteŕısticas.

En segundo lugar, se utilizó el método NIQE, que se basa en comparar cada

imagen con un modelo de referencia (Mittal et al., 2013). Para ello construi-

mos, por un lado, un modelo NSS de referencia para representar el conjunto

de imágenes de calidad adecuada. Por otro lado, construimos otro modelo

NSS para representar la imagen a evaluar. Para construir estos modelos,

calculamos algunos parámetros de una distribución Gaussiana generalizada

para alimentar un modelo Gaussiano multivariante. Este proceso se aplicó

distintas versiones escaladas de la imagen preprocesada normalizada (Mittal

et al., 2013). Finalmente, la comparación de estos modelos permitió extraer

1 caracteŕıstica, correspondiente al ı́ndice de calidad NIQE, que puede con-

siderarse una medida de naturalidad de la imagen.

En tercer lugar, se calculó la CWT del canal verde de la imagen preprocesada

para 6 escalas distintas (2, 4, 8, 16, 32 y 64) y se utilizó el sombrero mexicano

como wavelet madre (Antoine and Murenzi, 1996; Rangayyan, 2004). A con-

tinuación, se obtuvieron los mapas de varianza local de esas transformadas

(Aja-Fernández et al., 2006; Gonzalez and Woods, 2009). Para cada escala,

se calculó la entroṕıa de la CWT y la media y la desviación t́ıpica de los

mapas de varianza local, dando lugar a 18 nuevas caracteŕısticas.

Por último, se utilizó el canal V del modelo de color HSV para cuantificar

la iluminación (Zhou et al., 2018). Se aplicó un pequeño filtro de mediana

para reducir el ruido y, a continuación, un filtro Gausiano de gran tamaño

para estimar el fondo de las imágenes (Gonzalez and Woods, 2009). Sobre la

imagen resultante, se calcularon los valores de luminosidad correspondientes

a los percentiles 1%, 5%, 10%, 15% y 20%. Adicionalmente, se calcularon

las diferencias entre percentiles de luminosidad consecutivos (5-1, 10-5, 15-

10 y 20-15) para representar las variaciones de intensidad en el fondo. Esta

etapa dio lugar a 9 caracteŕısticas.

3. Selección de caracteŕısticas: Fast Correlation-Based Filter

Se extrajeron un total de 40 caracteŕısticas globales para cada imagen. Con

el objetivo de identificar cuáles son relevantes y no redundantes, se aplicó

el algoritmo fast correlation-based filter (FCBF) (Yu and Liu, 2004). Este

método es independiente del clasificador y se basa en la métrica symmetrical
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uncertainty (SU). Con el objetivo de mejorar la robustez del proceso de

selección de caracteŕısticas, se utilizó la técnica bootstrapping (Witten et al.,

2016).

4. Clasificación: Multilayer Perceptron Neural Network

Para clasificar las imágenes según su nivel de calidad, se utilizó una red neu-

ronal MLP de 3 capas (entrada, oculta y salida). La capa de entrada teńıa un

número de neuronas igual al número de caracteŕısticas seleccionadas. La capa

de salida teńıa solo una neurona para realizar la clasificación binaria (Bishop,

1995; Witten et al., 2016). El número de neuronas ocultas (NHIDDEN ) se

obtuvo experimentalmente (Bishop, 2006; Witten et al., 2016). En la ca-

pa oculta se utilizó la función de activación tangente hiperbólica sigmoide

(Bishop, 1995). En la neurona de salida se empleó la función de activación

loǵıstica sigmoidea (Bishop, 1995). La función de error utilizada fue la en-

troṕıa cruzada (Bishop, 1995). Además, para evitar el sobreentrenamiento se

utilizó la regularización weight decay, cuyo parámetro (η) se obtuvo experi-

mentalmente. Por último, para lidiar con el desbalanceo de clases, se aplicó la

técnica synthetic minority oversampling technique (SMOTE) (Chawla et al.,

2002).

Método basado en deep learning

El segundo enfoque para evaluar la calidad de las retinograf́ıas se publicó en (Ro-

mero Oraá et al., 2020). Este método requeŕıa, en primer lugar, redimensionar las

imágenes al mismo tamaño y normalizarlas. Para aumentar el número de imágenes

de entrenamiento, se utilizó la técnica data augmentation (Perez and Wang, 2017).

Las nuevas imágenes se obtuvieron aplicando rotaciones, desplazamientos, volteos

y escalado aleatorios (Zago et al., 2018). Es importante destacar en este trabajo el

uso de transfer learning. Esta técnica permite resolver un problema de aprendiza-

je automático en un dominio particular de interés con el conocimiento aprendido

de los datos de entrenamiento de otro dominio de interés (Pan and Yang, 2010).

Para ello, en este estudio se utilizó un modelo inicializado con un conjunto de pe-

sos previamente entrenados con imágenes del proyecto ImageNet (Jia Deng et al.,

2009).

La arquitectura de deep learning propuesta consistió en una CNN. Este tipo

de redes están formadas por capas convolucionales, aśı como otras de tipo pooling

y fully connected (Saha et al., 2018; Zago et al., 2018). Las CNNs se caracterizan

por tener “interacciones dispersas”, donde cada neurona solo está conectada a un
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subconjunto vecino, y “pesos compartidos”, donde todas las neuronas de capa usan

los mismos pesos. Esto permite mejorar enormemente el rendimiento del modelo y

es ideal para el análisis de imagen (Wang et al., 2019). En este trabajo se utilizó la

arquitectura InceptionResNetV2, que es una combinación de Inception (Szegedy

et al., 2015) y ResNet (He et al., 2016). Para adaptar esta arquitectura a nuestro

problema de clasificación binaria, reemplazamos las últimas 3 capas por 3 capas

fully connected de 1024, 512 y 1 neurona, respectivamente (Zago et al., 2018). Las

dos primeras teńıan una función de activación ReLU (Zago et al., 2018) mientras

que para la última se utilizó una función de activación sigmoidea.

C.4.2 Preprocesado

El procesado de retinograf́ıas se abarcó en el estudio (Romero-Oraá et al., 2019)

y estaba formado por cinco operaciones:

1. Eliminación de artefactos brillantes en el borde de la FOV. Se aplicó

umbralización y operaciones morfológicas (Zhang et al., 2014).

2. Extensión del fondo retiniano. Se aplicó un algoritmo iterativo para

sustituir el borde negro que rodea el FOV con el valor medio de los ṕıxeles

vecinos (Soares et al., 2006).

3. Ecualización de la iluminación y el color. Se utilizó el espacio de color

Hue-Saturation-Intensity (HSI), normalizando cada canal por separado en

base a operaciones matemáticas directas (Hoover and Goldbaum, 2003).

4. Eliminación de ruido. Se aplicó un filtro de media de tamaño pequeño

(Seoud et al., 2016).

5. Realce del contraste. Se empleó el método contrast limited adaptive his-

togram equalization (CLAHE) (Rasta et al., 2015).

C.4.3 Localización del disco óptico y la fóvea

Esta sección describe el algoritmo propuesto en (Romero-Oraá et al., 2020). Des-

pués de aplicar el preprocesado anterior, se extrajo el fondo retiniano, obteniendo

3 nuevas imágenes: Ibg, que es el fondo estimado de la retinograf́ıa después de

eliminar las estructuras brillantes y las oscuras; Ibg−bri, que es el fondo estimado

después de eliminar las estructuras oscuras y conservar las brillantes; y Ibg−dark,

que es el fondo estimado después de eliminar las estructuras brillantes y conser-

var las oscuras. Para obtener estas estimaciones, aplicamos un novedoso algoritmo
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multiescala y una etapa de umbralización (Romero-Oraá et al., 2019). A conti-

nuación, obtuvimos una segmentación de la vasculatura (Mendonça et al., 2006).

Como novedad, utilizamos la imagen Ibg−dark como entrada para evitar los falsos

positivos causados por las estructuras brillantes. Después, se calcularon varios ma-

pas de saliencia para representar el DO y la fóvea, que se describen a continuación.

Para detectar el DO, se obtuvo un mapa de saliencia que representaba las

arcadas principales en su paso vertical por el DO. El segundo mapa de saliencia se

obtuvo aplicando template matching para representar el aspecto circular y brillante

que caracteriza al DO. El tercer mapa se obtuvo utilizando un filtro de desviación

estándar local sobre el canal rojo de la imagen preprocesada. La combinación de

estos tres mapas permitió identificar el centro del DO.

Para detectar la fóvea, calculamos un primer mapa de saliencia que represen-

taba la ausencia de vasos sangúıneos que la caracteriza, para lo que se utilizó la

previa segmentación de la vasculatura. El segundo mapa de saliencia se obtuvo

aplicando template matching para representar la apariencia oscura de la zona ma-

cular. A continuación, consideramos el hecho de que la fóvea siempre se encuentra

a una distancia aproximadamente constante del DO (entre tres y siete veces el ra-

dio del DO). Por ello, construimos un anillo para delimitar esta región. Igualmente,

consideramos que la fóvea siempre se encuentra aproximadamente al mismo nivel

vertical que el DO en las retinograf́ıas. Por ello, construimos una banda vertical

alineada con el DO. En el siguiente paso, consideramos que la densidad vascular

es mayor en el lado temporal de la retina (donde se encuentra la fóvea). Por este

motivo generamos un nuevo mapa de saliencia que representaba esta medida a

cada lado del DO. La combinación de estos cinco mapas permitió identificar el

centro de la fóvea.

C.4.4 Detección de lesiones rojizas

La detección de LRs en esta Tesis Doctoral se llevó a cabo desde dos enfoques

distintos. En (Romero-Oraá et al., 2019) se aplicó la clasificación de superṕıxeles.

En (Romero-Oraá et al., 2020) se descompuso la imagen en capas.

Método basado en la clasificación de superṕıxeles

En primer lugar, se detectaron los ṕıxeles oscuros de la retinograf́ıa utilizando el

algoritmo multiescala presentado anteriormente para extraer el fondo retiniano. A

continuación, se aplicó la segmentación ERS, que dividió la imagen en superṕıxeles.

Un superṕıxel es una región perceptualmente uniforme en la imagen. Agrupa ṕıxe-
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les con colores y texturas similares y se adapta a los bordes de la imagen (Zhou

et al., 2017a). Dado que representa las entidades naturales de la imagen, el su-

perṕıxel es una región adecuada de la que extraer caracteŕısticas (Zhou et al.,

2017a). Aplicar el algoritmo ERS requiere ajustar correctamente los parámetros

K, λ y σ. Estos parámetros determinan la formación de los superṕıxeles en térmi-

nos de compacidad, homogeneidad, tamaño y adherencia a los bordes. En este

trabajo se eligió experimentalmente que K = 2000, λ = 0,08 y σ = 2. Tras la

segmentación ERS, se trató de reducir el número de candidatos para simplificar

la posterior tarea de clasificación. La mayoŕıa de los superṕıxeles detectados no

eran regiones oscuras, por lo que fueron descartados como candidatos. Además,

combinamos todos aquellos superṕıxeles con un color medio similar. Para calcular

este color medio se utilizó el espacio de color CIELAB.

A continuación, se extrajo un conjunto de 39 caracteŕısticas para representar

cada uno de los superṕıxeles candidatos a ser LR. Entre estas caracteŕısticas, se

encuentran el área de la región, la excentricidad o la distancia al centro del DO, en-

tre otras. En el siguiente paso se aplicó el algoritmo FCBF, anteriormente descrito,

para seleccionar las caracteŕısticas más relevantes y no redundantes. Finalmente,

se utilizó una red neuronal MLP de 3 capas para detectar cuáles de los superṕıxeles

candidatos eran verdaderas LRs. La capa de entrada teńıa tantas neuronas como

caracteŕısticas fueron seleccionadas por el método FCBF. La capa de salida estaba

formada por una sola neurona, suficiente para un problema dicotómico. El número

de neuronas de la capa oculta, nhid, se obtuvo experimentalmente. En esta capa

se utilizó la función de activación tangente hiperbólica sigmoide (tanh) (Bishop,

1995). En la neurona de salida se utilizó la función loǵıstica sigmoide. La función

de activación fue la entroṕıa cruzada. Además, se aplicó la regularización weight

decay, cuyo parámetro (υ) se obtuvo experimentalmente.

Método basado en la descomposición de la imagen en capas

Este método teńıa por objetivo la detección conjunta de LRs y EXs pero aqúı nos

centramos exclusivamente en la detección de LRs. Se partió de la imagen prepro-

cesada y la detección del DO, la fóvea y la vasculatura, detallados anteriormente.

A continuación, se llevó a cabo la segmentación de regiones candidatas a ser LR.

Para ello, descompusimos la retinograf́ıa en distintas capas. Aqúı partimos de la

imagen Idark, que se obtiene utilizando la estimación del fondo y representa las

estructuras oscuras de la imagen, eliminando por completo el resto de estructuras.

Después eliminamos también la vasculatura. La imagen resultante se descompuso

haciendo uso del modelo de color HSV, umbralizando emṕıricamente cada uno de
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los canales. De esta manera, conseguimos separar, en primer lugar, la vasculatura

coroidea subyacente visible en las retinas atigradas. En segundo lugar, la atrofia

coroidea. Y, por último, los ṕıxeles asociados a LRs candidatas. A continuación,

extrajimos un total de 100 caracteŕısticas para cada región candidata. Muchas

de estas caracteŕısticas se calcularon a partir de las capas previamente separa-

das. Luego, seleccionamos un subconjunto de las 24 caracteŕısticas más relevantes

utilizando la técnica FCBF. Por último, utilizamos una red neuronal MLP pa-

ra detectar las verdaderas LRs de entre las candidatas. Esta red teńıa la misma

arquitectura que la utilizada en el método basado en la detección de superṕıxeles.

C.4.5 Detección de exudados duros

La detección de EXs en esta Tesis Doctoral se llevó a cabo junto a la detección de

LRs con el método basado en la descomposición de la imagen en capas (Romero-

Oraá et al., 2020). Al igual que para las LRs, se partió de la imagen preprocesada

y la detección del DO, la fóvea y la vasculatura. A continuación, se llevó a cabo

la segmentación de regiones candidatas a ser EX para lo que descompusimos la

imagen en capas. En este caso partimos de la imagen Ibri, que también se obtiene

utilizando la estimación del fondo retiniano y representa las estructuras brillantes

de la imagen, eliminando por completo las estructuras oscuras y el fondo. Esta

imagen se descompuso en capas empleando de nuevo el modelo de color HSV y

umbralizando emṕıricamente cada uno de los canales. De esta forma, obtuvimos,

en primer lugar, la capa correspondiente a los vasos coroideos visibles en las retinas

atigradas. En segundo lugar, la capa que representa las caracteŕısicas reflectantes

fruto de las fibras nerviosas. Estos reflejos son comunes en pacientes jóvenes. Final-

mente, obtuvimos la capa de EXs candidatos. A continuación, extrajimos un total

de 100 caracteŕısticas para cada región candidata. Varias de estas caracteŕısticas

se calcularon a partir de las capas previamente separadas. Luego, seleccionamos un

subconjunto de las 34 caracteŕısticas más relevantes utilizando la técnica FCBF.

Por último, utilizamos una red neuronal MLP para detectar los verdaderos EXs de

entre las regiones candidatas. Esta red teńıa la misma arquitectura que la utilizada

en el método de detección de LRs.

C.4.6 Graduación de la severidad

Este método estaba basado en técnicas de deep learning y teńıa por objetivo cla-

sificar la severidad de la RD en 5 niveles, de acuerdo a la escala internacional

(Wilkinson et al., 2003). Primero se evaluó la calidad de la imagen utilizando el
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método basado en deep learning descrito anteriormente. A continuación, se llevó

a cabo una pequeña etapa de preprocesado para adaptar la imagen a la red pro-

funda. En esta etapa se recortó el borde negro externo al FOV, se redimensionó

la imagen y se normalizó. A continuación, partimos de la imagen preprocesada y

de las imágenes Ibri y Idark, que ya se han presentado anteriormente. La imagen

Ibri representa las estructuras brillantes de la imagen mientras que la imagen Idark

representa las estructuras oscuras. En el método propuesto se utilizó una red com-

pletamente convolucional (FCN) como extractor de caracteŕısticas para las tres

imágenes mencionadas. La arquitectura seleccionada para esta red fue Xception

(versión eXtrema de Inception) (Chollet, 2017). Cabe destacar en este trabajo el

uso de data augmentation y transfer learning (Costa et al., 2019; Perez and Wang,

2017). Las caracteŕısticas extráıdas por las redes FCN sirvieron de entrada a un

novedoso mecanismo de atención. Este mecanismo permitió centrar el aprendizaje

en las caracteŕısticas más relevantes para la clasificación. Como resultado, obtu-

vimos dos mapas de atención independientes para la detección de LRs y EXs. A

continuación, combinamos estos mapas con las caracteŕısticas extráıdas de la ima-

gen preprocesada. Al final de la arquitectura, incluimos 3 capas fully connected.

Las 2 primeras capas teńıan 1024 y 512 neuronas, respectivamente, y una función

de activación de ReLU. La última capa teńıa 5 neuronas, una para cada grado de

severidad de RD, y una función de activación softmax.

C.5 Resultados y discusión

Los resultados obtenidos para cada estudio de esta Tesis Doctoral se exponen a

continuación acompañados de una discusión.

C.5.1 Evaluación de la calidad de las imágenes

Método basado en la combinación de caracteŕısticas globales

El método basado en la combinación de caracteŕısticas globales se desarrolló con

un conjunto de entrenamiento de 1053 imágenes y se evaluó con un conjunto de test

de 1054 imágenes de la base de datos privada. De las 40 caracteŕısticas extráıdas,

el método FCBF seleccionó un subconjunto de 10 caracteŕısticas relevantes y no

redundantes. Cabe destacar que se incluyeron caracteŕısticas de los cuatro tipos

analizados en este estudio: SSEQ, QNIQE, nitidez (CWT) y luminosidad. Por lo

tanto, se demuestra que las caracteŕısticas estudiadas son complementarias y útiles

para la evaluación de la calidad de las retinograf́ıas. Para la red MLP, las pruebas
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experimentales determinaron que los valores óptimos para el número de neuronas

en la capa oculta y el parámetro de regularización fueron 21 y 0.1, respectivamente.

Una vez entrenada la red con estos parámetros, los resultados sobre el conjunto

de test alcanzaron una sensibilidad (Se) del 92.04%, una especificidad (Sp) del

87.92%, una precisión (Acc) del 91.46%, un valor predictivo positivo (PPV ) del

97.88% y un valor F1 de 0.9487.

Estos resultados son similares a los obtenidos en estudios anteriores. Sin em-

bargo, las comparaciones deben hacerse con precaución, ya que las bases de datos

utilizadas son distintas. Los métodos estructurales y genéricos alcanzaron una Se

y Sp en torno al 90% con una Acc superior 90% en la mayoŕıa de los casos.

Entre los métodos estructurales, Fleming et al. (2012) alcanzaron Se = 92,60%

y Sp = 90,00% con 98 imágenes. Otros autores validaron su método utilizando

400 imágenes, alcanzando Se = 95,33% y Sp = 91,13% (Welikala et al., 2016).

Wang et al. (2016) lograron Se = 87,45% y Sp = 91,66% usando 536 imáge-

nes, mientras que Abdel-Hamid et al. (2017) alcanzaron F1 = 0,8780 usando 190

imágenes. Otros autores también combinaron el ı́ndice NIQE con caracteŕısticas

estructurales y de iluminación, alcanzando Acc = 93,60% con 194 imágenes. Los

mejores resultados entre los métodos genéricos se lograron utilizando la red neu-

ronal MLP, con Se = 99,49% y Sp = 99,76% en una base de datos formada por

848 imágenes (Pires Dias et al., 2014). Los enfoques h́ıbridos también mostraron

resultados notables, aunque son más complejos que los métodos genéricos (Paulus

et al., 2010; Sevik et al., 2014). Paulus et al. (2010) emplearon 301 imágenes, alcan-

zando Acc = 91,70%. En otros estudios, F1 alcanzó 0.9960 usando 194 imágenes

(Sevik et al., 2014). También se han propuesto métodos basados en deep learning,

consiguiendo un rendimiento excelente. Entre ellos, cabe destacar el estudio de

Saha et al. (2018), que alcanzó Acc = 100% sobre 3425 imágenes. Sin embargo,

cabe destacar que sólo 123 (3.6%) de estas imágenes correspond́ıan a imágenes de

calidad inadecuada, por lo que los datos estaban muy desbalanceados.

Método basado en deep learning

El modelo CNN se entrenó con 2348 imágenes de la base de datos privada. La

evaluación del método se llevó a cabo con 425 imágenes de la misma base de datos

y con las 194 imágenes de la base de datos DRIMDB. Sobre la base de datos

privada se obtuvo Se = 96,82%, Sp = 91,00% y Acc = 95,29%, mientras que

sobre DRIMDB se alcanzó Se = 99,20%, Sp = 100,00% y Acc = 99,48%. Los

resultados para DRIMDB son superiores a los obtenidos para la base de datos

privada. Esto puede deberse a que en esta última es menos evidente la diferencia
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de calidad entre las imágenes de las dos clases.

Nuestros resultados son similares a los obtenidos en estudios previos. La com-

paración más directa se puede establecer con los trabajos de Chalakkal et al. (2019)

y Zago et al. (2018), donde se utilizó la misma base de datos pública. Chalakkal

et al. (2019) obtuvieron Acc = 95,29% con la arquitectura Inception v1 mien-

tras que Zago et al. (2018) utilizaron una arquitectura Inception v3 para obtener

Acc = 98,55%. En (Yu et al., 2017) se empleó la arquitectura Alexnet y se alcanzó

Acc = 95,42%. En el estudio realizado por Saha et al. (2018) también se utilizó la

arquitectura Alexnet y obtuvieron Acc = 100%. Sin embargo, en este estudio se

descartaron imágenes de calidad ambigua, que son las más propensas a error.

C.5.2 Localización del disco óptico y la fóvea

Los métodos para la localización del DO y la fovea se evaluaron sobre el conjunto

de test de la base de datos privada (283 imágenes) y las bases de datos públicas

DiaretDB1 (89 imágenes), DRIVE (40 imágenes) y Messidor (1200 imágenes). Para

el DO, alcanzamos una precisión del 100% para todas las bases de datos excepto

Messidor (99.50%). En cuanto a la localización de la fóvea, también alcanzamos

un 100% de precisión para todas las bases de datos excepto Messidor (99.67%).

Estos resultados demuestran la gran robustez de los mapas de saliencia propuestos.

En comparación con otros estudios, nuestros resultados para la detección del

DO son similares. Los resultados de la base de datos DRIVE alcanzaron la máxi-

ma precisión posible (100%), al igual que en otros estudios Basit and Fraz (2015);

Chalakkal et al. (2018); Hsiao et al. (2012); Pereira et al. (2013); Qureshi et al.

(2012); Welfer et al. (2011); Yu et al. (2015). En cuanto a DiaretDB1, solo dos es-

tudios anteriores reportaron una precisión del 100% (Abdullah et al., 2016; Abed

et al., 2016), superando aśı a muchos otros estudios (Abdullah et al., 2016; Alsha-

yeji et al., 2017; Basit and Fraz, 2015; Chalakkal et al., 2018; Dı́az-Pernil et al.,

2016; Harangi and Hajdu, 2015,?; Lu and Lim, 2011; Pereira et al., 2013; Qureshi

et al., 2012; Rahebi and Hardalaç, 2016,?; Welfer et al., 2011; Yu et al., 2015).

Nuestro método también supera la precisión de localización obtenida en todos los

métodos anteriores para la base de datos Messidor, excepto (Giachetti et al., 2013)

y (Yu et al., 2015). Sin embargo, en (Giachetti et al., 2013) no se proporcionaron

resultados para las bases de datos DRIVE y DiaretDB1 y el método propuesto por

Yu et al. (2015) obtuvo una menor precisión que nuestro método para la base de

datos DiaretDB1 (99.88%).

Igualmente, para la detección de la fóvea se alcanzó una precisión similar a la
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de otros estudios previos. En la base de datos DRIVE, GeethaRamani and Balasu-

bramanian (2018) obtuvieron la misma precisión que nosotros, pero usaron solo 35

de las 40 imágenes disponibles. La precisión obtenida por Qureshi et al. (2012) fue

menor utilizando la base de datos DRIVE (91.73%). En cuanto a la base de datos

DiaretDB1, nuestro método obtuvo la mayor precisión en la literatura, localizan-

do correctamente las fóveas en todas las imágenes de DiaretDB1. En relación a la

base de datos de Messidor, nuestro método también superó la precisión de todos

los estudios anteriores Al-Bander et al. (2018); Aquino (2014); GeethaRamani and

Balasubramanian (2018); Gegundez-Arias et al. (2013); Giachetti et al. (2013).

Cabe destacar que el método para la extracción de fondo retiniano es otra

contribución importante en este estudio, que podŕıa ser útil en estudios adicionales

relacionados con el procesado de retinograf́ıas. Con este método, mejoramos la

segmentación de la red vascular, evitando que los bordes de los EX y otras regiones

brillantes se detecten erróneamente como segmentos de vasos sangúıneos.

C.5.3 Detección de lesiones rojizas

A continuación se muestran los resultados para los dos métodos propuestos en esta

Tesis orientados la segmentación de LRs.

Método basado en la clasificación de superṕıxeles

La elección de parámetros y el entrenamiento de la red se llevaron a cabo con un

conjunto de entrenamiento de la base de datos privada formado por 281 retino-

graf́ıas. El método se evaluó con un conjunto de test de la misma base de datos

(283 imágenes) y con la base de datos DIARETDB1 (61 imágenes). Los resultados

se obtuvieron en base a dos criterios distintos. En primer lugar, con un criterio

orientado a ṕıxel, se consideraron como detecciones correctas todos los ṕıxeles per-

tenecientes a una lesión correctamente detectada y se calcularon el valor predictivo

positivo (PPVp) y la sensibilidad (SEp). Por otro lado, con un criterio orientado

a imagen, se consideró que una imagen correspond́ıa a una retina sana si se de-

tectaban menos de 30 ṕıxeles de lesión (0.000008% de la imagen) y patológica en

caso contrario. Según este criterio se calculó la precisión (ACCi), la sensibilidad

(SEi) y la especificidad (SPi).

De las 39 caracteŕısticas extráıdas de cada superṕıxel, el algoritmo FCBF se-

leccionó un subconjunto de 16. Para la red MLP, las pruebas experimentales deter-

minaron que los valores óptimos para el número de neuronas en la capa oculta y el

parámetro de regularización fueron 30 y 0.6, respectivamente. Una vez entrenada
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la red con estos parámetros, los resultados sobre el conjunto de test de la base

de datos privada alcanzaron SEp = 81,43%, PPVp = 86,59%, SEi = 84,04%,

SPi = 85,00% y ACCi = 84,45%. Para la base de datos DIARETDB1 se

obtuvo SEp = 88,10%, PPVp = 93,10%, SEi = 84,00%, SPi = 88,89% y

ACCi = 86,89%.

Estos resultados son similares a los de otros estudios para la detección de LRs

según el criterio orientado a imagen. Sin embargo, las comparaciones deben hacerse

con precaución ya que las bases de datos y la forma de medir los resultados vaŕıan

entre estudios. En algunos trabajos se obtuvo una SPi por debajo del 60% (Garćıa

et al., 2010; Seoud et al., 2016). En otros estudios se emplearon conjunto de test

muy pequeños como para extraer conclusiones generalizables (Garćıa et al., 2010;

Niemeijer et al., 2005; Zhou et al., 2017a). Orlando et al. (2018) utilizaron la

base de datos Messidor para evaluar su método. Los resultados mostraron SEi =

91,10% y SPi = 50,00%. (Sánchez et al., 2011) alcanzaron SPi = 92,20% y

SPi = 50,00% con la misma base de datos. Dado que nuestro método también se

evaluó con la base de datos DIARETDB1, se puede establecer una comparación

directa con los métodos propuestos por Roychowdhury et al. (2012) y Zhou et al.

(2017a). Roychowdhury et al. (2012) alcanzaron SEi = 75,50% y SPi = 93,73%.

Zhou et al. (2017a) obtuvieron SEi = 83,30%, que es ligeramente inferior a la

de nuestro enfoque pero su SPi supera nuestros resultados, alcanzando SPi =

97,30%. Al comparar nuestros resultados con enfoques anteriores, debe tenerse

en cuenta que el método propuesto se ha configurado y entrenado utilizando solo

imágenes de nuestra base de datos privada.

Una contribución importante de este estudio es que no requiere una etapa de

segmentación de la vasculatura, ya que se elimina en la etapa de clasificación. Otra

contribución importante es el algoritmo de preprocesado descrito anteriormente,

que fue publicado en este estudio. Este algoritmo se utilizó como etapa inicial de

los métodos de localización del DO y la fóvea y de detección de LRs y EXs.

Método basado en la descomposición de la imagen en capas

Como en el método anterior, el desarrollo de este método se llevó a cabo con 281

retinograf́ıas de la base de datos privada y la evaluación se hizo con 283 imágenes

de la misma base de datos y 61 imágenes de la base de datos DIARETDB1.

Igualmente, los resultados se obtuvieron con los mismos criterios.

En cuanto a la red MLP, los valores óptimos para el número de neuronas en

la capa oculta y el parámetro de regularización fueron 51 y 0.5, respectivamente.

Sobre la base de datos privada se obtuvo SEp = 82,25%, PPVp = 91,07%, SEi =
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85,00%, SPi = 90,80% y ACCi = 88,34%. Sobre la base de datos pública los

resultados mostraron SEp = 84,79%, PPVp = 96,25%, SEi = 88,00% SPi =

91,67% y ACCi = 90,16%.

Todos estos resultados son comparables con los obtenidos en estudios previos

según el criterio basado en imagen. Hemos encontrado cuatro métodos que han sido

evaluados utilizando la base de datos DIARETDB1 con el fin de establecer una

comparación directa con el método propuesto. Jaafar et al. (2011) obtuvieron una

SEi = 98,80% alta, pero una SPi = 86,20% más baja que la nuestra. Además,

evaluaron su método sobre un conjunto de imágenes que combina las bases de

datos DiaretDB0 y DiaretDB1. En el trabajo de Roychowdhury et al. (2012), se

alcanzó una SPi = 93,73%, pero la SEi = 75,50% fue menor. En (Zhou et al.,

2017a), se obtuvo SPi = 91,67%. Sin embargo, nuestro valor de SEi mejora su

SEi del 83.30%. Nuestro método basado en la descomposición de la imagen en

capas también logra mejores resultados que los obtenidos con el método basado

en la clasificación de superṕıxeles.

C.5.4 Detección de exudados duros

Al igual que para la detección de LRs, se utilizaron 281 retinograf́ıas de la base de

datos privada como conjunto de entrenamiento y 283 imágenes de la misma base

de datos junto con 61 imágenes de la base de datos DIARETDB1 como conjuntos

de test. De nuevo, los resultados se obtuvieron aplicando los mismos criterios.

En cuanto a la red MLP, los valores óptimos para el número de neuronas en

la capa oculta y el parámetro de regularización fueron 55 y 0.4, respectivamente.

Sobre la base de datos privada se obtuvo SEp = 89,42%, PPVp = 96,01%, SEi =

88,04%, SPi = 89,42% y ACCi = 95,41%. Sobre la base de datos pública los

resultados mostraron SEp = 91,65%, PPVp = 98,59%, SEi = 95,00% SPi =

90,24% y ACCi = 91,80%.

Los resultados son comparables con los obtenidos en estudios previos según el

criterio basado en imagen. Hemos encontrado varios métodos que se han evaluado

utilizando la base de datos DIARETDB1. Walter et al. (2002) obtuvieron SEi =

86,00% y SPi = 69,00%. En (Harangi and Hajdu, 2014) se obtuvieron valores de

SEi = 92,00% y SPi = 68,00%. Liu et al. (2016) alcanzaron SEi = 83,00% y

SPi = 75,00%. El método propuesto en (Zhou et al., 2017b) mostró SEi = 88,00%

y SPi = 95,00%. Finalmente, el trabajo de Adem (2018) presentó valores altos de

SEi = 99,20% y SPi = 97,97%. El valor de SEi alcanzado con nuestro método

es superior a los obtenidos en estudios anteriores, con una sola excepción (Adem,
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2018). Cabe señalar que el conjunto de test en (Adem, 2018) estaba compuesto por

imágenes de las bases de datos DIARETDB0 y DRIMDB además de DIARETDB1.

Además, en la fase de entrenamiento se utilizó el conjunto de entrenamiento de la

base de datos DiaretDB1. Al comparar nuestros resultados con enfoques anteriores,

debe tenerse en cuenta que el método propuesto se ha desarrollado utilizando solo

imágenes de la base de datos privada. A pesar de las diferencias entre bases de

datos, nuestros resultados sobre DIARETDB1 demuestran la robustez del método

propuesto.

C.5.5 Graduación de la severidad

El método propuesto se evaluó sobre 32,017 retinograf́ıas de calidad adecuada de

la base de datos Kaggle, alcanzando un valor de Kappa ponderado cuadrático

(QWK) de 0.78. Este resultado es similar al de otros métodos previos. Para esta-

blecer una comparación directa, se incluyen los estudios en los que se ha utilizado

la misma base de datos, aunque los conjuntos de entrenamiento, validación y test

pueden variar y, por tanto, la comparación debe hacerse con cuidado. Con nuestro

método, obtuvimos un QWK superior al obtenido por González-Gonzalo et al.

(2018), de la Torre et al. (2018) y el reciente estudio de Araújo et al. (2020). El

trabajo posterior de de la Torre et al. (2020) alcanzó un QWK = 0,80 superior

al nuestro. Sin embargo, utilizaron para la fase de entrenamiento parte de las

imágenes destinadas a test y, por lo tanto, evaluaron su método sobre un subcon-

junto reducido de 10.000 imágenes. Krause et al. (2018) también superaron nuestro

método en términos de QWK, con un valor de 0.84. Sin embargo, su modelo se

entrenó con un gran conjunto de datos privado compuesto por más de 1.6 millones

de retinograf́ıas. Además, su conjunto de test estaba formado por 1,818 imágenes,

mucho menor que el nuestro (32,017). Finalmente, Wang et al. (2017) alcanzaron

el QWK = 0,85 más alto. Sin embargo, su método requeŕıa la anotación manual

de las lesiones de algunas imágenes aśı como las retinograf́ıas de los dos ojos de

cada paciente, que no siempre están disponibles.

C.6 Conclusiones

En base a los resultados obtenidos en la presente Tesis Doctoral se pueden extraer

las siguientes conclusiones:

1) El análisis de selección de caracteŕısticas realizado con la técnica FCBF nos

permitió concluir que los métodos SSEQ y NIQE son útiles para evaluar la
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calidad de la imagen retiniana y pueden ser complementarios con las carac-

teŕısticas de nitidez y luminosidad.

2) Los enfoques de deep learning están superando a las técnicas tradicionales

para muchos problemas de procesado de imagen y, en particular, para la

evaluación de la calidad de las retinograf́ıas. En este contexto, la arquitectura

InceptionResNetV2 junto con transfer learning ha permitido lograr buenos

resultados y una alta capacidad de generalización sin necesidad de una base

de datos excesivamente grande.

3) Los mapas de saliencia propuestos para la localización automática del DO

y la fóvea han demostrado una alta precisión incluso en las imágenes donde

dichas estructuras no teńıan el aspecto estándar. La evaluación sobre varias

bases de datos ha demostrado que el método propuesto es muy robusto y

efectivo.

4) La descomposición de la retinograf́ıa en varias capas ha permitido extraer

un conjunto de caracteŕısticas relevantes para la detección de LRs y EXs,

analizadas mediante la técnica FCBF. En esta descomposición, la vasculatura

coroidea visible en las retinas atigradas y las caracteŕısticas reflectantes de

la retina han demostrado ser útiles.

5) El concepto de superṕıxel, a diferencia del ṕıxel, es adecuado para representar

las entidades naturales y separar las diferentes estructuras de la retina. En

particular, el algoritmo ERS ha demostrado ser rápido y efectivo para la

segmentación de LRs, superando al método SLIC.

6) El método de deep learning propuesto para la calificación de DR alcanzó

resultados comparables a los métodos publicados anteriormente. Separar la

atención de los ṕıxeles brillantes y oscuros en la retinograf́ıa permitió mejorar

la optimización del modelo y facilitar su gestión.

7) Los resultados de cualquiera de los métodos propuestos en esta Tesis Doctoral

sugieren que podŕıan ser utilizados, por separado o en conjunto, como parte

de un sistema de cribado automático, suponiendo una ayuda diagnóstica para

la detección precoz de RD. De esta forma, los pacientes diabéticos podŕıan

recibir una mejor atención para su salud ocular evitando la pérdida de visión.
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compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and

Machine Intelligence 34 (11), 2274–2281.

Adem, K., 2018. Exudate detection for diabetic retinopathy with circular Hough transformation

and convolutional neural networks. Expert Systems with Applications 114, 289–295.
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R., Pietilä, J., Kälviäinen, H., Uusitalo, H., 2007. The DIARETDB1 diabetic retinopathy

database and evaluation protocol. In: BMVC 2007 - Proceedings of the British Machine

Vision Conference 2007.

Kaur, J., Mittal, D., 2018. A generalized method for the segmentation of exudates from patho-

logical retinal fundus images. Biocybernetics and Biomedical Engineering 38 (1), 27–53.

Kels, B. D., Grzybowski, A., Grant-Kels, J. M., mar 2015. Human ocular anatomy. Clinics in

Dermatology 33 (2), 140–146.

Khojasteh, P., Passos Júnior, L. A., Carvalho, T., Rezende, E., Aliahmad, B., Papa, J. P.,

Kumar, D. K., 2019. Exudate detection in fundus images using deeply-learnable features.

Computers in Biology and Medicine 104, 62–69.

Koh, J. E., Acharya, U. R., Hagiwara, Y., Raghavendra, U., Tan, J. H., Sree, S. V., Bhandary,

S. V., Rao, A. K., Sivaprasad, S., Chua, K. C., Laude, A., Tong, L., may 2017. Diagnosis

of retinal health in digital fundus images using continuous wavelet transform (CWT) and

entropies. Computers in biology and medicine 84, 89–97.



170 Bibliography

Krause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K., Corrado, G. S., Peng, L., Webster,

D. R., aug 2018. Grader Variability and the Importance of Reference Standards for Evaluating

Machine Learning Models for Diabetic Retinopathy. Ophthalmology 125 (8), 1264–1272.

Lalonde, M., Gagnon, L., Boucher, M. C., 2001a. Automatic image quality assessment in optical

fundus images. CRIM Report CRIM-00/12-11, 259–271.

Lalonde, M., Beaulieu, M., Gagnon, L., 2001b. Fast and robust optic disc detection using pyra-

midal decomposition and hausdorff-based template matching. IEEE Transactions on Medical

Imaging 20 (11), 1193–1200.

Lam, C., Yu, C., Huang, L., Rubin, D., jan 2018. Retinal lesion detection with deep learning

using image patches. Investigative Ophthalmology and Visual Science 59 (1), 590–596.

Lazar, I., Hajdu, A., feb 2013. Retinal Microaneurysm Detection Through Local Rotating Cross-

Section Profile Analysis. IEEE Transactions on Medical Imaging 32 (2), 400–407.

Lee, S. C., Wang, Y., may 1999. Automatic retinal image quality assessment and enhancement.

https://doi.org/10.1117/12.348562 3661, 1581–1590.

Li, H., Chutatape, O., feb 2004. Automated Feature Extraction in Color Retinal Images by a

Model Based Approach. IEEE Transactions on Biomedical Engineering 51 (2), 246–254.

Li, L., Xia, W., Lin, W., Fang, Y., Wang, S., may 2017. No-reference and robust image sharpness

evaluation based on multiscale spatial and spectral features. IEEE Transactions on Multimedia

19 (5), 1030–1040.

Li, S., Zhao, R., Zou, H., Guo, L., feb 2021a. Artificial intelligence for diabetic retinopathy.

Chinese medical journal 135 (3), 253–260.

Li, T., Bo, W., Hu, C., Kang, H., Liu, H., Wang, K., Fu, H., apr 2021b. Applications of deep

learning in fundus images: A review.

Lin, J. W., Weng, Q., Xue, L. Y., Cao, X. R., Yu, L., jun 2017a. A retinal image sharpness metric

based on histogram of edge width:. http://dx.doi.org/10.1177/1748301817713184 11 (3), 292–

300.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., aug 2017b. Focal Loss for Dense Object

Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2), 318–327.

Liu, L., Liu, B., Huang, H., Bovik, A. C., 2014. No-reference image quality assessment based on

spatial and spectral entropies. Signal Processing: Image Communication.

Liu, M. Y., Tuzel, O., Ramalingam, S., Chellappa, R., jun 2011. Entropy rate superpixel seg-

mentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. IEEE, pp. 2097–2104.

Liu, Q., Zou, B., Chen, J., Ke, W., Yue, K., Chen, Z., Zhao, G., 2016. A location-to-segmentation

strategy for automatic exudate segmentation in colour retinal fundus images. Computerized

Medical Imaging and Graphics 55, 78–86.



Bibliography 171

Lu, S., dec 2011. Accurate and efficient optic disc detection and segmentation by a circular

transformation. IEEE Transactions on Medical Imaging 30 (12), 2126–2133.

Lu, S., Lim, J. H., jan 2011. Automatic optic disc detection from retinal images by a line operator.

IEEE Transactions on Biomedical Engineering 58 (1), 88–94.
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