16 research outputs found

    Comparison of Wide and Compact Fourth Order Formulations of the Navier-Stokes Equations

    Full text link
    In this study the numerical performances of wide and compact fourth order formulation of the steady 2-D incompressible Navier-Stokes equations will be investigated and compared with each other. The benchmark driven cavity flow problem will be solved using both wide and compact fourth order formulations and the numerical performances of both formulations will be presented and also the advantages and disadvantages of both formulations will be discussed

    Melting heat transfer analysis on magnetohydrodynamics buoyancy convection in an enclosure : a numerical study

    Get PDF
    Therollof melting heat transfer on magnetohydrodynamic natural convection in a square enclosurewithheatingof the bottom wall is examinednumericallyin this article.The dimensionlessgoverning partial differential equations are transformed into vorticity and stream functionformulationand then solved using the finite difference method(FDM). The effects of thermal Rayleigh number(Ra), melting parameter(M) and Hartmann number(Ha) are illustrated graphically.With an increasing melting parameter and Rayleigh number, the rate of fluid flow and temperature gradients are seen to increase. And in the presence of magnetic field, the temperature gradient reduces and hence the conductionmechanism dominated for larger Ha. Greater heat transfer rate is observed in the case of uniform heating compared with non-uniform case. The average Nusselt number reduces with increasing magnetic parameterin the both cases of heating of bottom wall

    GEOMETRICAL EVALUATION OF RECTANGULAR FIN MOUNTED IN LATERAL SURFACE OF LID-DRIVEN CAVITY FORCED CONVECTIVE FLOWS

    Get PDF
    In this work, it is investigated the geometric effect of rectangular fin inserted in a lid-driven square cavity over thermal performance of laminar, incompressible, steady and forced convective flows. This study is performed by applying Constructal Design to maximize the heat transfer between the fin and the cavity flow. For that, the problem is subjected to two constraints: area of the cavity and area of rectangular fin, and two degrees of freedom: height/length ratio of rectangular fin (H1/L1) and its position in upstream surface of the cavity (S/A1/2). It is considered here some fixed parameters, as the ratio between the fin and cavity areas (Ď• = 0.05), the aspect ratio of the cavity dimensions (H/L = 1.0) and Prandtl number (Pr = 0.71). The fin aspect ratio (H1/L1) was varied for three different placements of the fin at the upstream cavity surface (S/A1/2 = 0.1, 0.5 and 0.9) which represents a lower, intermediate and upper positions of the fin. The effects of the fin geometry over the spatial-averaged Nusselt number ( ) is investigated for three different Reynolds numbers (ReH = 10, 102 and 103). The conservation equations of mass, momentum and energy were numerically solved with the Finite Volume Method. Results showed that both degrees of freedom (H1/L1 and S/A1/2) had a strong influence over , mainly for higher magnitudes of Reynolds number. Moreover, the best thermal performance is reached when the fin is placed near the upper surface of the cavity for an intermediate ratio between height and length of rectangular fin, more precisely when (S/A1/2)o = 0.9 and (H1/L1)oo = 2.0

    Analytical approximate solutions for two-dimensional incompressible Navier-Stokes equations

    Get PDF
    Analytical approximate solutions of the two-dimensional incompressible Navier-Stokes equations by means of Adomian decomposition method are presented. The power of this manageable method is confirmed by applying it for two selected  flow problems: The first is the Taylor decaying vortices, and the second is the flow behind a grid, comparison with High-order upwind compact finite-difference method is made. The numerical results that are obtained for two incompressible flow problems  showed that the proposed method is less time consuming, quite accurate and easily implemented. In addition, we prove the convergence of this method when it is applied to the flow problems, which are describing them by  unsteady two-dimensional incompressible Navier-Stokes equations.   Keywords: Navier-Stokes equations, Adomian decomposition, upwind compact difference, Accuracy, Convergence analysis,Taylor's decay vortices, flow behind a grid

    Discussions on Driven Cavity Flow

    Full text link
    The widely studied benchmark problem, 2-D driven cavity flow problem is discussed in details in terms of physical and mathematical and also numerical aspects. A very brief literature survey on studies on the driven cavity flow is given. Based on the several numerical and experimental studies, the fact of the matter is, above moderate Reynolds numbers physically the flow in a driven cavity is not two-dimensional. However there exist numerical solutions for 2-D driven cavity flow at high Reynolds numbers

    Numerical Solutions of 2-D Steady Incompressible Flow in a Driven Skewed Cavity

    Full text link
    The benchmark test case for non-orthogonal grid mesh, the "driven skewed cavity flow", first introduced by Demirdzic et al. (1992, IJNMF, 15, 329) for skew angles of alpha=30 and alpha=45, is reintroduced with a more variety of skew angles. The benchmark problem has non-orthogonal, skewed grid mesh with skew angle (alpha). The governing 2-D steady incompressible Navier-Stokes equations in general curvilinear coordinates are solved for the solution of driven skewed cavity flow with non-orthogonal grid mesh using a numerical method which is efficient and stable even at extreme skew angles. Highly accurate numerical solutions of the driven skewed cavity flow, solved using a fine grid (512x512) mesh, are presented for Reynolds number of 100 and 1000 for skew angles ranging between 15<alpha<165

    Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers

    Get PDF
    In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re) 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK) is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe) numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies

    Numerical Performance of Compact Fourth Order Formulation of the Navier-Stokes Equations

    Full text link
    In this study the numerical performance of the fourth order compact formulation of the steady 2-D incompressible Navier-Stokes equations introduced by Erturk et al. (Int. J. Numer. Methods Fluids, 50, 421-436) will be presented. The benchmark driven cavity flow problem will be solved using the introduced compact fourth order formulation of the Navier-Stokes equations with two different line iterative semi-implicit methods for both second and fourth order spatial accuracy. The extra CPU work needed for increasing the spatial accuracy from second order (O(x2)) to fourth order (O(x4)) formulation will be presented

    DNS and regularization modeling of a turbulent differentially heated cavity of aspect ratio 5

    Get PDF
    This work is devoted to the study of turbulent natural convection flows in differentially heated cavities. The adopted configuration corresponds to an airfilled (Pr = 0.7) cavity of aspect ratio 5 and Rayleigh number Ra = 4.5 Ă— 1010 (based on the cavity height). Firstly, a complete direct numerical simulation (DNS) has been performed. Then, the DNS results have been used as reference solution to assess the performance of symmetry-preserving regularization as a simulation shortcut: a novel class of regularization that restrain the convective production of small scales of motion in an unconditionally stable manner. In this way, the new set of equations is dynamically less complex than the original Navier-Stokes equations, and therefore more amenable to be numerically solved. Direct comparison with the DNS results shows fairly good agreement even for very coarse grids.Peer ReviewedPostprint (author's final draft
    corecore