286 research outputs found

    IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND RESPIRATION-CORRELATED CONE BEAM CT (4D-CBCT) RECONSTRUCTION

    Get PDF
    Accounting for respiration motion during imaging helps improve targeting precision in radiation therapy. Respiratory motion can be a major source of error in determining the position of thoracic and upper abdominal tumor targets during radiotherapy. Thus, extracting respiratory motion is a key task in radiation therapy planning. Respiration-correlated or four-dimensional CT (4DCT) imaging techniques have been recently integrated into imaging systems for verifying tumor position during treatment and managing respiration-induced tissue motion. The quality of the 4D reconstructed volumes is highly affected by the respiratory signal extracted and the phase sorting method used. This thesis is divided into two parts. In the first part, two image-based respiratory signal extraction methods are proposed and evaluated. Those methods are able to extract the respiratory signals from CBCT images without using external sources, implanted markers or even dependence on any structure in the images such as the diaphragm. The first method, called Local Intensity Feature Tracking (LIFT), extracts the respiratory signal depending on feature points extracted and tracked through the sequence of projections. The second method, called Intensity Flow Dimensionality Reduction (IFDR), detects the respiration signal by computing the optical flow motion of every pixel in each pair of adjacent projections. Then, the motion variance in the optical flow dataset is extracted using linear and non-linear dimensionality reduction techniques to represent a respiratory signal. Experiments conducted on clinical datasets showed that the respiratory signal was successfully extracted using both proposed methods and it correlates well with standard respiratory signals such as diaphragm position and the internal markers’ signal. In the second part of this thesis, 4D-CBCT reconstruction based on different phase sorting techniques is studied. The quality of the 4D reconstructed images is evaluated and compared for different phase sorting methods such as internal markers, external markers and image-based methods (LIFT and IFDR). Also, a method for generating additional projections to be used in 4D-CBCT reconstruction is proposed to reduce the artifacts that result when reconstructing from an insufficient number of projections. Experimental results showed that the feasibility of the proposed method in recovering the edges and reducing the streak artifacts

    High Performance Optical Computed Tomography for Accurate Three-Dimensional Radiation Dosimetry

    Get PDF
    Optical computed tomography (CT) imaging of radiochromic gel dosimeters is a method for truly three-dimensional radiation dosimetry. Although optical CT dosimetry is not widely used currently due to previous concerns with speed and accuracy, the complexity of modern radiotherapy is increasing the need for a true 3D dosimeter. This thesis reports technical improvements that bring the performance of optical CT to a clinically useful level. New scanner designs and improved scanning and reconstruction techniques are described. First, we designed and implemented a new light source for a cone-beam optical CT system which reduced the scatter to primary contribution in CT projection images of gel dosimeters from approximately 25% to approximately 4%. This design, which has been commercially implemented, enables accurate and fast dosimetry. Second, we designed and constructed a new, single-ray, single-detector parallel-beam optical CT scanner. This system was able to very accurately image both absorbing and scattering objects in large volumes (15 cm diameter), agreeing within ∼1% with independent measurements. It has become a reference standard for evaluation of optical CT geometries and dosimeter formulations. Third, we implemented and characterized an iterative reconstruction algorithm for optical CT imaging of gel dosimeters. This improved image quality in optical CT by suppressing the effects of noise and artifacts by a factor of up to 5. Fourth, we applied a fiducial-based ray path measurement scheme, combined with an iterative reconstruction algorithm, to enable optical CT reconstruction in the case of refractive index mismatch between different media in the scanner’s imaged volume. This improved the practicality of optical CT, as time-consuming mixing of liquids can be avoided. Finally, we applied the new laser scanner to the difficult dosimetry task of small-field measurement. We were able to obtain beam profiles and depth dose curves for 4 fields (3x3 cm2 and below) using one 15 cm diameter dosimeter, within 2 hours. Our gel dosimetry depth-dose curves agreed within ∼1.5% with Monte Carlo simulations. In conclusion, the developments reported here have brought optical CT dosimetry to a clinically useful level. Our techniques will be used to assist future research in gel dosimetry and radiotherapy treatment techniques

    System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging

    Get PDF
    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the disadvantages of the conventional approach that was extremely sensitive to noise corruption. In the final part, we described the modified filtered backprojection and iterative image reconstruction algorithms specifically developed for TBCT. Special parallelization strategies are designed to facilitate the use of GPU computing, showing demonstrated capability of producing high quality reconstructed volumetric images with a super fast computational speed. For all the investigations mentioned above, both simulation and experimental studies have been conducted to demonstrate the feasibility and effectiveness of the proposed methodologies

    Compressed Sensing Based Reconstruction Algorithm for X-ray Dose Reduction in Synchrotron Source Micro Computed Tomography

    Get PDF
    Synchrotron computed tomography requires a large number of angular projections to reconstruct tomographic images with high resolution for detailed and accurate diagnosis. However, this exposes the specimen to a large amount of x-ray radiation. Furthermore, this increases scan time and, consequently, the likelihood of involuntary specimen movements. One approach for decreasing the total scan time and radiation dose is to reduce the number of projection views needed to reconstruct the images. However, the aliasing artifacts appearing in the image due to the reduced number of projection data, visibly degrade the image quality. According to the compressed sensing theory, a signal can be accurately reconstructed from highly undersampled data by solving an optimization problem, provided that the signal can be sparsely represented in a predefined transform domain. Therefore, this thesis is mainly concerned with designing compressed sensing-based reconstruction algorithms to suppress aliasing artifacts while preserving spatial resolution in the resulting reconstructed image. First, the reduced-view synchrotron computed tomography reconstruction is formulated as a total variation regularized compressed sensing problem. The Douglas-Rachford Splitting and the randomized Kaczmarz methods are utilized to solve the optimization problem of the compressed sensing formulation. In contrast with the first part, where consistent simulated projection data are generated for image reconstruction, the reduced-view inconsistent real ex-vivo synchrotron absorption contrast micro computed tomography bone data are used in the second part. A gradient regularized compressed sensing problem is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The wavelet image denoising algorithm is used as the post-processing algorithm to attenuate the unwanted staircase artifact generated by the reconstruction algorithm. Finally, a noisy and highly reduced-view inconsistent real in-vivo synchrotron phase-contrast computed tomography bone data are used for image reconstruction. A combination of prior image constrained compressed sensing framework, and the wavelet regularization is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The prior image constrained compressed sensing framework takes advantage of the prior image to promote the sparsity of the target image. It may lead to an unwanted staircase artifact when applied to noisy and texture images, so the wavelet regularization is used to attenuate the unwanted staircase artifact generated by the prior image constrained compressed sensing reconstruction algorithm. The visual and quantitative performance assessments with the reduced-view simulated and real computed tomography data from canine prostate tissue, rat forelimb, and femoral cortical bone samples, show that the proposed algorithms have fewer artifacts and reconstruction errors than other conventional reconstruction algorithms at the same x-ray dose

    Automatic alignment for three-dimensional tomographic reconstruction

    Get PDF
    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset

    Development and Application of Computational Tools for the Study and Optimization of Variable Resolution X-ray (VRX) Computed Tomography Scanners

    Get PDF
    The overall goal of this project was to develop and apply important computerized aids for the design and implementation of Variable Resolution X-ray (VRX) CT scanners developed at the University of Tennessee, Memphis. VRX scanners take advantage of the “projective compression” principle that allows the same device to image objects of very different sizes with the same level of detail by adjusting the field of view and the reconstruction resolution. The first part of this project aimed to develop a set of computational tools specifically tailored for the design, implementation and study of VRX scanners. This included creating a reconstruction algorithm that takes into account the unique geometries of the different VRX systems that have been designed, along with improving the calibration algorithm needed to ensure a proper reconstruction. It also included the development of a computer model of VRX scanners that is an invaluable tool for the development and study of these devices. The second part of the project was composed of a small series of experiments in which the computational tools developed proved to be fundamental in the analysis and evaluation of some aspects of VRX imaging. This included a comparison of the performance of different targeting VRX geometries in terms of spatial and contrast resolution, and a study of the effect of the VRX angle on the severity of common artifacts in single-arm images

    Contributions to the improvement of image quality in CBCT and CBμCT and application in the development of a CBμCT system

    Get PDF
    During the last years cone-beam x-ray CT (CBCT) has been established as a widespread imaging technique and a feasible alternative to conventional CT for dedicated imaging tasks for which the limited flexibility offered by conventional CT advises the development of dedicated designs. CBCT systems are starting to be routinely used in image guided radiotherapy; image guided surgery using C-arms; scan of body parts such as the sinuses, the breast or extremities; and, especially, in preclinical small-animal imaging, often coupled to molecular imaging systems. Despite the research efforts advocated to the advance of CBCT, the challenges introduced by the use of large cone angles and two-dimensional detectors are a field of vigorous research towards the improvement of CBCT image quality. Moreover, systems for small-animal imaging add to the challenges posed by clinical CBCT the need of higher resolution to obtain equivalent image quality in much smaller subjects. This thesis contributes to the progress of CBCT imaging by addressing a variety of issues affecting image quality in CBCT in general and in CBCT for small-animal imaging (CBμCT). As part of this work we have assessed and optimized the performance of CBμCT systems for different imaging tasks. To this end, we have developed a new CBμCT system with variable geometry and all the required software tools for acquisition, calibration and reconstruction. The system served as a tool for the optimization of the imaging process and for the study of image degradation effects in CBμCT, as well as a platform for biological research using small animals. The set of tools for the accurate study of CBCT was completed by developing a fast Monte Carlo simulation engine based on GPUs, specifically devoted to the realistic estimation of scatter and its effects on image quality in arbitrary CBCT configurations, with arbitrary spectra, detector response, and antiscatter grids. This new Monte Carlo engine outperformed current simulation platforms by more than an order of magnitude. Due to the limited options for simulation of spectra in microfocus x-ray sources used in CBμCT, we contributed in this thesis a new spectra generation model based on an empirical model for conventional radiology and mammography sources modified in accordance to experimental data. The new spectral model showed good agreement with experimental exposure and attenuation data for different materials. The developed tools for CBμCT research were used for the study of detector performance in terms of dynamic range. The dynamic range of the detector was characterized together with its effect on image quality. As a result, a new simple method for the extension of the dynamic range of flat-panel detectors was proposed and evaluated. The method is based on a modified acquisition process and a mathematical treatment of the acquired data. Scatter is usually identified as one of the major causes of image quality degradation in CBCT. For this reason the developed Monte Carlo engine was applied to the in-depth study of the effects of scatter for a representative range of CBCT embodiments used in the clinical and preclinical practice. We estimated the amount and spatial distribution of the total scatter fluence and the individual components within. The effect of antiscatter grids in improving image quality and in noise was also evaluated. We found a close relation between scatter and the air gap of the system, in line with previous results in the literature. We also observed a non-negligible contribution of forward-directed scatter that is responsible to a great extent for streak artifacts in CBCT. The spatial distribution of scatter was significantly affected by forward scatter, somewhat challenging the usual assumption that the scatter distribution mostly contains low-frequencies. Antiscatter grids showed to be effective for the reduction of cupping, but they showed a much lower performance when dealing with streaks and a shift toward high frequencies of the scatter distributions. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------A lo largo de los últimos años, el TAC de rayos X de haz cónico (CBCT, de “conebeam” CT) se ha posicionado como una de las técnicas de imagen más ampliamente usadas. El CBCT se ha convertido en una alternativa factible al TAC convencional en tareas de imagen específicas para las que la flexibilidad limitada ofrecida por este hace recomendable el desarrollo de sistemas de imagen dedicados. De esta forma, el CBCT está empezando a usarse de forma rutinaria en varios campos entre los que se incluyen la radioterapia guiada por imagen, la cirugía guiada por imagen usando arcos en C, imagen de partes de la anatomía en las que el TAC convencional no es apropiado, como los senos nasales, las extremidades o la mama, y, especialmente el campo de imagen preclínica con pequeño animal. Los sistemas CBCT usados en este último campo se encuentran habitualmente combinados con sistemas de imagen molecular. A pesar del trabajo de investigación dedicado al avance de la técnica CBCT en los últimos años, los retos introducidos por el uso de haces cónicos y de detectores bidimensionales son un campo candente para la investigación médica, con el objetivo de obtener una calidad de imagen equivalente o superior a la proporcionada por el TAC convencional. En el caso de imagen preclínica, a los retos generados por el uso de CBCT se une la necesidad de una mayor resolución de imagen que permita observar estructuras anatómicas con el mismo nivel de detalle obtenido para humanos. Esta tesis contribuye al progreso del CBCT mediante el estudio de usa serie de efectos que afectan a la calidad de imagen de CBCT en general y en el ámbito preclínico en particular. Como parte de este trabajo, hemos evaluado y optimizado el rendimiento de sistemas CBCT preclínicos en función de la tarea de imagen concreta. Con este fin se ha desarrollado un sistema CBCT para pequeños animales con geometría variable y todas las herramientas necesarias para la adquisición, calibración y reconstrucción de imagen. El sistema sirve como base para la optimización de protocolos de adquisición y para el estudio de fuentes de degradación de imagen además de constituir una plataforma para la investigación biológica en pequeño animal. El conjunto de herramientas para el estudio del CBCT se completó con el desarrollo de una plataforma acelerada de simulación Monte Carlo basada en GPUs, optimizada para la estimación de radiación dispersa en CBCT y sus efectos en la calidad de imagen. La plataforma desarrollada supera el rendimiento de las actuales en más de un orden de magnitud y permite la inclusión de espectros policromáticos de rayos X, de la respuesta realista del detector y de rejillas antiscatter. Debido a las escasas opciones ofrecidas por la literatura para la estimación de espectros de rayos X para fuentes microfoco usadas en imagen preclínica, en esta tesis se incluye el desarrollo de un nuevo modelo de generación de espectros, basado en un modelo existente para fuentes usadas en radiología y mamografía. El modelo fue modificado a partir de datos experimentales. La precisión del modelo presentado se comprobó mediante datos experimentales de exposición y atenuación para varios materiales. Las herramientas desarrolladas se usaron para estudiar el rendimiento de detectores de rayos tipo flat-panel en términos de rango dinámico, explorando los límites impuestos por el mismo en la calidad de imagen. Como resultado se propuso y evaluó un método para la extensión del rango dinámico de este tipo de detectores. El método se basa en la modificación del proceso de adquisición de imagen y en una etapa de postproceso de los datos adquiridos. El simulador Monte Carlo se empleó para el estudio detallado de la naturaleza, distribución espacial y efectos de la radiación dispersa en un rango de sistemas CBCT que cubre el espectro de aplicaciones propuestas en el entorno clínico y preclínico. Durante el estudio se inspeccionó la cantidad y distribución espacial de radiación dispersa y de sus componentes individuales y el efecto causado por la inclusión de rejillas antiscatter en términos de mejora de calidad de imagen y de ruido en la imagen. La distribución de radiación dispersa mostró una acentuada relación con la distancia entre muestra y detector en el equipo, en línea con resultados publicados previamente por otros autores. También se encontró una influencia no despreciable de componentes de radiación dispersa con bajos ángulos de desviación, poniendo en tela de juicio la tradicional asunción que considera que la distribución espacial de la radiación dispersa está formada casi exclusivamente por componentes de muy baja frecuencia. Las rejillas antiscatter demostraron ser efectivas para la reducción del artefacto de cupping, pero su efectividad para tratar artefactos en forma de línea (principalmente formados por radiación dispersa con bajo ángulo de desviación) resultó mucho menor. La inclusión de estas rejillas también enfatiza las componentes de alta frecuencia de la distribución espacial de la radiación dispersa
    corecore