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DNS and regularization modeling of a turbulent
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Abstract

This work is devoted to the study of turbulent natural convection flows in

differentially heated cavities. The adopted configuration corresponds to an air-

filled (Pr = 0.7) cavity of aspect ratio 5 and Rayleigh number Ra = 4.5 × 1010

(based on the cavity height). Firstly, a complete direct numerical simulation

(DNS) has been performed. Then, the DNS results have been used as reference

solution to assess the performance of symmetry-preserving regularization as a

simulation shortcut: a novel class of regularization that restrain the convective

production of small scales of motion in an unconditionally stable manner. In

this way, the new set of equations is dynamically less complex than the original

Navier-Stokes equations, and therefore more amenable to be numerically solved.

Direct comparison with the DNS results shows fairly good agreement even for

very coarse grids.
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Nomenclature

A1, A3 depth and height aspect ratios, L1/L2 and L3/L2

C dimensionless stratification, ∂ 〈θ〉 /∂x3|{x2=
1

2A3
,x3=1/2}

C (uh) discrete convective operator

D discrete diffusive operator

f dimensionless body force

F discrete filter, uh = Fuh

g gravitational acceleration

L discrete Laplacian operator, −MΩ−1Mt

L1, L2, L3 cavity depth, width and height

Lref reference length, L3

M discrete divergence operator

N dimensionless Brunt-Väisälä frequency, (CPr)0.5/(2π)

Nu(x3) Nusselt number distribution at the hot wall, − ∂ 〈θ〉 /∂x2|x2=0

Nu Nusselt number,
∫ 1

0
Nu(x3)dx3

Nuc(t) Nusselt number through the vertical mid-plane,
∫ 1

0
(u2θ − ∂θ/∂x2)|x2=

1

2A3

dx3

N1, N2, N3 number of nodes in the xi-direction

p dimensionless dynamic pressure

pref reference dynamic pressure, ρ
(
α2/L2

3

)
Ra

Pr Prandtl number, ν/α

Ra Rayleigh number based on cavity height, (gβ∆TL3
3)/(να)

Rφφ(x1, x2, r3) two-point correlation, 〈φ′(x1, x2, x3)φ
′(x1, x2, x3 + r3)〉/

〈
(φ′(x1, x2, x3))

2
〉

t dimensionless time

tref reference time,
(
L2

3/α
)
Ra−1/2

T temperature

∆T temperature difference, (TH − TC)

u dimensionless velocity vector field, u = (u1, u2, u3)

uref reference velocity, (α/L3) Ra1/2

(x1, x2, x3) dimensionless spatial coordinates

xTr
3 x3-position of σ (Nu)max on the vertical hot wall
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Greek symbols

α thermal diffusivity

β thermal expansion coefficient

γi mesh concentration parameters

∆t time step

∆xi mesh size in xi-directions

ǫ filter length

θ dimensionless temperature, (T − (TH + TC)/2)/(TH − TC)

θtop
avg dimensionless averaged temperature at the top wall

µNu first moment of Nu(x3) about x3 = 0.5,
∫ 1

0
(0.5 − x3)Nu(x3)dx3

ν kinematic viscosity

ρ fluid density

σ (·) standard deviation

ω vorticity, ∇× u

Ω diagonal matrix with sizes of control volumes

Subscripts

C cold wall

f index for faces of control volumes

h discrete scalar or vector field

H hot wall

max maximum value

min minimum value

ref reference quantity

Superscripts

(·)′ fluctuations around the mean value

〈·〉 time-averaged

(̂·)k Fourier coefficient at wavenumber k

(·) linear filter

(·)∗ complex conjugate

1. Introduction

Natural convection in differentially heated cavities (DHC) has been the sub-

ject of numerous studies over the past decades. They model many engineering
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applications such as ventilation of rooms, cooling of electronic devices or air flow

in buildings. Simultaneously, since the pioneering works by Vahl Davis [1] and

Ghia et al. [2], flows in enclosed cavities has served as prototype for the develop-

ment of numerical algorithms (examples of thereof can be found in [3, 4, 5, 6],

for instance). A schema of the DHC problem is displayed in Figure 1 (left).

An accurate prediction of the flow structure and the heat transfer in such a

configuration is of great interest and despite the great effort devoted (see for

instance [7, 8, 9, 10, 11, 12]) for an accurate turbulence modeling of this con-

figuration it remains a great challenge. This is mainly due to the complex

behavior exhibit (see Figure 1, right): the boundary layers remain laminar in

their upstream part up to the point where the waves traveling downstream grow

up enough to disrupt the boundary layers ejecting large unsteady eddies. The

mixing effect of these eddies results in almost isothermal hot upper and cold

lower regions, and forces the temperature drop in the core of the cavity to occur

in a smaller region. Therefore, an accurate prediction of the transition point

is crucial to determine correctly the flow structure in the cavity. However, the

high sensitivity of the thermal boundary layer to external disturbances makes

it difficult to predict. In conclusion, the DHC is a challenging configuration for

turbulence modeling since areas with completely different regimes coexist and

interplay.

1.1. DNS and regularization modeling of turbulence

Here, the adopted configuration corresponds to an air-filled (Pr = 0.7) cavity

of height aspect ratio A3 = 5 at Rayleigh number Ra = 4.5 × 1010 (based

on the cavity height, L3). This resembles the pioneering experimental set-up

performed by Cheesewright et al. [13] in the mid-80s. Since then, their results

have been widely used for benchmarking purposes to validate turbulence models

(see [14, 15, 16, 17, 18, 19, 11, 12], for instance); therefore, the availability

of accurate numerical results is of extreme importance. To that end, a new

complete direct numerical simulation (DNS) has been performed. To do so, the

incompressible Navier-Stokes (NS) equations have been discretized preserving

the (skew)symmetries of the underlying continuous differential operators [20].

In this way, certain fundamental properties such as the inviscid invariants -

kinetic energy, enstrophy (in 2D) and helicity (in 3D) - are exactly preserved in
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a discrete sense. However, DNS at high Ra numbers is not feasible. Therefore,

a dynamically less complex mathematical formulation is needed.

In the quest for such a formulation, we consider regularizations [21] (smooth

approximations) of the convective term that preserve the symmetry and con-

servation properties exactly. This requirement yielded a novel class of regu-

larizations [22] that restrain the convective production of smaller and smaller

scales of motion in an unconditionally stable manner. The numerical algorithm

used to solve the governing equations preserves the symmetries and conservation

properties too [20] and is therefore well-suited to test the proposed simulation

model. The regularization makes use of a normalized self-adjoint filter. In the

initial tests [22, 23], the performance of the method was tested keeping the ratio

filter length/grid width constant. Thus, this parameter had to be prescribed

in advance and therefore a convergence analysis was needed. Later, to circum-

vent this, a parameter-free approach was proposed [24]. To do so, we proposed

to determine the regularization parameter (the local filter length) dynamically

from the requirement that the vortex-stretching must be stopped at the scale

set by the grid. However, in this way, some of the basic properties of the fil-

ter (i.e., symmetry, normalization, incompressibility ...) are lost. Therefore,

they need to be restored by explicitly forcing them. However, such a poste-

riori modifications are artifacts that may change the dynamics of the system.

To minimize such effects, a new family of discrete linear filters that preserve

such list of properties by construction has been recently proposed in [25]. They

are based on polynomial functions of the discrete Laplacian operator. In this

way, a list of properties is automatically satisfied per se: (i) the filter is exactly

symmetric and normalized, (ii) the diffusive nature of the filter implies that it

does not introduce any non-physical transport between scales and (iii) a filtered

divergence-free vector remains ’almost’ incompressible. Then, the exact coeffi-

cients follow from the requirement that the damping of all triadic interactions

at the smallest scale must become virtually independent of the interacting pairs.

The latter is a crucial property to control the subtle balance between convection

and diffusion. Here, the performance of the proposed method is tested for the

aforementioned DHC problem.
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The rest of the paper is arranged as follows. In the next section, the test-case

is defined and the numerical methods used for the DNS are briefly outlined.

Then, most relevant results are presented and discussed. In Section 3, the

symmetry-preserving regularization modeling is presented. Discussion is mainly

focused on two fundamental issues: (i) the criterion to determine the local filter

length and (ii) the construction of suitable discrete linear filters. In Section 4,

the performance of the proposed method is evaluated for the aforementioned

DHC problem by direct comparison with the DNS data. Finally, relevant results

are summarized and conclusions are given.

2. Direct numerical simulation

2.1. Governing equations and numerical methods

The dimensionless incompressible NS equations coupled with the tempera-

ture transport equation are considered

∂tu + C (u,u) = Du −∇p + f , (1)

∂tθ + C (u, θ) = Pr−1Dθ, (2)

where the convective and diffusive terms are respectively defined by C (u, φ) =

(u·∇)φ and Du = PrRa−1/2∆u, the body force vector is given by f = (0, 0, P rθ)

(Boussinesq approximation) and the incompressibility constraint reads ∇·u = 0.

Notice that with the reference quantities, Lref = L3 and tref = (L2
3/α)Ra−1/2,

the vertical buoyant velocity, Pr1/2, and the characteristic dimensionless Brunt-

Väisälä frequency, N , are independent of the Ra. The geometry of the problem

is displayed in Figure 1 (left). The computational domain is L1 × L2 × L3 in

the spanwise and the two wall-normal directions, respectively. The cavity is

subjected to a temperature difference ∆θ across the vertical isothermal walls

(θ(x1, 0, x3) = 0.5, θ(x1, 1/A3, x3) = −0.5) while the top and bottom walls are

adiabatic. The no-slip boundary condition is imposed on the velocity at the four

closing walls, x2 = 0, x2 = 1/A3, x3 = 0, x3 = 1. Periodic boundary conditions

are applied in the x1-direction.

The incompressible NS equations (1) are discretized on a staggered Carte-

sian grid using symmetry-preserving discretizations [20]. Shortly, the temporal
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Figure 1: DHC schema (left) and instantaneous isotherms corresponding to the simulation on
MeshA (right).

evolution of the spatially discrete staggered velocity vector, uh, is governed by

the following operator-based finite-volume discretization of Eq.(1)

Ω
duh

dt
+ C (uh)uh + Duh − Mtph = 0h, (3)

where the discrete incompressibility constraint is given by Muh = 0h. The

diffusive matrix, D, is symmetric and positive semi-definite; it represents the

integral of the diffusive flux, −PrRa−1/2∇u·n, through the faces. The diagonal

matrix, Ω, describes the sizes of the control volumes and the approximate, con-

vective flux is discretized as in [20]. The resulting convective matrix, C (uh),

is skew-symmetric, i.e. C (uh) = −Ct (uh). Regarding the time evolution of

the cell-centered temperature, θh , it is discretized in the same way. Then, for

the temporal discretization, a second-order explicit one-leg scheme is used for

both the convective and diffusive terms. Finally, the pressure-velocity coupling

is then solved by means of a classical fractional step projection method [26]:

a predictor velocity, u
p
h, is explicitly evaluated without considering the con-

tribution of the pressure gradient. Then, by imposing the incompressibility

constraint, Mun+1
h = 0h, it leads to a Poisson equation for pn+1

h to be solved

once each time-step,

Lpn+1
h = Mu

p
h with L = −MΩ−1Mt, (4)

where the discrete Laplacian operator, L, is represented by a symmetric nega-
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tive semi-definite matrix. For details about the numerical algorithms and the

verification of the DNS code the reader is referred to [27].

2.2. Verification of the simulation

Results are averaged over the three statistically invariant transformations

(time, x1-direction and central point symmetry). Since no subgrid-scale model

is used, the grid resolution and the time step must be fine enough to capture

well all the relevant turbulent scales. Moreover, the domain in the periodic

direction, L1, must be long enough, keeping an adequate mesh resolution, ∆x1,

to ensure that numerical solution is not affected. Finally, the starting time for

averaging and the time integration period must also be long enough to evaluate

the flow statistics properly.
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Figure 2: Two-point correlations of the spanwise velocity, u1, at five monitoring locations.

In a preliminary simulation, we have used a 128×160×432 (MeshB) Carte-

sian staggered grid to cover the computational domain (see Table 1 for details).

In this case, spatial discretization is second-order accurate [20] and the span-wise

length was set to A1 = 0.2. This must be long enough to ensure that turbulence

fluctuations are uncorrelated at a separation of one half-period, A1/2. Figure 2

displays spanwise two-point correlation analysis of the spanwise velocity com-

ponent, Ru1u1
, at five different (x1, x2)-locations. In all cases, the correlation

values fall to zero for separations lower than one half-period. Actually, results

show that A1 ≈ 0.1 suffices. Similar results are obtained for other (x1, x2)-

locations and variables. Time-averaged results obtained with MeshB suggested

that the transition of the vertical boundary layer may occur at more down-

stream positions that those observed in the experiments [28] and numerical
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Total Average

Case N1 N2 N3 A1 γ2 γ3 (∆x2)min (∆x2)
+
min ∆t time time

MeshA 128 318 862 0.1 2.0 0.0 4.67 × 10−5 . 0.4 2.85 × 10−4 420 215
MeshB 128 160 432 0.2 2.0 0.0 9.33 × 10−5 . 0.8 1.38 × 10−3 425 180
MeshC 32 80 216 0.1 2.0 0.0 1.87 × 10−4 . 1.6 4.57 × 10−3 800 400
RM1 8 20 54 0.1 2.0 1.0 8.93 × 10−4 . 7.6 3.56 × 10−2 800 400
RM2 8 14 38 0.1 2.3 1.0 9.25 × 10−4 . 7.9 5.44 × 10−2 800 400

Table 1: Physical and numerical simulation parameters.

studies [11, 12]. The accurate prediction of this point is the key ingredient

to determine correctly the whole flow configuration in the cavity (for details

the reader is referred to [24] and references therein). Then, in order to con-

firm the results obtained with MeshB, a new DNS simulation with a finer grid

128×318×862 (MeshA) and A1 = 0.1 has been carried out (see Table 1 for de-

tails). In this case, the spatial discretization is fourth-order accurate [20]. Grid

spacing in the period x1-direction is uniform whereas the wall-normal points are

distributed using hyperbolic-tangent functions,

(xi)k =
1

2

Li

L3

(
1 +

tanh {γi (2 (k − 1) /Ni − 1)}
tanhγi

)
, k = 1, . . . , Ni + 1. (5)

The spatial resolution in these two directions has been determined by means

of a systematic procedure based on successive mesh refinements (see [27], for

details). The mesh concentration factors, γ2 and γ3, are computed to minimize

the flow gradients on the computational space for a set of representative in-

stantaneous maps. The region most sensitive to the grid resolution is near the

vertical isothermal wall.

In the present simulation (MeshA), the first grid point is located in wall-

units at x+
2 . 0.4 (see Table 1). Note that the friction velocity, uτ , is computed

from the local wall shear stress. Regarding the grid resolution in the periodic

direction, it needs to be adjusted to ensure that the smallest scales are well-

resolved. To do so, one-dimensional energy spectra at several monitoring points

have been used to check the suitability of ∆x1 = A1/N1.
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Figure 3: Instantaneous temperature field in a x1 = cte plane. The isotherms are uniformly
distributed from −0.5 to 0.5. Left: general view of the cavity. Right: Time sequence of the
top part of the cavity.

2.3. Results and discussion

Instantaneous temperature fields displayed in Figure 3 illustrate the inher-

ent flow complexity of this configuration. Namely, the vertical boundary lay-

ers remain laminar in their upstream part up to the point where the waves

traveling downstream grow up enough to disrupt the boundary layers eject-

ing large unsteady eddies. The mixing effect of these eddies results in almost

isothermal hot upper and cold lower regions, and forces the temperature drop

in the core of the cavity to occur in a smaller region. Turbulent fluctuations are

only significant in the downstream part of the boundary layers for x3-locations

downstream the transition point (see Figure 4, right). Therefore, an accurate

prediction of the flow structure in the cavity lies on the ability to correctly lo-

cate the transition to turbulence. However, the high sensitivity of the thermal

boundary layer to external disturbances makes it difficult to predict (see [11],

for instance). Regarding this point, significant discrepancies can be found in

the literature. The experimental results performed by Cheesewright et al. [28]

suggested that the transition point in the hot wall occurs around x3 ≈ 0.2.

However, recent numerical studies [11, 12] are not conclusive at all and their

solutions are strongly dependent to meshing parameters and/or the turbulence
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model(s) adopted. However, in general, they tend to predict the transition point

at much more upstream positions than the one observed for MeshA.

The time-averaged temperature field and the streamlines of the averaged flow

together with some turbulent statistics are displayed in Figure 4. These results

provide clear evidence of the crucial role of determining the transition point at

the vertical boundary layer. Adopting the same criterion than in [27], the tran-

sition point, xTr
3 , corresponds to the x3-position of σ (Nu)max on the vertical

hot wall (see Figure 6). This leads to a value, xTr
3 ≈ 0.674 for MeshA (0.697 for

MeshB), much more downstream than those observed in the above-mentioned

experiments and previous numerical studies. Similar discrepancies have also

been observed for a turbulent DHC of height aspect ratio 4 when comparing

RANS results [12] with DNS results [27]. Also for aspect ratio 4, an experi-

mental study has been recently carried out [29] with Ra up to 1.2 × 1011. For

the highest Ra, the transition point was observed at xTr
3 ≈ 0.3 (see Figure 11

in [29]) whereas for the DNS at Ra = 1011 performed in [30] the transition was

observed much more downstream (xTr
3 ≈ 0.61, see also Figure 1 in [30]). This

big gap cannot be attributed to the relatively small difference between Rayleigh

numbers. The cause of these discrepancies has not been clarified yet and is

currently under investigation. Regarding the experimental set-up performed by

Cheesewright et al. [13], they may be attributed to the non-Boussinesq effects.

It is generally accepted that for air at room temperature the Boussinesq approx-

imation is valid for ∆T . 20K [29, 31]. However, the temperature difference in

the experimental set-up was significantly higher, namely ∆T ≈ 46K [13]. These

effects together with the wall thermal radiation and the heat transfer coupling

with the walls should be taken into account for a direct comparison with the

experimental results.

Thermal stratification in the core of the cavity is one of the basic questions

that has remained opened for several decades. Comparison between numeri-

cal and experimental results (see [32] for a detailed review) for a wide range

of width/height aspect ratios give completely different results. Experimental

studies yield dimensionless stratification of about 0.5 whereas numerical simu-

lations predict values close to 1. Recently, it has been shown that the origin of
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such discrepancies is the thermal radiation effects of the front and rear closing

walls [33]. In the present work, the thermal stratification is also very close to

unity (see Figure 5 and Table 2). Regarding this issue, the prediction of the

transition point of the vertical boundary layer also plays a very important role.

An example of thereof can be found in [34] where a set of DNS simulations of an

air-filled DHC of aspect ratio 4 from weak to fully developed turbulence was pre-

sented. Significant changes were observed for the two highest Ra (3× 1010 and

1011, respectively) for which the transition point at the boundary layers clearly

moves upstream. Such displacement increases the top and bottom regions of

disorganization shrinking the area in the cavity core where the flow is stratified.

Consequently, thermal stratification values significantly greater than unity were

measured (1.25 and 1.41, respectively). To give new light to this quest, a new

DNS at Ra = 3× 1011 is currently being performed. For this new case, thermal

stratification is ≈ 1.3 and the transition point locates at xTr
3 ≈ 0.55. Although

these are still preliminary results we do not expect significant changes. Hence,

again the discrepancies between numerical and experimental data are of the

same nature. More importantly, it seems that the thermal stratification tends

to reduce after the peak value of 1.41 observed at Ra = 1011.

Regarding the heat transfer, the averaged local Nusselt number and its stan-

dard deviation for meshes MeshA and MeshB is displayed in Figure 6. Only

slight differences are observed around the transition point. As expected, fluctu-

ations are only significant in the downstream part of the boundary layer whereas

the upstream remains laminar. The overall Nusselt number obtained with Me-

shA is 154.5 (155.7 for MeshB). This value is in very good agreement with the

value 154.8 predicted by the power-law correlation proposed in [30].

Another important feature of this kind of configuration is the presence of

internal waves. Although in the cavity core the averaged velocity (and its fluctu-

ations) are much smaller compared with those observed in the vertical boundary

layers, simulations show that in this region isotherms oscillate around the mean

horizontal profile. As mentioned-above, the cavity core remains well stratified

(see Figures 4 and 3) and, therefore, this phenomenon can be attributed to in-

ternal waves. This can be confirmed by analyzing the Nusselt number through

12



Case 〈Nu〉 µNu xTr
3 C N

MeshA 154.5 0.156 0.674 0.148 1.002 0.133
MeshB 155.7 0.155 0.697 0.144 1.038 0.136

Table 2: Nusselt number and correlations.

the vertical mid-plane, Nuc. Time evolution and the normalized density power

spectra are displayed in Figures 7 and 8, respectively. The peaks in the spectra

are also reported in Table 2 together with the dimensionless Brunt-Väisälä fre-

quency, N = (CPr)0.5/(2π), where C is the dimensionless stratification of the

time-averaged temperature. Both values are quite similar confirming that in-

ternal waves are permanently excited by the eddies ejected form the vertical

boundary layer. Hereafter the numerical solution obtained with the MeshA will

be referred to as the DNS solution.

Figure 4: Averaged solutions. From left to right: streamlines, 〈θ〉, turbulent kinetic energy
and 〈θ′θ′〉. The isotherms are uniformly distributed from −0.5 to 0.5.

3. Turbulence modeling: C4-regularization

Despite the rapidly growing computing power offered by modern high perfor-

mance supercomputing systems, direct simulations at high Rayleigh (or Reynolds)

numbers are not feasible because the convective term produces far too many

13
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relevant scales of motion. Therefore, a dynamically less complex mathematical

formulation is needed. In the quest for such a formulation, we consider regu-

larizations [35, 21, 36] of the non-linearity. The first outstanding approach in

this direction goes back to Leray [37]. The Navier-Stokes-α model also forms

an example of regularization modeling (see [21, 38], for instance). The regular-
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ization methods basically alter the convective terms to reduce the production

of small scales of motion. In doing so, R.Verstappen [22] proposed to preserve

exactly the symmetry and conservation properties of the convective terms. This

requirement yielded a family of symmetry-preserving regularization models: a

novel class of regularizations that restrains the convective production of smaller

and smaller scales of motion in an unconditionally stable manner, meaning

that the velocity cannot blow up in the energy-norm (in 2D also: enstrophy-

norm). In our previous works, we restrict ourselves to the C4 approximation:

the convective term in the NS equations (1) is then replaced by the following

O(ǫ4)-accurate smooth approximation C4(u,v) given by

C4 (u,v) = C (u,v) + C (u,v′) + C (u′,v) (6)

where the prime indicates the residual of the filter, e.g. u′ = u − u, which can

be explicitly evaluated, and (·) represents a symmetric linear filter with filter

length ǫ. Notice that the regularization method is fourth-order accurate respect

to ǫ. Hence, it does not affect the order of convergence unless the accuracy

of the underlying schemes is higher than four. Moreover, note that the C4

approximation is also a skew-symmetric operator like the original convective

operator. Hence, the same inviscid invariants as for the original NS equations

are preserved for the new set of partial differential equations. For further details

about the C4 regularization method the reader is referred to [22, 24].

Regularization makes use of a linear filter. In general, theoretical analysis

on regularizations simply assume that the filter is self-adjoint and commutes
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with differential operators. Traditionally, in α-type regularizations an inverse

Helmholtz operator is used as a filter. Examples of thereof can be found in [39,

40, 22, 41, 42, 43], for instance. However, this is not enough if a regularization

wants to be used as a turbulence model. In such a case, we expect it to provide

’very similar’ numerical results than those obtained from a DNS but at strongly

reduced computational effort. In authors’ opinion, the success of regularization

modeling basically relies on constructing appropriate filters. To do so, two basic

issues need to be carefully addressed. Firstly, a criterion to determine the filter

length. This should depend on the local (in space and time) flow conditions and

should be able to capture well basic flow features (near-wall behavior, laminar,

2D flows...). Second point refers to discretization of the filter itself. In doing

so, a list of basic properties is required for a discrete filter, F. Namely,

(i) Symmetry, ΩF = (ΩF)
t
.

(ii) Normalization, i.e. constant velocity vector is unaffected, F1h = 1h.

(iii) Given an incompressible velocity field, uh (Muh = 0h), Muh = 0h.

(iv) Low-pass filtering, i.e. only high-frequency components are effectively damped.

(v) The damping effect, f4(Ĝkc
, Ĝp, Ĝq) must be virtually independent of the

interacting pair (p, q = kc − p); that is Eq.(11) need to be satisfied.

The last property is listed here for convenience although the damping function,

f4, has not been introduced yet. Further details about the properties of the

linear filter can be found in [25]. These two issues are briefly addressed in the

next subsections.

3.1. Stopping the vortex-stretching mechanism

Taking the curl of the NS equations (1) with the convective term replaced

by Eq.(6) leads to

∂tω + C4 (u,ω) = C4 (ω,u) + Dω, (7)

where ω = ∇×u is the vorticity. This equation resembles the vorticity equation

that results from the NS equations: the only difference is that C is replaced by

its regularization C4. If it happens that the vortex-stretching term C4 (ω,u) in
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Eq.(7) is so strong that the dissipative term Dω cannot prevent the intensifica-

tion of vorticity, smaller vortical structures are produced. Left-multiplying the

vorticity transport Eq.(7) by ω, we can obtain the evolution of |ω|2. In this

way, the vortex-stretching and dissipation term contributions to ∂t|ω|2 result to

ω · C4 (ω,u) and ω · Dω, respectively. In order to prevent a local intensification

of vorticity, dissipation must dominate the vortex-stretching term contribution

at the smallest grid scale, h. In spectral space, this requirement leads to the

following inequality

1

2

(
ω̂kc

· C4 (ω,u)
∗
kc

+ C4 (ω,u)kc
· ω̂∗

kc

)

ω̂kc
· ω̂∗

kc

≤ Pr√
Ra

k2
c , (8)

where kc = π/h and the vortex-stretching term, C4 (ω,u)kc
, is given by

C4 (ω,u)kc
=

∑

p+q=kc

f4(Ĝkc
, Ĝp, Ĝq)ω̂piqûq, (9)

where

f4(Ĝk, Ĝp, Ĝq) = ĜkĜp + ĜkĜq + ĜpĜq − 2ĜkĜpĜq. (10)

Note that f4(Ĝkc
, Ĝp, Ĝq) depends on the filter length, ǫ, and in general, on the

wavevectors p and q = kc − p. This makes very difficult to control the damping

effect because f4 cannot be taken out of the summation in (9). To avoid this,

filters should be constructed from the requirement that the damping effect of

all the triadic interactions at the smallest scale must be virtually independent

of the interacting pairs, i.e.

f4(Ĝkc
, Ĝp, Ĝq) ≈ f4(Ĝkc

). (11)

This is a crucial property to control the subtle balance between convection and

diffusion in order to stop the vortex-stretching mechanism. This point was

addressed in detail in [25]. The overall damping effect at the smallest grid scale,

f4(Ĝkc
), follows straightforwardly

f4(Ĝkc
) =

(2Pr/
√

Ra)k2
c ω̂kc

· ω̂∗
kc

ω̂kc
· C (ω,u)

∗
kc

+ C (ω,u)kc
· ω̂∗

kc

, (12)
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with the condition that 0 < f4(Ĝkc
) ≤ 1 provided that Eq.(11) is satisfied.

However, the method needs to be applied on a physical domain in R
3. To

that end, a novel approach has been recently proposed in [44]. Shortly, the

overall damping effect, f4(Ĝkc
) is expressed as a function of the invariants of

the local strain tensor, S(u) = 1/2(∇u+∇ut). Recalling that the velocity field,

u, is solenoidal (∇·u = 0); tr(S) = 0 and the characteristic equation of S reads

λ3 + Qλ + R = 0, (13)

where R = −1/3tr(S3) = −det(S) = −λ1λ2λ3 and Q = −1/2tr(S2) = −1/2(λ2
1+

λ2
2 + λ2

3) are the invariants of S, respectively. We order the eigenvalues of S by

λ1 ≤ λ2 ≤ λ3. Let us now consider an arbitrary part of the flow domain Ω with

periodic boundary conditions. The inner-product is defined in the usual way:

(a, b) =
∫
Ω

a · bdΩ. Then, taking the L2 inner-product of (1) with −∆u leads to

the enstrophy equation

1

2

d

dt
|ω|2 = (ω, C (ω,u)) − Pr√

Ra
(∇ω,∇ω) , (14)

where |ω|2 = (ω,ω). Using the results obtained by [45] and following the same

arguments than in [46], it can be shown that the vortex-stretching term can be

expressed in terms of the invariant R of S(u)

(ω, C (ω,u)) =

∫

Ω

ω · Sω = −4

3

∫

Ω

tr(S3)dΩ = 4

∫

Ω

RdΩ, (15)

and the L2(Ω)-norm of ω in terms of the invariant Q

|ω|2 = −4

∫

Ω

QdΩ. (16)

Then, the diffusive term can be bounded by

(∇ω,∇ω) = − (ω,∆ω) ≤ −λ∆ (ω,ω) , (17)

where λ∆ < 0 is the largest (smallest in absolute value) non-zero eigenvalue

of the Laplacian operator ∆ on Ω. If we now consider that the domain Ω is
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a periodic box of volume h, then λ∆ = −(π/h)2. In a numerical simulation h

would be related with the local grid size. Then, to prevent a local intensification

of vorticity, i.e. |ω|t ≤ 0, the following inequality must be hold

f4(Ĝkc
)
(ω, Sω)

(ω,ω)
≤ −λ∆Pr√

Ra
, (18)

where, in this case, kc = π/h. This inequality is the analog to Eq.(12) in physical

space. Additionally, the dynamics of large scales should not be significantly

affected by the (small) scales contained within the domain Ω. This may happen

when energy is transferred back to large scales, i.e. (ω, Sω) < 0. Hence, to

confine the dynamics of small scales suffices to modify inequality (18) by simply

taking the absolute value of its left-hand-side. Then, from Eqs. (15)-(18) and

recalling that 0 < f4 ≤ 1 a proper definition of the overall damping factor at

the smallest grid scale follows

f4(Ĝkc
) = min

{
λ∆Pr√

Ra

Q

|R| , 1
}

. (19)

3.2. Numerical methods

The regularization C4 is constructed in a way that the symmetry properties of

the convective operator are exactly preserved [22]. Of course, the same should

hold for the numerical approximations that are used to discretize them. For

this, the basic ingredients are twofold: (i) a symmetry-preserving discretization

of the original NS equations and (ii) a normalized self-adjoint linear filter. The

first issue has already been addressed in Section 2.1 where numerical methods

for DNS were presented. Actually, both spatial and temporal discretizations

are exactly the same than those used for DNS. The second issue is more cum-

bersome. This point has been recently addressed in [25] where a new family of

discrete linear filters was proposed. To sketch the idea behind, linear filters are

based on polynomial functions of the discrete diffusive operator,

F = I +
M∑

m=1

dmD̃m with D̃ = −(Pr−1Ra1/2)Ω−1D, (20)

where the boundary conditions that supplement the NS equations (1) are ap-

plied in (20) too. Notice that the factor Pr−1Ra1/2 cancels out the diffusive
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constant inside the operator D defined in Eq.(3). Here we restrict ourselves to

the case with M = 2 because it offers a good compromise between accuracy

and computational cost. No significant difference has been observed respect to

the case with M = 3 whereas the results obtained with M = 1 are significantly

worse. Respect to the version originally proposed in [25], an additional restric-

tion needs to be imposed; namely, the coefficient d2, must be a semi-definite

function. This follows from the requirement imposed by filtering in the phys-

ical space: in contrast with the spectral approach given by (12), the damping

factor at the smallest grid scale, f4(Ĝkc
), and therefore, the set of coefficients

{d1, d2} will also depend on the spatial position. Following the same notation

than in [25], the resulting expression for the filter with M = 2 is given by

d1 = − Ĝkc
− 1

2
(
2Ĝkc

+ 1
) d2 =

2Ĝ2
kc

− 3Ĝkc
+ 1

16
(
2Ĝkc

+ 1
) if 0 ≤ Ĝkc

< 1/2,

d1 =
1

4
− Ĝkc

4
d2 = 0 if 1/2 ≤ Ĝkc

≤ 1,

(21)

where Ĝkc
is the value of transfer function at the smallest grid scale. The family

of filters proposed in (20) is suitable for general multi-dimensional problems. In

such a case, the discrete diffusive operator for a cell-centered scalar field, φh,

reads

D̃ = −(Pr−1Ra1/2)Ω−1
c D with D = (PrRa−1/2)MΩ−1

s Mt, (22)

where the subindices c and s are used here to distinguish between cell-centered

and staggered operators. It must be noted that the diffusive matrix, D, is by

construction, symmetric and positive definite and its action on an arbitrary

centered cell k of volume (Ωc)k,k is given by

[Dφh]k =
Pr√
Ra

∑

f∈Ff (k)

(φc2 − φc1) Af

δnf
, (23)

where Ff (k) is the set of faces bordering the cell k, Af is the area of the face f ,

and c1 and c2 are the cells adjacent to the face f . The length δnf = −→nf · −−→c1c2,

where −→nf is the unitary normal vector of face f and
−−→
c1c2 is the vector between

centroids of cells c1 and c2 (see Figure 9, right). Finally, the volume of the
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Figure 9: Left: face normal and neighbor labeling criteria. Right: definition of volumes of the
face-normal velocity cell.

face-normal cell at the face f , (Ωs)f , is given by (Ωs)f = Afδnf .

However, since vortex-stretching must be restrained in the whole spatial do-

main, the set of coefficients {d1, d2} would follow from the minimum value of f4.

Doing so, we could guarantee that vortex-stretching is effectively stopped; how-

ever, the damping effect in some parts of the domain would be indeed excessive.

Alternatively, here we propose to construct filters with the general form

F = I +
M∑

m

(
D̃m

)m

with D̃m = −Ω−1
c M (Λm)

1/m
J2Ω−1

s Mt, (24)

where J and Λm are diagonal matrices. J contains the distances between adja-

cent nodes and Λm represents the local coefficients dm arising given by Eq.(21)

[J]f,f = δnf and [Λm]f,f = (dm)f . (25)

In this way, local values of dm can be used while keeping all the above-mentioned

global properties automatically satisfied. In short, (i) and (ii) follow from the

symmetry of (ΩcD̃m) = (ΩcD̃m)t and the fact that the unity vector lies on

the kernel of Mt, i.e. Mt1h = 0h. With regard to the property (iii), it is

ensured by projecting the filtered velocity field. The latter requires to solve an
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additional Poisson equation. The algorithm to determine the discrete filter, F,

is summarized in Algorithm 1, whereas the global algorithm to compute the

C4-regularization modeling is outlined in Algorithm 2.

Algorithm 1

1. Compute the invariants Q and R.

2. Determine the local value of f4(Ĝkc
) from Eq.(19) with (λ∆)f = −(π/δnf )2.

3. Assuming the the condition (11) is satisfied and recalling that Ĝ0 = 1, Ĝkc

follows from Eq. (10): 2Ĝkc
− Ĝ2

kc
≈ f4(Ĝkc

).

4. Determine the local values for d1 and d2 given by Eq.(21).

5. Construct a symmetric discrete filter, F, from the formula (24) with M = 2.

Algorithm 2

1. Compute the discrete filter, F, following the Algorithm 1.

2. Compute uh and its residual: uh = Fuh and u′
h = uh − uh.

3. Solve the following Poisson equation: −MΩ−1
s Mtqh = Muh.

4. Compute the projected (divergence-free, Mu
p
h = 0h) velocity field, u

p
h =

uh + Ω−1
s Mtqh and its residual (up

h)′ = uh − u
p
h.

5. Compute C4 in a discrete sense:

C4 (uh,uh) = C (up
h)uh + F (C (up

h)u′
h + C ((up

h)′)uh) (26)

The computational cost to determine the discrete filter, F, by the Algo-

rithm 1 is not negligible. The question of whether or not the discrete filter

needs to be updated at each time step was addressed in [24]. Direct comparison

between results obtained updating at each time-step and results updating up

to every temporal unit revealed no significant differences. Hence, in the view

of lower costs, the discrete filter, F, is recomputed every 0.5 temporal units.

Therefore, the step 1 of the Algorithm 2 becomes computationally inexpensive.

This is not the case for the rest of the algorithm. The discrete filter, F, must

be applied twice (steps 2 and 5). Since M = 2, the computational cost of fil-

tering is about 3 times the cost of computing the diffusive operator. Moreover,

the convective operator must be computed 3 times in the final step 5 instead

of only once. However the most time consuming parts are the steps 3 and 4

where uh is projected onto a divergence-free space and therefore, and additional

Poisson equation must be solved (step 3). Finally, two residuals are computed

in steps 2 and 5. In practice, compared with the computational cost of a no-
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model simulation on the same grid, the C4 regularization is about twice more

expensive.

4. Performance of the C4-regularization for a turbulent DHC

In the present work, we test the performance of the C4-regularization method

in conjunction with the new family of discrete filters proposed in [25] by means

of direct comparison with the DNS results presented in Section 2. We have

firstly considered two coarse meshes consisting of 8 × 14 × 38 (RM2) and 8 ×
20 × 54 (RM1) grid points, respectively (see Table 1 for details). The meshes

are constructed keeping the same grid points distribution as for the DNS but

with much coarser spatial resolution. Notice that for the coarsest mesh (RM2)

the concentration parameter in the x2-direction has been slightly modified in

order to increase the grid resolution near the vertical walls. The domain size in

the periodic direction is the same as for the DNS, i.e. A1 = 0.1.

DNS RM1 RM2
Mesh 128 × 318 × 862 8 × 20 × 54 8 × 14 × 38

No
model

C4 No
model

C4

Nu 154.5 223.8 153.4 207.7 152.3
Numax 781.5 520.6 709.4 500.4 680.0
Numin 10.5 60.4 7.1 71.0 6.1

Table 3: The overall, the maximum and the minimum of the averaged Nusselt number.

In Table 3, the overall Nusselt number, Nu, together with the maximum

and minimum local Nusselt numbers obtained with the coarse meshes RM1 and

RM2 are compared with the DNS reference solution computed on MeshA. Re-

garding the Nu, C4 solutions are able to provide good predictions whereas the

results obtained with the same meshes but without any modeling are very far

from the reference value Nu = 154.5. With regard to Numax and Numin, this

tendency becomes even more evident. These two quantities are of interest be-

cause they occur in two clearly different parts of the vertical boundary layers.

Maximum values occur in the upstream part of the boundary layer where it is

still almost laminar whereas minimum values are observed at the most down-

stream part of the boundary layer where it has become fully turbulent (see
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Figure 1, right). Although significant improvements are observed for the regu-

larized solutions the results for the Numax are not completely satisfactory yet.

This is probably due to the insufficient grid resolution that does not allow to

properly capture the Nusselt peak in the upstream part of the vertical boundary

layer.
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Figure 10: Top: The overall Nusselt number and the centerline stratification. Bottom: The
maximum vertical velocity and the wall shear stress scaled by Ra−1/4 at the horizontal mid-
height plane. Results have been obtained for 50 randomly generated grids. Results obtained
with the MeshC are also displayed for comparison.

In order to confirm the reliability of the model on coarse grids, the same DHC

problem has been solved on a series of 50 randomly generated meshes where the

number of grid points varies within the limits: 8 ≤ N1 ≤ 12, 16 ≤ N2 ≤ 28

and 44 ≤ N3 ≤ 70, respectively. The concentration parameters, γ2 and γ3 are

the same than those used for the mesh RM1 (see Table 1). The number of

grid points in each direction has been randomly generated irrespectively of the

number of points in the other two directions; therefore, some of the numeri-

cal experiments correspond to highly skewed meshes. Results for the overall

Nusselt and the centerline stratification are displayed in Figure 10 (top). The
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very good prediction of Nu for all the tested configurations is remarkable; in

contrast, the results obtained without modeling substantially differ from the

reference solution. Even more important is the fairly good prediction of the

stratification. Notice the inaccuracy of the results obtained with the relatively

fine MeshC(32× 80× 216). Similar behavior is observed in Figure 10 (bottom)

where the results for the maximum vertical velocity and the wall shear stress at

the horizontal mid-plane, x3 = 0.5, are displayed. These two quantities provide

valuable information about whether the boundary layer is correctly captured

by the model. The C4 solutions predict quite well the (0.430, 0.227) reference

solution whereas both quantities are clearly under-predicted when the model

is switched off. This behavior can also be observed in the averaged vertical

velocity profile displayed in Figure 11 (top). For the results obtained without

modeling, the vertical boundary layer is too thick, whereas with the C4 regular-

ization, the solutions obtained with the meshes RM1 and RM2 agree well with

the DNS solution. It is noticeable that even for the relatively fine MeshC (see

Table 1) results without model are still far from the reference solution. Figure 11

(bottom) depicts essentially the same for the averaged temperature profile.

The local Nusselt number distributions are displayed in Figure 12. Regular-

ized solutions show a very good agreement except for the transition point. In

contrast, the solution without model obtained with the mesh RM1 is not even

able to capture well the laminar part of the boundary layer. Even more impor-

tant, the no-model solution computed with the relatively fine MeshC (32×80×
216) is still far from the DNS reference solution. Notice that in this case the grid

resolution in each spatial direction is ’only’ twice coarser than the MeshB (see

Table 1); however, it does not suffice to capture well the transition point at the

vertical boundary layer. The latter is in good agreement with the ’coarse’ DNS

results obtained by [11] using similar grid resolutions. At this point, it must be

recalled that the numerical discretization itself is also a regularization (see Sec-

tion 2.1). The numerical schemes used to discretize the governing equations are

unconditionally stable and the discrete operators are constructed to mimic the

underlying differential operators. The energy of the resolved scales of motion

is convected in a stable manner, i.e. the discrete convective operator transports

energy from a resolved scale of motion to other resolved scales without dissi-
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pating any energy, as it should be from a physical point-of-view. Therefore,

their solution (ǫ = 0) constitutes an excellent starting point for any turbulence

model. For a detailed explanation, the reader is referred to [20].

Regarding the flow dynamics, the time evolution of the Nusselt number at

26



the vertical mid-plane together with its normalized density power spectrum are

displayed in Figure 13. These results correspond to the coarsest mesh RM2 (for

the mesh RM1, the results are almost identical). The results are very similar

to those obtained by DNS (see Figures 7 and 8). In this case, the peak in

the spectrum is located at slightly lower frequencies. This is probably due to

the fact that the stratification is also slightly lower, C ≈ 0.9. However, it is

remarkable that even for the coarsest mesh the model is able to capture well

the internal wave motion. Horizontal profiles at the mid-height plane of the

turbulent kinetic energy, k = 〈u′u′〉 and the temperature variance, 〈θ′θ′〉, are

displayed in Figure 14. An accurate prediction of turbulent quantities at this

part of the vertical boundary layer is rather difficult because it is located in an

area of transition from the laminar upstream to the turbulent downstream part.

At first sight we observe, that although the absolute levels are not always well

predicted, the results are in fairly good agreement with the reference solution.

Results obtained without model (not displayed here) differ from the DNS so-

lution in several orders of magnitude for both coarse grids. Notice that even

for the relatively fine MeshC, the results substantially differ from the reference

solution.
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Figure 13: Time evolution of the Nusselt number at the vertical mid-plane for RM2 (left) and
its normalized density power spectrum (right).

5. Concluding remarks

A turbulent flow in an air-filled (Pr = 0.7) differentially heated cavity at

Ra = 4.5×1010 and height aspect ratio 5 has been numerically studied. Firstly,

a direct simulation has been carried out on a Cartesian staggered mesh with

128× 318× 862 grid points. Time-averaged DNS results have revealed that the
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Comparison between the DNS, no-model results obtained with MeshC and C4 results with
meshes RM1 and RM2. Details about the meshes can be found in Table 1.

transition of the vertical boundary layer occurs at more downstream positions

than those observed in experiments and previous numerical studies. However,

since DNS is not feasible for real-world applications the C4-regularization of the

nonlinear convective term has been considered as a simulation shortcut. The

symmetries and conservation properties of the original convective term are ex-

actly preserved. Doing so, the production of smaller and smaller scales of motion

is restrained in an unconditionally stable manner. The numerical algorithm to

solve the governing equations is also fully-conservative and is therefore well-

suited to test the proposed simulation method. Here, the performance of the

proposed method has been tested for the aforementioned DHC problem. This is

a challenging configuration for turbulence modeling since areas with completely

different regimes coexist and interplay. Direct comparison with DNS reference

results has shown that the method is able to capture the general pattern of the

flow correctly even for very coarse meshes. Therefore, considering the inherent

difficulty of this problem, we can conclude that the results displayed here illus-

trate the great potential of the C4 smoothing method as a simulation shortcut.

Moreover, since no ad hoc phenomenological arguments that cannot be formally

derived from the governing NS equations are used, it suggests that this method

may be valid for any other configurations. Nevertheless, more simulations for a

wide variety of cases and meshes will be necessary to confirm these preliminary

conclusions.
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perimental and numerical investigation of turbulent natural convection in

a large air-filled cavity. International Journal of Heat and Fluid Flow,

25:824–832, 2004.

[33] S. Xin, J. Salat, P. Joubert, A. Sergent, F. Penot, and P. Le Quéré. Re-
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