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Abstract:  Analytical approximate solutions of the two-dimensional incompressible Navier-Stokes 
equations by means of Adomian decomposition method are presented. The power of this manageable 
method is confirmed by applying it for two selected  flow problems: The first is the Taylor decaying 
vortices, and the second is the flow behind a grid, comparison with High-order upwind compact finite-
difference method is made. The numerical results that are obtained for two incompressible flow 
problems  showed that the proposed method is less time consuming, quite accurate and easily 
implemented. In addition, we prove the convergence of this method when it is applied to the flow 
problems, which are describing them by  unsteady two-dimensional incompressible Navier-Stokes 
equations. 
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1- Introduction 

 The problem of real fluid flow is of great complexity due to the many physical effects 

and a considerable set of non-linear partial differential equations involved. For example, 

Navier-Stokes equations (NSEs) are one good example and have the widest of application as 

they govern the motion of every fluid, be it a gas or liquid or a plasticized solid material acted 

upon by forces causing to change shape. So, specific advanced techniques must be applied to 

obtain the solutions of this problem. In our considered nonlinear problem, we need good 

mathematical procedures to simplify or linearize problem and solve it, such as finite 

difference method and Adomian decomposition method(ADM). At the present time, the need 

to use ADM in solving partial differential equations became more obvious by using it in 

solving various problems of different fields such as physics, engineering and applied 

mathematics [2,6,15,26], especially in the last decade. There is a challenge in using and 

applying this method to solve the complicated problems that include non-linear differential 

equations, like fluids flow problems represented by a system of non-linear partial differential 

equations called NSEs. 
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        In this paper, we apply the numerical method which is known as Adomian 

decomposition method to obtain analytical approximate solutions for Navier-Stokes 

equations. These equations are elliptic and non-linear, increase non-linearity with increasing 

Reynolds number. 

   The equations of the motion of an incompressible fluid are 
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where Ω  is a smooth bounded domain with boundary Ω∂ , vandu  are velocity components 

in −x direction and −y  direction, respectively. p is the pressure, t is the time, x  and y  are 

the space coordinates, µ  is the kinematic viscosity, ρ  is the fluid density, 
y

j
x

i
∂

∂
+

∂

∂
=∇   is 

the gradient operator and 2∇  is the Laplacian operator. 

     A number of numerical methods for solving several types of multi-dimensional time-

dependent incompressible Navier-Stokes equations were given in[5,10-12,17,22,23,26,28,29].  

A lot of studies have indicated to the important role of Adomian decomposition method in its 

application for solving various problems to various scientific models[8,9,13,14-16,19,20,25-

27]. The application of the ADM was extended to specific multi-dimensional flow problems 

subject to a specific data theoretically by Seng et al. [27].  Recently, Sadighi et al.[26], 

applied the ADM to solve NSEs models, these sources are different from the model of our  

problem,  in case of  analysis of convergence theoretically ,and the mathematical formation of 

a problem. For the simple case of vorticity proportional to the stream function, Taylor 

obtained an analytical solution for unsteady  flow that represented a double infinite array of 

vortices decaying exponentially with time. Kovasznay extended Taylor's idea by perturbed the 

stream function by a uniform stream and he was able to linearize the NSEs and obtain an 

exact solution for steady flow which resembles that downstream of a two-dimensional grid. 

From the literature review and by depending on our humble knowledge, we  observed that the 

ADM not yet used to study these two problems, this matter was motive for us to use it here to 

find analytical approximate solution in case of unsteady flows. 
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      The aim of this paper is to extend the application of the ADM proposed by Adomian [1] 

to solve two-dimensional incompressible NSEs and compare its reliability and efficiency with 

a high-order upwind compact difference method(UCDM)[29,30] The results that we obtain 

from using the methods will be saved and compared to prove the efficiency of each method in 

accuracy, speed of convergence and time.  

                                                         

2- Adomian Decomposition Method  

           To show the basic ideas of ADM[1], we will study the algorithm application of this 

method in approximate one-dimensional non-linear initial value problem. This problem is 

written by using the differential operators, as follows: 

                   0,),(),(),( ≥ℜ∈=++ txgtxNutxRutxLu                         (2a) 

                   )0,(0 xuu =                                                                                                        (2b) 

where, ℜ  is real numbers. The linear terms decomposed into RuLu + , while the nonlinear 

terms are represented by Nu , where L is an easily invertible linear operator, R is the remaining 

linear part and 0u is initial condition. By taking the invert of linear differential operator L  

which is denoted by
1−

L , for the two hands of Equation (2a), we obtain  

                    )()()( 1111 NuLRuLgLuLL −−−− −−=                                                           (3) 

Here, for initial values problem (2), 
1−

L  for the operator 
t

L
∂

∂
=  is defined as; 

                                      τdL

t

t ∫=−

0

1 (.)(.)                                                                             (4) 

From (4), we have;      0

1
uuuLL −=−

                                                                             (5) 

Hence, Equation (3) became  

                   )()()( 111

0 NuLRuLgLuu −−− −−+=                                                             (6)   

   The method consists of decomposing the solution u  into sum of an infinite number of 

components defined by the decomposition series  [2, 9] as; 

                                      ∑
∞

=

=
0n

nuu                                                                                            (7) 

where the u 's are calculated recurrently. 

  The nonlinear operator )(uNu Ψ=  is decomposed as: 
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    where nA  are Adomian's polynomials for the specific nonlinearity [6,8,27]. These Adomian's 

polynomials depended on components of nuuu ,,, 10 …  and the fast convergent formula for 

the series [1,9,8].  The nA  are given as; 
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There are different algorithms to compute Adomian polynomials which have been discovered 

by the continuous improvement of this method in finding the analytic solutions or similar 

formations of good acceleration by many researchers [2, 27].                 

 Substituting Equations (7) and (8) into Equation (6), we obtain 
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Consequently, it can be written as: 
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where φ  is the initial condition. 

      Hence all the terms of u  are calculated and the general solution obtained according to the 

ADM as  ∑
∞

=

=
0n

nuu . The convergent of this series has been proved in [3,13, 14,27,33]. 

However, for some problems this series can't be determined, so we use an approximation of 

the solution from truncated series: 

                                                     ∑
=

=
M

n

nM uU
0

 with  uU MM =
∞

lim                                      (12) 

The acceleration for this convergent means the need to few terms of Equation (12), for 

obtaining the formula which nearby to the exact solution[ 6]. 
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3- Algorithm Analysis of ADM for NSEs  

      After clearing the simple and basic ideas of using and applying Adomian decomposition 

method algorithm to solve the differential equations, we will extend this application for a 

system of non-linear equations; that describes the algorithm to NSEs(1a). In order to facilitate 

the analysis, the following dimensionless variables are considered ; 
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where 0U is a reference velocity, and L is a reference length. We then drop the primes. The 

equations become 
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where 
µ

LU0Re =   is the Reynolds number. The dimensionless equation of continuity (1b) gives 
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This equation enables us to define a stream function ψ  such that 
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Now, we start applying the ADM algorithm for Equations(13a,b) subject to the initial 

conditions )0,,(0 yxuu = , )0,,(0 yxvv =  and )0,,(0 yxpp = . Following, we define the 

linear operators
t
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Equations (13a,b) with operator form as 

                                  uLLpLuvLuLuuL
yyxxxyxt

)(
Re

1
+=+++                             (14a) 

                                  vLLpLvvLvLuvL
yyxxyyxt

)(
Re

1
+=+++                          (14b) 

By defining the inverse operator 
1−

tL which are given in (4), we can write the Equations (14a) 

and (14b) as; 

                uLLLpLLuvLLuLyxutyxu
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By using Equation (7), the components solutions can be written as; 
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The associated decomposition method is given by  
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     We decomposed 1Ψ  and 2Ψ  according to the series ∑
∞

=0n

nA and ∑
∞

=0n

nB  respectively , where 

nA  and nB  are calculated by the Adomian's polynomials which are defined in Equation (9), 

then we obtain 
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and So on. By using Equation (11), we have 
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and so on. From  Equations (13) and continuity Equation(1b), we obtain; 
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We symbolize the right side by z . Therefore, we rewrite Equations (19a) with operator form 

as; 

                                        zpLpL yyxx =+                                                                           (19b) 

Now, from Equation (19b), we calculate the pressure p . Solving for pLxx  and inverting the 

operator xxL , with   dxdxL

x x

xx ∫ ∫=−

0 0

1 (.)(.) , we have  

                                     )()0( 11 pLLzLtpp yyxxxx

−− −+==                                          (20) 

where, the nonlinear part z is calculated from the Adomian's  polynomial of Equation (9). 

Writing ∑
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npp and identifying )0(0 == tpp , where the np 's are calculated recurrently. 
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From Equation (21), we produced; 
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where nC  are Adomian's  polynomial and calculated by Equation (9) as; 

                  ( ) ( )2

0

2

0000
2 vLuLvLuLC

yxxy
++=  

                  ( )
101001101

2 vLvLuLuLvLuLvLuLC
yyxxxyxy

+++=                      (23)                    

   and we can write 
thn  term approximation for p  by ∑

−

=

=
1

0

n

i

in pϕ  which converges to  ∑
∞

=0n

np  

or p . Similar equations can be written for pLyy , where dydyL

y y

yy ∫ ∫=−

0 0

1 (.)(.) , we have 

                  )(11

1 nxxyyyyn pLLzLp
−−

+ −=      ,    for  …,2,1,0=n                                     (24) 

Almost of previous relations which are made in [1,27],but without the numerical 

computations and without theoretical prove of convergence. Now, we can summarize the 

algorithm computing  as follows: where 0u , 0v and 0p  are obtained through initial 

conditions, then from Equations (18), 1u  , 1v are computed depending on 0u , 0v  and 0p . 

Also, from Equations (18), the components  2u  and 2v  are computed by dependence on the 
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values of 1u  , 1v  and  1p , where 1p  is obtained by Equation (22), so on. Moreover, also, by 

using this algorithm and the results that obtained we can computed the stream function(13d), 

and the vorticity  xy
vu −=ω . 

 

4- Analysis of Convergence  

     In this section, we will study the analysis of convergence in the same manner as [3,13, 14] 

of the decomposition method to the nonlinear Navier-Stokes Equations (13 a or b) and 

Equation (19a) . Let us consider the Hilbert space H which may be defined as

)],0[(2 TLH ×Ω= , the set of applications;                                       ℜ→×Ω ],0[: Tu     with      
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where, ℜ  is real numbers.  

We consider the nonlinear Navier-Stokes equations, then the operator of a nonlinear Navier-

Stokes Equations (13a,b) and Equation (19a) are; 
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where, )( pLf  is the operator of Equation (19a). Following, we define the difference 

operator zzz ˆ−=∆  for any quantity such as z .The Adomian decomposition method is 

convergent if the following conditions are satisfied ; 
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wvMCwvL t ∆≤∆ )Re,()),((   and  wpIwpLf ∆≤∆ )),((  ,  for every Hw∈ and I <0. 

Now, we will use the following theorems to satisfy the above conditions as [3,13], in addition, 

we will verify the pressure hypothesis which  included these two hypothesis. 
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Substituting Equations (31)-(35) into Equations (29) and (30) yields 
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where,
Re

2
2Re),( −= MMC , 2−=I and the condition )(

u
ΙΙ  is satisfied. Hence the proof is 

complete.  

 

Theorem 2: If )(
v

Ι and )(
v

ΙΙ  are satisfied, then ADM of Equations (25b) and (26) is 

convergent.  

Proof: In the same manner of Theorem 1, we can prove the convergence of Equation(13b),by 

verifying the convergence of condition )(
v

Ι and )(
v

ΙΙ for the operators )(vL
t

 and 

)(pLf . 

 

5- Numerical Test and Discussion 

       The theoretical analysis of ADM done in the previous sections will be applied in this 

section to find the analytical approximate solutions for two unsteady state flow problems: the 

first is the Taylor decaying vortices, and the second is the NSEs with a periodicity in one 

direction(flow behind a grid), in order to test the validity of the present method. 

 

5.1 The Taylor's decay vortices 

        The problem  of Taylor's decay vortices is used so much to pretesting the efficiency of 

the numerical methods for handling the flow problems[24,29,30,31,32]. To describe the flow 
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of Taylor's decay vortices the NSEs(15a,b) using with initial conditions 

)2(sin)2(cos)0,,(0 yxyxuu −== , )2(cos)2(sin)0,,(0 yxyxvv == and,
  

 [ ])4sin()4cos(
4

1
)0,,(

0
yxyxpp +−== , for ππ 20,20 ≤≤≤≤ yx . 

The obtained iterative solutions of decomposition series of Equations (15a,b) are  using the 

relations (18,22),where these relations represent the iterative solutions for 2D NSEs. The 

efficiency and a high accuracy in finding the exact and approximate solutions for the initial 

and boundary values problems are considered positive points for ADM. The numerical 

computations of test problem, which represent the fluid flow conduct inside square cavity are 

applied with some Re  and t  values by using ADM algorithm. Figure 1 : (a) Shows Profiles 

of ),( yu π and ),( πxv  velocities for different times( 10,7,3,1=t ) , (b) explained the 

identification between the exact and numerical solutions and that indication has proved the 

efficiency of ADM in solve NSEs with good convergence, and (c)  Shows Contour drawing 

for vorticityω  at 2=t  and Re=100 for ADM and UCDM. In addition, the measurements of 

maximum error for the velocity and vorticity functions, which are showed in Table1, ensure 

the ability of suggested method and its accuracy in finding the solutions. From the measures 

of maximum error, the table shows the required evidence to explain a high accuracy for 

method, where as the ADM accuracy increase with increasing Reynolds number at 2=t .  

From our computations by using ADM, we notice that the convergence of these computations 

correlate with the variables ( t and Re ) in inversely relation, which govern the solution. For 

example, at ( 2=t  and 50Re < ) or  ( 5>t and 100Re = ) 

then convergence of ADM becomes weakly in the solution. All obtained results by the second 

iteration of ADM represent approximate solution is equivalent and identical to exact solutions 

for the problem. The other positive points of ADM are storage of time(CPU about 0.007) and 

effort that is explained from the tabular results in this paper. Figure 1(c) represents the system 

of eddies arranged in the square pattern, each rotating in the opposite direction to that of its 

four neighbours, and this fact is confirmed by many authors[ 3,6,24,29,32]. 
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Figure 1. (a)Velocities u and v for Re=100, t=1,3,7,10  (b) Exact and numerical solutions of u and v  

                     for Re=100 and 2=t .     (c) Vorticity ω  for Re=100 and 2=t . 
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Table 1: Errors velocity ),( 22 vu and vorticity 
2

ω  of the present study for Taylor's vortices 

problem. 

      →= 0.2t           Re=50                     Re=100                           Re=300                      Re=1000  

  →=100Re            t=0.1                         t=1                                  t=5                             t=10             

 
 

UMax               

 

2.68×10
-4    

6.49×10
-11

 

1.34×10
-5    

7.38×10
-7 

1.73×10
-8 

7.20×10
-6 

1.05×10
-9 

1.76×10
-5 

 

     

  ωMax
 4.08×10

-4    

1.16×10
-12

 

6.89×10
-6    

1.11×10
-7 

4.69×10
-10 

1.49×10
-5 

7.39×10
-12 

7.99×10
-4 

 

 
 

   For the comparison, addition to exact solution(Figure 1(b)), we select the best approximation 

for solving NSEs that can be used is high-order upwind compact difference method. 

Eqs.(13a,b) and (19a) can be usually changed into discrete difference equations (for details, see 

refs.[ 7,19,21,29,30]), and then be solved through iteratively method. For solving result 

discrete finite difference equation corresponds to Equations(13a,b) and (19a),we used Gauss–

Seidel and successive over-relaxation iterative methods ,respectively. We introduced the 

comparison of the obtained results between ADM and UCDM. The comparison is represented 

by the study of errors 

 

Table 2: Errors comparison of the present study and UCFDM  at 0.2=t  for Taylor's vortices 

problem. 

      Grids 

                                      Method 

 
         Re=50            Re=100             Re=300           Re=1000             

        
65×65

  
),( vuVelocities                   

   UCDM  

Present Method 

2.32×10
-4   

2.68×10
-4 

1.36×10
-4 

1.34×10
-5 

3.09×10
-5 

1.73×10
-8 

1.57×10
-5 

1.05×10
-9 

 

 

      65×65 

)(ωVorticity                                       
   UCDM  

Present Method 

1.19×10
-3   

4.08×10
-4 

9.10×10
-4 

6.88×10
-6 

8.01×10
-4 

4.69×10
-10 

8.13×10
-4 

7.39×10
-12 

 

 

for vorticity )(ω  and velocities ),( vu , and also by iterations number and CPU time. We 

notice that the numerical solutions of vorticity function and the velocities u , v  by using 

ADM and UCDM are correspondent. The suggested two methods confirm its efficiency in 

solving the two dimensions NSEs. The accuracy of these two methods increases with 

increasing Reynolds number at 2=t . Moreover, From Table 2,we see that accuracy of ADM 

is higher and better than UCDM for different Reynolds number values ( 100050Re −= ). 

Besides that, CPU time( 0.007) and iterations number(2) of ADM is better than CPU time(2 < 

CPU< 26.7) and iterations number(80 < No. of Iterations<1000)  of UCDM. We can say that 

ADM is faster convergence and more accurate than UCDM. 
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5.2 Unsteady flow behind a grid 

      we consider the laminar flow of viscous fluid Equation(1) behind  a two-dimensional grid, 

with x -axis normal to the grid and the velocity field is assumed to be such that uUu +=
0

: and 

vv =: , where 0
U  is the mean velocity(reference of velocity) in the x -direction. Thus; the two-

dimensional  Navier-Stokes equations with a periodicity in one direction, which may represent 

the wake of a two dimensional grid as the same as Equations(1a,b) with replacing the 

coefficients of convective terms in x -direction by uU +
0  ;that is: 

x

u
uU

∂

∂
+ )( 0 and 

x

v
uU

∂

∂
+ )( 0 and in the non-dimensional NSEs(13ab) these terms become 

x

u
u

∂

∂
+ )1( and 

x

v
u

∂

∂
+ )1( .The laminar flow behind a periodic array of medium[29]  is used to examine the 

verification of accuracy of ADM. To compute the numerical results for unsteady state of this 

problem by using the algorithm (section3) ,the initial values that are adopted is the steady state 

two-dimensional exact solution of this problem  [18,23,24,32];which is given as 
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where
0

Ρ  is a reference pressure (an arbitrary constant). We computed the analytical 

approximate solution by using AD algorithm for unsteady of  this problem using recurrence 

relations(18&22 ) and the relations are related to its such as stream function and vorticity. The 

calculations are run by  Mathcad 14 software. The computed streamlines and vorticity 

contours for Re=5,20,40 are shown in Figure 2. The  pairs of  bound eddies generated behind 

the single elements of the grids, and at large distance downstream, however, the streamlines 

become parallel and equidistant as shown by the short lines on the right side of the figure for 

all values of Re(as in the case of a viscous fluid). From the figure of the streamlines and 

vorticities , we note that when the Reynold number increases, the whole flow pattern is 

extended uniformly in the direction of main flow. we observe that the rate of change of the 

flow is very great, and the length of vortices increase with 
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Figure. 2   Streamlines and vorticity contour  plots for 1.0=t and (a)Re=5,(b) Re=20 (c)Re=40 
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the increase in the Reynold number towards the downstream flow. Tables 3 show grid 

refinement test results for upwind compact difference  and Adomian decomposition Methods. 

The comparison is represented by the study of errors for stream function  and vorticity , and 

also by iterations number and CPU time. It is noted that the magnitudes of the vorticity 

gradients and streamlines in the present study are similar to those obtained by Shah et al. [29] 

when solving the unsteady flow and steady flow by[23,24,32]. Moreover, The accuracy of 

these two methods increase with increasing Reynolds number at 1.0=t . From Table(3),we 

see that the accuracy of ADM is higher and better than UCDM for different Reynolds number 

values (Re=1,20,40,100,1000) and number of grid points. Besides that, CPU time( 0.0003) 

and iterations number(2) of ADM is less than CPU time(2 < CPU< 12.6) and iterations 

number(No. of Iterations <100)  of UCDM. We can say that ADM is faster convergence and 

more accurate than UCDM. 

Table 3. Errors Comparison of the present study and UCDM for flow behind a grid problem. 

Grids 

                   Method 

         Re=1           Re=20           Re=40             Re=100             Re=1000 

 

41×41         UCDM                               

              Present Method 

1.27×10
-2   

3.85×10
-3 

1.73×10
-3 

5.75×10
-4 

9.46×10
-4 

3.82×10
-4 

4.96×10
-4 

2.89×10
-4 

2.26×10
-4 

2.24×10
-4 

 

161×161     UCDM                               

              Present Method 

2.02×10
-4   

6.26×10
-6 

1.45×10
-5 

1.12×10
-6 

9.57×10
-6 

7.60×10
-7 

5.71×10
-6 

5.78×10
-7 

2.68×10
-6 

4.83×10
-7

 

 

Conclusions 
         The Adomian decomposition method is tested for two-dimensional time-dependent 

incompressible Navier-Stokes equations that describe the Taylor's vortices with low to 

moderate Reynolds numbers and flow behind grid with compared the results of both of these 

problems with the UCDM. The application of ADM gives a simple powerful tool to obtain the 

solutions without a need for large size of computations, unlike UCDM. The results show that 

ADM has high accuracy and efficiency in finding the exact and approximate solutions with 

less computation workload. Also, we conclude that ADM is efficient and better than UCDM 

in iterations number and CPU time, at least in the current cases. There are identification 

between the approximate solutions of UCDM and ADM for solving NSEs at 100Re=  and 2=t . 

Beside that the accuracy of solutions by using these two methods increase with increasing 

Reynolds number with fixed time and the rate of convergence is a very high. Advantages of 

ADM over the classical techniques. For example, it avoids discretization and provides an 

efficient analytical approximate solution with high accuracy and low computational load. 

 

‘ 
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