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In the past decade there have been many new emerging X-ray based imaging technolo-

gies developed for different diagnostic purposes or imaging tasks. However, there exist

one or more specific problems that prevent them from being effectively or efficiently em-

ployed. In this dissertation, four different novel X-ray based imaging technologies are dis-

cussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential

X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed ra-

diography (DECR), and tetrahedron beam computed tomography (TBCT). System charac-

teristics are analyzed or optimized reconstruction methods are proposed for these imaging

modalities. In the first part, we investigated the unique properties of propagation-based

phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier

slice theorem implies that the high frequency components collected in the tomosynthesis

data can be more reliably reconstructed. It is observed that the fringes or boundary en-

hancement introduced by the phase-contrast effects can serve as an accurate indicator of the
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true depth position in the tomosynthesis in-plane image. In the second part, we derived a

sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing

a proper mask, the high frequency contents of the image can be theoretically preserved in

a certain region of interest. A two-step reconstruction strategy is developed to mitigate the

risk of subtle structures being oversmoothed when the commonly used total-variation regu-

larization is employed in the conventional iterative framework. In the thirt part, we proposed

a practical method to improve the quantitative accuracy of the projection-based dual-energy

material decomposition. It is demonstrated that applying a total-projection-length con-

straint along with the dual-energy measurements can achieve a stabilized numerical solution

of the decomposition problem, thus overcoming the disadvantages of the conventional ap-

proach that was extremely sensitive to noise corruption. In the final part, we described the

modified filtered backprojection and iterative image reconstruction algorithms specifically

developed for TBCT. Special parallelization strategies are designed to facilitate the use of

GPU computing, showing demonstrated capability of producing high quality reconstructed

volumetric images with a super fast computational speed. For all the investigations men-

tioned above, both simulation and experimental studies have been conducted to demonstrate

the feasibility and effectiveness of the proposed methodologies.
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Chapter 1

Introduction

In the past decade there have been many new emerging X-ray based imaging technolo-

gies developed for different diagnostic purposes or imaging tasks. However, there exist

one or more specific problems that prevent them from being effectively or efficiently em-

ployed. In this dissertation, four different novel X-ray based imaging technologies are dis-

cussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential

X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed ra-

diography (DECR), and tetrahedron beam computed tomography (TBCT). System charac-

teristics are analyzed or optimized reconstruction methods are proposed for these imaging

modalities. The goal and purpose of this dissertation is to investigate the advantages of these

technologies or to improve the current imaging performance by developing new methodologies

or strategies, promoting wider uses of these technologies in clinical or biological applications.

We will briefly review these imaging modalities and their specific problems in this chapter.
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1.1 Background and Motivation

Although conventional absorption-based (AB) tomosynthesis techniques have been exten-

sively studied and implemented for numerous imaging applications [114, 157, 61], only a

small number of studies have explored migrating X-ray phase-contrast (XPC) techniques

to tomosynthesis and its potential advantages. X-ray phase-contrast imaging (XPCI) has

proved to hold promise for a variety of biomedical applications [106, 92, 195]. Propagation-

based XPC (PB-XPC) imaging, also known as in-line XPC imaging, is the simplest form to

implement on the benchtop. To date, relatively few publications have specifically focused

on propagation-based X-ray phase-contrast tomosynthesis [190, 151]. While previous studies

[66, 167] showed PB-XPC tomosynthesis is able to produce boundary-enhanced in-plane im-

ages that better reveal tissue interfaces than conventional AB tomosynthesis, there remains

a lack of reported experiments and analyses that discuss the resolving abilities of PB-XPC

tomosynthesis in the depth direction. In this dissertation we will present numerical and

experimental investigations that compare the ability of AB and PB-XPC tomosynthesis to

distinguish between in-plane and out-of-plane structures. The results reveal that, in PB-XPC

tomosynthesis, the phase-contrast-induced fringes can help discriminate in-plane structures

from out-of-plane structures, thus providing better depth-position characterization than AB

tomosynthesis.

Besides the propagation-based XPC imaging, there are a few other implementations of XPCI

techniques that are generally referred to as differential phase-contrast imaging (D-XPCI)

methods. They typically yield estimates of the one-dimensional (1D) derivative of the pro-

jected real-valued component of the refractive index distribution of an object. In this work, a

tomographic implementation of differential XPCI is considered, referred to as differential X-

ray phase-contrast tomography (D-XPCT). The goal of D-XPCT is to produce an estimate
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of the real-valued component of the refractive index distribution, which describes the spa-

tially variant refractive properties of an object. When the data are acquired at a sufficiently

large number of tomographic views [145], image reconstruction in D-XPCT can be read-

ily accomplished by use of a modified filtered backprojection (FBP) algorithm[47, 69, 127].

However, in current implementations of D-XPCT, it may not be desirable to acquire data

at a large number of tomographic view angles. This is because D-XPCT methods are cur-

rently limited by relatively long data-acquisition times and radiation exposures, which has

hindered the widespread application of the method to in vivo applications. Since current

implementations typically utilize a ’step-and-shoot’ data-acquisition protocol, one way to

mitigate this problem is to acquire tomographic measurements at a reduced number of view

angles. The associated image reconstruction problem is generally referred to as a ’few-view’

image reconstruction problem [140, 15]. Modern few-view image reconstruction methods

are optimization-based and typically utilize an iterative method to find a finite-dimensional

estimate of the object function that approximately minimizes an objective function subject

to constraints. Because few-view image reconstruction corresponds to an ill-conditioned in-

verse problem, a regularized solution must be computed; however the design of an effective

regularization strategy is influenced by many factors, including the characteristics of the re-

fractive index distribution to be estimated. It remains challenging to design a regularization

strategy that faithfully preserves fine object features in the reconstructed image when only

few-view tomographic data are utilized. In this work, a new method for few-view image

reconstruction in D-XPCT is proposed and investigated. A distinctive feature of the method

is that the sought-after object function is decomposed into two components that reside in

distinct subspaces. In this way, the higher-frequency components and lower-frequency com-

ponents of the object function are separated and reconstructed respectively, recovering a

resolution-enhanced region of interest (ROI) from few-view measurements.
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Dual-energy computed radiography (DECR)[24, 121] is a planar imaging technique in which

two (or two sets of) projections using two different incident beam spectra are acquired

of the same object. X-ray attenuation for the range of energies employed in diagnostic

radiography consists of contributions from photoelectric absorption and Compton scatter-

ing. The probabilities for the two types of interactions are relatively independent of energy

and material composition. Two X-ray projections of an object, one acquired with a high

energy beam and the other with a low energy beam, will have differences in detected in-

tensities between the two radiographs which depend on the composition of the object. For

an object composed of two materials, these intensity changes can be exploited to form two

basis material images[5, 23]. This procedure is often referred to as material decomposi-

tion. The decomposed information can facilitate material segmentation or identification of

an abnormality[131, 159]. Though projection-based decomposition is essentially free of the

beam hardening problem[131], DECR seeks the solution of a highly nonlinear and ill-posed

inverse problem which is quite sensitive to noise[11, 22]. This is because the exact dual-energy

imaging model should incorporate a polychromatic X-ray source spectrum that introduces

transcendental functions. This limitation has prevented its widespread implementation in

medical imaging applications. To mitigate this problem, we propose to introduce a constraint

of total projection length, which can effectively stabilize the conventional projection-based

material decomposition. We also develop two feasible “water-bath” and “scout-scan” ideas

that can be used to practically implement the desired constraint. Numerical studies show

that our method is capable of accurate two-material decomposition and shows robustness

against data noise.

Tetrahedron beam computed tomography (TBCT) is a novel volumetric imaging system

with a modified geometrical design compared to the commonly used cone-beam computed

tomography (CBCT)[178]. In TBCT, a linear array of sources are stacked vertically, forming
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a series of quasi-fan beams directed towards a linear CT detector array that is positioned

orthogonally to the source array. During the scan, the X-ray source sequentially operates

along the z-direction and the corresponding projection images are continuously recorded at

every angular position. While the gantry rotates around the object, the collected data can be

used for volumetric image reconstruction. TBCT holds great promise of mitigating scatters.

The source collimator is adjusted to make sure that all fan beams are well aligned with

the the central row of the detector, so most scattered photons are deflected out of the fan

beam paths and therefore go undetected. TBCT also features flexible geometrical settings

and can be further modified to incorporate dual-source arrays and dual-detector arrays to

increase FOV and to facilitate imaging guided radiation therapy (IGRT)[83]. Though a few

preliminary image reconstruction results came along with the invention of TBCT, however, a

careful investigation of the reconstruction algorithms specific to the TBCT geometries has not

been found. In this dissertation, we derived a reliable analytical reconstruction method from

the conventional FDK algorithm by introducing a proper weighting function in the TBCT

image domain. An advanced optimization-based iterative algorithm is also developed that

features fast convergence rate and robustness against data noise and data incompleteness. In

order to efficiently exploit the parallelism in GPU computing, the reconstruction algorithms

were further optimized with special computational strategies. The reconstructed results

from numerical and experimental data sets have demonstrated the good performances of the

proposed reconstruction algorithms in terms of both the image quality and computational

efficiency.
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1.2 Overview of the Dissertation

In the following chapters, the dissertation will discuss four topics regarding the system

characterization or optimized reconstruction methods for the novel X-ray imaging modalities

that have been introduced above.

Chapter 2 investigates the unique properties of propagation-based phase-contrast imaging

technique when combined with the X-ray tomosynthesis. The Fourier slice theorem implies

that the high frequency components collected in the tomosynthesis data can be more reliably

reconstructed. It is revealed that the fringes or boundary enhancement introduced by the

phase-contrast effects can behave as an accurate indicator of the true depth position in the

tomosynthesis in-plane image.

Chapter 3 derives a sub-space framework to reconstruct images from a few-view differential

phase-contrast tomography (DPCT) data set. By introducing a proper mask and designing

a novel two-step reconstruction strategy, the high frequency information of the image can

be largely preserved in a certain region of interest. It mitigates the concerns that subtle

structures might be oversmoothed when the commonly used total-variation regularization is

incorporated in the conventional iterative framework.

Chapter 4 proposes a practical method to improve the quantitative accuracy of the projection-

based dual-energy material decomposition. It is discovered in this work that applying a

total-projection-length constraint along with the dual-energy measurements can achieve a

stabilized numerical solution of the decomposition problem, thus overcoming the disadvan-

tages of the conventional approach that was extremely sensitive to noise corruption.
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Chapter 5 describes the modified filtered backprojection and iterative image reconstruction

algorithms specifically developed for tetrahedron beam computed tomography (TBCT). Spe-

cial parallelization strategies are designed to facilitate the use of GPU computing, showing

demonstrated capability of producing high quality reconstructed volumetric images with a

super fast computational speed.

A summary of the dissertation and closing remarks are presented in Chapter 6.
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Chapter 2

Investigation of the boundary

enhancement in propagation-based

X-ray phase contrast tomosynthesis

Propagation-based X-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of

tomosynthesis and XPC imaging to realize the advantages of both for biological imaging

applications. Tomosynthesis permits reductions in acquisition times compared with full-

view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing

structures. In this Note, an investigation of the depth resolving properties of PB XPC

tomosynthesis is conducted. The results demonstrate that in-plane structures display strong

boundary-enhancement while out-of-plane structures do not. This effect can facilitate the

identification of in-plane structures in PB XPC tomosynthesis that could normally not be

distinguished from out-of-plane structures in absorption-based tomosynthesis.
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2.1 INTRODUCTION

X-ray phase-contrast (XPC) imaging holds promise for a variety of biomedical applications

[106, 92, 195].There exist several implementations of XPC imaging that include crystal-based

diffraction enhanced imaging approach[38], grating-based method that uses a Talbot inter-

ferometry [163] and a more recently developed coded aperture variety [120]. Propagation-

based XPC (PB XPC) imaging, also known as in-line XPC imaging, is the simplest form

to implement on the benchtop. It requires only a microfocus X-ray source, a high resolu-

tion detector, and an appropriately defined imaging geometry [166, 170, 62]. In practice,

these requirements lead to longer imaging times than typically encountered in conventional

absorption-based (AB) radiography. This can be problematic in tomographic implementa-

tions of PB XPC imaging, which can result in imaging times of several hours or longer. While

volumetric XPC imaging can potentially benefit a variety of pre-clinical and clinical appli-

cations [198, 21], long imaging times currently prevent its widespread use. One approach

to circumvent lengthy scan durations is to apply tomosynthesis methods [43, 44] that seek

to reconstruct volumetric images from a relatively small number of projections spanning a

limited angular range (< 180◦). Such images have anisotropic spatial resolution properties;

the resolution is generally high in a particular transverse plane and poor in the direction

perpendicular to that plane [132]. In this work, this direction will be referred to as the depth

direction.

Although conventional AB tomosynthesis techniques have been extensively studied and im-

plemented for numerous imaging applications [114, 157, 61], only a small number of studies

have explored phase-contrast tomosynthesis and its potential advantages for various modal-

ities that include diffraction enhanced, grating-based interferometric and edge illumination

XPC imaging [101, 79, 191, 136, 152]. To date, relatively few publications have specifically
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focused on propagation-based imaging methods [190, 151]. While previous studies [66, 167]

showed PB-XPC tomosynthesis is able to produce boundary-enhanced in-plane images that

better reveal tissue interfaces than conventional AB tomosynthesis, there remains a lack of

reported experiments and analyses that discuss the resolving abilities of PB XPC tomosyn-

thesis in the depth direction. In this Note, numerical and experimental investigations are

presented that compare the ability of AB and PB-XPC tomosynthesis to distinguish between

in-plane and out-of-plane structures. The results reveal that, in PB-XPC tomosynthesis, the

phase-contrast-induced fringes can help discriminate in-plane structures from out-of-plane

structures, thus providing better depth-position characterization than AB tomosynthesis.

2.2 BACKGROUND

2.2.1 PB XPC imaging model

A PB-XPC tomographic imaging geometry is depicted in figure 2.1. A reference coordinate

system (x, y, z) is related to a rotating coordinate system (xr, y, zr) by xr = xcosθ + zsinθ

and zr = zcosθ−xsinθ, where the tomographic view angle θ is measured with respect to the

positive x-axis. The y-axis defines the axis of tomographic scanning (isocenter). An X-ray

source is located at zr = −R1; for simplicity, we assume for now that this is a monochromatic

point source with wavelength λ.

The object can be characterized by its complex-valued refractive index distribution

n(r) = 1− δ(r) + jβ(r), (2.1)
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Figure 2.1: A schematic of the PB XPC imaging geometry is shown in which the object is
fixed in a reference coordinate system (x, y, z). The source (not shown) and detector rotate
about the y-axis.

where r = (x, y, z). The projected attenuation coefficient µp(xr, y, θ) and the total phase

shift φp(xr, y, θ) are respectively defined as

µp(xr, y, θ) = 2k

∫
dzrβ(r) (2.2)

and

φp(xr, y, θ) = −k
∫
dzrδ(r), (2.3)

where k = 2π/λ. The integrals are computed along the X-ray beam path, which is approxi-

mately the zr-direction when paraxial conditions are assumed, as are throughout this work.

The total attenuation experienced by the wavefield as it traverses the object is defined as

A(xr, y, θ) = exp(−µp(xr, y, θ)/2). (2.4)
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Assuming the phase varies moderately over a small distance and the near field approximation

holds, the measured intensity approximately satisfies [170]

Id(xr, y, θ) = I0(xr, y, θ){A2(xr, y, θ)−
2λR2

πM
∇2
xr,y[A

2(xr, y, θ)φp(xr, y, θ)]}, (2.5)

where M = (R1 +R2)/R1 and ∇2
xr,y is the 2D Laplacian operator acting on the (xr, y) plane.

The quantity I0(xr, y, θ) represents the wavefield intensity on the plane zr = 0, i.e., the

wavefield intensity incident on the object.

2.2.2 Data function

Consider the data function

gxpc(xr, y, θ) ≡ −log{Id(xr, y, θ)
I0(xr, y, θ)

}, (2.6)

which can formed from the known quantities Id(xr, y, θ) and I0(xr, y, θ). Under the assump-

tions required to establish equation (2.5) and additionally assuming weak absorption, this

data function approximately satisfies [26]

gxpc(xr, y, θ) = µp(xr, y, θ) +
2λR2

πM
∇2
xr,yφp(xr, y, θ). (2.7)

In the special case when R2 = 0, equation (2.7) yields a data function for conventional AB

tomosynthesis given by

gabs(xr, y, θ) = µp(xr, y, θ), (2.8)
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Figure 2.2: A parallel-beam projection along a direction θ in spatial domain corresponds to
a plane acquired along θ in the frequency domain. This figure illustrates the reduced spatial
resolution in the z-direction of reconstructed tomosynthesis images.

and therefore equation (2.7) can be expressed as

gxpc(xr, y, θ) = gabs(xr, y, θ) +
2λR2

πM
∇2
xr,yφp(xr, y, θ). (2.9)

2.2.3 Interpretation of boundary-enhanced image

Given the assumed paraxial conditions, it has been demonstrated that the application of the

Feldkamp-Davis-Kress inversion formula R−1 to the PB XPC data function yields [26]

f(r) ≡ R−1{gxpc} = 2kβ(r) +
R2

M
∇2
xyzδ(r), (2.10)

where ∇2
xyz denotes the 3D Laplacian operator. Equation (2.10) defines the object function

for boundary-enhanced PB XPC tomography (XPCT). The second term in equation 2.10

explains why this implementation of PB-XPCT produces boundary-enhanced images [164,

7, 139]. In this work, we seek to estimate f(r) by use of PB XPC tomosynthesis methods.
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2.2.4 Fourier slice interpretation of tomographic depth resolution

The well-known Fourier slice theorem states that a parallel-beam projection along a direction

θ in space corresponds to a plane acquired along θ in the frequency domain. Let (kx, ky, kz)

denote the spatial frequency coordinates that are conjugate to (x, y, z). Figure 2.2 illustrates

the Fourier slice theorem and displays the (kx, kz) plane with a shaded region corresponding

to the frequency component information contained in the measured data from a generic to-

mosynthesis scan covering the angular range ±θ [132]. This figure can be utilized to explain

why tomosynthesis produces limited depth resolution: the acquired information along the

kz-direction in region A is incomplete due to the limited angular range of the scan, especially

at low frequencies near the origin. It also illustrates why depth resolution in tomosynthe-

sis depends on object size; namely, small objects typically possess better resolution in the

depth-direction than do larger objects [132, 3]. This is because for higher frequencies of kx

(corresponding to smaller feature sizes), there exists an increasing coverage in kz (region B).

The result above is a characteristic of tomosynthesis methods in general. A similar analysis

can be applied to interpreting the specific frequency domain characteristics of PB-XPC

tomosynthesis signals. According to the PB-XPC imaging model described in equation (2.9),

for a certain angle view, the Fourier transform of a PB-XPC projection satisfies

F(gxpc(xr, y)) = F(gabs(xr, y)) + λR2

2π
(k2
xr + k2

y)F(φp(xr, y)), (2.11)

where F represents the 2D Fourier transform operator acting on the (xr,y) plane; kxr and ky

are the frequency variables conjugate to xr and y. Due to the factor (k2
xr+k2

y), the frequency

components of the second term on the right-hand side of equation (2.11) will be amplified,

with increasing amplification for increasing frequency. However, the frequency components
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contained in the first term (attenuation term) will be unaltered. This indicates that the

PB-XPC tomosynthesis data function gxpc contains enhanced high-frequency components

as compared to the conventional AB tomosynthesis data function gabs. The interpretation

of figure 2.2 indicates that there is a wider coverage of kz in high-frequency data space,

which implies PB-XPC tomosynthesis is able to preserve a significant amount of information

content in kz, allowing for improved ability of depth position characterization. This analysis

can be extended readily to the polychromatic case, where the general conclusions remain

unaltered. Computer-simulations and experimental studies that are based on a benchtop

polychromatic X-ray source are described next.

2.3 MATERIALS and METHODS

2.3.1 Reconstruction algorithm

There are several reconstruction methods available for conventional tomosynthesis that can

be applied to reconstruct boundary-enhanced images in PB-XPC tomosynthesis [53]. The

most frequently employed reconstruction algorithm is commonly referred to as shift and add

(SAA) [86]. However, SAA is essentially an unfiltered backprojection algorithm and will

result in image blurring. Filtered backprojection (FBP) algorithms [90, 104] also have an

inherent deficiency as they are based on the analytical inverse of the Radon transform, with

the assumption that the complete data space has been densely sampled.

Iterative reconstruction algorithms have proven to be well suited to the tomosynthesis prob-

lem [168, 193]. Iterative algorithms are flexible in regard to the measurement geometry and

15



can mitigate data incompleteness. In this work, the vector gM×1 denotes the measured pro-

jection data that have been lexicographically ordered. The vector fN×1 is used to represent

the 3D discrete object using voxels. The value of N corresponds to the number of voxels

used to represent f . The relationship between the acquired data g and the discrete object f

can be described as

g = Hf , (2.12)

where H is an M × N system matrix that can be interpreted as a discrete operator repre-

senting a cone-beam projection transformation.

In this work, the estimates of f were determined by solving the following total-variation (TV)

regularized least square optimization problem [143, 175]:

f̂ = argmin
f
{‖g −Hf‖2

2 + 2ζ‖f‖TV }, (2.13)

where ‖ · ‖TV denotes the discrete TV (semi)-norm that can remove noise from the sought-

after solution and ζ is a regularization parameter that balances the denoising effect and

how well the solution fits the data. Equation (2.13) states that the sought-after solution

f̂ corresponds to the vector f that minimizes the value of the penalized least-squares cost

function enclosed by the brackets.

A modified version of the fast iterative shrinkage/thresholding algorithm (FISTA) was em-

ployed to solve equation (2.13). The basic FISTA structure includes a gradient-based image

update to obtain an intermediate solution and then a proximal map problem solved by fast

gradient projection (FGP) algorithm. A detailed description of the standard FISTA in the

2D case can be found elsewhere [13]. We developed an advanced algorithm that extended the

FGP algorithm to the 3D case and incorporated the concept of ordered subsets (OS) with
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Figure 2.3: The phantom and the spectrum employed in the computer simulation. (a) A
central slice through the numerical soft tissue phantom employed in the tomosynthesis sim-
ulations is shown in the left panel (viewed from above along the positive y-axis). The larger
enclosing sphere is 4mm in diameter and is composed of healthy breast tissue. Diameters
of internal spheres range from 80µm to 160µm and are composed of adipose tissue (grey)
and calcium sulfate (white). (b) The right panel shows the polychromatic x-ray spectrum
assumed in the tomosynthesis simulations. The y-axis gives the normalized weight for each
energy bin.

SART (Simultaneous Algebraic Iterative Reconstructive Technique) to dramatically increase

the convergence speed [172, 173].

2.3.2 Simulation Studies

Phantom design: Figure 2.3(a) shows a central slice of the numerical phantom employed to

investigate the depth resolution properties of PB-XPC tomosynthesis. An x-z slice through

the phantom is displayed. Eight spheres were placed in a row along the x-direction with

the z-coordinate of their center positions slightly offset from one another. Four additional

spheres were located in a row off-center from the axis of rotation with a similar arrangement

of their central locations. These spherical volumes were assigned realistic tissue properties

(large sphere: breast tissue; internal spheres: adipose and calcium sulfate) to mimic healthy

soft tissue and calcifications. The refractive index values were analytically calculated [179]
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based on their respective element composition1 and atomic scattering factors2. Three sizes

of internal sphere were employed (diameters: 80 µm, 120 µm and 160 µm) and the diameter

of the phantom was 4mm. To avoid numerical difficulties in applying the Laplacian operator

in the imaging model (equation (2.10)), a 3D Gaussian blurring kernel (FWHM=10µm)

was applied to the numerical phantom model, which ensured that the boundaries between

different tissues were differentiable.

Imaging system: The geometry of the simulated tomosynthesis imaging system is illustrated

in figure 2.1. The source and flat-panel detector simultaneously rotate in full isocentric

motion with a specified angular step (2◦) and scan range (±20◦). The input energy spectrum

of the simulated X-ray beam (figure 2.3(b)) was provided by an on-line toolbox that modeled

a polychromatic source with a solid tungsten anode operated at 55 kVp 3. The simulated

polychromatic projections were calculated as the weighted sum of the detected intensity

associated with each energy component of the spectrum. The X-ray detector was modeled

with 8-micron pixel pitch in a 1024×1024 pixel2 flat panel array. The source-to-isocenter

distance R1 was set to be 50cm.

Simulated data: According to the paraxial Fresnel diffraction theory, both AB and PB-XPC

tomosynthesis measurement data were numerically generated by convolving the X-ray wave

function right through the object (at z=R1) with the Fresnel-Kirchhoff kernel [129]. Different

propagation distances R2=0 cm and R2=50 cm were chosen for AB and PB-XPC scenarios,

respectively. As depicted in figure 2.1, the projection at θ=0 corresponded to the incident

beam traveling in the +z direction. Realistic blurring factors were considered (e.g. the finite

source spot size, and the limited detector resolving power) by applying an additional 2D

1http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html
2http://physics.nist.gov/PhysRefData/FFast/html/form.html
3https://w9.siemens.com/cms/oemproducts/Home/X-rayToolbox/spektrum/Pages/radIn.aspx
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Gaussian blurring kernel (FWHM=40 µm) to the simulated intensity data. For simplicity,

1% (with respect to the noiseless pixel value) uncorrelated Gaussian noise was added to

the projection data. This noise model is consistent with the experimental studies described

below, in which a large number of photons were detected.

Image reconstruction: The iterative algorithm described in Section 2.3.1 was employed to

reconstruct AB and PB-XPC tomosynthesis images from the simulated measurements. The

voxel size of the reconstructed images was 8 µm3. The regularization parameter ζ was

empirically set at 0.5 for all studies. By convention, reconstructed x-y slices are referred

to as in-plane images throughout this paper; reconstructed x-z slices are correspondingly

referred to as in-depth images.

2.3.3 Experimental Studies

Imaging system: Experimental AB and PB-XPC projection data were acquired. The imaging

system employed in the experimental studies contained a Kevex PSX10-65W microfocus

source with a tungsten anode (Thermofisher) and a super-cooled Si-based CCD camera with

15 micron pixel pitch, 36 cm2 detection area (Quad-RO, Princeton Instruments). A detailed

description of the imaging system can be found elsewhere [51]. In contrast to the system

configuration employed in the simulations in which the source/detector rotates about a fixed

object, the experimental system is configured with a fixed source/detector and rotating

object. Both configurations represent complete isocentric motion and are in all respects

equivalent except for the frame of reference. The data for the experimental component of

the study were acquired with the X-ray source operated at 45kV and a spot size of 9 µm.
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Data acquisition: The object in the experimental study was a formalin-fixed mouse lung

placed in a 1 cm3 centrifuge tube. As that in the PB-XPC simulations, the sample was

positioned midway between the source and detector, indicating that R1=R2. The relative

amount of phase-contrast effects present in projection images was modified by selecting

short (13 cm) and long (74 cm) propagation distances (i.e. R2 in equation 2.7) to record

“AB-like” and XPC projection data, respectively. It should be noted that we employed a

cone beam geometry and maintained a constant geometric magnification factor (M = 2)

for both AB and XPC cases so that effective pixel size (= 15µm/M) would be constant

and not affect comparison of AB and XPC results. The Pb shielding for our X-ray source

results in a minimum R1 of 13cm. Accordingly, we utilized R2 =13 cm to acquire “AB-

like” images that had the same geometric magnification (M = 2). The exposure times were

0.7 s and 80 s, respectively. The imaging dose was not held constant but this does not

affect our conclusions in any way. The experimental tomosynthesis data sets contained 21

equally spaced projections where the sample was rotated from −20◦ to +20◦. A complete

CT data set was also acquired (R2=13cm, 100 projections with an angular step of 2◦)

to generate a reference image for comparison. All images were reconstructed by use of

the iterative algorithm with a voxel size of 30 µm3. The reconstructed AB and PB-XPC

tomosynthesis images were analyzed to compare and contrast their respective depth-position-

characterization features.
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Figure 2.4: The reconstructed horizontal slices (in-depth images) are shown for AB (a) and
PB-XPC (b) tomosynthesis scans of the numerical phantom displayed in figure 2.3(a). The
grayscale window represents attenuation coefficient (m−1). Two vertical lines in the top
panels are extracted, and the corresponding scaled profiles are shown and compared in the
bottom panels: (c) for the profile at x=210, and (d) for the profile at x=256.
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2.4 RESULTS

2.4.1 Simulation Studies

In-depth images (x-z plane, y=256) reconstructed from the simulated AB and PB-XPC

tomosynthesis data are shown in figure 2.4(a) and 2.4(b), respectively. In both figures, the

reconstructed objects are no longer sphere-like but are distorted along the z-direction. To

better compare the results, profiles along z-direction at x=210 and x=256 were extracted and

plotted in figure 2.4(c) and 2.4(d). Each profile was normalized to its maximum magnitude.

The horizontal double-arrow lines indicate the true size of the phantom’s internal spheres

in this plane. This comparison shows the PB-XPC tomosynthesis profile more accurately

represents the structure of the phantom than does the AB tomosynthesis profile. In addition,

the PB-XPC profiles presents a higher signal-background contrast, and ultimately performs

better than AB tomosynthesis in terms of reproducing the size of the spherical objects inside

the phantom. Similar findings were observed (not shown) in the profiles of other spheres

corresponding to calcifications. It is also notable that both profiles are more closely aligned

with the true structure of the smaller sphere than the larger sphere, as predicted through

the Fourier slice interpretation discussed in Section 2.2.4.

Another feature to note in the reconstructed PB-XPC images is the spatial distribution

of the edge-enhanced features displayed in figure 2.4(b). It is observed that the fringes in

the in-depth XPC image are prominent near the true z-position of the spherical inclusions

and are not present away from this position. In this simple computer-simulation where

the object inclusions are modeled as uniform spheres, the center of masses of the blurred

spheres in the AB image could also be employed to estimate the locations of their centers.

However, in the more general situation where the inclusions do not possess symmetry, this
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Figure 2.5: An overhead view of the numerical phantom is shown to indicate two depth
positions (z=256, z=354) where the corresponding in-plane images (x-y plane) are to be
extracted for the investigation of depth position determination (see figure 2.6 and 2.7).

would not always be the case. These observations suggest that the edge-enhanced features

in PB-XPC tomosynthesis can potentially allow for improved depth-position determination

of reconstructed in-plane structures compared to that from AB tomosynthesis.

In order to investigate this further, reconstructed in-plane images (x-y plane) from two

different z-positions were extracted for comparison between AB and PB-XPC results. As

shown in figure 2.5, one slice was selected from a depth position corresponding to the middle

of the phantom (i.e. the isocenter, z=256 solid line) and the other slice was chosen from an

off-center plane (z=354, dashed line).

In figure 2.6, the top row shows the reconstructed in-plane images (corresponding to the

beam direction θ=0) at the central depth position (z=256); the associated line profiles for

y=256 are shown in the bottom row. For the AB tomosynthesis result (left column), all eight

of the spheres appear in this reconstructed slice and it is not possible to determine which

spheres are actually located at this z-position. Some criteria, like the magnitude or the visual

size of the reconstructed object, might be misleading when used to determine the presence of

the spheres. For PB-XPC tomosynthesis (middle column), all spheres are also present in the
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Figure 2.6: The comparisons of reconstructed in-plane images at depth position z=256
(top row) and associated profiles (bottom row) are shown here. (a) The line profiles from
AB tomosynthesis result show similar signals from all internal spheres. (b) The PB-XPC
tomosynthesis result reveals edge-enhancement for some of the internal spheres. (c) The true
in-plane phantom structure shows that only the edge-enhanced spheres in (b) are actually
located at that z-position of the reconstructed slice.
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Figure 2.7: A comparison of reconstructed in-plane images at an off-center depth position
z=354 (top row) and associated profiles (bottom row) is presented. The interpretation is
similar to that in figure 2.6.
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reconstructed image, however, only four of them exhibit fringes (enclosed in ellipse) while

the others do not. Based on the previous observation, it is reasonable to suspect that these

four spheres are truly located at this z-position, and the other image features are stretched

artifacts from spheres located outside this particular plane. The corresponding slice of the

numerical phantom (right column) verifies this interpretation and demonstrates that only

the structures with fringes in the XPC reconstructed image are located in this plane. The

reader should note the different y-axis range of panel (b) compared to panels (a) and (c),

which was expanded to display the full extent of edge-enhanced features.

In figure 2.7, a similar comparison is displayed for the reconstructed in-plane image located

at an off-center x-y plane (z=384). There are four spheres appearing in the resulting slice,

but again, the AB tomosynthesis reconstruction (left column) does not provide enough in-

formation to distinguish the structures truly located at this plane. Through the presence

of edge-enhanced features, the PB-XPC tomosynthesis image allows for estimation of which

spheres are veritably present (enclosed in ellipse). This can be verified by examining the cor-

responding plane of the numerical phantom (right column). These results again demonstrate

that boundary-enhancement in PB-XPC tomosynthesis provides capabilities to discriminate

between in-plane structures and out-of-plane contamination. In addition, this capability

proves to persist for depth positions away from the center of rotation.

2.4.2 Experimental Studies

An additional investigation of depth position characterization in PB-XPC tomosynthesis was

conducted through imaging experiments. An extracted mouse lung was imaged with both AB

and PC-XPC tomosynthesis configurations as well as with conventional CT. Figure 2.8 shows
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a typical projection acquired from the two tomosynthesis setups. The PB-XPC projection

(right panel) contains regions that exhibit significant intensity variation with a speckled

appearance [84, 150] while the AB projection (left panel) does not. Two diverging airways

and numerous smaller structures can be identified from the reconstructed in-plane images

displayed in figure 2.9. Results for AB tomosynthesis (left column), PB-XPC tomosynthesis

(middle column) and conventional x-ray CT (right column) are presented along with profiles

for selected lines across each of the large airways (arrow indicators). The top and bottom

rows in figure 2.9 correspond to reconstructed slices at two different z-positions of 4.2mm

and 4.3mm (Depth 1 and Depth 2). The physical dimensions of ROIs are 3.5×3.5mm2, and

the width of the large airway is 250 µm.

Through examination of the AB tomosynthesis result at Depth 1 in figure 2.9(a), it is dif-

ficult to conclude if either airway is actually located at this depth position. However, XPC

imaging methods proved itself able to fulfill this objective, because the left airway branch in

the PB-XPC tomosynthesis result shown in figure 2.9(b) exhibits strong edge-enhancement

along the tissue-air boundary (enclosed in ellipse) while the right airway does not. This

edge-enhancement is readily observed in the extracted profiles. The full-view CT result in

figure 2.9(c) serves as the reference and confirms that only the left branch is located in the

corresponding plane.

The bottom row of figure 2.9 corresponds to a second plane located a distance of 100 µm in

the positive z-direction from the slice at Depth 1. At Depth 2, the AB tomosynthesis image

in figure 2.9(d) shows little difference between the appearances of the two airways; while

the PB-XPC tomosynthesis image in figure 2.9(e) displays strong edge-enhancement at the

boundaries of the airway on the right. In this in-plane, the XPC result successfully identifies

27



the right airway as the real structures but not the left one, which proves to be consistent

with the corresponding slice of CT result in figure 2.9(f).
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(a) AB tomosynthesis scan
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(b) PB-XPC tomosynthesis scan

Figure 2.8: One typical projection image of an ex-vivo mouse lung sample acquired with
different propagation distances. (a) R1=R2=13cm for the AB tomosynthesis scan; (b)
R1=R2=74cm for the PB-XPC tomosynthesis scan. Due to the high phase-contrast sensitiv-
ity during acquisition, the PB-XPC projection presents more features of weakly absorbing
microstructure than the AB projection.

2.5 CONCLUSION AND DISCUSSION

Conventional AB tomosynthesis has previously been applied in both research studies and

diagnostic breast/chest imaging applications. Although tomosynthesis methods are able to

add a third dimension of information to that provided by conventional 2D radiographs, dis-

cerning real structures from those contaminated from other depth positions remains one

of the challenges in interpreting the images. PB-XPC tomosynthesis combines desirable

aspects of XPC imaging and tomosynthesis. It can provide volumetric information describ-

ing weakly absorbing structures and reduce imaging times and doses as compared to XPC

CT. The results presented here demonstrate that PB-XPC tomosynthesis can also provide
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Figure 2.9: A comparison of reconstructed in-plane images for an ex-vivo mouse lung is
shown. The grayscale window represents attenuation coefficient (m−1). The top and bottom
rows correspond to in-plane slices located at z=4.2mm and z=4.3mm, respectively, of the
reconstructed 3D volume from AB tomosynthesis (a,d), PB-XPC tomosynthesis (b,e), and
full-view CT (c,f) data sets. Two airways are seen in the tomosynthesis results and their
line profiles are delineated as the arrows indicate. For each row, edge-enhancement in the
PB-XPC reconstructions is able to provide a method to identify structures that are truly
located at the particular z-position, which is verified by the corresponding CT result.
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improved depth position characterization compared with conventional AB tomosynthesis.

More specifically, the simulation results and experiment studies show that structures truly

located in a specific plane may display strong boundary-enhancement in PB-XPC tomosyn-

thesis reconstructions while out-of-plane structures do not. This effect can facilitate the

identification of in-plane structures.

As demonstrated in our studies, the presence of boundary-enhancement in PB-XPC to-

mosynthesis is shown to be a signature of the true presence of in-plane structures; however,

one should note that the lack of such evidence is not necessarily an absolute indicator of

an out-of-plane artifact. Our results show the prominent fringes employed for depth po-

sition characterization come from the tissue boundaries associated with high kx or high

ky frequencies, therefore edge-enhancement do not cover the entire perimeter of the object

(e.g. those boundaries mainly along x-direction); there could be in-plane structures without

edge-enhancement that also correspond to truly existing objects. The spatial distribution

of fringes depends on the scan angular range of tomosynthesis acquisition. In addition, al-

though boundary-enhancement is useful for depth position determination, the detection of

fringes is essentially a binary decision task that is not always straightforward to accomplish,

especially for those cases where the edge-enhancement is not significant and/or the images

contain a high noise level. A few studies related to edge detection have been reported in

the previous research [87, 182]. Finally, alternative tomosynthesis scanning configurations

exist with different relative motion between source, object and detector. It is uncertain if

the results presented here for complete isocentric motion can be translated directly to other

scanning setups. A natural next step in the course of this work is to further investigate these

issues as well as other factors affecting PB-XPC sensitivity such as lateral coherence and

propagation distance.
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Chapter 3

A subspace-based resolution

enhancing image reconstruction

method for few-view differential

phase-contrast tomography

It is well-known that properly designed image reconstruction methods can facilitate reduc-

tions in imaging doses and data-acquisition times in tomographic imaging. The ability to

do so is particularly important for emerging modalities such as differential X-ray phase-

contrast tomography (D-XPCT)[127], which are currently limited by these factors. An im-

portant application of D-XPCT is high-resolution imaging of biomedical samples. However,

reconstructing high-resolution images from few-view tomographic measurements remains a

challenging task due to the high-frequency information loss caused by data incompleteness.

In this work, a subspace-based (SuB) reconstruction strategy is proposed and investigated

for use in few-view D-XPCT image reconstruction. By adopting a two-step approach, the

proposed method can simultaneously recover high-frequency details within a certain region
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of interest (ROI) while suppressing noise and/or artifacts globally.The proposed method is

investigated by use of few-view experimental data acquired by edge-illumination D-XPCT

scanner.

3.1 Introduction

X-ray phase-contrast imaging (XPCI) methods continue to be actively developed and investi-

gated for characterizing soft tissue or biological samples that present limited X-ray absorption

contrast[38, 128, 92, 103, 9, 60, 20]. A variety of XPCI methods have been proposed, which

include propagation-based imaging[170, 62], crystal analyzer-based imaging[30, 165], grating-

based imaging based on the Talbot or Talbot-Lau effect[163, 128] and edge-illumination

imaging[65, 64, 32]. Conventional implementations of the crystal analyzer-, grating-, and

edge-illumination-based methods are generally referred to as differential XPCI methods,

since they typically yield estimates of the one-dimensional (1D) derivative of the projected

real-valued component of the refractive index distribution of an object. In this work, a tomo-

graphic implementation of differential XPCI is considered, referred to as differential X-ray

phase-contrast tomography (D-XPCT). The goal of D-XPCT is to produce an estimate of

the real-valued component of the refractive index distribution, which describes the spatially

variant refractive properties of an object.

It will be assumed that the tomographic data function, from which an estimate of the re-

fractive index distribution is reconstructed, corresponds to 1D derivative with respect to

the detector row coordinate of the two-dimensional (2D) Radon transform of the refractive

index distribution. This tomographic data function can be established by application of a

phase-retrieval method [128, 165, 34, 117, 42] to the measured intensity data. When the data
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function is know at a sufficiently large number of tomographic views [145], image reconstruc-

tion in D-XPCT can be readily accomplished by use of a modified filtered backprojection

(FBP) algorithm[47, 69, 127].

However, in current implementations of D-XPCT, it may not be desirable to acquire data

at a large number of tomographic view angles. This is because D-XPCT methods are cur-

rently limited by relatively long data-acquisition times and radiation exposures, which has

hindered the widespread application of the method to in vivo applications. Since current

implementations typically utilize a ’step-and-shoot’ data-acquisition protocol, as opposed to

the continuously rotating X-ray source and detector pair utilized in a clinical CT scanner,

one way to mitigate this problem is to acquire tomographic measurements at a reduced

number of view angles. The associated image reconstruction problem is generally referred to

as a ’few-view’ image reconstruction problem [140, 15]. It might be worth mentioning that

recently a phase CT has been developed with a lab source using continuous rotation in a few

minutes, but the limitation in that case is the approximation in the phase retrieval.

There exists a vast literature related to few-view image reconstruction [140, 192, 187, 141,

184]. Modern few-view image reconstruction methods are optimization-based and typically

utilize an iterative method to find a finite-dimensional estimate of the object function that

approximately minimizes an objective function subject to constraints. In the case of D-

XPCT, the object function corresponds to the refractive index distribution. While existing

few-view reconstruction methods can be adapted for use in D-XPCT [175, 85, 116, 115], there

remains a need for improved methods for reconstructing high-resolution D-XPCT images

from few-view measurements. Because few-view image reconstruction corresponds to an ill-

conditioned inverse problem, a regularized solution must be computed; however the design of
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an effective regularization strategy is influenced by many factors, including the characteristics

of the refractive index distribution to be estimated.

Regularization methods that promote object sparsity [140, 27] are ubiquitous in the mod-

ern image reconstruction literature. Although total variation (TV) regularization has been

employed widely, its effectiveness is degraded when the object’s gradient map is not sparse

[174, 175]. To mitigate this problem, object sparsity can be promoted in a different transform

domain in which the object is sparsely represented [146]. Analytical sparsifying transforms

such as wavelets, curvelets, and finite differences can be employed. Alternatively, the sparsi-

fying transform can be adaptively learned from a set of training data [177, 130]. Moreover,

multiple penalty functions can be employed in the objective function in order to obtain a

balanced regularization[196], or more complicated strategies can be employed that achieve

local TV regularization effects in the image domain[153]. However, it remains challeng-

ing to design a regularization strategy that faithfully preserves fine object features in the

reconstructed image when only few-view tomographic data are utilized.

In this work, a new method for few-view image reconstruction in D-XPCT is proposed and

investigated. A distinctive feature of the method is that the sought-after object function is

decomposed into two components that reside in distinct subspaces. One component corre-

sponds to the high frequency components of the object function that reside within a certain

region of interest (ROI). The radius of the ROI is determined by the spatial frequency con-

tent of the object function and the number of tomographic view considered. This object

component can be stably recovered from the few-view measurement data using a Penalized

Least-Squares (PLS) estimator. The second component corresponds to the lower frequency

components of the object function, over the entire support of the object. This object com-

ponent, which is slowly varying, can be accurately estimated by use of a TV-regularized
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PLS estimator (PLS-TV). In this way, the high frequency components of the object function

within the ROI can be faithfully preserved, while outside of the ROI lower-frequency com-

ponents of the object can be accurately recovered and streak artifacts can be suppressed.

The proposed subspace-based method is applied to few-view experimental data acquired by

use of a benchtop edge-illuminiation D-XPCT system and its performance is compared to

the conventional FBP and PLS-TV methods.

3.2 Background

3.2.1 D-XPCT imaging model in semi-discrete form

It will be assumed that all functions below are compactly supported and belong to weighted

L2-spaces. For a function f(r) that is compactly supported on a disk D ⊂ R2, the two-

dimensional (2D) Radon transform of the function is defined as

(Rcf)(s, φ) =

∫ r

−r
f(r)δ(s− r · n)dr, (3.1)

where s ∈ (−r, r) denotes the detector row coordinate, φ ∈ (0, π) denotes the tomographic

view angle, and n = {cosφ, sinφ} is a unit vector making angle φ to the x-axis.

Considering the case of few-view measurement data where only a finite number of views are

available, the corresponding finite-view Radon transform can be defined by discretizing Rc

with respect to the tomographic view angle:

(Rf)(s, φi) =

∫ r

−r
f(r)δ(s− r · ni)dr, (3.2)
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where ni = {cosφi, sinφi} and φi belongs to a set S that contains discrete tomographic view

angles indexed with i = 1, 2, ...,M . Therefore, R is a compact operator from L2(D) into

L2(Z), where Z = [−r, r]× S.

The D-XPCT imaging model can be described as a finite-view differential Radon transform

H = DR, where D is a one-dimensional first-order derivative operator:

g(s, φi) = Hf(r) ≡ DRf(r) =
∂

∂s

∫ r

−r
f(r)δ(s− r · ni)dr. (3.3)

Here, g(s, φi) is a tomographic data function that is established by use of a phase retrieval

method[88, 109, 108, 183].

The image reconstruction task in D-XPCT is to determine an estimate of f(r), which repre-

sents the refractive index distribution, from knowledge of g(s, φi). When the data function

g(s, φi) is determined at a large number of view angles, this can be accomplished by use of

analytical image reconstruction algorithms[50]. For example, images can be reconstructed

by use of a modifed FBP method as[127]

f̂FBP = R†Chg, (3.4)

where † indicates the adjoint operator, and Ch is a filter kernel acting as the Hilbert transform

scaled by a factor. Typically the scaling factor equals the angular spacing ∆φ if all the

projections are uniformly acquired over the π span. Here R†, usually referred to as the

back projection operator, is mathematically equivalent to discretizing R†c with respect to the

variable φ:

(R†g)(r) =
M∑
i=1

[

∫ r

−r
g(s, φi)δ(s− r · ni)ds]. (3.5)
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Note that Eq. (3.4) appears similar to the classical FBP algorithm for CT image reconstruc-

tion, where the reconstruction kernel has been modified. However, in the case of noisy and/or

few-view measurement data, analytic reconstruction methods are known to be suboptimal

and the use of iterative methods is highly desirable.

3.2.2 Null-space properties of finite-view Radon transform

The finite-view Radon transform R is a semi-discrete version of the classical Radon trans-

form in which only discretization of the angular variable is performed. A unique and exact

reconstruction of an arbitrary function is mathematically impossible when the tomographic

data contains only a finite number of views. This implies that the finite-view Radon trans-

form has a non-trivial null space. The functions in this null space, denoted as fnull, are

invisible along the considered projection directions, or mathematically speaking, Rfnull = 0,

where 0 is an infinite-dimensional zero vector defined in the range of R. Correspondingly,

the orthogonal complement of the null space is defined as measurable space.

By use of various mathematical tools, for example the orthogonal function series expansions

or singular value decomposition, important insights into the null-space properties of the

finite-view Radon transform have been established[96, 98, 28, 97, 145, 76]. Defining a com-

pact disc support of radius r, and assuming a set of M equispaced projections over π span,

Logan[96] revealed that the 2D Fourier transform of any null-space function corresponding

to the imaging operator R is negligible inside a disc of radius Ω in Fourier space when

Ω = M/(2πr), (3.6)

as illustrated in figure 3.1(a), where the estimate holds when M � π/2 .
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As a direct consequence, a function whose 2D Fourier transform is concentrated within

this frequency disk Ω can be reliably reconstructed from its M projections[76]. An intuitive

illustration is provided in figure 3.1(b). If the frequency contents of the object do not fall into

the null space of the finite-view Radon transform, the object can be accurately reconstructed.

More rigorous mathematical proofs can be found in previous works[145, 28].

Figure 3.1: (a) The null-space functions of the finite-view Radon transform are contained
exclusively outside a disk Ω in the Fourier domain, shown as the gray region. (b) If a
to-be-imaged object has all the frequency contents confined to Ω without overlapping the
null-space region, it means the object could be reliably reconstructed.

Remark 1 : The above argument has been a long-time guide for determining the angular

sampling requirements for a CT scan[76]. For non-trucated projections, the D-XPCT data

set can be readily converted to a CT data set by use of an integral operator, without any

information loss. So the conclusion is also valid for the D-XPCT imaging scenario.

Remark 2 : For an imaging operator R with the support radius and number of views already

defined, the above argument tells under what conditions the image can be reliably recon-

structed, which does not rely on any specific reconstruction algorithm. In practice, FBP-type

algorithms taking the form of Eq. (3.4) have been widely implemented in CT, proving reliable

reconstructions as long as the relationship of Eq. (3.6) is satisfied[145, 76, 133].
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Remark 3 : A compactly supported object theoretically does not have a strictly band-limited

frequency distribution; therefore one should keep in mind that the argument only holds when

we can assume the measurements are quasi-band-limited, which is the case in many practical

implementations[122].

3.3 Motivation for subspace-based image reconstruc-

tion

3.3.1 Revisiting the FBP algorithm

When the imaging system corresponds to a field of view (FOV) of radius r that does not meet

the requirement in Eq. (3.6), the aforesaid angular sampling is insufficient for an accurate

reconstruction when the FBP algorithm is employed. From the perspective of the Fourier

slice theorem, the acquired data suffer a significant high-frequency information loss, and a

blurred reconstructed image is expected. However, it is interesting that, though the conven-

tional FBP algorithm is known to give rise to streak-like aliasing artifacts, the reconstructed

image looks sharper and more resolution-enhanced in comparison to the image that reflects

the measurable component of the object[186]. Here, the measurable component fmeas is de-

fined as the part of the object that lies in the measurable space of the operator R. It can be

interpreted as the least-square estimate of the object that has the minimum L2-norm, known

as the pseudo-inverse solution, which can be computed by use of the Landweber iterative

algorithm or other inversion methods[12].
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In order to better interpret an image produced by use of the FBP algorithm, the to-be-

imaged object f can be decomposed into two components as f = Wf + (1−W )f . Here, W

is a 0-1 function that performs as a circular mask with the center at the origin, such that

W (~r) =


1 if ‖~r‖ < r’

0 elsewhere,

(3.7)

where the radius r′ is determined as

r′ = M/(2πΩ). (3.8)

As introduced in Eq. (3.6), Ω denotes the maximum spatial frequency of the object. Moti-

vated by the previous null-space properties of the finite-view Radon transform, W specifies

the largest ROI that can potentially be reliably reconstructed, as will be discussed below.

Denote the FBP reconstruction operator as B = R†Ch for a given finite-view D-XPCT

problem, where the back projection operator R† and filter Ch are defined as in Eq. (3.4).

Assuming consistent data g = Hf , an image reconstructed by use of the FBP algorithm can

be expressed as

f̂FBP = Bg = WBg + (1−W )Bg. (3.9)

The reconstructed image within a designated ROI of radius r′ can be isolated by applying

the mask W on f̂FBP

Wf̂FBP =WBg

=WBHf

=WBHWf +WBH(1−W )f.

(3.10)
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Figure 3.2: The illustration of the reconstruction over the support r and with a virtual mask
W . FBP algorithm ensures that the reconstruction of ROI within r′ is not affected by the
masked region.

The first term in Eq. (3.10), WBHWf , describes an image of the ROI reconstructed by use

of the measurements that are solely produced from the structures inside the same ROI, as

illustrated by the projection profile shown in Figure 3.2. Note that BHWf is the recon-

structed image defined in the whole support, in which the area outside the radius r′ is not

zero but may contain streak artifacts when the number of projection views is not sufficient.

However, due to the properties of the back projection operator R†, the FBP method ensures

that the reconstruction of the ROI of radius r′ is independent of that for the masked region.

Therefore reconstructing the designated ROI is equivalent to an conventional reconstruction

problem that has a smaller FOV of radius r′. If Ω = M/(2πr′) holds, it is reasonable to

directly apply the argument stated in Section 3.2.2 to establish that this ROI can be reliably

reconstructed by use of the FBP algorithm. Mathematically speaking, WBHWf = Wf .

The second term of Eq. (3.10), WBH(1−W )f , namely represents the streak artifacts present

in the ROI that is backprojected from the source (1−W )f corresponding to the structures

outside the ROI. It can be denoted as an error term ε, and will be further discussed it in

Section 3.3.2.

41



In summary, by rewriting Eq. (3.10) it can be concluded that

Wf̂FBP = Wf + ε. (3.11)

It implies that, for few-view tomographic reconstruction, although the information is not

sufficient enough to accurately recover the entire image by use of an un-regularized recon-

struction operator, there is still an opportunity to reliably estimate the object within a

restricted ROI when ε is small.

3.3.2 The recovery of the object’s high-frequency contents

Given the imaging operator H and the data function g, an optimization problem is proposed

based on Eq. (3.11) in order to extract certain high-frequency components of f that are

usually difficult to retrieve:

f1 = argmin
f
‖f‖2

s.t. Hf = (C − 1)g,

(3.12)

where the filter C = HR†Ch, and Ch is a scaled Hilbert transform operator as specified in

Eq. (3.4). Mathematically, one can demonstrate that

Wf1 = Wfnull + ε, (3.13)

where the determination of W is guided by the aforesaid rule of Eq. (3.8), and fnull denotes

the null component of the object in terms of the imaging operator H. Details regarding this

interpretation are provided in Appendix A.
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As suggested by the Fourier slice theorem, fnull mainly contains high-frequency information

that is insufficiently sampled in the Fourier domain. As a consequence, Eq. (3.13) suggests

that the recovery of Wf1 can yield useful high-frequency information regarding the object

within the ROI of radius r′, which is generally a challenge for few-view image reconstruction

methods.

Note that the solution of Eq. (3.12) also satisfies

f1 = argmin
f
‖Hf − (C − 1)g‖2, (3.14)

when a Landweber-type iterative algorithm is employed starting from a zero intial guess[113].

Remark 1 : Since W is non-invertible, it should be noted HWfnull = 0 is generally not true.

Therefore by definition Wfnull is not a null-space function of the imaging system, and the

recovery of Wfnull does not violate linear operator theory.

Remark 2 : Under certain conditions, the error term ε could be insignificant. This could

occur, for example, if the outside-ROI structures are weak in magnitude or sparse in spatial

distribution. Also, if the outside-ROI structures corresponds to lower frequencies, ε can be

negligible. This could be understood by a similar analysis as stated in section 3.2.2, which

implies a lower-frequency object could have a larger “artifact-free” zone. Particularly, if the

outside-ROI structures have Ω 6 M/(2πR), then they won’t produce any streak artifacts

over the entire object support R, and ε is consequently zero.
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3.4 Subspace-based image reconstruction method

3.4.1 General forms of the discrete imaging model

Many iterative image reconstruction algorithms require a discrete imaging model, and a

natural way to obtain this is to discretize the semi-continuous model in Eq. (3.3). When

a digital detector is employed, the data function corresponds to an ordered collection of

numbers. Since the reconstruction problem is inherently 2D, we will denote the discrete

data function as

g[k, φi] = g(s, φi)|s=k∆d
, (3.15)

where k is integer-valued detector element index along the transverse direction, and ∆d

denotes the detector element dimension. Let the vector g ∈ RK×M denote a lexicographically

ordered representation of g[k, φi]. The dimension of g is the product of the number of detector

row elements K and the number of view angles M .

In order to obtain a finite-dimensional approximate representation of the object function, a

linear N -dimensional approximation of f(r) can be formed as

fa(r) =
N−1∑
n=0

f̃nβn(r), (3.16)

where the subscript a indicates that fa(r) is an approximation of f(r), {βn(r)} are a set

of expansion functions, and {f̃n} are the corresponding expansion coefficients. Let f be a

N × 1 vector of expansion coefficients that has an n-th element given by f̃n. Rather than

the conventional pixel basis functions, the Kaiser-Bessel window expansion functions[93, 85]

were employed in this study. This choice is shown to have the attractive feature that the
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derivative and Radon transform operators with respect to the expansion functions can be

computed analytically, thereby circumventing the need to numerically approximate it.

With the defined discrete data function and object function, a system matrix H employing

the generalized Kaiser-Bessel window functions can be constructed[175] that approximately

satisfies

g = Hf . (3.17)

This represents a discrete imaging model for D-XPCT that can be used with iterative image

reconstruction algorithms for estimation of f from knowledge of g and H. From the estimated

f , the object function estimate - the sought after image - can be obtained by use of Eq. (3.16).

3.4.2 Proposed iterative reconstruction method

Equation (3.11) implies that, for a given object, the FBP algorithm can produce sharp and

accurate images within a ROI whose radius is dependent on the number of tomographic views.

However, the FBP algorithm usually does not effectively mitigate noise. Also, it produces

severe streak artifacts outside the ROI when the number of views is insufficient. Mean-

while, the conventional TV-regularized iterative algorithm can effectively suppress noises

and artifacts, but it also brings the risk of removing desired subtle structures.

In order to synergically combine the two reconstruction methods, we propose a subspace-

based (SuB) reconstruction strategy, and reconstruct the images in a two-step, iterative

approach that can be more robust against the noise.
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Similar to the decomposition step described in the previous section, the reconstructed image

f is denoted as the sum of two images f1 and f2 by

f = W f1 + f2, (3.18)

where f1 and f2 can be computed respectively via a two-step approach as shown in Eq. (3.19)

and (3.20). We first compute f1 by solving

f1 = argmin
f
‖Hf − (C − 1)g‖2, (3.19)

with a gradient-descent algorithm and a zero initial guess. Subsequently, the object compo-

nent W f1 is fixed and f2 is estimated as:

f2 = argmin
f
‖H(W f1 + f)− g‖2 + λ‖f‖TV , (3.20)

where ‖·‖TV indicates the total-variation semi norm[153].

As suggested in section 3.3.2, the first sub-problem [Eq. (3.19)] produces an estimate of W f1

that mainly contains the high-frequency contents of the object inside the designated ROI.

In the second sub-problem [Eq. (3.20)], a TV-penalized least square (PLS-TV) estimator

is employed for estimating f2. Note that by subtracting the contribution of high-frequency

component from the measurements, f2 will mainly contain low-frequency contents, which is

considered smoother and therefore more suitable for the application of TV regularization.

Therefore, the proposed sub-space image reconstruction method, referred to as the Sub-PLS-

TV method, includes the following potential benefits:
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- The high-frequency details within the designated ROI can be stably recovered from mea-

sured few-view data.

- The global TV regularization is still employed for the purpose of suppressing noise and

streak artifacts over the entire object domain.

- Since the two subspaces are naturally constrained in the second sub-problem, in the re-

constructed image the transitions at the ROI boundaries are smooth.

Below, the proposed Sub-PLS-TV method, the FBP method, and the conventional PLS-TV

method will be compared through numerical studies. The PLS-TV method corresponds to

iteratively solving the following optimization problem

f̂PLS = argmin
f
‖Hf − g‖2 + λ‖f‖TV, (3.21)

which has been widely used for few-view CT image reconstruction[153]. A modern iterative

reconstruction algorithm based on the FISTA acceleration framework[14] is employed for the

two iterative methods.

3.5 Results

3.5.1 Computer-simulation studies

Computer-simulation studies were conducted to demonstrate and validate the proposed SuB-

PLS-TV image reconstruction method. A 1024 × 1024 numerical phantom was generated,

shown in Fig. 4.1(a), which contained a lumpy background with slowly varying magnitude
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Figure 3.3: (a) The complete phantom. (b) A zoomed-in region of the phantom with adjusted
gray-value window. The dashed circle indicates the designated ROI where the capability
of reconstructing high-frequency structures is expected. (c) The extracted profile of the
phantom across the center.
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and a disk with fast varying ripple fluctuations. Differential phase-contrast measurement

data corresponding to 90 tomographic views evenly distributed over 180 degrees were gen-

erated by projecting the phantom using the system matrix H introduced in Section 3.4.1.

Consequently, the system matrix used for data generation exactly matches the one used for

reconstruction in this simulation study. In order to mitigate the inverse crime, here 5%

Gaussian noise was added in the simulated data. Note that the model mismatch will be

inherently present in the experimental study that is discussed in the next section.

In the phantom, the random background was generated based on the recommended param-

eters for mimicking the statistical texture of mammographic images[17]. The rippled disk

represents the high-frequency details that normally bring challenges for few-view image re-

construction. For simplicity, the ripple was designed to have a constant spatial frequency at

6 pixels/cycle which could be reasonably considered as the phantom’s upper frequency limit.

Therefore, based on Eq. (3.6), a ROI could be designated with the radius r = M/(2πΩ) = 86

pixels in which the high frequency structures are expected to be well recovered. In this study,

the radius of the rippled disk was also made as large as r for the purpose of demonstrating

the maximum ability of reconstructing high-frequency structures.

We compared the performances of three methods: FBP, PLS-TV, and the proposed SuB-

PLS-TV method. For both iterative methods, the regularization parameter λ was swept over

a wide range to show the overall tendency of image quality. A series of typical reconstructed

images corresponding to progressively increasing TV parameters (i.e. 1e−1, 1e−2, 1e−3 and

1e−4) are shown in Figs. 3.4 and 3.5, for the designated ROI region and an outside-ROI

region, respectively.

In the designated ROI (Fig. 3.4), the conventional PLS-TV method was ineffective at re-

covering the high-frequency ripples of the disk, no matter how we tuned the regularization
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parameter. TV regularization smooths the noisy background but meanwhile suppresses high-

frequency details. As opposed to this, the proposed SuB-PLS-TV method selectively applies

the TV regularization to the low-frequency subspace, and is thus able to preserve the high-

contrast ripples within the ROI. Also, the proposed method still gains the benefits of noise

suppression by using TV regularization, which is a significant advantage over the analytical

FBP method. Since the lumpy background contains mostly low-frequency contents, there

are no discernible streak artifacts shown in the designated ROI, suggesting that the error

term in Eq. (3.13) is negligible.

Figure 3.4: The comparison of reconstructed images inside the designated ROI. (a) Phan-
tom; (b)-(e) The PLS-TV method with increasing TV regularization parameter values; (f)
FBP method; (g)-(j) The proposed SuB-PLS-TV method with progressively increasing TV
regularization parameter values.

In an outside-ROI region (Fig. 3.5), where streak artifacts occur in the image reconstructed

by the FBP method, the SuB-PLS-TV method still outperforms the alternative iterative
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Figure 3.5: The comparison of reconstructed images outside the designated ROI. (a) Phan-
tom; (b)-(e) The PLS-TV reconstruction results with increasing TV regularization parameter
values; (f) FBP method; (g)-(j) The proposed SuB-PLS-TV reconstruction results with pro-
gressively increasing TV regularization parameter values.
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method in terms of artifact suppression. This is credited to the novel cost function design

of the sub-problem in Eq. (3.20). The subtraction of the contribution of W f1 from the

measurement data leads to more accurate estimation of f2 representing the accurate low-

frequency structures over the entire image.

Figure 3.6: The profiles extracted from the conventional PLS-TV reconstructed images with
increasing regularization parameter values (blue) and the corresponding ground truth (red).

Figure 3.7: The profiles extracted from the SuB-PLS-TV reconstructed images with increas-
ing regularization parameter values (blue) and the corresponding ground truth (red).

Line profiles were extracted from the reconstructed images and superimposed on the corre-

sponding profiles through the true phantom. The profile through the center, as depicted in

Fig. 4.1(a), crosses the designated ROI and an outside-ROI region where the streak artifacts
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would occur. Figure 3.6 shows a series of profiles corresponding to the PLS-TV reconstructed

images with increasing TV regularization parameters. Figure 3.7 shows a series of profiles

corresponding to the SuB-PLS-TV results with increasing TV regularization parameters.

Profiles through the reconstructed images for the inside and outside ROI are highlighted

by dashed squares. Again, the SuB-PLS-TV method yields a reconstruction result that is

visually more consistent with the ground truth. By tuning the regularization parameter, it

performs better than the conventional PLS-TV method in terms of balancing the recovery

of high-frequency ripples and the suppression of background noise and/or streak artifacts.

3.5.2 Experimental studies

The proposed reconstruction method was also validated by use of an experimental D-XPCT

data set produced by a benchtop edge-illumination X-ray phase contrast CT system built

at University College London[120, 63]. The sample was a dung beetle. The complete tomo-

graphic data set contained 720 views with an angular spacing of 0.5◦, from which a reference

image could be generated via the FBP algorithm, which is shown in Fig 3.8. Detailed features

of the object are visible in the zoomed-in region.

For the few-view image reconstruction studies, a subset of 120 uniformly spaced views over

a 180◦ span were extracted from the complete data set. This reduction in the number of

measurements can reduce the acquisition times by one-sixth, resulting in a total time savings

of an hour. Assuming the object’s maximum frequency of interest is approximately 10 mm−1,

a central ROI with the radius of 2 mm (150 pixels) can be designated, where a reliable

reconstruction of high-frequency structures is expected. The designated ROI is labeled as
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Figure 3.8: (a) The reference image of the object produced by use of the FBP algorithm and
the complete data. (b) A zoomed-in region of the designated ROI.

Figure 3.9: The comparison of the reconstructed ROI 2© by use of FBP, PLS-TV and SuB-
PLS-TV methods.
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region 1© in Fig 3.8. Three smaller windows 2©- 4© inside this ROI, as well as an outside-ROI

region 5©, will be inspected for evaluating the few-view reconstruction performances.

Figure 3.9 shows the reconstructed ROI images corresponding to the region 2© labeled in

Fig 3.8. The LS image indicates the least-square estimate of the object (i.e. Eq. (3.21) with

λ = 0). It exhibits blurring appearance due to the nature of few-view data acquisition and

the consequent insufficient sampling of high frequency contents in the Fourier domain. The

image reconstructed by use of the FBP method preserves high-frequency details, but also

contains a considerable amount of noise. In the bottom row, a series of images reconstructed

by the PLS-TV method are shown with a wide range of increasing regularization parameter

values that are listed in Table 3.1. As demonstrated before, they either appear blurred or

oversmoothed. Instead, the proposed SuB-PLS-TV method provides promising results. The

plotted ellipse highlights the structures that bear a close resemblance with the reference

image while the conventional PLS-TV images do not have. In this study, the choice of the

regularization parameter value for the presented SuB-PLS-TV image is fixed the same as

the one for the third PLS-TV image for all Figs. (3.9)-(3.12).

Similar observations resulted when examining the other two ROIs labeled as region 3© and

4©. The reconstructed images and the comparison between different methods are shown in

Figs 3.10 and 3.11. Again, all the images reconstructed by use of the PLS-TV method do

not show the trend of resolving those fine structures, but the proposed SuB-PLS-TV method

could produce a noise-suppressed and more natrual looking image that is very close to the

reference.

Figure 3.12 shows a typical region 5© outside the designated central ROI 1©. In this case,

the SuB-LS-TV image gives a cleaner background compared with the FBP algorithm. It
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Figure 3.10: The comparison of the reconstructed ROI 3© by use of FBP, PLS-TV and
SuB-PLS-TV methods.

Figure 3.11: The comparison of the reconstructed ROI 4© by use of FBP, PLS-TV and
SuB-PLS-TV methods.
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also visually outperforms the PLS-TV image in terms of restoring the structures located far

from the center as indicated in the plotted ellipse.

Figure 3.12: The comparison of the reconstructed region 5© outside the designated ROI by
use of FBP, PLS-TV and SuB-PLS-TV methods.

All the images in Figs. (3.9)-(3.12) reconstructed by use of the PLS-TV, FBP and SuB-

PLS-TV methods were quantitatively evalulated in terms of Mean Square Error (MSE) and

Structure Similarity Index (SSIM), as shown in Table 3.1. The corresponding reference

images were served as the standard when computing the figure of merits. In all listed

regions, the SuB-PLS-TV method gives the lowest MSE and the highest SSIM, which proves

the stable and reliable reconstruction performance compared with the other methods.
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Table 3.1: Quantitative evaluation of the reconstructed images in MSE and SSIM

PLS-TV w/ increasing TV parameter FBP SuB-
PLS-TV

TV parameter value 1e−8 2e−8 3e−8 4e−8 - 3e−8

Region 2© MSE 5.030 4.972 5.029 4.991 4.771 4.292

SSIM 0.667 0.671 0.675 0.675 0.683 0.754

Region 3© MSE 5.296 5.229 4.975 4.924 4.529 4.185

SSIM 0.685 0.690 0.708 0.706 0.768 0.777

Region 4© MSE 5.082 5.021 4.880 4.818 4.728 4.209

SSIM 0.681 0.687 0.700 0.699 0.728 0.774

Region 5© MSE 4.401 4.212 4.110 4.085 5.480 3.625

SSIM 0.560 0.579 0.588 0.588 0.450 0.623

3.6 Conclusion

A new subspace-based reconstruction strategy was proposed and investigated for use in

few-view D-XPCT image reconstruction. It possesses the attractive features that subtle

structures can be accurately reconstructed within a designated ROI, while the entire FOV

can be effectively regularized to mitigate noise and streaking artifacts. More specifically,

the object is split into two components that represent the high-frequency and low-frequency

subspaces, respectively. The resulting two-step iterative method is expected to mitigate the

high-frequency information loss caused by data incompleteness and produce better images

than those produced by use of a conventional PLS-TV estimator. The proposed SuB-PLS-

TV method was validated by a computer-simulated data set as well as an experimental data

set acquired from an edge-illumination XPCT scanner.

The proposed reconstruction method can be applied with all XPCI imaging modalities that

produce differential phase-contrast data. It can also be readily extended to conventional

CT scenarios by use of a modified filter C = RR†C0 in Eq. (3.12), where C0 is the ramp
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filter in this case. In practical applications, the prior information regarding the maximum

frequency of the sample may not be known, but Ω can be preset based on the maximum

frequency of interest in terms of a specific imaging purpose. The projection data might

need to be preprocessed with a low-pass filter according to the cut-off frequency Ω. Multiple

trials for determining an ideal Ω may be necessary before the resulting image quality is fully

optimized. Note that there is always a trade off between the frequency setting Ω and the

size of the recoverable ROI.

It is worthy noting that the error term ε presented in Eq. (3.13) might affect the reconstructed

images. When ε is not small, generally the reconstructed ROI is still sharp but the recovery of

the high-frequency structures is at the cost of the appearance of streak artifacts. However,

it should be noted that in the medical imaging field the task-based image assessment is

widely promoted[12]. In some imaging applications, resolution-enhanced images are useful

for diagnostic purposes even though the artifacts are sometimes present, and the proposed

strategy is able to provide such a solution.
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Chapter 4

A total-projection-length constrained

method for stabilized quantitative

projection-based dual-energy material

decomposition

Dual-energy X-ray imaging exploits the energy-dependent X-ray attenuation properties of

materials to identify and characterize the material composition of structures in X-ray images

acquired using high and low energy beams. Dual-energy computed tomography (DECT) has

been widely investigated over the last decade and is available in several commercialized

imaging systems. However, there is still a lack of reliable and valid methods for projection-

based material decomposition, which remains a bottleneck for the development of dual-

energy computed radiography (DECR). One main difficulty is the extreme sensitivity to

data noise, as conventional projection-based decomposition relies on solving high-order poly-

nomial equations. In this work, we claim that a constraint of total projection length can

effectively stabilize the two-material decomposition process. Also, two feasible “water-bath”
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and “scout-scan” ideas are proposed in order to practically obtain the constraint. Results

from numerical simulations demonstrate that the constrained method is capable of quantita-

tively accurate material decomposition and presents robustness against data noise, showing

promising potentials of DECR in clinical applications for example mammography where the

size of calcification is of interest.

4.1 Introduction

Dual-energy X-ray imaging is a technique in which two (or two sets of) projections using

two different incident beam spectra are acquired of the same object. X-ray attenuation

for the range of energies employed in diagnostic radiography consists of contributions from

photoelectric absorption and Compton scattering. The probability of Compton interactions

is relatively independent of energy and material composition. However this is not the case for

the photoelectric effect for which the interaction cross section is approximately proportional

to Z3/E3, where E is the x-ray energy and Z is the average atomic number of the material.

Two X-ray projections of an object, one acquired with a high energy beam and the other with

a low energy beam, will have differences in detected intensities between the two radiographs

which depend on the composition of the object. For an object composed of two materials,

these intensity changes can be exploited to form two basis material images[5, 23]. This

procedure is often referred to as material decomposition. The decomposed information can

facilitate material segmentation or identification of an abnormality[131, 159].

Dual-energy X-ray imaging modalities can be generally categorized into two classes: dual-

energy computed tomography (DECT)[112, 159] and dual-energy computed radiography
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(DECR)[24, 121]. The former acquires tomographic data sets and performs the decompo-

sition in the reconstructed image domain, which is referred to as the image-based method.

The image-based decomposition requires beam hardening corrections for reconstructed im-

ages or advanced reconstruction algorithms that can handle polychromatic spectrum, and

then the material type can be recognized by examining reconstructed pixel’s CT numbers

from high- and low-energy exposures. This method has gradually become popular during

the last decade, and there have already been a number of commercialized DECT systems

developed and widely employed in various clinical applications[41, 147, 162]. On the other

hand, DECR, which performs material decomposition in the projection domain, has not yet

found widespread implementation in medical imaging applications. Though projection-based

decomposition is essentially free of the beam hardening problem[131], DECR requires the

strict registration of the two projections, and seeks for the solution of an ill-posed inverse

problem which is sensitive to noise[11, 22].

In DECR chest imaging applications, an image subtraction method was employed to provide

a qualitative material decomposition. A linear weighted subtraction of the two projections

was used to produce a bone-selective image, whereas another subtraction with different

weights was used to produce a soft tissue-selective image[67, 137]. This subtraction approach

has also been applied to dual-energy X-ray absorptiometry to estimate a body composition

in terms of fat and bone mineral[89]. However, the image subtraction method is valid only

for monochromatic spectra in theory. When a bench-top X-ray tube is used, the simple linear

subtraction is actually suboptimal in the sense that it fails to provide accurate quantitative

information regarding the composition. A more rigorous decomposition method should take

polychromatic spectra into account. Suppose an object is composed of only bone and soft

tissue, with corresponding projected thicknesses (or line integrals) lb and ls along the X-ray

beam direction, respectively. For two energy spectra SH(E) and SL(E), the physical model
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that describes the dual-energy imaging process is given by[159]

IH/IH0 =

∫
SH(E)exp[−lbµb(E)− lsµs(E)]dE

IL/IL0 =

∫
SL(E)exp[−lbµb(E)− lsµs(E)]dE,

(4.1)

where µb and µs denote the linear attenuation coefficients of bone and soft tissue, IH and IL

are the high- and low-energy intensity measurements, and IH0 and IL0 are the corresponding

flat field images.

Because Eq. (4.1) contains transcendental functions, it brings difficulties in mathematically

solving the decomposition problem for closed-form solutions. A conventional strategy is to

use high-order polynomials to approximate the dual-energy imaging process described in

Eq. (4.1)[23, 131]. Once the approximating functions are constructed via a calibration step,

they are involved in an inverse problem to estimate the individual material’s line integral

of an object, as long as the imaging conditions (e.g. spectra) remain the same. Although

there have been a number of methods proposed under this framework, either the direct fit of

the dual energy equations [5], or the approximation of its inverse map [23, 80], they all have

been reported to be unstable and sensitive to photon noise. The main problem lies in the

high non-linearity of the dual-energy imaging model when polychromatic spectra are used

[35].

To mitigate this issue, we propose to introduce a constraint of total projection length, which

can effectively stabilize the conventional projection-based material decomposition. We also

develop two feasible “water-bath” and “scout-scan” ideas that can be used to practically

implement the desired constraint. Numerical studies show that our method is capable of

accurate two-material decomposition and shows robustness against data noise.
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4.2 Methods

4.2.1 Calibration method

In biomedical applications such as chest imaging or mammography, it is difficult to obtain

calibration data using biological materials due to their irregular shapes and structural hetero-

geneity. It is therefore common to chose aluminum (Al), a bone-like material, and plexiglas

(Lucite) (Pl), a tissue-like material, as basis materials. Calibration phantoms made from

Al and Pl can be fabricated to high precision and their X-ray attenuation properties are

well-defined. Therefore, we presume the attenuation of any biomedically relevant objects to

be equivalent to the combined attenuation of Al and Pl. It is important to note that Al does

not strictly represent bone nor does Pl represent soft tissue.

Figure 4.1(b) displays an example of a typical setup for acquiring calibration data from Al

and Pl wedges. More details will be introduced in Sec 4.3. Basically, two projections of the

calibration phantom are acquired, one with a high-energy beam and one with a low-energy

beam. We denote a pixel’s measured log signals as f = log(IH/IH0) and g = log(IL/IL0),

for high- and low-energy exposures, respectively. The detected signals (f, g) at a given pixel

correspond to a thickness pair of two basis materials, denoted as (p, q).

In contrast to the conventional polynomial approximation, the conic rational equation is

a recommended model for approximating the polychromatic imaging process described in

Eq. (4.1). The new model claims the advantages of better smoothness, monotonicity and

asymptotic linearity[29, 35]. We therefore construct the following two rational functions
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F (p, q) and G(p, q):

F (p, q) =
a0 + a1p+ a2q + a3p

2 + a4pq + a5q
2

1 + a6p+ a7q

G(p, q) =
b0 + b1p+ b2q + b3p

2 + b4pq + b5q
2

1 + b6p+ b7q
,

(4.2)

where the variables p and q are the projected thicknesses (or line integrals) of the two basis

materials, the corresponding function values F and G are the computed log signals under

high- and low-energy spectra. By use of calibration data, one can estimate the coefficients

{ai} and {bi} by fitting Eq. (4.2) from measured signals (f, g) at known combinations of

(p, q). In this work, the weighted least squares
∑
n

(Fn−fn)2

σ2
fn

is minimized iteratively via the

Levenberg-Marquardt algorithms[107] to obtain {ai}, where n is the calibration pixel index

and the signal variance σ2
fn is used as weights allowing for the noise issue. For Poisson noise

model, σ2
fn is related to the expected values of photon numbers received on the detector

element. Similar steps can be taken to obtain {bi}.

Note that, as opposed to Eq. (4.1), the approximating functions F (p, q) and G(p, q) do

not explicitly involve the integral over the spectrum when computing the signal intensities.

The effects of polychromatic spectra have actually been incorporated in the approximating

functions by estimating the coefficients from calibration data. Therefore, this method claims

the advantage of eliminating the requirement for measuring the two source spectra employed

in dual-energy imaging.

4.2.2 Decomposition method

In most cases, the object to be imaged does not consist of the same materials as those used

to make the calibration phantom. In order to generally apply the approximation functions,
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any objects to be decomposed should be first converted into the basis material combinations

with equivalent total attenuation. For example, suppose a biological sample consists of bone

(µb) and soft tissue (µs); the calibration phantom is made of aluminum (µAl) and plastic

(µPl). We can define attenuation properties of bone and soft tissue as a linear combination

of the properties of the basis materials:

µb(E) = α11µAl(E) + α12µPl(E)

µs(E) = α21µAl(E) + α22µPl(E),

(4.3)

where the coefficients {αij} are unique and energy-independent[91]. The determination of

{αij} is described in Appendix B.

For any detector pixel, we denote the corresponding projected bone length as lb, and the

projected soft tissue length as ls. By multiplying lb at the both sides of Eq. (4.3), it implies

that a bone of length lb, is equivalent to aluminum of length α11lb plus plastic of length

α12lb, in terms of X-ray attenuation effect. Similarly, soft tissue of length ls, is equivalent to

aluminum of length α21ls plus plastic of length α22ls. As a result, the total attenuation of

bone and soft tissue along the line integral can be equivalently converted to basis materials

(Al and Pl) with thickness pair (p, q)

p = α11lb + α21ls

q = α12lb + α22ls.

(4.4)

By substituting Eq. (4.4) into (4.2), one can use the two-dimensional Newton-Raphson

method to iteratively solve for lb and ls. Note that the exact solutions may not exist.
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For the ease of interpretation, an equivalent, optimization-based problem[29] is proposed:

(lb, ls) = argmin
lb,ls

wH‖f − F (p, q)‖2 + wL‖g −G(p, q)‖2. (4.5)

The objective function value would vanish if the exact solutions for Eq. (4.2) exist, otherwise

the obtained (lb, ls) minimizes the divergence from the measured data in the sense of weighted

least squares. Ideally, the weights wH and wL are the reciprocals of the signal variance of

f and g, respectively. Given the quadratic approximation of the Poisson log-likelihood

function[18], the weights can be practically set as the number of photon counts detected

at the specific pixel for both high- and low-energy exposures. This weighting makes sense

because the photon counts reduce the variance of measured transmission projection and

therefore give more weight to the item whose noise is less.

4.2.3 The total-projection-length constraint

Due to the inherent high-order polynomial nature of Eq. (4.2), noise in measured signal f

or g may induce either a small change in the p estimate (heavy material) or possibly a large

change in the q estimate (light material). In another word, the inverse problem is ill-posed.

Therefore, the decomposed ls value is more easily corrupted by noise and there has been

reported over 200% approximation error when the conventional method was applied to the

dual energy CT scanner[181]. Since there are two unknowns to be estimated from exactly

two measurements, the solution prescribed by Eq. (4.5) is anticipated to be susceptible to

noise and numerically unstable.

To order to circumvent this problem, the solutions may have to be regularized by additional

conditions or constraints. A straightforward constrained decomposition method is to enforce
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lb ≥ 0 and ls ≥ 0 which is easy to implement and physically meaningful[181]. However, the

effects of this positivity constraint are still far from ideal. In this study, we demonstrate

that a more powerful total-projection-length constraint can significantly alleviate the noise

sensitivity. If the prior knowledge of lb+ ls corresponding to each detector pixel is known, the

constrained version of Eq. (4.6) can lead to an accurate solution, eliminating the estimates

that drastically deviate from the ground truth:

(lb, ls) = argmin
lb,ls
‖f − F (p, q)‖2 + ‖g −G(p, q)‖2

s.t. lb + ls = L

(4.6)

where the relationship between (lb, ls) and (p, q) are the same as in Eq. (4.4).

4.3 Descriptions of numerical simulations

Figure 4.1(a) displays a 2D numerical test phantom designed for the simulation studies,

which is a breast-shaped semi-ellipse (soft tissue) with three small spheres (calcifications)

buried inside. The radius of each calcified sphere is r=2 mm, 1.5 mm and 1 mm, respectively.

The total size of the breast phantom is 10 cm×4 cm. The X-ray beams propagate along

the direction as the arrows indicate, and the transmission dual-energy projections will be

recorded with respect to this orientation. The aim of the numerical studies is to demonstrate

the ability and accuracy of the proposed decomposition method to quantitatively estimate

the sizes of buried calcifications, which is expected to broaden the applications of the current

DECR technique that was conventionally limited for qualitative diagnosis uses only.
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Figure 4.1: (a) The numerical breast phantom. (b) A schematic view of the arrangement of
calibration phantoms. (c) The two spectra employed in the numerical studies.

In the calibration step, we generated a few of wedge-shaped calibration phantoms made

of two basis materials, aluminum (Al) and plexiglas (Pl), positioned as Fig. 4.1(b) shows.

The maximum thickness of the Al wedge along the X-ray beam direction is 2 cm, and the

maximum thickness of the Pl wedge along the X-ray beam direction is 20 cm. The purpose

for this arrangement is to generate different combinations of the two thicknesses. We chose

24 calibration points that were evenly distributed along the x-ray wavefront, the number

of which is much smaller than other calibration methods that have been reported[35]. The

attenuation properties of the biological materials (breast tissue and calcification) and the

basis materials (Al and Pl) were computed from the NIST physical reference data library

[1].

Both for the calibration and breast phantoms, we simulated the dual-energy projection data

with two incident polychromatic x-ray spectra (tungsten anode). The spectra were generated

from an on-line tool for spectrum simulation[2]. The high-energy spectrum (130kVp with

6mm aluminum filter) and the low-energy spectrum (40kVp with 0.1mm aluminum filter)

are depicted in Figure 4.1(c). Given the projected lengths of two materials, the noise-free

projection data were calculated based on Eq. (4.1). Considering for larger counts the central

limit theorem ensures that the photon noise distribution approaches a Gaussian[68], for
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simplicity, uncorrelated Gaussian noise with respect to local intensity was added in all the

measurements. The noise level was 1% unless otherwise stated.

The calibration data were employed to fit Eq. (4.2) to estimate the polynomial coefficients.

The subsequently constructed functions F and G, along with the simulated breast phantom

data, were used in Eq. (4.5) or (4.6) to perform material decomposition in a pixel-wise

manner. In all studies, the pixel size was set as 0.1mm.

4.4 Simulation study results

4.4.1 The effect of total-projection-length constraint

Figure 4.2 shows the decomposition results from the conventional decomposition method

with respect to solving Eq. (4.5) with positivity constraints. The data contained 1% noise.

In the figure, l1 is the decomposed projected-length of calcification, and l2 is the decom-

posed projected-length of soft tissue. The ground true values are also plotted. Because the

approximating functions F (p, q) and G(p, q) are sensitive to the data noise, the estimated

projected lengths vary erratically with large deviations from the ground truth values.
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Figure 4.2: The decomposition results obtained by use of the conventional method (1% noise)
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Figure 4.3 shows the decomposition results obtained by use of the total-projection-length

constrained method associated with Eq. (4.6). In this case, the total projection length of the

phantom, i.e. l1 + l2, is assumed to be exactly known for each detector pixel. The noise level

of the projection data is also 1%. The decomposed l1 in Fig. 4.2 has a root-mean-square

error up to 1.5 mm with respect to the true calcification size, while the result in Fig. 4.3

has only a root-mean-square error as small as 0.01 mm. It clearly demonstrates that the

new approach provides a more robust material decomposition with improved quantitative

accuracy than that corresponding to the conventional decomposition method.

The proposed constraint can facilitate accurate image reconstruction for even more ele-

vated noise levels. Figure 4.4 shows the decomposition results obtained by use of the total-

projection-length constrained method when the measurements were contaminated with up

to 10% Gaussian noise. The root-mean-square error increases to 0.1 mm, but no “bad pixels”

that behave erratically are produced.
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Figure 4.3: The decomposition results obtained by use of total-projection-length constrained
method (1% noise)
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Figure 4.4: The decomposition results obtained by use of total-projection-length constrained
method (10% noise)

4.4.2 The water-bath implementation of total-projection-length

constraint

While the projected-length constraint can be readily implemented in computer simulations,

it is not straightforward to do so in practical biomedical imaging applications. One may

consider several candidate methods for determining an irregular-shaped objects’ true dimen-

sions. A solution we propose is to submerge the object in water bath. We explored this

approach in a simulation study, proposing the sample placed in a rectangular container, as

indicated in Fig 4.1(a) where the regions other than the breast phantom are filled with water.

The total thickness of three materials (including water) along the X-ray beam direction is

therefore known and assumed as L=15 cm everywhere.

Accordingly, the problem described in Eq. 4.6 should be modified to meet a three-material

decomposition problem, with a newly introduced material, water, whose projected length is

denoted as l3. With the presence of water, the new equivalent lengths of two basis materials

(Al and Pl) are

p′ = α1al1 + α2al2 + α3al3

q′ = α1bl1 + α2bl2 + α3bl3,

(4.7)
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where all the coefficients come from the conversion relationships between the to-be-decomposed

materials and the basis materils similarly defined in Eq. (4.4):

µcal(E) = α1aµAl(E) + α1bµPl(E) ,

µtissue(E) = α2aµAl(E) + α2bµPl(E),

µwater(E) = α3aµAl(E) + α3bµPl(E),

(4.8)

Therefore, a new total-projection-length-constrained, weighted-least-squares problem is for-

mulated as

(l1, l2, l3) = arg min
l1,l2,l3

w1‖f − F (p, q)‖2 + w2‖g −G(p, q)‖2 + w3‖f ′ − F (p′, q′)‖2 + w4‖g′ −G(p′, q′)‖2

s.t. l1 + l2 + l3 = L

(4.9)

where f ′ and g′ are two additional data sets acquired with the object immersed in water,

using high- and low-energy spectra respectively. However, since there are three unknowns

(l1, l2, l3), only three least-square terms along with the constraint are sufficient to stably

solve Eq. (4.9). So we may drop either the third term ‖f ′ − F (p′, q′)‖2 or the last term

‖g′ −G(p′, q′)‖2 and acquire three data sets only.

Though Eq. (4.9) seemingly escalates to a three-material decomposition problem, it essen-

tially still serves for the two-material decomposition as water is considered as an known ma-

terial. Figure 4.5 shows the decomposition results using the water-bath method. The data

noise level was 1%. Again, the comparison with the conventional method clearly demon-

strates that the proposed method is able to provide a robust material decomposition with a
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high quantitative accuracy. The computed root-mean-square error of l1 is around 0.01mm,

as good as that in Fig. 4.3.
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Figure 4.5: The total-projection-length constrained decomposition results using “water-
bath” method (1% noise)

4.4.3 The scout-scan implementation of total-projection-length con-

straint

For the conditions where the object is not suitable for water bath, we propose another method

to implement the total-projection-length constraint. In some cases, a sparse-view, low-dose

tomographic scan can be quickly performed for 3D contouring of the object. The total-

projection-length along a certain beam direction can be estimated from the reconstructed

image by use of the scout-scan tomographic data. The reconstructed image from incomplete

data is expected of low quality in recovering the attenuation map or identifying interior

structures, however, it can provide useful information for outmost boundary segmentation,

because the differentiation between object and air is considered an easy task.

In this study, a 3D numerical breast phantom was generated containing three spheres that

represented calcifications. Figure 4.6(a) shows the central vertical slice of the phantom.

The semi-major-axis sizes of the ellipsoid and the radius of the three embedded spheres

are the same as those for the 2D phantom described in Sec. 4.3. Figure 4.6(b) illustrates
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Figure 4.6: (a) The 3D numerical breast phantom. (b) The acquisition geometry of the scout
scan. (c) A typical simulated projection image.

the acquisition geometry of the scout scan. The scout-scan projections were simulated at 30

angular positions evenly distributed over 180◦, and as high as 10% Gaussian noise was added

in all measurements in order to simulate a low-dose scan condition. The source spectrum

employed for the scout scan was chosen as the low-energy one plotted in Fig. 4.1(c), for the

reason that it achieves better contrast noise ratio than that using the high-energy spectrum.

Figure 4.6(c) shows a typical scout-scan projection image.
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Figure 4.7: (a) The central vertical slice of the reconstructed image from 30-view data set. (b)
The total-projection-length along the X-ray beam direction extracted from the reconstructed
image.
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Figure 4.7(a) shows the reconstructed image of the central vertical slice of the phantom from

the 30-view data set and by use of the FBP algorithm. The reconstructed voxel size was 0.1

mm. There can be observed significant aliasing and beam hardening artifacts, due to the

insufficient angular sampling and the effects of polychromatic spectrum, as well as consid-

erable noise corruption. The shapes of the reconstructed spheres are obviously elongated,

by comparison to the ground truth in Fig. 4.6(a), and therefore the scout-scan reconstruc-

tion cannot be used to reflect the true sizes of the calcifications. However, the outermost

boundaries between the phantom and air can still be reliably reconstructed, because the

attenuation properties of the two are quite different. A simple thresholding method was

used to extract the total-projection-length of the phantom along the X-ray beam direction

from the reconstructed image corresponding to Fig. 4.7(a). The extracted total-projection-

length and the true phantom length are plotted in Fig. 4.7(b), showing the high accuracy

of phantom-air boundary differentiation. Note that the two curves do not exactly coincide.

There is still an error in the estimate of the total-projection-length by use of the scout scan,

which can be up to 0.5 mm in this study.
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Figure 4.8: The total-projection-length constrained decomposition results using “scout-scan”
method (5% noise)

The dual-energy projection sets of the phantom simulated at an angular position (with

5% Gaussian noise added), along with the corresponding total-projection-length constraint
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obtained from the scout scan, were then employed for material decomposition by solving for

Eq. (4.6). Figure 4.8 shows the decomposed projected length of calcifications (l1) and the

decomposed projected length of soft tissue (l2). The root-mean-square error of l1 is around

0.05 mm. The results demonstrate that the proposed material decomposition method does

not require a strictly tight total-projection-length constraint. It is capable of producing

robust and accurate decompositions as long as the constrain is within a reasonable precision.

4.5 Conclusions and Discussions

Conventional approaches to projection-based dual-energy material decomposition suffer from

sensitivity to data noise, which is one factor in preventing dual-energy radiography from being

widely employed in clinical applications. In this chapter, we described and demonstrated

that a simple physical constraint can effectively regularize the decomposition process. By

applying a constraint of the object’s total projection length along the X-ray beam direction,

we obtained promising results in numerical studies with improved accuracy in estimates

of projected thicknesses of decomposed materials in a breast phantom. The use of total-

projection-length constraint essentially assumes the constituent materials are exclusively

combined without sacrificing volume. Such a volume-conservation assumption was previously

proposed in a three-material decomposition method conducted in image domain[185], acting

as the third equation along with the dual-energy measurements to solve for three unknowns.

However, this method only works well for monochromatic beams. When the imaging model

involves polychromaticity, the 3 × 3 system of non-linear equations is expected to be very

ill-posed and susceptible to noise. Alternatively, our method uses the constraint in another

application such that it acts as an additional regularizer imposed on an existing 2×2 nonlinear
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system for a two-material decomposition problem. Basically, it is the necessary information

redundancy that eliminates the instability introduced by the data noise and the high non-

linearity of the system.

In order to piratically implement the “total-projection-length” constraint, we also conducted

simulation studies with two proposed “water-bath” and “scout-scan” ideas. The “water-

bath” method utilizes a rectangular container filled with water to submerge the object,

so that the size of the container is naturally the total-projection-length constraint. By

acquiring one more data set with the object immersed in water, three measurements and one

constraint can result in an accurate material decomposition. Though this method escalates

the original task into a new three-material decomposition problem, it still employs dual-

energy measurements only. The “scout-scan” method proposes a fast and low-dose CT scan

for 3D contouring of the object, and the total-projection-length can be reliably estimated

from the reconstructed image. The numerical study has demonstrated that the constraint

does not have to be strictly tight and the material decomposition by use of the constraint

obtained from scout scan can be robust and accurate. Note that the scout-scan method is

different from the image-based decomposition approach. There is no need to densely acquire

the projections, or to perform beam hardening corrections during the image reconstruction.

As a summary, our proposed total-projection-length constrained material decomposition

method still follows the conventional dual-energy calibration and approximating protocols,

but allows for robust decomposition performances against data noise and provides high

accuracy in the estimates of decomposed materials’ projected thicknesses (i.e. line integrals).

With the ease and reliability of projection-based material decomposition, the applications

of dual-energy radiography may be promoted in more areas. For example, conventional

mammography could only differentiate a tumor from healthy breast tissue; but using the
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proposed constrained decomposition method, it is possible to simultaneously provide the

size information in the beam direction which doctors may take advantage of to make a

further surgery plan.
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Chapter 5

Image reconstruction algorithms for

tetrahedron beam computed

tomography using CUDA-enabled

GPUs

Tetrahedron beam computed tomography (TBCT) is a novel volumetric imaging system

with a modified geometrical design compared to the commonly used cone-beam computed

tomography (CBCT). It holds great promise of mitigating the photon-scattering problem,

and features flexible geometrical settings that can facilitate imaging guided radiation therapy

(IGRT). Though a few preliminary image reconstruction results came along with the inven-

tion of TBCT, a careful investigation of the reconstruction algorithms specific to the TBCT

geometries has not been conducted. In this work, we derived a reliable analytical recon-

struction method from the conventional FDK algorithm by introducing a proper weighting

function in the TBCT image domain. An advanced total-variation regularized iterative algo-

rithm is also developed that features fast convergence rate and robustness against data noise
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and data incompleteness. In order to efficiently exploit the parallelism in GPU computing,

the reconstruction algorithms were further optimized with special computational skills. The

reconstructed results from numerical and experimental data sets have demonstrated the good

performances of the proposed reconstruction algorithms in terms of both the image quality

and computational efficiency.

5.1 Introduction

5.1.1 Descriptions of TBCT imaging system

Tetrahedron beam computed tomography (TBCT) is a novel volumetric imaging system

with a modified geometrical design compared to the commonly used cone-beam computed

tomography (CBCT)[178]. In TBCT, a linear array of sources are stacked vertically, forming

a series of quasi-fan beams directed towards a linear CT detector array that is positioned

orthogonally to the source array (Fig. 5.1). In contrast to the cone-shaped volume formed

by the point source and a flag panel detector in CBCT, the stacked fan beams of TBCT

form a tetrahedral volume. During the scan, the X-ray source sequentially operates along

the z-direction and the corresponding projection images are continuously recorded at every

angular position. While the gantry rotates around the object, the collected data can be used

for volumetric image reconstruction.

In practice, rather than a single-row linear detector, the detector array may use multiple

element rows for achieving better z-resolution. It should be noted that, due to the use of

multiple X-ray sources, the number of detector element rows can be accordingly reduced

while keeping the feild of view (FOV) unchanged. For example, in a developed bench-top
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Figure 5.1: Diagram of TBCT geometry.

TBCT imaging system[178], the number of X-ray sources was 75, and the number of detector

element rows was only 5 (Fig. 5.2). The reduction in the detector element numbers allows

for the use of a high quality CT detector similar to those used in helical CT scanners.

Figure 5.2: Side view of TBCT.

TBCT also holds great promise for mitigating image quality degradation due to photon

scattering. Excessive scattered photons are considered a major problem for CBCT in which

a large flat panel imager is employed. An anti-scatter grid usually has to be equipped in
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CBCT scanners, placed right before the detector, in order to reject the scattered photons.

TBCT, however, eliminates the need of anti-scatter grids. The source collimator is adjusted

to make sure that all fan beams are well aligned with the the central row of the detector, as

shown in Fig. 5.2. So most scattered photons are deflected out of the fan beam paths and

therefore go undetected.

Besides the volumetric imaging, the TBCT system design is conceptually capable of stereo-

scopic imaging functionality. Similar to the X-ray tomosynthesis, the sequentially acquired

TBCT projections, corresponding to different operating sources, can be synthesized to pro-

vide limited stereoscopic information along the direction orthogonal to the linear detector

array. However much additional in-depth resolution can be obtained depends on the angular

range of the irradiated region being overlapped by multiple fan beams. However, note that

an ideal stereoscopic image obtained from TBCT may require a large-area detector and a

densely distributed X-ray source array.

TBCT features flexible geometrical settings and can be further modified to incorporate dual-

source arrays and dual-detector arrays to increase FOV and to facilitate imaging guided

radiation therapy (IGRT)[83]. Figure 5.3(a) shows a possible configuration of dual-source,

dual-detector TBCT system mounted on a regular LINAC gantry. In this novel design, the

MV treatment beams and kV-TBCT beams share the same central axis, so the real-time

projection imaging can be sensitive to the target motion that is orthogonal to the treatment

beam. This is a desirable feature as opposed to the traditional kV-CBCT based IGRT system

in which an addtional gantry with 90 degree apart is installed, as shown in Fig. 5.3(b), and

the kV beam is orthogonal to the treatment beam thus not sensitive to the target motion

for real-time imaging.
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(a) (b)

Figure 5.3: (a) A possible configuration of dual-source, dual-detector TBCT system mounted
on a regular LINAC gantry. (b) Dimensions of a commercial LINAC with kV-CBCT in-
stalled.

5.1.2 TBCT reconstruction algorithms

Though the reconstruction algorithms for TBCT can be largely derived from those for CBCT,

they have not yet been systematically investigated. As a variant of X-ray based 3D volumetric

imaging setup, TBCT shares a lot of features in common with CBCT, however, TBCT

system typically consists of multiple sources that may significantly increase the complexity of

reconstruction and computational efficiency. Without the loss of generality, in this study we

focus on the reconstruction algorithms for the TBCT design of single-source-array and single-

detector-array, though they can be readily extended for dual-source-array, dual-detector-

array or other more geometrically complicated designs by introducing proper data weights.

Filtered back projection (FBP) is the most widely used 2D image reconstruction algorithm

in commercial machines because of its high computational efficiency. The FBP algorithm

is derived from the Fourier slice theorem and provides accurate reconstruction when the

sampling is sufficient. The well-known FDK algorithm[48] is a modified FBP that was

developed for CBCT reconstruction, in which the 3D image is obtained by summing the

84



contribution to the object from all the tilted 2D fan beams. Note that the reconstructed

images by use of FDK algorithm are inexact when the cone-angle of the fan beam is large.

There has been previously reported the use of FDK-type algorithm adapted for TBCT

reconstruction[81], however, an important “data redundancy” issue was not specified and

the presented images showed excessively degraded quality. In Sec. 5.3.2 we will discuss the

proper FDK algorithm adapted for TBCT and its acceleration implementation using GPUs.

For undersampled and/or noisy data, iterative reconstruction methods have been demon-

strated to provide better image quality than analytical methods such as the FDK algorithm.

A previous attempt for iterative TBCT reconstruction explicitly calculated and stored the

system matrix on the hard drive[82]. Using a cylindrical image grid allowed for taking advan-

tage of the symmetries of the circular scanning geometry and reducing the size of the system

matrix; however, the size is still prohibitively large. Suppose the size of the reconstructed

images was 256 × 256 × 256 with a 256 × 5 detector array and a 75-element source array,

the system matrix would be as large as 6000 GB. The saving and loading of the system

matrix and the subsequent matrix multiplication computing is extremely time consuming.

The explicit system matrix storage is not a wise and efficient strategy because it does not

exploit the sparseness of the huge system matrix. There are also a few other limitations for

TBCT image reconstruction with cylindrical image grid. For example, the calculation of the

system matrix element has to be statistically estimated because the exact ray-passing areas

are difficult to analytically compute. Also, the cylindrical voxelization essentially leads to a

non-uniform resolution reconstruction, which is suboptimal.

In this study, a ray-tracing, Cartesian-coordinates-based iterative algorithm is developed

for TBCT image reconstruction. The forward-projection and back-projection operators are

computed “on the fly” and therefore no system matrix needs to be explicitly stored. The
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OS-SART-FISTA-TV algorithm previously employed in CBCT image reconstruction [176]

is adapted for TBCT to provide fast convergence and robust performance against noisy

and/or undersampled data. The general framework of OS-SART-FISTA-TV algorithm will

be introduced as the background detailed in Sec. 5.2.

A graphic processing unit (GPU) card is a specialized device specifically designed for par-

allel computations[94]. Compute unified device architecture (CUDA) is an extension of the

C language that provides a convenient programming platform to exploit the parallel com-

putational power of NVIDA GPUs[118]. The CUDA-enabled GPU parallel programming

technique has been successfully applied to accelerate image reconstruction in many imaging

modalities[194, 119, 148]. Sec. 5.3.3 provides details of the derivation of TBCT ray-tracing

model in 3D, and explains how GPU threads were allocated for both forward and backpro-

jection, and the steps undertaken by each thread to compute the system matrix elements.

Pseudo code of our implementation is also listed. Moreover, due to the sequential operation

of the multi-sources in TBCT, special attention is required when optimizing the GPU code in

order to achieve better computational efficiency under different system geometrical settings.

Choices of two different implementations of the backprojection operator are offered upon the

number of sources and the whole data size. In Sec. 5.3.4 we describe how the OS-SART-

FISTA-TV framework, including forward projection and backprojection, is implemented on

a multi-GPU architecture that can bring significant speedup.

A series of simulation studies are described in Sec. 5.4, in which the computational accuracy

and efficiency of the developed TBCT reconstruction algorithms are carefully investigated.

The reconstructed images from an experimental data set acquired in a bench top TBCT

imaging system is presented in Sec. 5.5.
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5.2 Background

5.2.1 Discrete imaging model for TBCT

We consider a discrete TBCT imaging model

g = Hf , (5.1)

where g ∈ RM represents a lexicographically ordered vector describing the tetrahedron-

beam projection data with the dimension M defined by the product of detector elements

Nd, number of sources Ns and number of tomographic views acquired Nv. It is worth noting

that, a TBCT projection dataset contains a third dimension that represents the irradiating

source, as opposed to the CBCT dataset that is only indexed by the detector element and

the tomographic view.

The vector f ∈ RN is a finite-dimensional approximation of the sought-after 3D attenuation

coefficient map f(r). In the studies described below, we assume without loss of generality

that f is formed by use of voxel expansion functions. The M × N system matrix H repre-

sents a discrete imaging operator that maps f to g. In this work, H is defined as discrete

approximation of a divergent beam X-ray transform.
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5.2.2 PWLS-TV iterative image reconstruction

In this study, a total-variation penalized weighted least square (PWLS-TV) estimator is

considered for TBCT image reconstruction:

f̂ = argmin
f≥0
‖Hf − g‖2W + λ‖f‖TV, (5.2)

where ‖·‖TV indicates the total-variation semi-norm[153], and W is a diagonal weight matrix

with all positive entries. Note that W describes the relative influence of the measurements

in the data set. Typically in TBCT system, the source collimators are designed to shape

the incident beams in such a way that the central rows of the detector usually receive more

photons than the side rows at the top or at the bottom, therefore given more credence.

Ideally, the weights correspond to the reciprocals of the signal variance. For simplicity,

W can be an identity matrix if there is no prior knowledge about the flat-field photon

distribution on the detector.

There are numerous algorithms that have been developed to solve TV-regularized image

reconstruction problems[33, 74, 143, 134]. In this study, an iterative reconstruction algorithm

based on the FISTA framework[14] is employed for TBCT image reconstruction. FISTA is an

efficient algorithm that can be applied to a variety of reconstruction methods that incorporate

non-smooth regularizers typically like TV[14].

Let

d(f) ≡ ‖Hf − g‖2
W, (5.3)

and

gtv(f) ≡ 2λtv‖f‖TV + δC(f), (5.4)
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where C represents a proper closed convex set with non-negative elements and δC is a indi-

cator function that is defined as

δC =


0 if f ∈ C

+∞ elsewhere.

(5.5)

The flowchart of the standard FISTA-TV[14] algorithm developed to solve Eq. (5.2) is pro-

vided in Table 5.1.

Table 5.1: The flowchart of the standard FISTA-TV algorithm

Algorithm 5.1
Input: L ≥ L(d(f)) - An upper bound on the Lipschitz constant of ∇d(f)

Lipschitz constant:≡ 2σmax{HTWH}, σmax represents the maximum eigenvalue.
Initilization: e1 = f0 = 0, t1 = 1
for k = 1 to n do

xg = ek −
1

L
∇d(ek) = ek −

2

L
HTW(Hek − b) (5.6)

fk = prox1/L(gtv)(xg) (5.7)

tk+1 =
1 +

√
1 + 4t2k
2

(5.8)

ek+1 = fk +
tk − 1

tk+1

(fk − fk−1) (5.9)

end for
Output: fn

The algorithm can be summarized as the following steps. First, a gradient descent step is

applied to minimize the least squares term d(f), obtaining an intermediate image denoted as

xg, as described in Eq. (5.6). Second, a TV-proximal problem stated in Eq. (5.7), defined as

prox1/L(gtv)(xg) = argmin
u∈C

2λtv‖u‖TV +
L

2
‖u− xg‖2, (5.10)

89



is solved by use of the fast gradient projection algorithm (FGP)[111]. In this study, an

extended 3D version of the FGP algorithm was employed[176]. Finally the solution of the

proximal problem fk is utilized to define a new image estimate ek+1 that is substituted into

the first step and the procedure is repeated until a convergence criteria is met.

It can be interpreted from Eq. (5.9) that, in each iteration the new image estimate ek+1 is

formed by use of the convergence momentum from the intermediate results of the previous

two iterations. This strategy can greatly accelerate the iterative process towards to con-

vergence. In fact, it can be demonstrated that the standard FISTA achieves a quadratic

convergence rate[14] described as

F (fk)− F (f∗) ≤ 2L‖fk − f∗‖2

(k + 1)2
, (5.11)

where F (·) is the objective function , k is the iteration number, fk is the image estimate at

the k-th iteration and f∗ is the true solution to the optimization problem.

5.2.3 Ordered subsets acceleration strategy

When the standard FISTA is employed for TBCT image reconstruction, the basic gradient-

descent update step in Eq. (5.6) will be the most time consuming step. This is because it

requires to compute the operations corresponding to the forward-projection operator H and

the back-projection operator HT in each iteration, which is generally considered computa-

tionally burdensome in X-ray CT due to the large amount of projection data and image

voxels. In addition, when the Lipschitz constant L is large, the update step size 1/L is small

in the basic gradient step, which indicates that more iterations are needed to minimize d(f).
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Instead of employing all the projection data at once to compute the gradient, it is well known

that an intermediate solution to a least squares minimization problem can be obtained more

efficiently by employing a strategy in which the estimate of the object function is updated

frequently by use of ordered subsets of the data sequentially. Such a procedure can accelerate

convergence by a factor proportional to the number of subsets [70]. Many advanced iterative

methods that seek to solve the least squares problem have incorporated the ordered subsets

(OS) idea to accelerate the image reconstruction process[102, 78, 46].

In computed tomography, the sequential processing of ordered subsets is very natural, as

projection data are collected separately at each projection angle as the source-detector gantry

rotates around the patient. It should be noted that TBCT employs multiple sources, so there

might be another grouping strategy in which all the rays starting from a certain source are

clustered as one subset, rather than being grouped by the tomographic views. However,

since each X-ray source may only irradiate one portion of the object and all the portions

may not considerably overlap, in this case the image voxels won’t be continuously updated

by all subsets, therefore it may not bring the acceleration benefits. So in this study we stick

to the the conventional ordered-subset strategy that is based on the sequence of tomographic

views.

It has been established that the ordering of data access can also affect the convergence

speed[58]. The multilevel projection access ordering scheme (MAS) was developed for alge-

braic reconstruction algorithms in order to achieve a further improvement in the convergence

rate of the iterative reconstruction [57]. It is well known that two views of 90◦ apart have

the maximum orthogonality and the minimum correlation, which can guide the optimal or-

dering of the projection access. For a system with V projection views ordered sequentially as

0, 1, ..., V -1, this scheme determines a number of levels L = log2V . Views in one level halve
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the angular spacing in the previous level, and each time we select a view to keep the overall

correlation minimal with respect to the others already accessed. For example, if the imaging

system acquires projection data that cover the range 0 to 180◦, the first level is set to contain

0 (0◦ ) followed by V/2 (90◦ ). The second level has two elements and the indices are V/4

(45◦ ), and followed by 3/4V (135◦) which is ninety degree apart from the last. Similarly,

the projection order of the third level is V/8 followed by 5V/8, 2V/8 (accessed) followed by

6V/8 (accessed), and 3V/8 followed by 7V/8. The index should be skipped if it has been

already accessed in the previous levels; also, it is rounded down to the nearest integer if the

division results in a decimal. This process is repeated until all L levels are complete. The

MAS scheme allows fast convergence since the first few update will be very significant and

then gradually reduced to approach the solution.

5.2.4 Simultaneous algebraic reconstruction technique

The standard algebraic reconstruction technique (ART)[54] iteratively updates the voxels

in a ray-by-ray manner. Later, Andersen and Kak [8] found that the correction can be si-

multaneously performed on all the rays and this can avoid the salt and pepper noise and

striping artifacts in ART. The simultaneous algebraic reconstruction technique (SART) per-

forms to be an efficient iterative algorithm for solving the least squares problem[75]. Along

with the aforesaid ordered subset (OS) strategy, the combined OS-SART algorithm is widely

used for iterative reconstructions[161], in which the projection measurements (i.e. line inte-

grals) collected at a single view are used to simultaneously update image voxels. Then the

view-by-view update strategy is performed for all view angles within each iteration.
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The OS-SART algorithm adopted in this work is now reviewed briefly. Rewrite Eq. (5.1) in

the form of element summation:

N∑
j=1

hijfj = gi, i = 1, 2, ...,M, (5.12)

where fj is jth element of the vector f (i.e. the voxel index), N is the number of image

voxels; M is the number of source-detector element pairs (i.e. line integrals, or rays), and hij

is the element of H corresponding to the i-th row and j-th column, which can be interpreted

as a weight element that represents the contribution of the j-th voxel to the i-th line integral.

Note that for TBCT, gi (i = 1, 2, ..,M) include all the line integrals connecting every source

and every detector element.

Consider that the projection data g are grouped into T subsets that are indexed by v. In

this study, T equals to the number of projection views Nv. Let the vector gv denote the

projection data corresponding to the v-th subset. The reduced imaging model, representing

the X-ray transform at a particular view angle, can be expressed as gv = Hvf , where Hv

contains a subset of the elements in the full H. By use of the subset notation, Eq. (5.12)

can be rewritten as

N∑
j=1

hij,vfj = gvi , i = 1, 2, ...,Mv, v = 1, 2, ..., T, (5.13)

where gvi is the i-th component of gv, hij,v is the element of Hv corresponding to the i-th

row and j-th column, and Mv = NdNs is the total number of rays in the v-th subset.
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The OS-SART algorithm is composed of two sub-steps, a forward correction step and a

backprojection-update step. These two steps are implemented as

ci,v =
gdatai,v −

∑N
j=1 hij,vf

k
j,v−1∑N

j=1 hij,v
(5.14)

fkj,v = fkj,v−1 + γv

∑Mv

i=1 ci,vhij,v∑Mv

i=1 hij,v
(5.15)

where gdatai,v represents the i-th ray projection data in the v-th subset, and fkj,v−1 and fkj,v

are the j-th voxel value updated by use of the (v − 1)-th and the v-th data subset at the

k-th iteration, respectively. ci,v is the corrective value. γv is the step size of which a general

choice is (0, 2).

Equations (5.14) and (5.15) can be expressed in a matrix-vector form as

fkv = fkv−1 − γvDvH
T
v Uv(Hvf

k
v−1 − gv) (5.16)

Here, Uv is a weight matrix defined in Eq. (5.17), and each element of Uv is the reciprocal

of the i-th ray length.

Uv = diag{1/
N∑
j=1

hij,v} i = 1, 2, ...,Mv. (5.17)

The matrix Dv can be interpreted as a preconditioning matrix defined in Eq. (5.18). Each

element of Dv is the reciprocal of the sum of intersection lengths of rays that intersect the

j-th voxel in the v-th subset.

Dv = diag{1/
M∑
i=1

hij,v} j = 1, 2, ..., N. (5.18)
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Equation (5.16) can be interpreted as a pre-conditioned gradient-based update method with

sequential data-access strategy. It is well known that incorporating a preconditioning matrix

in the gradient step can improve the convergence rate of an iterative algorithm[49], and

as we see, OS-SART implicitly incorporates such a preconditioning matrix Dv. So the

standard FISTA-TV algorithm can be accelerated by replacing the gradient update step,

Eq. (5.6), with the OS-SART update strategy, Eq. (5.16), while all the other steps remain

the same. Note that the weight matrix W in the original PWLS-TV problem is now defined

as U. In this study, the modified algorithm is referred to as OS-SART-FISTA-TV which was

previously developed by Qiaofeng for CBCT reconstruction[176]. The proposed OS-SART-

FISTA-TV algorithm is detailed in Table 5.2, and will be employed for solving Eq. (5.2) in

the context of TBCT reconstruction.

Table 5.2: The flowchart of the OS-SART-FISTA-TV algorithm

Algorithm 5.2
Input: L ≥ L(d(f)) - An upper bound on the Lipschitz constant of ∇d(f)

Lipschitz constant:≡ 2σmax{HTWH}, σmax represents the maximum eigenvalue.
Initialization: e1

0 = f0 = 0, t1 = 1
for k = 1 to n do

for v = 1, 2, ..., Nv do
ekv = ekv−1 − γvDvH

T
v Uv(Hve

k
v−1 − gv)

end for
fk = prox1/L(gtv)(ekv) = prox1/L(2λtv‖f‖TV)(ekv)

tk+1 =
1+
√

1+4t2k
2

ek+1
0 = fk + tk−1

tk+1
(fk − fk−1)

end for
Output: fn
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5.3 GPU-accelerated TBCT reconstruction algorithms

5.3.1 Measurement geometry

The region to be reconstructed is a rectangular cuboid centered at the origin of the Cartesian

coordinate system, as shown in Fig. 5.4. The edges are parallel to the axes of the coordinate

system and the left-bottom-back voxel is located at (xmin, ymin, zmin). The number of voxels

along the three coordinates are denoted by Nx,Nx and Nz, respectively, totally N = NxNyNz

voxels. The image voxel is assumed to be isotropic with the physical size ∆v. f is the 3D

array that contains all the voxels of the reconstructed image.

Figure 5.4: A schematic of the TBCT imaging geometry

The source array is originally located x = Dso, and the distance between the source array

and the origin doesn’t change during the gantry rotation. The source array contains Ns

elements and all the sources are stacked vertically with the uniform spacing ∆s, of which the

most bottom source is located at (Dso, 0, zs,min).
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The measurements g are a set of projection pixel values indexed by the detector element,

the source, and view angle. The detector is a flat panel whose center is the origin of y-z

plane located at x = −Dod. The detector has Nd elements in total, Nd,W in width and

Nd,H in height, and the element is assumed to be isotropic with the pixel size ∆d. The

left-bottom detector element is located (−Dod, yd,min, zd,min). The projection dataset from

Nv views are assumed to be evenly acquired over [0, 2π) with equal angular step ∆θ. As a

result, the total number of elements contained in g is Nd,WNd,HNsNv. In the view-by-view

update strategy, the projection at each view angle is denoted as an array gv (v = 1, 2, .., Nv)

and correspondingly gv has the dimension of Nd,W ×Nd,H ×Ns.

5.3.2 Implementation of the FDK algorithm

The first and most popular approximate reconstruction scheme for cone-beam projections is

the algorithm developed by Feldkamp and colleagues[48], referred to as the Feldkamp, Davis,

and Kress (FDK) method. This algorithm, used by most commercial vendors for CBCT with

2D detectors, employs a convolution-backprojection method similar to the FBP algorithm.

FDK is easy for hardware implementation and capable of producing good reconstructed

images when the data sampling is sufficient. However, the FDK algorithm is inexact when the

cone-angle of the fan beam is large, which may result in structure distortion and resolution

degradation appearing at the top and bottom of the reconstructed images[188]. This is due

to the underlying principle that large cone-angle fan beams contain incomplete frequency

contents of the object along z-axis for accurate reconstruction.

Considering the high efficiency of the analytic-based reconstruction algorithm, it is still

desirable to develop a FDK-type algorithm that is adapted for TBCT reconstruction. Ideally,
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the TBCT projection data can be weighted, ramp-filtered and backprojected in a similar way

as the conventional FDK. However, there is a significant issue that requires attention. All the

CBCT rays start from a single source typically at the center of y-z plane; while the TBCT

rays vary their starting points at a series of sources. As a result, in TBCT system there

could be multiple fan beams passing through a image voxel, with the starts from different

sources, as shown in Fig. 5.5. The number of fan beams associated with a voxel may vary

for different voxels depending on their specific geometrical locations. The conventional FDK

algorithm for CBCT is implemented in a “voxel-driven” fashion such that at each view angle

an image voxel will be updated by one fan-beam. If the TBCT reconstruction follows the

same routine, some voxels might get backprojected more frequently than the others. This

will result in non-uniform updates of the image volume.

Figure 5.5: The illustrations of backprojection processes for CBCT (left) and TBCT (right).

The problem mentioned above is referred to as the “data redundancy” issue in analytic-based

algorithms, also encountered in the scenarios of offset-detector CBCT[16] and dual-source

CBCT[100]. For those image voxels with multiple source-detector element pairs passing

through, data values have to be normalized by a weighting function before being used to up-

date the voxel. Typically for offset-detector / dual-source CBCT, the Parker Weighting[126]

method is commonly used to apply a filter in the projection domain so that the redun-

dant data are normalized. However TBCT has a more complicated situation that the “data
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redundancy” condition is image voxel dependent. A weighting function in the projection

domain is therefore difficult to design, especially in the case where the sources are non-

uniformly distributed along the array, e.g. for the purpose of optimizing z-axis resolution of

the reconstructed image.

A simple remedy to this problem is to design a voxel-dependent weighting strategy. When

there are multiple fan beams passing through the voxel of interest, the backprojection values

from these fan beams can be weighted in the following proposed ways:

- Equal weight: For a given image voxel, we count the total number of fan beams that

pass through, and the sum of all backprojection values is scaled by this number and

then applied to update the voxel. This method essentially assigns the contributions of

all the rays within the same projection with equal weights.

- One weight: For a given image voxel, we only select the fan beam that has the

smallest cone angle with respect to the voxel. As discussed above, a smaller cone angle

means the fan-beam projection contibutes more reliable backprojection values when

employing the FBP algorithm. In this method the backprojection is performed only

once for each voxel.

- Inverse weight: For a given image voxel, we assign all the passing fan beams with the

weights inversely proportional to their respective cone-angles. Therefore all available

measurements contribute to the backprojection for this voxel but the ray that has the

smallest cone angle plays the most important role.

In this section, we conduct a quick performance comparison between the proposed weighting

methods for TBCT-FDK. Figure 5.6 displays the previously reported reconstruction results
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Figure 5.6: Reconstruction performance of the TBCT-FDK previously reported. (left) the
central vertical plane of the phantom; (right) the corresponding reconstructed image; (right)
the profile comparison along the central vertical line.

by use of TBCT-FDK algorithm developed by Kim et al.[81]. The phantom was a stack of

thin ellipsoid disks and the largest cone angle was 20 degree. The “data redundancy” issue

was not mentioned in that work. The reconstructed image showed significant elongation of

the disks along the longitudinal axis and a drop in the reconstructed CT values at large cone

angles.
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Figure 5.7: Reconstruction performance of the TBCT-FDK developed by the author. Each
column corresponds to different weight strategy for handling “data redundancy” issue.
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Figure. 5.7 displays the reconstruction results by use of the proposed TBCT-FDK algorithm.

The simulation conditions are all the same as those described in the reference[81] that pro-

duced Fig 5.6. The top row displays the reconstructed images of the central vertical plane

of the phantom. The bottom row shows the profile comparison corresponding to the cen-

tral vertical lines of the top-row images. Four different weighting strategies were employed

when handling the “data redundancy” issue. The first one “no weight” means all the back-

projection values were added for updating voxels when available without any scaling. The

other three “equal weight”, “one weight” and “inverse weight” correspond to the three meth-

ods described above, respectively. The previously reported reconstruction result visualizes

very similar to that with no weighting applied, showing the worst performance. Among all

the results, “one weight” methods performs best in terms of the reconstructed CT value

accuracy, because it only employs the most reliable measurement that corresponds to the

smallest cone-angle. Nevertheless, this method produces saw-shaped discontinuities along

the disk edges, because adjacent voxels may be associated with fan beams that correspond to

largely different cone angles when the source spacing is considered too wide. “Equal weight”

method provides the smoothest reconstructed image by averaging all the contributions from

all available measurements, but at the cost of reconstruction accuracy. “Inverse weight”

method achieves kind of balanced performance from the previous two strategies, and has the

room for further improvement by carefully tuning the weights. In conclusion, TBCT-FDK

can provide better reconstruction results than those that were previously reported as long

as the “data redundancy” issue is properly addressed.

The flowchart of the FDK algorithm adapted for TBCT (with inverse weight strategy) is

provided in Algorithm 5.3. The backprojection is implemented in a way that is referred to

as “voxel-driven” approach, which will be detailed in the next section. For GPU implemen-

tation, we assigned each thread to execute the backprojection for a single voxel, which is
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Table 5.3: The flowchart of the FDK algorithm(on kernel)

Algorithm 5.3

kernek FDK<<< (Nx, 1, 1), (Ny, Nz, 1) >>> (f , G̃)

Input: cosine weighted, row-wise ramp-filtered projection data G̃
Output: f
x=xmin+(threadIdx.x)∆v; y=ymin+(blockIdx.x)∆v; z=zmin+(blockIdx.y)∆v;
Σ = 0;
for v = 0 to Nv − 1 do

totalWeight= 0;
θ = v∆θ;
for k = 0 to Ns − 1 do

t = xcosθ+ysinθ; s = −xcosθ+ycosθ;

p = Dsot
Dso−s ; q = Dso(z−zs)

Dso−s ;

p = (p− zd,min + zs)/∆d; q = (q − yd,min)/∆d;
if (0 ≤ p < Nd,W and 0 ≤ q < Nd,H )

w=fabs(z-zs);

Σ+ = w Dso
2

(Dso−s)2 G̃[p][q][k][v]∆θ; (fetch interpolated data from texture memory)

totalWeight+ = w;
end if

end for
end for
if totalWeight 6= 0

f[threadIdx.x][blockIdx.x][blockIdx.y]=Σ/totalWeight;
end if

reflected in the GPU kernel configuration <<< (Nx, 1, 1), (Ny, Nz) >>> where the contents

in the parentheses describe the assigned dimensions of the grid and blocks. The input G̃

is the cosine weighted, row-wise ramp-filtered projection data that has been pre-processed

following the routine of the conventional FDK. Before launching the kernel function, G̃ is

imported into texture memory in GPU which is read-only and optimized for interpolation

operations.
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5.3.3 Implementation of the forward / backprojection operator

Comparison of the existing forward / backprojection models

For computed tomography, the discrete transform H, in which line integrals of a known image

are calculated, is known as the projection operation. The reverse model HT , generally defined

as the transpose (or adjoint) of the forward model, is known as the backprojection operation.

In iterative reconstruction, repeated applications of the forward and backprojection actions

are needed to solve for the image that minimizes an appropriate objective function.

Many methods exist for X-ray transform projection and backprojection, like voxel-driven,

ray-driven, and distance-driven, all of which provide some compromise between computa-

tional complexity and accuracy. In the voxel-driven approach, a ray is defined by connecting

a line from the source through the center of the voxel of interest to the detector. Once

a location of intersection on the detector is determined, a value is obtained from the de-

tector by (typically linear) interpolation, and it is used for backprojection to update this

voxel. This is exactly what the FDK algorithm is doing. Voxel-driven backprojection is easy

for fast hardware implementation and therefore the FDK algorithm is widely employed in

commercialized CT systems. Note that the FDK algorithm does not involve the forward

projection. The matched forward model H can be computed as the adjoint operator of the

backprojection process, namely by a “reverse interpolation” to determine the contribution

from the specific voxel to the detector elements surrounding the intersection point. How-

ever, this type of voxel-driven froward model is less effective and rarely used for iterative

reconstruction. Because when the detector element size is small enough compared to the

image voxel size, this model cannot get every pixel projected and hence will introduces Moire

pattern artifacts in the projection data[39, 189].
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In the ray-driven approach, a ray is defined by connecting a line from the source through

the image to the center of the detector element of interest. The contribution from a voxel

to a ray, i.e. the forward process, can be calculated based on the intersection length of

the ray within the voxel (Siddon’s method[138]). Another ray-driven model (interpolation

method) uniformly samples the ray and each sampling point takes the value using tri-linear

interpolation of surrounding voxels; all sampled intensities are then integrated to obtain the

projected value. In practice, the Siddon’s method is more popular in which both the forward

and backprojection process are easy to implement, because the system matrix element hi,j

has a very clear physical meaning: the intersection length of the i-th ray within the j-th

voxel. In terms of the interpolation method, the forward process may produce a more smooth

projection image if one can densely sample along the ray, however the drawback is also

significant. First, the tri-linear interpolation operations in a 3D volume are time-consuming.

Second, the matched backprojection process, requiring a “reverse interpolation”, lacks an

efficient algorithm to compute. As opposed to the voxel-driven approach, the ray-driven

approach should be used with caution in the cases when the projection data are too coarse

compared to the desired image resolution, because during the backprojection process some

image voxels may not get backprojected by any passing rays. This will result in a few

“void” voxels in the image volume. However, such an insufficient-data-caused reconstruction

problem can be mitigated by using advanced iterative methods, e.g. PWLS-TV, which

incorporate prior knowledge and proper regularizations applied in the image domain.

A more emerging strategy called distance-driven approach has been proposed over the last

few years[39, 40]. In this method, the detector pixel of interest and the image voxel of interest

are mapped onto a common plane. The overlapped areas are calculated as the weights to

determine the contribution from the voxel to the pixel (forward-projection process) or the

contribution from the pixel to the voxel (back-projection process). Such a weight-calculating
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kernel is self-adjoint. The most promising benefit of the distance-driven approach is that it

can eliminate those concerns raised when the pixel size is too large compared to the voxel

size or vice versus. In no case will there be void pixels or void voxels produced. However,

the cost is the computational efficiency. A typical implementation has an inner loop that

adjusts the calculation with an if-else branch depending on the relative positions between

voxel and detector element boundaries. For 3D image reconstruction, the patterns of voxel

and detector element boundaries are generally non-uniform when they are mapped onto a

common plane, resulting in irregularity and poor predictability of the branch behavior and

making it difficult to effectively implement on GPUs.

Figure 5.8: The schemtatics for (a)voxel-driven backprojection, (b) ray-driven (Siddon’s
method) projection, (c) ray-driven (interpolation method) projection, (d) distance-driven
forward/backprojection.

For the purpose of easy comparison, the schematics of voxel-driven backprojection, ray-

driven (Siddon’s method and interpolation method) projection, and distance-driven for-

ward/backprojection for 2D X-ray transform are illustrated in Fig. 5.8. The 3D case can be

similarly understood by extending those ideas in the third dimension.

After a careful investigation and a comprehensive comparison, we chose Siddon’s method

to implement the forward and backprojection operators in TBCT. The most important
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motivation is the need for high computational efficiency. Since a typical TBCT imaging

system may have ten or up to one hundred sources, theoretically the computational burdens

for all these models are thus increased by Nv times. So far the distance-driven approach

has not been fully optimized for GPU implementation with an efficient algorithm to han-

dle the irregular branch behavior, so it can be very slow compared to the other models.

Though distance-driven model can avoid artifacts in some extreme cases when the detec-

tor element size and image voxel size are not comparable, it is not a necessary demand for

image reconstruction as long as we can carefully design the geometry parameters, or using

sparsity-driven regularizations incorporated in the iterative algorithm. Siddon’s ray-driven

method possesses a good balance between computational complexity and accuracy. Also it

is naturally suitable for GPU parallelism and has been widely used in CBCT reconstruction

applications[171, 71, 125]. However, it should be kept in mind that, the development of

X-ray transform modeling and implementation, including the distance-driven approach, is

still in progress and the current method may be supplanted by more advanced techniques in

the future.

Implementation of the forward operator H

In the ray-driven approach, the projection value of a ray is considered as the weighted sum of

the voxel values that the ray passes through. The weight is exactly the system matrix element

hi,j which describes the intersection length of the i-th ray and the j-th voxel. Siddon’s method

provides a very efficient algorithm to compute the intersection length[138, 73].

Without loss of generality, Fig. 5.9 illustrates a two-dimensional case, where the ray is

not considered passing through voxels. Instead, from another perspective of view, the ray is

passing by a series of horizontal and vertical lines. Suppose the source position (xs, ys, zs) and
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Figure 5.9: A 2D illustration of Siddon’s ray-tracing strategy in which intersections of the
ray with lines are considered.

detector element position (xd, yd, zd) determine a specific ray. Denote two sets of parameters

{αi} (i = 0, 1, .., Nx) and {βj} (j = 0, 1, .., Ny), where αi = xi−xs
xd−xs

is the distance from the

i-th x-plane to the source normalized by the source-detector distance. Similar definition can

be obtained for βj =
yj−ys
yd−ys

. Since all the x-planes and y-planes are parallel and equally

spaced, {αi} and {βj} can be easily computed.

The general idea of Siddon’s method is to trace the given ray starting from the source. At

each time encountering an intersection, the next smallest parametric value from {αi} and

{βj} determines the next intersection. Obviously, the length of the ray contained within

the current voxel is simply the difference between the two adjacent parametric values. The

contributions from every voxel accumulate along the ray until the detector element is reached,

which determines the corresponding projection value.

It can be found that the ray-driven approach naturally can be implemented in a highly

parallelized fashion. Algorithm 5.4 lists the pusedo code of the GPU kernel function for

the forward operator Hv responsible for generating the projection corresponding to the v-th
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Table 5.4: The flowchart of the algorithm for ray-driven forward operator (on kernel)

Algorithm 5.4
kernek forward<<< (Nd,W , 1, 1), (Nd,H , Ns, 1) >>> (f , θ,gv,Lv)
Input: the image volume f , the view angle at the v-th subset θ
Output: the generated projection gv, the ray length Lv

Initialization:
x′s = Dso; y′s = 0; zs=zs,min+(blockIdx.y)∆s;
x′d = −Dod; y′d = yd,min+(threaIdx.x)∆d; zd=zd,min+(blockIdx.x)∆d;
xs = x′scosθ + y′ssinθ; ys = −x′scosθ + y′scosθ;
xd = x′dcosθ + y′dsinθ; yd = −x′dcosθ + y′dcosθ;

Define: αx(i) ≡ (xmin+i∆v)−xs
xd−xs

; αy(i) ≡ (ymin+j∆v)−ys
yd−ys

; αz(k) ≡ (zmin+k∆v)−zs
zd−zs

;

αx,min = min(αx(0), αx(Nx)); αy,min = min(αy(0), αy(Ny)); αz,min = min(αz(0), αz(Nz));
αx,max = max(αx(0), αx(Nx)); αy,max = max(αy(0), αy(Ny)) αz,max = max(αz(0), αz(Nz));
αmin = (αx,min, αy,min, αz,min); //entry point
αmax = (αx,max, αy,max, αz,max); // exit point
if αmin < αmax

exit; // the ray does not fall into the range of the detector
end if
if xs < xd

imin = [φx(αmin)]; jmin = [φy(αmin)]; kmin = [φz(αmin)]
imax = [φx(αmax)]; jmax = [φy(αmax)]; kmax = [φz(αmax)]

else
imin = [φx(αmax)]; jmin = [φy(αmax)]; kmin = [φz(αmax)]
imax = [φx(αmin)]; jmax = [φy(αmin)]; kmax = [φz(αmin)]

end if

Define: αlu ≡ ∆v

‖(ld−ls)‖ ; lu ≡

{
1 if ls < ld

−1 else,
; (l = x, y, z)

i = imin; j = jmin; k = kmin;
p = 0; l = 0; αc = αmin; L = ‖(xs, ys, zs)− (xd, yd, zd)‖;
while (αc < αmax)

if min(αx, αy, αz) = αx
p = p+ (αx − αc)Lf [i][j][k]; l = l + (αx − αc)L; i = i+ iu; αc = αx; αx = αx + αxu;

if min(αx, αy, αz) = αy
p = p+ (αy − αc)Lf [i][j][k]; l = l + (αy − αc)L; j = j + ju; αc = αy; αy = αy + αyu;

if min(αx, αy, αz) = αz
p = p+ (αz − αc)Lf [i][j][k]; l = l + (αz − αc)L; k = k + ku; αc = αz; αz = αz + αzu;

end while
gv[threadIdx.x][blockIdx.x][blockIdx.y]= p;
Lv[threadIdx.x][blockIdx.x][blockIdx.y]= l;
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view. Each GPU thread is assigned to execute one ray-tracing process, and therefore the

total number of threads required equals to the data size Nd ×Ns.

Note that there is a second output Lv in the algorithm whose element corresponds to the

total ray length within the whole image volume, i.e. Li,v =
∑N

j=1 hij,v. The vector Lv acts as

the divisor required in OS-SART algorithm for computing the corrective value ci,v as shown

in Eq. (5.14).

Voxel-wise implementation of the backprojection operator HT

Unlike the forward process, ray-driven backprojection algorithms are not straightforward to

parallelize. Recall that the backprojection value for the j-th voxel from the v-th view is the

sum of all detector elements reweighted by their intersection lengths between the voxel and

the corresponding X-ray paths, or mathematically speaking, bp[j] =
∑Mv

i=1 ci,vhij,v, where all

the notations can be referred to Sec. 5.2.4.

Obviously it is not wise to traverse all the detector elements since the number of which are

huge and most of hij,v are zeros. One technique to facilitate the ray-driven backprojection

is the boundary box or “shadow formation” technique [197, 123], where the eight corners

of the perspective projected voxel form a convex shadow on the detector. The basic idea

is illustrated in Fig. 5.10. The backprojection value for this voxel must come from the

detector elements bounded by the convex shadow, which significantly reduces the number

of projection data to query. Since we determine the shadows voxel by voxel, this method is

referred to the “voxel-wise” implementation of the backprojection operator HT . Note that

HT is the matched adjoint of the ray-driven forward-projection operator (Siddon’s method),
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and should not be mistaken for the aforesaid “voxel-driven” backprojection approach which

is used in FDK algorithm.

Figure 5.10: An illustration of the “shadow formation” which is used to determine the range
of pixels for backprojection with respect to a given voxel.

However, this method still requires the traversal of detector elements inside the shadow.

It is time consuming because the “shadow formation” is voxel-dependent and varies by

voxels, thus the traversal cannot be configured in a parallel fashion. Particularly for TBCT

reconstruction, there is an outer loop needed over the source array. The “shadow formation”

for a specific voxel should be implemented every time when a source is on, which theoretically

increases the computational burden by Ns times. In order to mitigate this problem, a

prediction statement is needed to exclude those sources that won’t project the voxel within

the range of the detector. An example is provided in Fig. 5.11, in which the upper and lower

boundaries of the beams tell that only the source c and d can get the voxel projected within

the detector range. All the other sources can be skipped before the “shadow formation”

process starts, which can reduce the computational burdern.
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Table 5.5: The flowchart of the algorithm for voxel-wise backprojection operator (on kernel)

Algorithm 5.5

kernel backprojection<<< (Nx, 1, 1), (Ny, Nz, Ns) >>> (cv, θ, f̃v,wv)
Input: the view angle at the v-th subset θ, the corresponding corrective projection cv
Output: the backprojected volume f̃v, the weight matrix wv

Initialization: x = xmin+(threadIdx.x)∆v; y = ymin+(blockIdx.x)∆v; z =
zmin+(blockIdx.y)∆v;
//****** exclude non-eligible sources ********
xs = Dso; ys = 0; zs = zs,min+(blockIdx.z)∆s;
zs,lower = (z′ − zd,min)(Dso +Dod)/Dod + zd,min

zs,upper = (z′ − zd,max)(Dso +Dod)/Dod + zd,max

if zs < zs,lower or zs > zs,upper

exit;
end if
//*********** shadow formation ***************
for i = 0 to 1

for j = 0 to 1
for k = 0 to 1
x′ = x+ (i− 0.5)∆v; y′ = y + (j − 0.5)∆v; z′ = z + (k − 0.5)∆v;
t = x′cosθ + y′sinθ; s = −x′cosθ + y′cosθ;
minY=min (minY, (y′ − ys)(Dod + t)/(Dso − t) + s);
maxY=max (maxY, (y′ − ys)(Dod + t)/(Dso − t) + s);
minZ=min (minZ, (z′ − zs)(Dod + t)/(Dso − t) + z′);
maxZ=max (maxZ, (z′ − zs)(Dod + t)/(Dso − t) + z′);

end for
end for

end for
minY index=[(minY− yd,min)/∆d]; maxY index=[(maxY− yd,min)/∆d];
minZ index=[(minZ− yd,min)/∆d]; maxZ index=[(maxZ− yd,min)/∆d];
//*********** shadow traversal ***************
for i = minY index to maxY index

for j = minZ index to maxZ index
x′ = xcosθ + ysinθ; y′ = −xcosθ + ycosθ; z′ = zd,min + j∆d;
αx0 = (x− 0.5∆v − x′)/(xs − x′); αx1 = (x+ 0.5∆v − x′)/(xs − x′);
αy0 = (y − 0.5∆v − y′)/(ys − x′); αy1 = (y + 0.5∆v − y′)/(ys − y′);
αz0 = (z − 0.5∆v − z′)/(zs − x′); αz1 = (z + 0.5∆v − z′)/(zs − z′);
αmin = max (min (αx0, αx1),min (αy0, αy1),min (αz0, αz1))
αmax = min (max (αx0, αx1),max (αy0, αy1),max (αz0, αz1))
if αmin < αmax

L = ‖(xs, ys, zs)− (x′, y′, z′)‖;
bp = bp+ (αmax − αmin)Lcv[i][j][blockIdx.z];
l = l + (αmax − αmin)L;

end if
end for

end for

f̃v[threadIdx.x][blockIdx.x][blockIdx.y] = bp;
wv[threadIdx.x][blockIdx.x][blockIdx.y] = l;
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Figure 5.11: A prediction can be made to exclude those sources not involved in the back-
projections for a specific voxel.

Algorithm 5.5 lists the pusedo code of TBCT backprojection kernel function by voxel-wise

implementation on GPU devices. The outputs f̃v and wv correspond to the two terms in

Eq. (5.15) whose elements are expressed as:

f̃j,v =
Mv∑
i=1

ci,vhij,v (j = 1, 2, ..., N); (5.19)

wj,v =
Mv∑
i=1

hij,v (j = 1, 2, ..., N). (5.20)

Due to the loop over the source array, the total number of threads required is the product

of the number of voxels and the number of sources, which is almost larger by one order of

magnitude than the number needed in CBCT backprojection. Consequently, as the number

of sources increases, the computational burden linearly goes up regardless of the actual data

size, i.e. the number of rays collected. In realistic TBCT system designs, the number of

detector rows actually can be greatly reduced due to the use of multiple sources, so the data

dimension is usually comparable to CBCT. In order to save reconstruction times especially

when the source array is large, an alternative implementation strategy whose computing

times depend on data size (NdNs) rather than the product of image size and source array

size (NxNyNzNs) is highly desirable.
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Pixel-wise implementation of the backprojection operator HT

Recall the backprojection formula bp[j] =
∑Mv

i=1 ci,vhij,v, where j represents the index of voxel

to be updated, v indicates the v-th view angle, and ci,v is the corrective value corresponding to

the i-th ray or projection data. Since the system matrix Hv is sparse, the brutal summation

involves a lot of zero-valued hij,v, which is unrealistic for computing. The aforesaid boundary

box technique is one of the methods used to efficiently determine those non-trivial i when the

voxel index j is fixed. Now we are looking for an alternative strategy so that the non-trivial

voxel index j can be efficiently determined when the i-th ray is fixed.

The ray-driven forward-projection operation (Siddon’s method) has such an attractive prop-

erty that when tracing the i-th ray we are finding out all the voxels j that provide non-trivial

contributions to this ray, or mathematically hi,j,v 6= 0. More importantly, all the hij,v are

readily available during the forward process. So it is straightforward and should be an

efficient way to directly backproject ci,v along the i-th ray path to update all the voxels

involved. Then a loop over all the collected rays can ensure every voxel completely updated

by all non-trivial hij,s.

This new backprojection strategy is illustrated in Fig. 5.12 in which with the given i-th ray

and the corresponding ci,v, a similar ray-tracing process is conducted. But this time, we do

not read from the image volume but write to it by adding each voxel value along the ray path

with ci,vhij,v. Since this method can be parallelly launched for all the rays, or equivalently

driven by pixels on the detector, it is referred to as the pixel-wise implementation of the

backprojection operator. Unlike the voxel-wise implementation, if the data size NdNs is

fixed, the computational burden of pixel-wise implementation won’t go up with the increase

of number of sources Ns.
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Figure 5.12: An illustration of the pixel-wise implementation of the backprojection. A similar
ray-tracing process is conducted to update all the voxels along the ray.

Though Siddon’s ray-tracing model is optimal for GPU implementation, however, there is a

significant limitation that prevents the backprojection from running as fast as the forward

process. Since thousands of GPU threads are assigned to parallelly execute the ray tracing,

there are high probabilities that one voxel is being updated simultaneously by multiple

threads during the GPU runtime. This is called “race condition” in parallel programming

and considered as a computational hazard that arises when multiple threads attempt to

access the same memory location concurrently and at least one access is a write. Programs

with race conditions may produce unexpected, seemingly arbitrary results. CUDA provides

atomic functions (commonly called atomic memory operations) to enforce atomic accesses to

device variables that may be accessed by multiple threads, which means all parallel threads

are forced into a bottleneck executing the operation one at a time. Note that atomics are

much slower than normal accesses, so the computing performance may degrade significantly

when many threads attempt to perform atomic operations on a small number of memories.
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Table 5.6: The flowchart of the algorithm for pixel-wise backprojection operator (on kernel)

Algorithm 5.6

kernel backprojection<<< (Nd,W , 1, 1), (Nd,W , Ns, 1) >>> (cv, θ, f̃v,wv)
Input: the view angle at the v-th subset θ, the corresponding corrective projection cv
Output: the backprojected volume f̃v, the weight matrix wv

Initialization:
x′s = Dso; y′s = 0; zs=zs,min+(blockIdx.y)∆s;
x′d = −Dod; y′d = yd,min+(threaIdx.x)∆d; zd=zd,min+(blockIdx.x)∆d;
xs = x′scosθ + y′ssinθ; ys = −x′scosθ + y′scosθ;
xd = x′dcosθ + y′dsinθ; yd = −x′dcosθ + y′dcosθ;
c = cv[threadIdx.x][blockIdx.x][blockIdx.y]

Define: αx(i) ≡ (xmin+i∆v)−xs
xd−xs

; αy(i) ≡ (ymin+j∆v)−ys
yd−ys

; αz(k) ≡ (zmin+k∆v)−zs
zd−zs

;

αx,min = min(αx(0), αx(Nx)); αy,min = min(αy(0), αy(Ny)); αz,min = min(αz(0), αz(Nz));
αx,max = max(αx(0), αx(Nx)); αy,max = max(αy(0), αy(Ny)) αz,max = max(αz(0), αz(Nz));
αmin = (αx,min, αy,min, αz,min); //entry point
αmax = (αx,max, αy,max, αz,max); // exit point
if αmin < αmax

exit; // the ray does not fall into the range of the detector
end if
if xs < xd

imin = [φx(αmin)]; jmin = [φy(αmin)]; kmin = [φz(αmin)]
imax = [φx(αmax)]; jmax = [φy(αmax)]; kmax = [φz(αmax)]

else
imin = [φx(αmax)]; jmin = [φy(αmax)]; kmin = [φz(αmax)]
imax = [φx(αmin)]; jmax = [φy(αmin)]; kmax = [φz(αmin)]

end if

Define: αlu ≡ ∆v

‖(ld−ls)‖ ; lu ≡

{
1 if ls < ld

−1 else,
; (l = x, y, z)

i = imin; j = jmin; k = kmin;
αc = αmin; L = ‖(xs, ys, zs)− (xd, yd, zd)‖;
while (αc < αmax)

if min(αx, αy, αz) = αx
atomicAdd(̃f [i][j][k], (αx − αc)Lc); atomicAdd(w[i][j][k], (αx − αc)L);
i = i+ iu; αc = αx; αx = αx + αxu;

if min(αx, αy, αz) = αy
atomicAdd(̃f [i][j][k], (αy − αc)Lc); atomicAdd(w[i][j][k], (αy − αc)L);
j = j + ju; αc = αy; αy = αy + αyu;

if min(αx, αy, αz) = αz
atomicAdd(̃f [i][j][k], (αz − αc)Lc); atomicAdd(w[i][j][k], (αz − αc)L);
k = k + ku; αc = αz; αz = αz + αzu;

end while 115



Because the execution order of threads on GPU is unpredictable and uncontrollable, it is

difficult to estimate the severity of race condition or the time costed for atomic operations

during the pixel-wise backprojection . One has to test the computational performance case

by case in order to compare with the alternative implementation strategy, which will be

discussed in the following sections. Algorithm 5.6 shows the pusedo code of TBCT back-

projection kernel function by pixel-wise implementation on GPU devices. The definitions of

the input and output are the same as those in Algorithm 5.5. One should keep in mind that

the two algorithms execute exactly the same backprojection operation HT , but implemented

with different strategies.

5.3.4 Multi-GPU implementation of the reconstruction algorithms

Along with the efforts to improve the structural aspects of the parallel reconstruction algo-

rithms, there is also an overwhelming trend shifting toward multi-GPU implementations for

improved time performance. When the computational load is large or when the working set

exceeds a single GPUs memory, the multi-GPU solution is preferred. CUDA programming

and the NVIDIA GPU architecture support host/device concurrency, which means the codes

on CPU and on GPU, and the codes on different GPUs, are executed simultaneously. Cur-

rent GPU under control can be freely switched while asynchronous calls (kernels, memcopies)

are running. This technique holds great promise of further speeding up the computation if

the work load can be evenly distributed among multiple GPUs.

As discussed in Sec. 5.3.3 and Sec. 5.3.3, for TBCT reconstruction, both the single-GPU-

enabled voxel- and pixel-wise backprojections are still anticipated to be computationally

burdensome. In order to achieve even faster reconstruction speed, a multi-GPU scheme is
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proposed in this section. Without loss of generality, the original 3D vector f is equally divided

into four sub-volumes that are distributed among four GPUs (id = 0, 1, 2, 3), respectively,

denoted as f id. Typically for TBCT, dividing the volume along the z-axis is an optimal plan.

The reason is that the source array also stretches along z direction, so this plan minimizes

the number of rays intersecting with each individual sub-volume. Note that the number of

GPUs can be any quantity not limited to four. The scheme can be readily extended by using

additional GPUs.

A flowchart illustrating the multi-GPU-based TBCT reconstruction algorithm is shown in

Fig. 5.13. It describes the details regarding the implementation of Eq. (5.16) which is the

most important step in the OS-SART-FISTA-TV framework.

- Projection step: At the v-th view angle, each GPU launches forward kernel to project

the corresponding 1/4 sub-volume f id, simultaneously computing the projection gidv ∈ RMv ,

as well as the ray length matrix Lid
v ∈ RMv .

- Correction step: All gidv and Lid
v are transferred to the host memory and sum up,

respectively, thus forming the complete vectors

gv = g0
v + g1

v + g2
v + g3

v,

Lv = L0
v + L1

v + L2
v + L3

v.

(5.21)

Therefore based on Eq. (5.14), the 2D corrective matrix cv is computed as

ci,v =
gdata
i,v − gi,v
Li,v

, (i = 1, 2, ...,M). (5.22)

Then, cv is copied to the global memory of all GPUs for the next step.

117



Figure 5.13: A schematic of 4-GPU implementation for OS-SART-FISTA-TV algorithm.
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- Backprojection-update step: Each GPU launches backprojection kernel to simul-

taneously compute the backprojected sub-volume f̃ idv ∈ RN/4 and the weight matrix

wid
v ∈ RN/4 , whose elements are mathematically described as

f̃ idj,v =
Mv∑
i=1

ci,vh
id
ij,v,

widj,v =
Mv∑
i=1

hidij,v, (j = 1, 2, ..., N/4).

(5.23)

Then based on Eq. (5.15), the id-th sub-volume needs to be updated as

f idj,v+1 = f idj,v + γv
f̃ idj,v
widj,v

. (5.24)

Then it requires to check if all subsets have been accessed. If not, then update v = v + 1

and repeat the projection-correction-backprojecion-update procedure until v reaches Nv.

If so, move on for the rest steps listed in Algorithm 5.2 to complete one iteration.

- TV-regularization step: When all the data subsets have been accessed for updating

the image volume, the obtained sub-volumes are combined to form a whole volume f as

the input of the TV-proximal problem defined in Eq. (5.10) and Algorithm 5.2. The

output will be a TV-regularized image with sharper boundaries and less noise. The FGP

algorithm[111, 176] used for solving TV-proximal problem is also suitable for parallel

computing due to the desirable property that all the operations in FGP are performed

in an element-wise manner. That indicates that each element of the input image can be

updated independently by use of a GPU thread, which efficiently exploits GPU parallelism

and can be implemented in a minimal time compared with the forward-projection and

back-projection operators.
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The computation time for the ray-driven forward-projection operator when four GPUs are

employed is approximately reduced by one quarter compared with that by single GPU im-

plementation. This is because for an individual sub-volume with one fourth of the original

size, the number of rays that pass through the sub-volume can be approximately reduced

by half; moreover, the average intersection length of a ray within the sub-volume can also

be approximately reduced by half. Similar analysis and conclusion can be applied to the

pixel-wise backprojection which almost follows the same steps as the forward process. In

terms of the voxel-wise backprojection, since the number of voxels for a sub-volume is only

one quarter left, it is natural to expect a reduction in time by one fourth. The computation

time for the correction step is negligible as only simple arithmetic operations are involved

for a small 2D matrix. Other overhead and communication time between the host and the

device is minimal.

As a conclusion, the time reduction factor by adopting a multi-GPU scheme to solve the

proposed PWLS-TV problem in the context of TBCT reconstruction is approximately equal

to the number of GPUs employed, no matter what type of backprojection implementation

involved. This feature is highly attractive and suggests that reconstruction times can be

further reduced by using additional GPUs, thus able to promote the applications of TBCT

imaging system.
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5.4 Computer simulation studies

5.4.1 Numerical phantom and system geometries

Numerical simulations were conducted to investigate the performance of TBCT reconstruc-

tion algorithms. In our numerical simulations, a modified Shepp-Logan phantom was em-

ployed, and the image volume size is 512 × 512 × 512. The source-object distance Dso and

the object-detector distance Dod are assigned the same so that the magnification factor is

2. A monochromatic x-ray source array and equal-spacing detector was assumed. The full

scan projection data set was evenly acquired with Nv = 360 views on a circular scanning

trajectory. The geometrical illustration and parameter notations are the same as those in

Fig. 5.4.

At each view angle and for a given source, a ray-tracing model was applied to analytically

compute the exact projection of the phantom in size Nd,W × Nd,H which is the product of

the number of element columns and number of element rows. In this study, Nd,W = 1024

is fixed, but Nd,H varies as the number of sources Ns by keeping Nd,H × Ns = 1024. For

example, when Ns = 1 the element rows will be 1024, which is equivalent to a CBCT setup;

when Ns = 2 the element rows will be 512; when Ns = 64 the element rows will be 16. As

a result, the dimension of a whole TBCT dataset g ∈ RM remains unchanged throughout

since M = Nd,WNd,HNsNv is fixed.

The specification of Ns will be provided along with the descriptions of each individual nu-

merical study in the following sections. The z-axis range of the source array is specified by

the top source position zs,max and the bottom source position zs,min. All the sources were

evenly distributed along z-axis between zs,max and zs,min. The top and bottom positions
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determined the minimum source range while the whole reconstructed volume can still fit

within the tetrahedrons formed by all valid rays.

5.4.2 Hardware specifications

All implementations were tested on the platform consisted of dual quad-core Intel(R) Xeon(R)

CPUs with a clock speed 1.2 GHz. The GPU-based implementations of the FDK and itera-

tive algorithms were tested on NVIDIA Tesla K20c GPUs.

5.4.3 Computational accuracy for full-view datasets

Considering the reconstruction of horizontal (transverse) planes is trivial since TBCT’s scan-

ning geometry is almost equivalent to CBCT, we are particularly interested in the recon-

structed vertical (sagittal or coronal) planes as the elongated distribution of X-ray sources

may bring different reconstruction performances along z-axis. It is well known that CBCT

may suffer from the large cone-angle artifacts that usually appear in the top and bottom

regions of the reconstructed images. This can be explained by the Fourier slice theorem

that predicts that a large projection angle leads to the information loss in the measurements

along kz, where kz denotes the spatial frequency axis that is conjugate to z. Though TBCT

also has the cone-angle problem, the situation may vary depending on the number of sources

and their positions. Figure (5.14) illustrates four TBCT systems which employ a 1-, 2-, 8-

and 64-source array, respectively. As pointed previously, the number of detector element

rows correspondingly changes so that the dimensions of system matrices H and the sizes of

measurements g, as well as all the other geometrical parameters, are kept the same among
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the four cases in order to conduct a fair comparison. It can be observed from Fig. 5.14 that

the cone-beam angles of TBCT are different ray by ray, and case by case.

Figure 5.14: Four different TBCT system designs with Ns =1,2,8 and 64, respectively.

In the simulation study, the values of Dso and Dod were set by making the cone angle around

20 degree for the case Ns = 1 (i.e. CBCT), and the same Dso and Dod values were applied

to the other designs. Images of the central sagittal plane reconstructed by use of DFK

w/o weights, FDK w/ inverse weights, non-regularized iterative algorithm (PLS) and TV-

regularized iterative algorithm (PWLS-TV), are displayed in Fig (5.15). The colormap and

colorbar were adjusted so that the artifacts are visible and prominent in an exaggerated way.

The relative error (RE) defined by E(f) = ‖f recon − f true‖2/‖f true‖2, where f recon and f true

denote the reconstructed and true phantom image, was also computed and labeled along with

the corresponding image. The small values of REs indicate that the reconstructed image is

close to the true phantom. Generally, the four methods rank higher one by one in terms of

RE approximately by one order of magnitude. The following observations will be discussed:

- The conventional FDK algorithm without proper weighting functions leads to a severe

data redundancy problem. The abnormal stripes correspond to those overlapping regions

being updated by more rays than the surrounding areas. The proposed simple weighting

method in the image domain significantly alleviates this problem and produces normal

reconstructed images.
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Figure 5.15: The central vertical slices of the reconstructed images for full-view dataset
Nv = 360
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- The cone-angle artifacts can also occur in reconstructed TBCT images when the incident

beam angles are large enough, typically in the top and bottom of the volume. It is

interesting to note that when Ns = 2 the artifacts disappear from the two poles but

instead appear around the equator. When the number of sources keeps increasing, the

z-axis reconstruction performance approaches to CBCT again. All of these observations

are consistent with the Fourier slice theorem and can be predicted from the geometrical

illustrations of the irradiating beams shown in Fig. 5.14. This finding also implies that one

can adjust the local reconstruction performance by manipulating the sources’ positions in

order to minimize cone-angle artifacts at selected elevations. This is a useful feature and

a potential advantage of TBCT, however, beyond the scope of this study.

- The images reconstructed by use of the non-regularized iterative algorithm contain fewer

artifacts, less noise and better accuracy than those reconstructed by use of the FDK algo-

rithm both inside and outside the phantom. The images produced by iterative algorithm

without regularizations correspond to the solutions of a penalized least squares (PLS) esti-

mator as shown in Eq. (5.2) in which the regularization parameter is set as zero. However,

the PLS estimator cannot eliminate the cone-angle artifacts because the linear operator

theory reveals that the estimate must lie in the measurable space of the image domain,

while the cone-angle artifacts originate from the kz information loss in the measurements.

That means there is a part of the object referred to as “null component”, from the perspec-

tive of linear operator theory, that can never be recovered from the knowledge of system

matrix H only.

- The images reconstructed by use of the TV-regularized iterative algorithm contain even

fewer artifacts, smoother background and higher structure contrast, outperforming all the

other algorithms. Most importantly, the cone-angle artifacts are also eliminated by use
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of this method. These images correspond to the solutions of the PWLS-TV estimator

as shown in Eq. (5.2) by empirically choosing a proper regularization parameter. Be-

cause reconstructing the structures with insufficient kz measurements corresponds to an

ill-conditioned inverse problem, a regularized solution has to be computed. Regularization

methods that promote object sparsity are ubiquitous in the modern image reconstruction

literature, among them the total variation (TV) is a most effective one that has been

employed widely, especially in the cases when the gradient map of the image is consid-

ered sparse. Note that the design of a working regularization strategy is influenced by

many factors, including the characteristics of the object to be estimated or other prior

knowledge. So for different imaging tasks, alternative regularizations other than TV may

apply.

5.4.4 Computational accuracy for few-view datasets

The datasets with progressively reduced number of views Nv = 360, 180, 90, 45 are tested in

this study. All the projections were evenly distributed over [0, 2π). The number of sources

was fixed as Ns = 64, and all the other geometrical parameters were the same as described in

Sec 5.4.1. Images of the same vertical plane reconstructed by use of FDK, the non-regularized

iterative algorithm (PLS) and the TV-regularized iterative algorithm (PWLS-TV) are shown

in Fig. 5.16, along with the corresponding relative error labeled under each image.

As expected, when the amount of measurement data are reduced, the reconstruction accu-

racy decreases in terms of RE in all cases. The image quality corresponding to the first

two algorithms degraded significantly, but presented quite different features. The FDK al-

gorithm tends to produce high-frequency streaking artifacts, while the PLS estimator tends
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to generate blurry structures. More analysis regarding the few-view image reconstruction

of the FBP-type algorithm and iterative algorithm can be found in the previous work[59].

However, the images reconstructed by use of TV-regularized iterative algorithm did not suf-

fer from an obvious degradation even the dataset was reduced by one eighth, suggesting the

promising potential of lowering the radiation dose during the data acquisition by minimiz-

ing the projections required for a specific imaging task. The reduction in imaging times is

particularly important for TBCT as the sequential emission of X-ray sources takes longer

time than other imaging setups like CBCT.

5.4.5 Computational efficiency for GPU implementation

Fixing the image size N = 5123 and the data size M = 10242 × 360, the computational

performances of the FDK algorithm and iterative algorithm with different backprojection

implementations were evaluated by varying the number of sources Ns, and correspondingly

with a varying number of detector element rows Nd,H . Consistent with the previous settings,

the product of Nd,H and Ns was set as 1024.

The FDK algorithm invokes just a one-time backprojection step which is implemented in

a “voxel-wise” manner. However, there is another outer loop over the source array, so

the computational time is proportional to the number of sources. Figure 5.17 plots the

image reconstruction times by use of the FDK algorithm and single-GPU implementation

for different values of Ns. When Ns = 1, which corresponds to a special case equivalent

to CBCT, the reconstruction can be done in 3.6 seconds. When Ns increases to 128, the

computational performance degenerates to as slow as 186 seconds.
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Figure 5.17: single-GPU FDK reconstruction times. N = 5123; M = 10242 × 360.

For iterative algorithm, the forward and backprojection computational times using a single

GPU are plotted in Fig. 5.18. The forward operator H is considered efficient and takes

a constant time (around 16 seconds) because the computational performance of Siddon’s

ray-tracing method just depends on the data size M . The two implementations of the

back-projection operator HT , as expected, behave quite differently. The voxel-wise imple-

mentation runs fast when the number of sources is small but the time linearly grows as Ns

increases, similarly to the behavior of FDK. Alternatively, the pixel-wise implementation

runs slowly as it has to employ atomic memory access in order to avoid race condition, but

the computational performance does not change with Ns. So the pixel-wise backprojection

times are almost constant over different Ns, which is similar to the behavior of the forward

projection. The whole computational time for a complete iteration can be considered as the

sum of the times for forward projection and backprojection, while the other steps can be

negligible.

Computational performance improvement for iterative algorithm using a multi-GPU scheme

is plotted in Fig. 5.19. As anticipated in Sec. 5.3.4, the time reduction factor by adopting a

multi-GPU scheme is approximately equal to the number of GPU employed, no matter what

type of backprojection implementation is used. For example, when the source number is 64,

129



Figure 5.18: single-GPU forward and backprojection times (per iteration)

the 4-GPU configuration can reduce the reconstruction time per iteration from 100 seconds to

around 25 seconds for both backprojection implementations. Note that Ns = 64 is observed

as a threshold, beyond which the pixel-wise backprojection implementation is preferred in

terms of computational efficiency and under which the voxel-wise version is preferred. For

other image and data scales, the iterative algorithm presents similar computational properties

and trends. Figure 5.20 shows the reconstruction times for the system matrix dimension

N = 2563 and M = 5122 × 360. All the times are approximately one eighth of those in

Fig. 5.19, and the threshold for choosing a faster backprojection implementation is around

Ns = 32.

The total reconstruction times by use of iterative algorithm can be estimated from the

reconstruction time per iteration multiplying the number of iterations needed for achieving

convergence. In order to investigate the convergence rate yielded by the OS-SART-FISTA-

TV algorithm, the relative error (RE) values were plotted as as a function of iteration number.

The SL phantom datasets with 360, 180, 90 and 45 projections were selected, for all of which

Ns = 64. A few conclusions can be drawn from Fig. 5.21. First, the reconstruction with

full-view data can converge to a more accurate image (i.e. lower RE) than those with fewer

data. Second, the reconstruction with full-view data converges more quickly than those with
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Figure 5.19: Multi-GPU reconstruction times for iterative algorithm (per iteration). N =
5123; M = 10242 × 360.

Figure 5.20: Multi-GPU reconstruction times for iterative algorithm (per iteration). N =
2563; M = 5122 × 360.
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fewer data. Typically, the convergence can be approximately achieved in 10 iterations for

the dataset with 360 projections, while more than 20 iterations are required for the dataset

with 45 projections. Third, the use of TV regularization does not change the convergence

rate but can significantly improve the converged results.
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Figure 5.21: Relative error as a function of iteration numbers for OS-SART-FISTA-TV
algorithm

5.5 Experimental studies

A bench-top TBCT system was previously developed by Zhang, et al[178]. Figure 5.22

shows a picture of the whole system which comprises a multi-pixel field emission x-ray tube

(MPFEX), a multi-slot collimator, a 5-row curved CT detector and a rotation stage. The

MPFEX tube is placed vertically, and the detector assembly is placed horizontally. The

distances from the stage rotation center to the central emitter of the tube and to the center

of the detector array are 82.5 cm and 62.5 cm, respectively.

Figure. 5.23 shows the geometrical and electrical diagram of the system. The source tube

contains 75 cathodes, and all the source elements are aligned vertically with 4 mm spacing.

The MPFEX tube can provide a very high source switching frequency of approximately 1
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Figure 5.22: A picture of the bench-top TBCT system.

MHz[180]. The detector array consists of 11 detector boards and each board includes five

5 × 5 photodiode arrays and matching scintillator arrays. So the detector is considered to

contain 275 columns in width and 5 rows in height. Each pixel size is 2.54× 2.54 mm2. The

reconstruction code is slightly modified to match the profile of the curved detector in the

beam’s-eye-view (BEV) direction.

Figure 5.23: A diagram of the bench-top TBCT system illustrating the geometry and elec-
trical connection.

A pig’s head was scanned using the TBCT bench top system described above[81]. 360

projections over [0, 2π) were acquired. The reconstructed images of a sagittal, a coronal and

a transverse plane are displayed in Fig. 5.24 by use of FDK and iterative algorithm. For

iterative algorithm, the iteration number was set as 20 and the TV regularization parameter

was empirically selected as λ = 50. The reconstructed volume was 256 × 256 × 128 with

the voxel size 1.5 mm. Based on the analysis in Sec. 5.4.5, the pixel-wise backprojection
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implementation is more computational efficient. The total reconstruction time to achieve

convergence was therefore approximately two minutes for 360-view dataset and 30 seconds

for 90-view dataset.

F
D

K
, 
3
6
0
 v

ie
w

s

saggital plane coronal plane transverse plane

P
W

L
S

−
T

V
, 
3
6
0
 v

ie
w

s
F

D
K

, 
9
0
 v

ie
w

s
P

W
L
S

−
T

V
, 
9
0
 v

ie
w

s

Figure 5.24: Reconstructed pig-head images for an experimental dataset.

With no image to use as a ground truth, the reconstructions were qualitatively evaluated. For

the full-view dataset, the two algorithms produce close results, with slightly better contrast

seen in the iterative reconstruction. When the amount of data was reduced to one quarter,
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FDK produced significant streaking artifacts, while the iterative algorithm was still able to

reconstruct reliable images with most structural features preserved.

5.6 Conclusion

Tetrahedron beam computed tomography (TBCT) is a novel volumetric imaging system

with a modified geometrical design compared to the commonly used cone-beam computed

tomography (CBCT). It holds great promise of mitigating the photon-scattering problem,

and features flexible geometrical settings that can facilitate imaging guided radiation ther-

apy (IGRT). Though a few preliminary image reconstruction results came along with the

invention of TBCT, however, a careful investigation of the reconstruction algorithms specific

to the TBCT geometries has not been conducted.

The analytical reconstruction method can be derived from the conventional FDK algorithm

that is widely used for CBCT. However, the previously published TBCT-FDK results pre-

sented exaggerated cone-angle artifacts, implying that the data redundancy problem might

not have been carefully addressed. In this work, we improved the analytical reconstruc-

tion method by introducing proper weighting functions in the TBCT image domain. More

specifically, for a given image voxel, the only source-voxel ray that corresponds to the min-

imum cone angle should be given the priority weight among all the rays that contribute to

the backprojection process. The weighting function can be fine tuned based on this rule of

thumb and therefore achieves the balance between image accuracy and smoothness.

We also have implemented an advanced optimization-based approach to TBCT image recon-

struction, which iteratively solves an optimization problem that minimizes the cost function
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as indicated in Eq. 5.2. The developed reconstruction method utilizes the ”FISTA” frame-

work that assures fast convergence, and the incorporated total-variation regularization has

the capability of suppressing data noise and mitigating data incompleteness. In terms of the

forward imaging operator, a classical ”ray-tracing” model was employed to implement the

X-ray transform. In order to efficiently exploit the parallelism in GPU computing, we pro-

posed different parallelization strategies for backprojection process in which the assignment

of threads may vary depending on the number of sources employed in the system.

The reconstructed results from numerical and experimental dataset have demonstrated the

good performances of the proposed TBCT reconstruction algorithms, in terms of both the

image quality and computational efficiency. Basically, the regularized iterative algorithm

outperforms the other methods in the cases when tomographic data is considerably noisy

or incomplete. By use of the sufficiently-parallelized GPU code, the iterative reconstruction

algorithm can be super fast, achieving a full convergence within 1 minute for reconstructing

a 2563 volumetric image.
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Chapter 6

Summary

In this dissertation, we reviewed four different X-ray based imaging technologies: propagation-

based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomogra-

phy (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahe-

dron beam computed tomography (TBCT). System characteristics or optimized reconstruc-

tion methods were investigated for these novel imaging modalities. The contributions are

summarized as following.

- We investigated a unique properties of propagation-based phase-contrast imaging tech-

nique when combined with the X-ray tomosynthesis. It can be derived from Fourier

slice theorem that the XPC-induced high frequency components collected in the phase-

contrast tomosynthesis data can be more reliably reconstructed. We have demonstrated

that the fringes or boundary enhancement introduced by the phase-contrast effects can

serve as an accurate indicator of the true depth position in the tomosynthesis in-plane

image.

- We derived a sub-space framework to reconstruct resolution-enhanced images from

few-view differential phase-contrast tomography data set. It was derived from Logan’s
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theorem that by introducing a proper mask, the high frequency contents of the im-

age can be reliably reconstructed in a certain region of interest. A novel two-step

reconstruction strategy was proposed in the work that can mitigate the risks of subtle

structures being oversmoothed when the commonly used total-variation regularization

is employed in the conventional iterative framework.

- We proposed a useful method to improve the quantitative accuracy of the projection-

based dual-energy material decomposition. It was demonstrated in this work that ap-

plying a total-projection-length constraint along with the dual-energy measurements

can achieve a stabilized numerical solution of the decomposition problem, thus over-

coming the disadvantages of the conventional approach that was extremely susceptible

to noise corruption. We also proposed two feasible water-bath and scout-scan ideas

that can be used to practically implement the desired constraint.

- We described a modified filtered backprojection and iterative image reconstruction

algorithms specifically developed for tetrahedron beam computed tomography. As

opposed to the conventional CBCT geometry, the use of multiple X-ray sources in

TBCT requires extra attentions to handle the data redundancy issue and the increased

computational burden. Special parallelization strategies were designed to facilitate

the use of multi-GPU computing, showing demonstrated capability of producing high

quality reconstructed volumetric images with a super fast computational speed.
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Appendix A

The derivation of the high-frequency

subspace

Below we describe how Eq. (3.13) is derived, in which we claim Wf1 = Wfnull + ε, where f1

is the solution of the optimization problem stated in Eq. (3.12), fnull is denoted as the null

component of the object with respect to the D-XPCT imaging operator H = DR, and ε is

the same error term as presented in Eq. (3.11).

Consider the optimization problem proposed in Eq. (3.12)

f1 = argmin
f
‖f‖2

s.t. Hf = (C − 1)g.

By use of the pseudo-inverse of the imaging operator, denoted as H#, the solution of the

above optimization problem can be expressed analytically as

f1 =H#(C − 1)g

=H#Cg −H#g.
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By use of the filter C = HR†Ch, as specified in Eq. (3.12), and the defined forward operator

H = DR, we can expand the above equation

f1 =H#HR†Chg −H#g

=(DR)#(DR)R†Chg −H#g

=R#D#DRR†Chg −H#g.

In common situations where there is no truncation in the projection data, the derivative

operator D is actually invertible with the properly defined boundary conditions. Therefore,

D#D can be cancelled such that

f1 =R#RR†Chg −H#g

=R†Chg −H#g,

in which the identity R#RR† = R† is a property for linear operators[12]. Note that R†Chg

is exactly the FBP image as indicated in Eq. (3.4). This establishes that

f1 =f̂FBP −H#g.

By applying the mask W to f1 and using the conclusion Wf̂FBP = Wf+ε stated in Eq. (3.11),

Wf1 =Wf̂FBP −WH#g

=Wf −WH#g + ε

=W (f −H#g) + ε.
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Since the measurable component of the object fmeas is equivalent to H#g,

Wf1 =W (f − fmeas) + ε

=Wfnull + ε,

which yields the conclusion in Eq. (3.13).
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Appendix B

Conversion of linear attenuation

coefficient to the combination of two

basis materials

Deadlines Alvarez and Macovsky[5] stated that the linear attenuation coefficient µ of a

given material and a photon energy E in the diagnostic range between 30 to 100 KeV can

be expressed approximately as a linear combination of Compton scatter and photoelectric

effect[5]:

µ(E) = acfKN(E) + apfp(E). (B.1)

The material-dependent Compton coefficient ac = k1ρZ/A, where ρ is the mass density, Z

and A are the atomic number and atomic weight, respectively, k1 is a proportional con-

stant. The material-dependent photoelectric coefficient ap = k2ρZ
4/A, where k2 is another

proportional constant. fKN(E) is the Klein-Nishana formula for Compton scatter, and

fp(E) ≈ (1/E)3, both of which are energy-dependent only.
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Suppose there are two basis materials that have

µb1(E) = ac1fKN(E) + ap1fp(E) (B.2)

µb2(E) = ac2fKN(E) + ap2fp(E). (B.3)

By substituting Eq. (B.2) and (B.3) into Eq. (B.1), it comes to a useful conclusion that any

material can be expressed as a linear combination of the two basis materials in terms of the

linear attenuation coefficient:

µ(E) = α1µb1(E) + α2µb2(E), (B.4)

where the two coeffcients α1 and α2 are uniquely determined and do not depend on the

energy:

α1 = (αcαp2 − αpαc2)/(αc1αp2 − αc2αp1) (B.5)

α2 = (αcαp1 − αpαc1)/(αp1αc2 − αp2αc1). (B.6)
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