
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2013 

IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND 

RESPIRATION-CORRELATED CONE BEAM CT (4D-CBCT) RESPIRATION-CORRELATED CONE BEAM CT (4D-CBCT) 

RECONSTRUCTION RECONSTRUCTION 

Salam Dhou 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Engineering Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/496 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/496?utm_source=scholarscompass.vcu.edu%2Fetd%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 i

 
School of Engineering 

Virginia Commonwealth University 
 
 

This is to certify that the dissertation prepared by Salam Dhou entitled IMAGE-BASED 
RESPIRATORY MOTION EXTRACTION AND RESPIRATION-CORRELATED 

CONE BEAM CT (4D-CBCT) RECONSTRUCTION has been approved by her 
committee as satisfactory completion of the dissertation requirement for the degree of 

Doctor of Philosophy in Engineering 
 
 

 

 

Alen Docef, Ph.D., Dissertation Director, School of Engineering 
 
 
 

Geoffrey D. Hugo, Ph.D., Committee Member, School of Medicine  
 
 
 

Ashok Iyer, Ph.D., Committee Member, School of Engineering  
 
 
 

Kayvan Najarian, Ph.D., Committee Member, School of Engineering  
 
 
 

Ruixin Niu, Ph.D., Committee Member, School of Engineering 
 
 
 

Supriyo Bandyopadhyay, Ph.D., Graduate Program Coordinator, Electrical and Computer Engineering 
 
 
 

Barbara D. Boyan, Ph.D., Dean, School of Engineering 
 
 
 

F. Douglas Boudinot, Ph.D., Dean, School of Graduate Studies 
 
 
 

May 2013 
 

 
 

 
 Salam Dhou 2013 
All Rights Reserved 



 

 ii

IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND RESPIRATION-
CORRELATED CONE BEAM CT (4D-CBCT) RECONSTRUCTION   

 
 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy in School of Engineering at Virginia Commonwealth University. 

 
 
 
 

by 
 

Salam Dhou 
 
 

Director: Alen Docef, Ph.D. 
 
 
 

Department of Electrical and Computer Engineering 
School of Engineering 

Virginia Commonwealth University 
Richmond, Virginia 

May 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 iii

 
 
 
 
 
 
 
 
 
 
 
 
 

To my husband, my daughters, and the family  



 

 iv

Acknowledgment 

I would like to express my deeply-felt thanks to my advisor, Professor Alen Docef, 

for his warm encouragement and thoughtful guidance. Your brilliant suggestions and 

discussions always helped me formulate my ideas and accomplish my tasks. I consider 

myself lucky being your graduate student. I would like also to express my special 

appreciation and thanks to my co-advisor, Professor Geoffrey D. Hugo, you have been a 

tremendous mentor for me. I would like to thank you for encouraging my research on 

medical physics area and allowing me to have such an interest. Your advice on both 

research as well as on my career have been invaluable. 

I would also like to thank my committee and faculty members, Professor Ashok 

Iyer, Professor Ruixin Niu, Professor Kayvan Najarian, and Professor Yuichi Motai for 

serving as my committee members and letting my defense be an enjoyable moment. 

Thank you for your revision, great comments and suggestions on my dissertation.  

I would like to acknowledge the financial, academic and technical support of 

Virginia Commonwealth University and its staff, particularly the School of Engineering. 

I would like also to thank the Radiation Oncology Department and Massey Cancer Center 

for providing us with clinical datasets used for this research. 

I would like to thank my beloved husband, Dr. Mamoun Melhem. Words cannot 

express how grateful I am to you for all of the sacrifices that you’ve made on my behalf.  

Thank you for supporting me for everything, and especially I can’t thank you enough for 

encouraging me throughout this experience. To my beloved daughters Layal and Lujayn, 

I would like to express my thanks for being such good girls, always cheering me up and 

understanding when I am unable to play all the time. Special thanks to you, Layal, for all 



 

 v

the inspiring letters and drawings you made for me with the title ‘I love you mom’. 

Special thanks to my family, family-in-law and friends in Jordan, the United States and 

elsewhere. Your continuous encouragement and prayers for me helped me survive the 

stress and keep up.  

Of all the blessings and happiness in my life, I always thank God for giving me 

the health, wisdom and ability to pass through all the difficulties and finish my degree. I 

have experienced His grace and merciful care every day. Thanks God for everything. 



 

 vi

TABLE OF CONTENTS 
 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

1.1 RESPIRATORY SIGNAL EXTRACTION IN CONE-BEAM CT (CBCT) ............................. 4 

1.2 RESPIRATION-CORRELATED CONE-BEAM CT (4D-CBCT) ........................................ 6 

CHAPTER 2 IMAGE-BASED RESPIRATORY SIGNAL EXTRACTION USING 

LOCAL INTENSITY FEATURE TRACKING AND MOTION MODELING IN 

CONE-BEAM CT PROJECTIONS .............................................................................. 11 

2.1  INTRODUCTION ...................................................................................................... 12 

2.2  PROPOSED RESPIESPIRATORY MOTION EXTRACTION METHOD .............................. 16 

2.2.1  FEATURE EXTRACTION AND TRACKING ......................................................... 16 

2.2.2  SHAPE-BASED TRAJECTORY CLUSTERING ..................................................... 19 

2.2.3  RESPIRATORY MOTION DETECTION ............................................................... 23 

2.2.4  PROJECTIONS PHASE SORTING ....................................................................... 26 

2.3  EXPERIMENTAL RESULTS ....................................................................................... 29 

2.3.1  DATASET SPECIFICATIONS ............................................................................. 29 

2.3.2  FEATURE TRACKING AND TRAJECTORY SELECTION ...................................... 30 

2.3.3  RESPIRATORY MOTION DETECTION AND PHASE SORTING ............................. 32 

2.3.4  IMPROVED RELIABILITY AND APPLICABILITY ................................................ 37 

2.4  SUMMARY .............................................................................................................. 40 

CHAPTER 3 IMAGE-BASED RESPIRATORY SIGNAL EXTRACTION USING 

INTENSITY FLOW DIMENSIONALITY REDUCTION IN CONE BEAM CT 

PROJECTIONS .............................................................................................................. 41 

3.1  INTRODUCTION ...................................................................................................... 42 

3.2  PROPOSED METHODS ............................................................................................. 46 

3.2.1  INTENSITY FLOW DIMENSIONALITY REDUCTION (IFDR) ALGORITHM .......... 46 

3.2.2  ALGORITHM DETAILS .................................................................................... 47 

3.2.3  CLINICAL EVALUATION ................................................................................. 54 

3.3  EXPERIMENTAL RESULTS ....................................................................................... 55 

3.3.1  RESPIRATORY SIGNAL DETECTION USING THE PROPOSED DIMENSIONALITY 

REDUCTION METHODS ............................................................................................... 55 

3.3.2  PROJECTION PHASE SORTING ......................................................................... 59 

3.3.3  COMPARISON TO OTHER METHODS ............................................................... 60 



 

 vii

3.4  SUMMARY .............................................................................................................. 63 

CHAPTER 4 PROJECTION GENERATION BASED ON RESPIRATION 

MOTION FOR 4D-CBCT RECONSTRUCTION ...................................................... 64 

4.1  INTRODUCTION ...................................................................................................... 65 

4.2  RESPIRATORY-CORRELATED CONE-BEAM CT (4DCBCT) RECONSTRUCTION ...... 68 

4.3  RESPIRATION-BASED PROJECTIONS GENERATION .................................................. 70 

4.4  EXPERIMENTAL RESULTS ....................................................................................... 74 

4.4.1  4D-CBCT RECONSTRUCTION BASED ON DIFFERENT PHASE-SORTING 

METHODS .................................................................................................................. 74 

4.4.2  RESPIRATION-BASED GENERATION AND RECONSTRUCTION .......................... 88 

4.5  SUMMARY .............................................................................................................. 95 

CHAPTER 5 CONCLUSIONS AND CONTRIBUTIONS ......................................... 96 

5.1  CONCLUSIONS ........................................................................................................ 96 

5.1.1  LOCAL INTENSITY FEATURE TRACKING AND MOTION MODELING FOR 

RESPIRATORY SIGNAL EXTRACTION IN CONE-BEAM CT PROJECTIONS ..................... 96 

5.1.2  INTENSITY FLOW DIMENSIONALITY REDUCTION FOR RESPIRATORY SIGNAL 

EXTRACTION IN CONE-BEAM CT (CBCT) PROJECTIONS ........................................... 97 

5.1.3  PROJECTION GENERATION BASED ON RESPIRATION MOTION FOR 4DCBCT 

RECONSTRUCTION ..................................................................................................... 98 

REFERENCES ................................................................................................................ 99 

  
  



 

 viii

LIST OF TABLES 
 

Table 1: Comparison of Respiratory Motion Detection Methods .................................... 14 

Table 2: Trajectories Clustering Metrics .......................................................................... 20 

Table 3: Dataset Specifications for Multiple Patient Datasets .......................................... 30 

Table 4: Average Compactness and Isolation of the Chosen Cluster of Trajectories in 
Multiple Patient Datasets .................................................................................................. 31 

Table 5: Error in Breath Phase Sorting For Patient 1 ....................................................... 35 

Table 6: Average Error in Breath Phase Sorting in Multiple Datasets ............................. 36 

Table 7: Acquired Data Ratio in LIFT Compared to Other Existing methods ................. 38 

Table 8: Multiple Patient Datasets Specifications ............................................................ 54 

Table 9: Overall Average and Standard Deviation of Phase Shift in Multiple Patient 
Datasets ............................................................................................................................. 60 

Table 10: Average Phase Shift in Projections Using LIFT and IFDR Compared to Other 
Existing methods ............................................................................................................... 61 

Table 11: Average Error in Respiratory Motion Compared to Other Existing methods .. 62 

Table 12: Ground truth and phase sorting methods using in Multiple Patient Datasets ... 74 

Table 13. Entropy and normalized mutual information measurements for different phase 
sorting techniques of Patient 2. The volumes are cropped before calculating those results.
........................................................................................................................................... 81 

Table 14 Entropy and normalized mutual information measurements for different phase 
sorting techniques of Patient 4. ......................................................................................... 88 

Table 15: Entropy and normalized mutual information measurements for reconstruction 
of phantom dataset using all original projections, one phase of original projections, and 
all generated projections. .................................................................................................. 94 



 

 ix

LIST OF FIGURES 
 
Fig. 1. Feature points extraction used in this study........................................................... 16 

Fig. 2. Two trajectories formed by tracking a sequence of 47 frames .............................. 18 

Fig. 3. Trajectories clustering in the projection images .................................................... 22 

Fig. 4. Grouping consecutive projection images into arcs ................................................ 24 

Fig. 5. The coordinate systems used in this study ............................................................. 25 

Fig. 6. Smoothing the respiratory signal and sorting the projections into phases. ........... 27 

Fig. 7. Breath phase sorting of the projections into six bins based on the respiratory signal 
in multiple respiratory cycles. ........................................................................................... 27 

Fig. 8. Results of feature points selection and tracking .................................................... 31 

Fig. 9. Modeled respiratory motion in four clinical datasets ............................................ 32 

Fig. 10. Extracted respiration phases in four datasets ....................................................... 34 

Fig. 11. Reconstructed 4DCBCT images of sorted in the end of inhalation phase .......... 37 

Fig. 12. Schematic of the Intensity Flow Dimensionality Reduction (IFDR) Algorithm. 46 

Fig. 13. Two consecutive projections from a patient CBCT scan showing a slight 
difference in the tumor position ........................................................................................ 49 

Fig. 14. Original dataset and reduced dimensionality data using non-linear reduction. ... 53 

Fig. 15. Eigenvalues spectrum using linear dimensionality reduction method for the three 
patient datasets .................................................................................................................. 55 

Fig. 16. Non-linear mapping stress value E vs. the number of iterations for three patient 
datasets. ............................................................................................................................. 56 

Fig. 17. Computed breath signal using Linear and non-linear DR method versus measured 
breath signal for (a) Patient 1, (b) Patient 2, and (c) Patient 3 .......................................... 57 

Fig. 18. Selected projections from one breathing cycle .................................................... 58 

Fig. 19. Dense intensity flow tracking .............................................................................. 71 

Fig. 20. Coordinate systems of the Cone Beam CT. ......................................................... 71 

Fig. 21. Interpolation process of projections in the same breathing phase. ...................... 72 

Fig. 22. 4D-CBCT Reconstruction from projections of Patient 2 in two different phases 75 

Fig. 23 4D-CBCT Reconstruction from projection of Patient 2 sorted using different 
methods ............................................................................................................................. 76 

Fig. 24. Signed difference images of 4DCBCT reconstructed images of Patient 2 using 
different phase sorting methods compared to the ground truth (internal markers result) . 77 

Fig. 25. ROI positions and noise values ........................................................................... 78 

Fig. 26. ROI positions for edge profiles for Patient 2 ....................................................... 79 

Fig. 27. Edge profiles in reconstructed images of Patient 2 ............................................. 80 

Fig. 28 4D-CBCT Reconstruction from projection of Patient 4 in two different phases . 82 



 

 x

Fig. 29. 4D-CBCT Reconstruction from projection of Patient 4 sorted using different 
methods ............................................................................................................................. 83 

Fig. 30. Signed difference images of 4DCBCT reconstructed images of Patient 4 using 
different phase sorting methods compared to the ground truth (internal markers result) . 84 

Fig. 31. ROI positions and noise values ........................................................................... 85 

Fig. 32. ROI positions for edge profiles ........................................................................... 86 

Fig. 33. Edge profiles in reconstructed images based on different phase sorting methods
........................................................................................................................................... 87 

Fig. 34. Original and generated projections from the phantom dataset ............................ 89 

Fig. 35. Reconstructed 4DCBCT images of phantom dataset .......................................... 90 

Fig. 36. ROI positions for edge profiles ........................................................................... 92 

Fig. 37. Edge profiles in reconstructed images ................................................................. 92 

Fig. 38. ROI positions and noise values ........................................................................... 93 



 

 xi

ABSTRACT 
 

 
IMAGE-BASED RESPIRATORY MOTION EXTRACTION AND RESPIRATION-

CORRELATED CONE BEAM CT (4D-CBCT) RECONSTRUCTION 
 

By SALAM DHOU 
 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University. 

 
Virginia Commonwealth University, 2013 

 
Major Director: Alen Docef, Ph.D. 

Associate Professor, Department of Electrical and Computer Engineering 
 
 
 

Accounting for respiration motion during imaging helps improve targeting precision in 

radiation therapy. Respiratory motion can be a major source of error in determining the 

position of thoracic and upper abdominal tumor targets during radiotherapy. Thus, 

extracting respiratory motion is a key task in radiation therapy planning. Respiration-

correlated or four-dimensional CT (4DCT) imaging techniques have been recently 

integrated into imaging systems for verifying tumor position during treatment and 

managing respiration-induced tissue motion. The quality of the 4D reconstructed volumes 

is highly affected by the respiratory signal extracted and the phase sorting method used. 

This thesis is divided into two parts. In the first part, two image-based respiratory signal 

extraction methods are proposed and evaluated. Those methods are able to extract the 

respiratory signals from CBCT images without using external sources, implanted markers 

or even dependence on any structure in the images such as the diaphragm. The first 

method, called Local Intensity Feature Tracking (LIFT), extracts the respiratory signal 

depending on feature points extracted and tracked through the sequence of projections. 
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The second method, called Intensity Flow Dimensionality Reduction (IFDR), detects the 

respiration signal by computing the optical flow motion of every pixel in each pair of 

adjacent projections. Then, the motion variance in the optical flow dataset is extracted 

using linear and non-linear dimensionality reduction techniques to represent a respiratory 

signal. Experiments conducted on clinical datasets showed that the respiratory signal was 

successfully extracted using both proposed methods and it correlates well with standard 

respiratory signals such as diaphragm position and the internal markers’ signal. In the 

second part of this thesis, 4D-CBCT reconstruction based on different phase sorting 

techniques is studied. The quality of the 4D reconstructed images is evaluated and 

compared for different phase sorting methods such as internal markers, external markers 

and image-based methods (LIFT and IFDR). Also, a method for generating additional 

projections to be used in 4D-CBCT reconstruction is proposed to reduce the artifacts that 

result when reconstructing from an insufficient number of projections. Experimental 

results showed that the feasibility of the proposed method in recovering the edges and 

reducing the streak artifacts. 
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CHAPTER 1 INTRODUCTION 

 
Lung tumors move as the patient breathes causing a significant change in the 

tumor's shape and location during radiotherapy. Thus, it is important to adjust the 

delivered dose to the moving tumor and the surrounding normal tissues to avoid 

irradiating the nearby healthy tissues. Four-Dimensional or respiration-correlated CT 

(4D-CBCT) imaging techniques have been recently and rapidly developed in image-

guided radiation therapy for patient positioning prior to the treatment. Respiratory motion 

can effectively indicate the tumor position. It is considered one potential source of error 

in treatment. A respiratory signal can be generated from external sources (skin markers, 

abdominal belts, or spirometry) [1] [2] or an image-based estimate of diaphragm position 

[3] [4] [5]. However, these signals are external or with a limited field of view so they do 

not correlate robustly with tumor position. Also, the success of respiratory signal 

extraction using image-based diaphragm position estimation depends on the clear 

visibility of the diaphragm in the entire projection set, which is not always the case. 

Implanted radio-opaque tumor markers [6] [7] can help in this issue but has an additional 

expense which may not be available or may delay the treatment initiation. Thus, the first 

objective of the dissertation is to propose two alternative methods to extract the 

respiratory signal using only the Cone-Beam Computed Tomography (CBCT) scan 

projections without depending on any structure in the projections such as the diaphragm. 

The respiratory signal is used in 4D-CBCT reconstruction methods to create 

reconstructed image volumes. All CBCT projections, acquired from a standard CBCT 

scan, are sorted into several respiratory phase bins according to a respiratory signal 

extracted. Then, a standard three-dimensional (3D) CBCT method is used for 
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reconstruction. Thus, each subset of projections representing one phase of the respiratory 

cycle is used to reconstruct a 3D CBCT image. However, the insufficient angular 

sampling of the projections per respiratory phase causes view-aliasing artifacts 

characterized by high-frequency streaks. Thus, the second objective of the dissertation is 

to propose a novel method to increase the number of projections in each phase of the 

respiratory cycle. This method estimates the motion of the organ tissues in every CBCT 

projection using optical flow and generates intermediate projection views depending on 

the motion of the tissues and the intensity information of the original projections motion 

in the same cycle. 

Thus, the objectives of this study are twofold. 1) Propose two alternative image-

based signal extraction methods (CHAPTER 2 and CHAPTER 3), and 2) analyze the effect 

of different phase sorting methods on the 4D-CBCT reconstruction quality and propose a 

new projection generation method to reduce the streaking artifacts (CHAPTER 4). In 

Chapter 2, an image-based respiration signal extraction method, termed Local Intensity 

Feature Tracking (LIFT), is proposed. LIFT uses only the CBCT projections of the lung 

to extract the respiratory signal depending on tissue feature points local to the tumor  

without dependence on a particular anatomical structure in the CBCT images (such as the 

diaphragm). LIFT works by extracting and tracking feature points from one projection to 

another using optical flow [8] to form trajectories of the feature points’ correspondences. 

A selection criterion is applied to select the trajectories that show an oscillating behavior 

similar to respiration. Using those selected trajectories, the 3D motion is recovered and 

analyzed to represents the respiration motion. This work has been successfully completed 

and published as in [9]. In CHAPTER 3, the research work is continued to recover the 
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respiratory signal from CBCT projections. Another alternative image-based respiration 

signal extraction method, termed Intensity Flow Dimensionality Reduction (IFDR), is 

proposed. IFDR method detects the respiration signal by computing a dense optical flow 

on every pixel of each pair of adjacent CBCT projection images of the patient dataset. 

Since we know a pattern of a respiration motion exists in the optical flow displacement 

dataset, we apply linear and non-linear dimensionality reduction techniques to the 

consecutive optical flow displacement vectors detected to extract this respiratory motion. 

The principal components of the eigen system resulting from the linear dimensionality 

reduction method are used to represent the respiratory signal. Similarly, the dimensions 

of the reduced-dimension dataset resulting from the non-linear dimensionality reduction 

method serve as the respiratory signal of the lung. This proposed method has been 

applied to three clinical datasets and the experimental results showed that the respiratory 

signal extracted using this method correlates with the standard respiratory signals.  

In CHAPTER 4, the study aims to address the effect of using different phase 

sorting techniques on the quality of the 4D-CBCT reconstructed volume. Different phase 

sorting method has been used and compared including internal markers, external markers 

and image-based methods (the proposed LIFT and IFDR). Also, a method for generating 

additional projections to be used in 4D-CBCT reconstruction is proposed to reduce the 

streaking artifacts that result from reconstructing from an insufficient number of 

projections. Those new generated projections belong to the same breath but having 

different projections angles of a gantry rotation of 360º degrees. The generated 

projections of the same phase are used to reconstruct a 4D-CBCT volume. This method 

uses the feature extraction and tracking approach discussed in [9] (CHAPTER 2). 
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Experiments have been conducted to validate the study. Results showed that the proposed 

method reduced some of the artifacts and blurring in the 4D-CBCT volumes and 

improved the image quality. CHAPTER 5 summarizes the findings of research work in 

CHAPTER 2, CHAPTER 3, and CHAPTER 4. 

1.1 RESPIRATORY SIGNAL EXTRACTION IN CONE-BEAM CT (CBCT) 

Cone-beam computed tomography (CBCT) is a powerful imaging tool in image-

guided radiation therapy (IGRT) [10] [11] [12]. It provides volumetric information for 

accurate target localization. However, when a moving organ such as the lung or heart is 

scanned, motion can introduce artifacts in a planning CT scan and blur in a CBCT. This 

challenge sites that motion often significantly degrade the image quality and restrict the 

use of CBCT. Respiration-correlated or four-dimensional CT (4D-CT), where projections 

are sorted according to the respiratory phase, has been shown to reduce respiratory 

motion artifacts and yield 3D images at different points in the respiratory cycle [13] [14] 

[15] [16]. 

Respiratory correlated imaging techniques require a respiratory signal. 

Respiratory signals can be extracted using external sources such as skin markers, 

abdominal belts, or spirometry [1] [2]. Those methods require additional equipment such 

as infrared cameras, detectors, or spirometry that may not be available. Another solution 

was an image-based measure of diaphragm position directly from the 4DCBCT 

radiographic projections [3] [4] [5]. The extraction of a diaphragm position based signal 

requires the diaphragm to be visible in all acquired CBCT projections, which is not 

possible in some commonly-used CBCT systems that have limited longitudinal fields of 

view. Also, a number of studies have shown that tumor position is difficult to predict 
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directly from the diaphragm or external surrogate motion, with reported errors of up to 6 

mm in predicting tumor position from external marker position  [17] [18] [19] [20] [21] 

[22] [23] [24] [25] [26]. Another option is using transthoracically or bronchoscopically 

radio-opaque tumor markers which are implanted near the tumor and tracked to extract 

the respiratory motion [6] [7]. This method solves the problem, but the additional 

procedure to implant the markers is invasive and expensive, and any complications may 

significantly delay treatment initiation.  

There are several image-based marker-free respiratory signal extraction methods 

[3] [4] [27] [28] [29] [30]. Bergner et al. [27] proposed a method for measuring motion 

between 4DCBCT projections based on dense optical flow using a Horn-Schunk [31] 

implementation. Their method was developed to improve the reconstruction quality in 

stationary regions of the anatomy. For respiration sorting, they used a diaphragm 

position-based method similar to [3]. Wachinger et al. [32] extract an image-based 

respiratory signal using manifold learning; however, this method was applied only for 

fixed view (fluoroscopic) images, as opposed to the rotational view (tomographic) 

projections used in this study. In [4], thousands of interest points are selected and tracked 

across projections using a block matching algorithm. Signal processing techniques are 

then used to acquire a respiratory signal. In [28], Siochi developed a technique that 

locates a bounding box for the diaphragm motion for all projections based on two pairs of 

full-inhale and full-exhale views. However, the above methods [4] and [28] require that 

the diaphragm be present in the field of view. In [29], the respiratory signal is acquired 

from an analysis of the variation in pixel values between projection images by developing 

a simple pixel value summation followed by a high pass filtering. This method is 
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effective, but its efficiency should be demonstrated for various CBCT patient cases and 

compared to other methods in the literature. Vergalasova et al. [30] proposed a 

markerless method for respiration signal detection based on the principles on the Fourier 

Transform theory. However, when the entire projections of patient data were used, the 

results showed a big phase shift between the extracted signal and the ground truth signal. 

Our proposed image-based respiratory signal extraction methods extract the respiratory 

signal without the dependence on any structure in the images and the resulted signal 

correlates with the standard respiration signals (e.g. using the implanted markers). 

1.2 RESPIRATION-CORRELATED CONE-BEAM CT (4D-CBCT) 

Respiration-Correlated or Four-dimensional cone beam computed tomography 

(4D-CBCT) provides respiratory phase-resolved CBCT images with the 4th dimension 

being time. 4D-CBCT has been proposed to characterize the breathing motion of tumors 

before radiotherapy treatment. 4DCBCT using an on board imager [3] [33] [34] [1] has 

been proposed as a 4D imaging tool for radiotherapy treatment of tumors in the thorax 

and upper abdomen. Compared with four-dimensional computed tomography (4D-CT) 

using diagnostic CT scanners [13] [14] [15] [16] [35] [36] [37], 4D-CBCT extends 4D 

imaging capability from the treatment planning stage to the treatment delivery stage. 

From 4D-CBCT images, a tumor motion trajectory can be extracted immediately before 

the treatment delivery and compared with that from the treatment plan so that the 

treatment can be adapted to optimize the clinical outcome. 

4D-CBCT is implemented on the basis of the standard three-dimensional CBCT 

(3D-CBCT). First, all projection views, acquired from a standard CBCT scan, are sorted 

into several respiratory phase bins according to a respiratory surrogate. Second, image 
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reconstruction is performed for each of the phase bins. In such a way, time resolved 

image volumes are generated which represent the temporal change of the patient anatomy 

during a respiratory cycle [38]. Recently, CBCT scanners have been integrated with 

linear accelerators to acquire 3D-CBCT images of the patients for image guidance of 

radiotherapy [10]. These 3D-CBCT images allow correcting for the target misalignment 

and adapting the treatment plan [39]. However, respiratory motion causes artifacts in 

CBCT images of the thoracic and upper abdominal region, such as blur and streaks, 

which are known to reduce the accuracy of derived information [40].  

Respiration-correlated CBCT (4D-CBCT) is the first solution to account for the 

respiratory motion [1] [3] [34] [41]. It consists of sorting the CB projections depending 

on their position in the respiratory cycle assessed with a respiratory signal. Each subset of 

CB projections is then used to reconstruct a 3D-CBCT image representing one phase of 

the respiratory cycle, thus obtaining a 4D-CBCT image of the respiratory cycle. Although 

4D-CBCT is capable of reducing the motion artifacts, it poses another challenge for 

reconstruction. Reconstruction from one phase of the respiratory cycle leads to 

insufficient number of x-ray projections in each respiratory phase bin. Reconstructing 

such an under-sampled data using the standard filtered-back-projection (FBP) [42] 

algorithm can cause severe view-aliasing and streaking artifacts in the reconstructed 

images. 

Various methods have been proposed to address the under-sampling problem and 

improve image quality in 4D-CBCT [1] [3] [27] [43] [44] [45] [46] [47] [48] [49] [50] 

[51] [52] [53] [54] [55]. Most of them can be classified into two categories: (1) slow 

down the gantry rotation or do multiple gantry rotations while using the standard FBP 



 

 8

reconstruction algorithm [1] [3] [44] [45] or (2) keep the standard gantry rotation time 

while using advanced methods to mitigate streak artifacts [27] [43] [47] [48] [49] [50] 

[51] [52] [53] [54] [55]. Among the advanced reconstruction techniques is Compressed 

Sensing (CS), which was applied to tomographic beam problems by Sidkey et al. [50]. It 

uses a transformation onto the image and tries to find the transformed representation of 

the image with the least significant entries, while simultaneously bounding the error 

between the projected image and the measured data. Another CS example was [51] which 

uses a simple gradient descent for the optimization. Also, a prior image constrained 

compressed sensing (PICCS)-based algorithm, was proposed to reconstruct each image 

by regularizing the total variation of the image and its difference from a prior image 

obtained by using all projections [52]. More work on CS can be found in [53] [54] [55].  

Motion compensating algorithms are also available. Those algorithms use further 

prior information, i.e., deformation fields calculated from the planning CT [56] [43] [57] 

[58] [59] [60] [61]. The approach consists of two steps: first, it estimates the patient 

motion during the CB acquisition and second, it uses the estimated motion in the 

reconstruction algorithm. Thus, a 3D-CBCT image at a reference position is 

reconstructed from all the CBCT projections. In [43] [57] the computational cost added to 

the cost of the reconstruction algorithm has prevented the clinical use of motion-

compensated CBCT. In [60] [61], an algorithm based on the PCA lung motion model has 

been proposed and evaluated to reconstruct volumetric images and extract 3D tumor 

motion information in real-time from a single x-ray projection in a marker-less 

implantation. It has been also proposed to split the reconstruction region according to 

volume of interest and treat the reconstructions separately [62]. These motion 
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compensating approaches are believed to give the best results when accurate deformation 

information are available as the motion can potentially be almost completely 

compensated in the reconstruction algorithm [63]. However, the calculation of the 

deformation maps is costly and the efficacy of these approaches largely depends on the 

accuracy of the algorithms involved, such as deformable image registration algorithms.  

Recently, nonlocal means (NLM) operators have become an effective tool for 

solving image restoration problems. The underlying assumption is that the image to be 

restored contains repetitive features that can be utilized to constructively enhance each 

other. Based on this idea, a generalized (NLM) method, termed temporal nonlocal means 

(TNLM) [64] [65] has been extended to 4D-CBCT problems. An enhanced version of 

TNLM algorithm is presented in [66] with a GPU’s parallel processing scheme 

implementation. In this TNLM-based 4D-CBCT enhancement algorithm, 4DCBCT 

images are first reconstructed by the conventional FDK [42] algorithm and post-

processed by utilizing a TNLM approach to remove the streaking artifacts caused by the 

FDK algorithm due to the insufficient number of projections. Also, a number of research 

efforts have been made on post-processing of the 4D-CBCT images. For example, a prior 

image-based approach has been developed by first reconstructing a blurred CBCT images 

with all projections and then using it to estimate and remove the streaking artifacts [47]. 

Increasing the sampling density by projections generation may help to reduce the 

effects of the view aliasing artifacts. The topic of image interpolation has been studied in 

medical imaging research [67] [68] [69] [70] [71] [72] [27] [73] [74] [75]. For parallel 

beam geometry, Weiss et al. [69] estimated intermediate phantom views using linear 

interpolation and demonstrated their efficiency in minimizing view aliasing streaks. A set 
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of interpolation schemes have been described in the literature for medical and nonmedical 

applications, such as optimized interpolation kernels [71] [72] [76], shape-adaptive image 

interpolation algorithms [77] [78] [79] [80] and other advanced interpolation methods [67] 

[68] [81]. In [67] [68], a shape-driven directional interpolation algorithm based on a 

structure tensor approach is developed. The algorithm is locally adaptive to the 

orientation of gray value structures to be interpolated. Quantitative evaluation shows that 

this method outperforms conventional scene-based interpolation schemes and reduces 

streak artifacts and noise in the reconstructed images. However, this method was applied 

to a non-moving anatomy, i.e. human head, as opposed to the human lung datasets used 

in this study. 
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CHAPTER 2 IMAGE-BASED RESPIRATORY SIGNAL EXTRACTION USING LOCAL 

INTENSITY FEATURE TRACKING AND MOTION MODELING IN CONE-BEAM CT 

PROJECTIONS  

Accounting for respiration motion during imaging can help improve targeting precision 

in radiation therapy. This chapter presents Local Intensity Feature Tracking (LIFT), a 

novel marker-less breath phase sorting method in Cone Beam Computed Tomography 

(CBCT) scan images. LIFT extracts the respiratory signal from the CBCT projections of 

the thorax depending only on tissue feature points that exhibit respiration. The extracted 

respiratory signal using LIFT is shown to correlate with standard respiration signals. 
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2.1 INTRODUCTION 

Respiratory motion extraction from CBCT images is an important task in 

biomedical engineering research [82] [83] [84]. It can be used to study the influence of 

organ motion on CBCT imaging [1]. Motion modeling can be used also for measuring the 

position and orientation of objects [85] [86] or for respiratory image sequence 

segmentation techniques [87]. Four-dimensional or respiration-correlated CT (4DCT) 

imaging techniques have become a basic task in radiation therapy planning. As the 

respiratory motion can be a major source of error in determining the position of thoracic 

and upper abdominal tumor targets during radiotherapy, extracting respiratory motion is a 

key task in reconstructing 4DCT.  Volumetric image guidance techniques, such as 4D 

Cone Beam CT (4DCBCT) have been recently and rapidly integrated into the clinic for 

verifying tumor position during treatment and managing respiration-induced tissue 

motion [1] [3] [34]. An acquired respiratory signal serves as a surrogate for the tumor 

position. This surrogate is used to assign each projection to its appropriate breathing 

phase bin, in a process termed “sorting,” prior to 4D image reconstruction. 

Respiratory signals can be extracted using external sources such as skin markers, 

abdominal belts, or spirometry [1] [2]. Those methods require additional equipment such 

as infrared cameras, detectors, or spirometry that may not be available. Another solution 

was an image-based measure of diaphragm position directly from the 4DCBCT 

radiographic projections [3] [4]. The extraction of a diaphragm position based signal 

requires the diaphragm to be visible in all acquired CBCT projections, which is not 

possible in some commonly-used CBCT systems that have limited longitudinal fields of 

view. Also, a number of studies have shown that tumor position is difficult to predict 
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directly from the diaphragm or external surrogate motion, with reported errors of up to 6 

mm in predicting tumor position from external marker position  [17] [18] [19] [20] [21] 

[22] [23] [24] [25] [26]. Another option is using transthoracically or bronchoscopically 

radio-opaque tumor markers which are implanted near the tumor and tracked to extract 

the respiratory motion [6] [7]. This method solves the problem, but the additional 

procedure to implant the markers is invasive and expensive, and any complications may 

significantly delay treatment initiation.  

Thus, Local Intensity Feature Tracking (LIFT), an image-based respiration signal 

extraction method is proposed. The contributions of this study are twofold. First, the 

proposed method uses only the CBCT projections of the lung to extract the respiratory 

signal depending on tissue feature points local to the tumor. Second, the extracted 

respiration signal using LIFT correlates to the standard respiration signals. The specific 

novel contributions of this work are: 1) LIFT extracts the respiratory signal without 

dependence on a particular anatomical structure in the CBCT images (such as the 

diaphragm), and can be tuned to focus on a particular region of the anatomy (say, near a 

tumor). 2) No other group has used 3D motion modeling in recovering the 3D motion of 

the lung and used it as a respiratory signal. LIFT works as follows. First, the CBCT 

projections of the entire dataset are grouped into arcs. Then, in each arc, feature points 

are extracted in the lung. Those feature points are tracked from one projection to another 

using optical flow [8] to form trajectories of the feature points’ correspondences. A 

selection criterion is applied to select the trajectories that show an oscillating behavior 

similar to respiration. Using those selected trajectories, the 3D motion is recovered. Then, 

the 3D rotation around the Z-axis of the patient represents the respiration motion in this 
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study. CBCT projections are sorted into phases according to the respiration signal 

detected. 

The advantage of LIFT over the external resources methods is that no external 

equipment is required. It also has the advantage over the diaphragm position method in 

that the diaphragm is not required to be visible in all CBCT projections. Moreover, no 

internal markers are required to be implanted as the signal is generated from tissue 

features local to the tumor position. LIFT is considered widely applicable as only the 

CBCT projections are required to generate the respiratory signal. There are several works 

related to our study. Bergner et al. [27] proposed a method for measuring motion between 

4DCBCT projections based on dense optical flow using a Horn-Schunk [31] 

implementation. Their method was developed to improve the reconstruction quality in 

stationary regions of the anatomy. For respiration sorting, they used a diaphragm 

position-based method similar to [3]. Wachinger et al. [32] extract an image-based 

respiratory signal using manifold learning; however, this method was applied only for 

fixed view (fluoroscopic) images, as opposed to the rotational view (tomographic) 

projections used here.  

The works in [4] [28] [29] [30] are also related. In [4], thousands of interest points 

are selected and tracked across projections using a block matching algorithm. Signal 

Table 1: Comparison of Respiratory Motion Detection Methods 
 

Method name Procedure Requirements 
Diaphragm position [3] 
[4] 

Measuring the position of the diaphragm in 
subsequent projections and using it as a surrogate 
to the respiration motion 

Diaphragm should be 
visible in all projections

Internal Marker-based 
[6] [7] 

Tracking the markers in subsequent projection 
images using image-based tracking techniques 

Internal markers/ 
implanting procedure 
costs 

Proposed LIFT Tracking interest points local to the tumor position 
and 3D motion modeling of the 2D motion of the 
best selected motion trajectories 

CT projections only 
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processing techniques are then used to acquire a respiratory signal. In [28], Siochi 

developed a technique that locates a bounding box for the diaphragm motion for all 

projections based on two pairs of full-inhale and full-exhale views. However, the above 

methods [4] and [28] require that the diaphragm be present in the field of view. In [29], 

the respiratory signal is acquired from an analysis of the variation in pixel values between 

projection images by developing a simple pixel value summation followed by a high pass 

filtering. This method is effective, but its efficiency should be demonstrated for various 

CBCT patient cases and compared to other methods in the literature. Vergalasova et al. 

[30] proposed a markerless method for respiration signal detection based on the 

principles on the Fourier Transform theory. However, when the entire projections of 

patient data were used, the results showed a big phase shift between the extracted signal 

and the ground truth signal. Thus, our proposed method is the first method to use feature 

tracking and 3D motion modeling for respiratory signal extraction. Table 1 shows a 

comparison summary of respiration signal extraction methods. 

The remainder of this chapter is organized as follows. Section 2.2 describes in 

detail the proposed method. Section 2.3 presents the experimental results on four clinical 

datasets and a discussion of the results. Section 2.4 summarizes the findings. 
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2.2  PROPOSED RESPIESPIRATORY MOTION EXTRACTION METHOD 

2.2.1 FEATURE EXTRACTION AND TRACKING 

Feature points are extracted and tracked through projection sequences to detect the 

optical flow motion in the following three steps:  

Step 1: Feature points are extracted at pixel locations equally spaced by a 

constant number of pixels, not based on image intensity (like corners). That’s because of 

the nature of transmission tomography in which corners visible in 2D projection images 

may not correspond to actual high contrast boundaries in the 3D anatomy. Also, choosing 

features at equally spaced locations allows the extraction of feature points in any CT 

projection image. An extracted feature point is represented by pf,p=(xf,p ,yf,p), where f is 

the projection number and p is the point number. The aim is analyzing the motion 

between any pair of consecutive projections. The inferior portion of projections 

containing the diaphragm was excluded to simulate common CBCT acquisition systems 

that have smaller longitudinal fields of view. Fig. 1 shows feature points extraction in one 

projection.  

 

Fig. 1. Feature points extraction used in this study 
Feature points are extracted at specific pixel locations spaced by a number of pixels (20 pixels in this 
figure). The inferior part of the projection image is excluded to simulate the CBCT systems that have a 
small field of view. 
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Step 2: Feature points are tracked through subsequent projection frames. Due to 

the respiration motion and different projection angles, a feature point has different 

locations (x and y coordinates) in every subsequent projection. Those locations of the 

feature point are called “correspondences”. To find the displacement δ(Δx,Δy) that a 

point pf,p with intensity I(xf,p,yf,p,τ) makes when it moves from one image to the next, a 

single pixel cannot be tracked. That is because the value of the pixel can change due to 

noise, and be confused with adjacent pixels [88]. Thus, windows of pixels are tracked 

instead of single pixels. Since adjacent projections refer to the same scene taken from 

slightly different viewpoints at τ and τ+∆τ, intensity patterns move in the image sequence 

satisfying the constraint property: I(xf,p ,yf,p, τ) = I(xf,p +∆x, yf,p+∆y, τ+∆τ).    

The next image can be defined as J(p)=I(p- δ)+η(p), where η is some noise. The 

displacement δ(Δx,Δy) that minimizes the sum of squared intensity differences between a 

past and current window w is found in the following cost function:  

dppJpI
w

2])()([   ,     (1)  

which can be written as dpgh
w

2
)(   , where h=I(p)-J(p). The residue is minimized by 

differentiating  with respect to δ and setting the result equal to zero as: 0)(  gdAgh
w

 , 

where (gδ)g=(ggT) δ, and δ is assumed to be constant within w. Therefore, the resulting 

system is   gdAhdAgg
w

T

w   . This system has two scalar equations and two unknowns 

which can be written as: G δ=e, where G	 can be computed from one image by estimating 

gradients and computing their second order moments, and e	 can be computed from the 

difference between the two images along with the gradient computed above. The 

displacement δ	is then the solution of system [88]. 
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Drift problem is a very classical issue when tracking feature points through long 

sequences. To overcome this problem, the quality of feature points is monitored during 

tracking by measuring the dissimilarity of the features between the first image in the 

sequence and the current image. The feature is abandoned when dissimilarity grows too 

large. Affine image changes are used to calculate dissimilarity as in [89]. 

 

Step 3: A trajectory is formed as sequence of point correspondences through F 

frames and is defined by tp as: tp={p1,p, p2,p, … , pF,p}. A set of trajectories is represented 

by T={t1, t2,… , tP}, where P is the total number of trajectories which equals the total 

number of points. Trajectories are represented by a list of line-angle vectors (l,Θ), where l 

is the line between two adjacent feature points pf,p and pf+1,p, and Θ is the value of the 

angle between two adjacent lines. The line-angle vector representation of a trajectory tp of 

F point correspondences is:  1 1 1 2( , ),..., ( , )F F
p p p p pt l l     . In a trajectory of F points, the 

number of lines l equals F-1 while the number of angles Θ equals F-2. This 

representation of trajectories is defined for the purpose of clustering. The details of two 

trajectories are shown in Fig. 2. Algorithm 1 shows a summary of the steps used for 

feature extraction and tracking. 

pt

qt

f
pl

1f
pl k

pk
q

f
ql1f

ql

peak

peak

Fig. 2. Two trajectories formed by tracking a sequence of 47 frames 
Both trajectories tp and tq are selected to be used in the reconstruction of the respiration signal. The first 
two segments of both trajectories are illustrated. 
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2.2.2 SHAPE-BASED TRAJECTORY CLUSTERING 

Trajectories resulting from tracking the feature points are clustered based on their 

motion behavior. Respiratory-induced motion in the thorax and upper abdomen is 

quasiperiodic and directed mainly in the superior-inferior direction (along the patient 

longitudinal axis). Thus, motion trajectories exhibiting this oscillating behavior may 

imply respiration motion (i.e. thoracic tissue areas). Other trajectories have only orbital 

motion due to the scanner rotation (i.e. bony areas). In order to detect a true respiration 

signal out of this mixed signal, the effect of the orbital trajectories should be minimized 

by using only the ones with the highest superior-inferior motion signals in the motion 

detection process. The following three steps show the process of trajectory clustering.  

Step 1: A set of metrics for trajectory clustering is formulated to describe the 

shape of trajectories. Table 2 describes the set of metrics used and their formula. Those 

metrics compare trajectories based on their shapes using the number of peaks in each 

trajectory, angle measurements, and the average number of lines between peaks. A peak 

in a trajectory, as seen in Fig. 2, is the point that has the largest y coordinate within a 

breath cycle (3-5 seconds). It is detected by traversing every trajectory to find the points 

with the largest y coordinate within a breath cycle.  

Algorithm 1: Feature Extraction and Tracking 
Step 1: Extract feature points pf,p=(xf,p ,yf,p) at pixel locations equally spaced by a 
constant number of pixels. 
Step 2: Track feature points through a projection sequence by finding the 
displacement δ(Δx,Δy) that minimizes the cost function: dppJpI

w

2])()([   , (1) 

Step 3: Form trajectories tp and represent them as a list of line-angle vectors as: 

 1 1 1 2( , ),...,( , )F F
p p p p pt l l     . 
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Those metrics are combined in one similarity measure to apply to every pair of 

trajectories. This similarity measure detects the similarity in the shape of trajectories and 

is insensitive to their location in the projection and length in pixels. The following is the 

definition of the similarity measure that uses the distance metrics defined in Table 2.  


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



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
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



,   (2)  

where tp and tq are two trajectories of the same length. d is the maximum similarity 

possible between any two trajectories. α, β, and Ψ are weights to adjust the significance 

of one metric to the other metrics. All metrics are represented as ratio or normalized 

difference. Each metric in (2) compares the pairs of trajectories based on one specific 

aspect of each trajectory’s shape. The first metric compares trajectories based on the 

number of peaks. The second one compares the trajectories based on average angle 

measurement between the lines forming the peaks. The third one compares the 

trajectories based on the average number of lines between each consecutive peak. Each 

metric has its own influence on the result of similarity. The metrics are combined in a 

weighted summation to determine the overall similarity between each pair of trajectories. 

Table 2: Trajectories Clustering Metrics 

Metric Formula Description 

},max{,
qp

qp

qp kk

kk
k


  

The difference in the number of peaks kp and kq in trajectories p and q divided by 
the maximum number of peaks. kp,q≤1. 

2
1




  

F

p

p
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


 

Average measurement value of angles in trajectory p. Θp
k  is the angle existing 

between the lines lp
k and lp

k+1 forming a peak in trajectory p. 
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The average number of lines lp

k  between every consecutive peaks in trajectory p, 
where np

k  is the number of lines lp
k between two peaks in p. 

},max{

},min{
,

qp

qp
qp rr

rr
  The ratio of the average number of lines between peaks in trajectories p and q: rp

and rq. ρp,q≤1. 
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Those metrics are also weighted using three weighs (α, β, and Ψ) to increase or decrease 

the influence of a specific metric on the overall similarity. 

When each of the weights α, β, and Ψ is set to 1, the maximum similarity possible 

d should be set to a numeric value that is equal to or greater than 3 in order to have a 

positive overall similarity S(tp,tq). If d is set to 3, the overall similarity measure S(tp,tq) 

will range from 0 (minimal similarity) to 3 (maximal similarity). The weights can be 

adjusted to give more significance to one metric than the other. For example, to 

emphasize on the average angle difference, such that similar trajectories should have very 

similar angles, β should be given a value greater than other weights α and Ψ, and the 

maximum similarity possible d should be changed accordingly.  

Step 2: The hierarchical agglomerative clustering method [90], which is a type of 

hierarchical clustering, is used to classify trajectories. The similarity is computed for 

every pair of trajectories based on the similarity measure defined in (2). Clustering is 

achieved by first finding the closest pairs of trajectories and placing them into a cluster. 

The similarity between a single trajectory and the new cluster is computed as the average 

similarity between the single trajectory and all trajectories belonging to the cluster. Then, 

the most similar pair of trajectories/clusters is combined again in a new cluster until 

having two clusters eventually. One cluster contains “breath-like oscillating” trajectories 

and is denoted by Tb. The other one contains “orbital” trajectories and is denoted by To. 

This clustering method is meant to work on regular and irregular breathing patterns. Due 

to the irregular breathing, trajectories may have “abnormal” shapes. Since the whole 

anatomy is affected by the same regular/irregular respiration motion, most of the 

oscillating trajectories will have similar motion behaviors and thus similar shapes. So, 
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they will be clustered in Tb, the cluster with breathing trajectories, and the other cluster To 

will contain either orbital or non-breathing trajectories. Fig. 3 shows an example of 

trajectories clustering using our method.  

 

Step 3: The result of the clustering process has been evaluated after the process of 

clustering is done. Two validation criteria described in [91] are used in this study. The 

first criterion used is the compactness of a cluster which measures the average similarity 

of trajectories in a cluster. The compactness in cluster Tb is computed as: 

b

n

i

n

ij jib nttSS b b  


1 1
),( ,     (3) 

where nb is the number of trajectories in Tb. The standard deviation between trajectories 

in the same cluster Tb is defined as: b

n

i

n

ij bji nSttSb b
2

1 1
)),((  

 . 

The second criterion used is the isolation. It measures the separation of the two 

clusters by estimating the highest similarity to a trajectory outside the cluster. The 

isolation of the two clusters Tb and To is defined as: 

obojbiob njnittSTTD ,..1,,..1)),,(max(),( ,,  . (4) 

The smaller the similarity between clusters, the greater the isolation. Algorithm 2 

summarizes the steps of clustering.  

Fig. 3. Trajectories clustering in the projection images 
Red trajectories (cluster Tb) show a motion similar to the respiration motion so they are selected to be used
in the signal extraction. Green trajectories (cluster To) show an orbital motion, so they are discarded. The
range of images used is #250–300 of Patient 1 dataset. 
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2.2.3 RESPIRATORY MOTION DETECTION 

For the detection of respiratory motion, 3D motion modeling of the selected 

trajectories is used. The following three steps show the detection of the respiratory 

motion.  

Step 1: The subsequent projections are grouped into overlapping arcs. An arc is 

defined as a sequence of projections captured from a unique and continuous record of X-

ray radiation. Projections are grouped into overlapping arcs because corresponding 

feature points are not visible in all projections due to scanner rotation. Overlapping the 

arcs allows for a breathing signal to be correlated between two arcs in this region without 

having the same feature points in both arcs. The process of grouping projections into arcs 

is done manually based on their projection angle, regardless of their contents and/or the 

breathing signal they may carry. Projection grouping has no relation to the regularity or 

periodicity of breathing. The goal of grouping projections into arcs is to overcome the 

problem of feature points that become invisible because of the scanner rotation regardless 

of the breathing status. Fig. 4 shows dataset groupings into overlapping arcs.  

Algorithm 2:  Shape-based Trajectory Clustering 
Step 1: Formulate a similarity measure and apply to every pair of trajectories as in (2). 
Step 2: Use hierarchical agglomerative clustering based on (2) to cluster trajectories 
into two clusters Tb and To.  
Step 3: Validate clustering results by computing the compactness of Tb as in (3), and 
the isolation of Tb and To

 
as in (4). 
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Step 2: The 3D motion of the lung is detected in each arc using the selected 

trajectories Tb clustered in Section 2.2.2. Fig. 5 shows the coordinate systems used in this 

study. This figure shows one 2D point tracking in three consecutive projection frames. 

The x coordinates displacement Δx corresponds to the displacement caused by the orbital 

motion. Δy corresponds to the cranio-caudal (up-down) position of the lung. To detect the 

3D motion of the lung, structure-from-motion technique is used [92]. The 2D points 

pf,p=(xf,p,yf,p), of the set of trajectories Tb, are filled in the measurement matrix W:2F×P as 

in (5). Then, the mean mf  and nf for each measurement type is subtracted off from W to 

yield the registered measurement matrix W* as in (6): 
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To recover the 3D motion, the registered measurement matrix W* is decomposed 

by (SVD) into * ' ' 'TW U D V . The respective motion matrix M is extracted as ' ' 'M U D  

and the true value of the motion matrix M : 2 3F  is recovered as  'MM , where   is a 

arc 1 arc 2 arc 3

 1  2 
 F 

Projection number  
1               100      150        250    300         450  500                       701

arc 4

Fig. 4. Grouping consecutive projection images into arcs 
Patient # 1 dataset images grouped into four arcs. Arc #1: 100-150, Arc #2: 100- 300, Arc #3: 250-500, 
Arc #4: 450-701. The process is done manually. 
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3 3 matrix that satisfies the three metrics constrains: |if |
2 = | jf |

2, if. jf 
=0, and i1=1. The 

motion matrix is defined as:
  TFjjiiM  111 | . 

Step 3: The 3D rotation angles θx, θy, and θz at every projection image from the 

motion matrix M are recovered.  Entries of motion matrix M for each projection are 

defined to equal the first two rows of the arbitrary rotation matrix R(θz,θy,θx), where  
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where R(θz), R(θy), and R(θx) correspond to the rotation matrices about the Z-axis, Y-axis, 

and X-axis, respectively. 
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The rotation angle θy is interpreted as the gantry (orbital) motion of the X-ray source 

around the patient. θx is interpreted as the rotation around the X-axis which is not our 
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Fig. 5. The coordinate systems used in this study  
One feature point tracked in three projections f, f+1, and f+2. Real world frame is represented by XYZ 
coordinates and CBCT projection frame is represented by xy. Source orientation is represented by the 
orientation vectors if, jf, and kf. 
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concern in this study. θz is interpreted as the respiration signal because the lung anatomy 

is seen by the X-ray source as rotating around Z-axis as shown in Fig. 5. Algorithm 3 

summarizes of the steps used for respiratory motion detection. 

 

2.2.4 PROJECTIONS PHASE SORTING 

To sort the projections into phases, the respiratory signal θz is used as the input of 

the phase sorting method. The following steps show the process of breath phase sorting: 

Step 1: The respiratory signal θz extracted is smoothed before phase sorting. 

Savitzky Golay smoothing filter [93] is used to clear out the noisy respiratory signal. The 

technique use a set of weighting coefficients (w-m, w-(m-1), …, wm-1, wm) to carry out the 

smoothing operation. The use of these weights C is equivalent to fitting the data to a 

polynomial. Thus, the smoothed data point fz ,

~ at frame f is: 

 


m

mi iifZ

m

mi ifZ ww ,,
~   .     (7) 

Fig. 6 shows the respiratory signal smoothing and breath phase interpretation in one 

breath cycle. 

Algorithm 3:  Respiratory Motion Detection 
Step 1: Group consecutive projections into overlapping arcs to overcome the problem 
of feature points’ invisibility. 
Step 2: Detect the 3D motion of the lung in each arc. The motion matrix found is:

 
 TFjjiiM  111 | . 

Step 3: Recover the 3D rotation angles θx, θy, and θz at every projection using M. The 
rotation angles are interpreted and θz is chosen to represent the respiratory signal. 
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Step 2: The smoothed respiratory signal z
~  is used in recovering breath phases. 

Let H(f) denote the breath phase. Projections are sorted according to their breath phase by 

setting all peak projections to a phase of “1”: H(f)=1. The remaining projections between 

the two peaks are assigned to the other number of phase bins wanted by taking the total 

number of projections divided by the number of phases, and then sort the projections so 

each bin contains roughly the same number of projections. Fig. 7 shows the breath phases 

extraction from the smoothed respiratory signal Z
~ in multiple breath cycles. 
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Fig. 7. Breath phase sorting of the projections into six bins based on the respiratory signal in 
multiple respiratory cycles.  
Projections are sorted into phases based on the respiration signal 

z
~ (dashed green). Phases H(f) (solid 

blue) are interpreted as: 1 as the end of exhale, 2 as early inhale, 3 as middle of inhale, 4 as the end of 
inhale, 5 as early exhale, and 6 as middle of exhale. 
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Fig. 6. Smoothing the respiratory signal and sorting the projections into phases. 
The noisy (θz), smoothed respiratory signal (

z
~ ) and phase sorting into six bins using the smoothed 

respiratory motion. The six colors in the oval correspond to each bin as shown on top of the figure. 
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Step 3: Breath phase sorting quality is measured by comparing the sorted 

projections using LIFT and the ground truth signal. The phase shift, defined as )( fH , is 

measured between every corresponding phase “1” in both signals. The average phase 

shift is estimated for each arc and is defined as: 

c

n

c
nfHH c /)(

1
 ,        (8) 

where cn is the number of cycles. The standard deviation of phase shift is defined as

c

n

c
nHfHc /))((

2

1 
 . Also, the breathing amplitude error is computed by dividing the 

average number of phase-shifted projections by the average number of projections in 

each cycle as follows: )/( cnFH .   (9) 

 

 

Algorithm 4: Projection Sorting  
Step 1: Smooth the noisy breath signal θZ using Savitzky Golay filter by fitting the θZ 
values to a polynomial as (7). 
Step 2: Recover breath phases H(f) from the smoothed respiratory signal

z
~ . 

Step 3: Evaluate phase sorting by estimating the average phase shift as (8) and the 
breath amplitude error as (9). 		
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2.3 EXPERIMENTAL RESULTS 

2.3.1 DATASET SPECIFICATIONS 

Four datasets were used to validate LIFT.  The first dataset used has been taken 

under the following characteristics: The imaging system used consists of a radiation 

source and a detector panel which orbit in the XZ plane around the fixed point in space 

(which is placed at the world coordinate system origin). The actual distance of the source 

to origin is always fixed 1000 mm, and the virtual distance is also 1000 mm in this setup. 

The detector-center-to-origin is also fixed 536 mm. The system is calibrated to provide a 

virtual image of known size at the origin by calibrating the physical pixel size. With this 

calibration, the virtual panel dimensions are 265.2  265.2 mm, the pixel size is 0.518 

mm/pixel. Patient 2-4s’ datasets are similar, but acquired on a different vendor’s imaging 

system. The geometry is similar, but the virtual panel dimensions are 198.5264.7 mm, 

and the pixel size is 0.258 mm/pixel. Patient 4’s dataset showed some irregular breathing 

patterns, while patient 1-3’s datasets have generally regular breathing patterns. The 

ground truth used for the datasets for patient 1 was the result of the diaphragm position-

based method, while the ground truth for patient 2-4s’ datasets was the internal markers 

trajectories. Four markers were used in patient 2’s and patient 4’s datasets and the 

averages of their trajectories through the projection images were estimated. One marker 

was used in patient’s 3 dataset. Table 3 shows the specifications of the datasets used in 

this study. 
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2.3.2 FEATURE TRACKING AND TRAJECTORY SELECTION  

Feature points were extracted in the first projection of the sequence on locations 

equally spaced by a specific number of pixels, 20 pixels in this experiment. Fig. 8 shows 

feature points tracking in Arc 4 of patient 1’s dataset (between projection #250 and 

#500). The displacement shown is represented in pixels. In (a), yellow dots show the 

extracted feature points and green lines show the trajectories of those tracked points 

through the arc projections. The shape of the trajectories determines the motion of the 

area in which those trajectories reside. For example, trajectories residing in thoracic 

tissue regions tend to have a shape similar to a respiration curve, while trajectories 

residing in bony areas look like an orbital trajectory or unorganized shape. In (b), selected 

trajectories of the tracked points are shown.  

The average optical flow displacement was 0.51 pixels in patient 1’s dataset, 0.37 

pixels in patient 2’s dataset, 0.23 pixels in patient 3’s dataset, and 49.5 in patient 4’s 

dataset. The displacement vectors estimated for patient 1’s datasets in arc 4 have an 

average horizontal displacement larger than the vertical one. Those values were 

compared to Fig. 8 in which it appeared that the horizontal motion was larger than the 

vertical motion. Our evaluation of optical flow performance has been limited to a 

qualitative judgment as [94] due to the lack of true displacement vectors. Also, the results 

Table 3: Dataset Specifications for Multiple Patient Datasets 
Patient 
number 

Number of 
projections 

Projection size 
(pixel) 

Pixel size 
(mm/pixel)  

Source-Origin distance 
(mm) 

1 701 512 512 0.518 1000  
2 2396 768 1024 0.258 1000 
3 2436 768 1024 0.258 1000 
4 2300 768 1024 0.258 1000 
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of the 3D motion recovery, shown in Section 2.3.3, proved that the optical flow algorithm 

used performed well and produced good results. 

As previously mentioned, trajectories showing cyclical superior-inferior motion 

representing respiratory motion were selected according to the criteria followed in (2). 

Table 4 presents the compactness and isolation measures (3) and (4) applied to the 

resulting clusters in four patient datasets. As shown, the average compactness of the 

selected trajectories in the four patient datasets was around 87%, and the average 

isolation was around 44%. 

 

Table 4: Average Compactness and Isolation of the Chosen Cluster of Trajectories in Multiple 
Patient Datasets 

Patient # AVG Compactness (3) AVG  Isolation (4) 
1 88.01  10.19 43.20  9.27 
2 86.24  12.53 47.53  10.96 
3 90.15  9.84 45.14  7.67  
4 85.14  9.54 42.52  11.86 

 

Fig. 8. Results of feature points selection and tracking 
(a) Feature points detected in the first projection image of Arc 4 and trajectories through the arc. 
Yellow dots show the extracted pixels and green lines show the trajectories. (b) Selected trajectories 
that represent breathing in blue. 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b)



 

 32

2.3.3 RESPIRATORY MOTION DETECTION AND PHASE SORTING  

To model the 3D motion of the lung, structure-from-motion is used as described 

in Section 2.2.3. Fig. 9 shows the extracted respiratory signal in selected arcs. The 

respiratory signal is the rotational angle about the Z-axis measured in degrees. LIFT 

based respiratory signal was compared to the diaphragm position-based signal in (a) and 

to the markers-based signal in (b), (c), and (d). The X-axis of the figure corresponds to 

the projection number and the Y-axis corresponds to the degree of the rotation at each 

projection. 

As shown in Fig. 9, LIFT respiratory motion matches the ground truth. To 

compare the accuracy of LIFT signal, the horizontal shift exiting between the peaks of 

the signals extracted using LIFT and the ground truth is taken into account. Smaller shifts 
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Fig. 9. Modeled respiratory motion in four clinical datasets  
Datasets of (a) patient 1, (b) patient 2, (c) patient 3, and (d) patient 4 are used. Patient 4 had changes in 
period and amplitude of breathing in this portion of the breathing trace, and the green rectangle shows a 
particularly large change in amplitude. The respiratory motion is the modeled 3D rotation around the Z 
axis measured in degrees. Peaks in LIFT respiratory signal and other methods are compared. 
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imply stronger correlation between the two signals. The curves are scaled to have similar 

amplitudes. The difference in the height or the location of the curves in the plot is not 

important, as this information is not used to phase-sort the projections. To calculate the 

phase shift, projections are sorted into breath phases according to the respiration signal as 

described in Section 2.2.4.  

Patient 1-3’s datasets generally represented regular breathing. LIFT is be able to 

recover, or at least identify, irregular breathing patterns, as it is able to recover the actual 

3D motion through the sequence in any form, given accurate 2D trajectories. Similar 

methods have been used to recover free-form 3D motion [8]. In patient 4’s dataset, an 

irregular portion of the breathing trace was detected using LIFT as shown in Fig. 9 (d). A 

deep breath around projection 680 was detected. This breath cycle is surrounded by a 

green rounded rectangle.  
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Fig. 10 shows respiratory phase sorting in the four patients’ datasets. As shown, 

sorted projections using LIFT signal match the sorted projections using the ground truth 

signal especially in (a), (c) and (d). The average phase shift using LIFT and ground truth 

was quantitatively estimated as described in Section 2.2.4. 

Table 5 shows the quantitative accuracy of the breath phase sorting of the 

respiratory signal extracted of patient 1 using LIFT compared to the diaphragm position-

based signal. The average and standard deviation of phase shift is used as described in 

(8). The phase shift between LIFT based signal and the diaphragm-based signal was big 

in the first arc compared to the other arcs. This was because projection images in this arc 

have high contrast and the respiration signal extracted was less accurate compared to the 

other arcs.  

Fig. 10. Extracted respiration phases in four datasets  
Datasets of (a) patient 1, (b) patient 2, (c) patient 3, and (d) patient 4 are used. The number of bins used is 
6. The green rounded rectangle in (d) corresponds to a cycle with large change in breathing amplitude. 
The X-axis is the projection number and the Y-axis is respiration phases range from 1 to 6. Respiration 
phases match when the respiration signal matches. 

(a)                                                                                                         (b) 
 
 
 
 
 
 
 
 
 
 

 
 
 

(c)                                                                                                     (d) 
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Table 6 shows the quantitative measurement of phase shift between LIFT 

respiratory signal and the ground truth signal in all arcs for the four datasets. The criteria 

used for error measurement is discussed in Section 2.2.4. The average and standard 

deviation of phase shift is used as in (8) and the average breathing amplitude error as in 

(9). As shown, the average phase shift measured in respiratory motion was around 1.68 

compared to the diaphragm-based signal estimated in patient 1’s dataset. Comparing to 

the internal markers-based signal, the average phase shift was 3.04 projections in patient 

2, 1.25 in patient 3 and 1.14 in patient 4’s datasets. As the average breathing amplitude 

error was estimated using the average phase shift, patient 3’s case had the smallest error 

of 7.19% as an average, while it is 15.96% in patient 2’s case. This shows that the 

computed signal using LIFT correlates to the diaphragm position-based signal in patient 

1’s case and to the internal marker’s signal in patient 3’s and patient 4’s cases more than 

patient 2’s case, if LIFT is performed on the entire projection. One of the reasons behind 

this is that the respiration signals extracted using markers may depend on the location of 

the markers. The respiration signal derived using LIFT is the 3D rotation, about the Z-

axis, of the lung tissues appearing in the raw CBCT projections. The locations of the 

feature points used in extracting the respiration signal affect the respiration signal 

extracted. Feature points in the lower part of the lung close to the Diaphragm showed a 

strong oscillating motion more than the feature points in the upper part or edges of the 

Table 5: Error in Breath Phase Sorting For Patient 1 
Arc # Frame# AVG  STD  phase shift (8) 

1 1-150 2.60  0.84 
2 100-300 1.29  0.76 
3 250-500 1.00  0.82 
4 450-701 1.86  1.92 
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lung. As LIFT finds a global 3D motion of the flow intensity in the entire sequence, the 

effect of the stronger motion in the lower part of the lung dominates.  

 

In patient 2’s dataset, markers exist in the middle of the lung close to the 

bronchioles. The average phase shift between LIFT respiratory signal and markers’ signal 

was 3.04  1.52 projections. When the signal was extracted from a Region of Interest 

(ROI) surrounding the markers position, the phase shift was 1.61.9 projections which is 

less than the phase shift when extracting the respiratory motion from the entire projection. 

These results demonstrate that there were phase differences between different parts of the 

lung, and a single respiratory signal may not be optimal to completely characterize 

breathing motion.  One advantage of LIFT is that it can be applied to a custom ROI 

surrounding the part of the lung containing the tumor, allowing more accurate 

characterization of the respiratory signal for this region. 

Also, LIFT was applied on the inferior portion of the CBCT images that include 

the diaphragm. The average phase shift between the respiration signal using LIFT and the 

diaphragm position based method was 1.10.57 projections in arc 1 of patient 1’s dataset, 

which was less than the phase shift excluding the diaphragm area (2.60  0.84 projections). 

This result demonstrates phase shifts in the anatomy at different superior/inferior 

locations in the lung, which implies breathing phase obtained at the diaphragm may not 

be appropriate to represent phase at other locations.  

Table 6: Average Error in Breath Phase Sorting in Multiple Datasets 
Patient # AVG phase shift (8) AVG  Breathing amplitude error (9) 

1 1.68  1.09 11.20  7.27 % 
2 3.04  1.52 15.96  7.98 % 
3 1.25  0.83 7.19  4.77 % 
4 1.14  1.05 8.35  7.96 % 
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Fig. 11 shows the reconstructed 4DCBCT images for patient 2 using the FDK 

algorithm [42]. Projections that were used for reconstruction are the ones sorted in the 

end of inhalation phase using the respiratory signal extracted by the implanted markers in 

(a1)-(a2), and using the respiratory signal extracted by LIFT in (b1)-(b2). The difference 

of the axial images (a1) and (b1) is shown in (c1) and difference of the coronal images 

(a2) and (b2) is shown in (c2). As shown in (c1) and (c2), most of the differences were 

not anatomical, but rather due to differences in the streaking (view-aliasing) artifact due 

to too few projections. Since each sorting algorithm selects slightly different projections 

for reconstruction, the streaks appear in different locations in the two images.  

2.3.4 IMPROVED RELIABILITY AND APPLICABILITY 

Here the reliability and applicability of LIFT comparing to the other standard 

methods is discussed. Table 7 shows the acquired data ratio using the diaphragm-based 

method [3] [4] the implanted markers method [6] [7] and LIFT. The acquired data ratio is 

Fig. 11. Reconstructed 4DCBCT images of sorted in the end of inhalation phase 
Reconstruction used the respiratory signal extracted using (a1)-(a2) implanted markers, (b1)-(b2) LIFT of 
patient 2 dataset. The difference of the reconstructed images is taken in (c1) between the axial images 
(a1) and (b1), and in (c2) between the coronal images (a2) and (b2). 
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the number of projections of the dataset from which the method was able to extract the 

respiratory signal, divided by the total of number of projections.  

As shown in Table 7, the diaphragm-based method applied to patient 1’s dataset 

was able to extract the respiratory signal in all projections. For the internal markers 

method, some of markers were not visible in some of the dataset projections. In patient 

3’s case, only one marker was used and was visible in around 50% of the projections, 

which prevented the respiration signal from being extracted in the rest 50% of the dataset 

projections. When having multiple markers implanted, visible markers’ traces can be 

used as replacements to the invisible ones such as in the cases of patients 2 and 4. As 

LIFT extracts the respiratory motion from the organ tissues of the lung in any CBCT 

projection, it was able to generate a respiratory signal in 100% of the projection sets of 

the four patients. These results showed that LIFT was more reliable than the internal 

marker’s method in terms of acquiring the respiration signal from projections.  

The average time for running the entire LIFT procedure is around 26 minutes on a 

set of 1000 projections (of approximately 550650 pixels as the analysis region) using a 

PC of Intel Core 2 Duo 2.4 GHz CPU and 2 GB of RAM. Running speed can be 

improved if LIFT is implemented on GPU with C++ platform or on a multiprocessor 

Table 7: Acquired Data Ratio in LIFT Compared to Other Existing methods 

Method Samples Acquired data ratio (%) 

Diaphragm Position [8],[11] Patient 1 100 
Internal Markers [22], [23] Patient 2: Marker 1, 2 

                 Marker 3 
                 Marker 4 

100 
72.9 
70.0 

Patient 3: Marker 1 49.9 
Patient 4: Marker 1, 2 
                 Marker 3 
                 Marker 4 

100 
68.8 

0 
Proposed LIFT Patients 1-4 100 
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computer using Matlab parallel processing. For implementation purposes, LIFT follows 

feature tracking and 3D reconstruction approach which is well-known and easy to 

implement. There are many freely-available, optimized implementations that a developer 

can start from, such as OpenCV for optical flow computation [95]. For 3D motion 

reconstruction, Tomasi and Kanade method [92] is used which is a mathematical 

approach consisting of well described series of linear algebra computations. 

Agglomerative hierarchical clustering is described in Mathworks [96]. Thus, LIFT can be 

implemented and applied in the clinic to extract the respiratory signal from CBCT 

projections.  
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2.4 SUMMARY 

A novel method for respiratory motion extraction and breath phase sorting using 

CBCT projections was proposed. Modeling of the respiratory motion of the patient’s lung 

was accomplished on multiple arcs. On each arc, feature points were extracted and 

tracked to find point trajectories. Trajectories with shapes similar to breathing curve were 

selected to be used in the 3D motion modeling module to recover the 3D motion of the 

lung. The 3D rotation around the Z-axis of the patient represented the respiratory motion 

and the CBCT projections were then sorted according to the respiration signal. 

Experimental results were conducted on datasets exhibiting regular and irregular 

breathing. The respiratory motion extracted using LIFT was compared to the ones 

extracted using other standard methods. An average phase shift of 1.78 projections was 

estimated between LIFT based signal and markers based signal, and of 1.68 projections 

between LIFT based signal and the diaphragm-based signal. The average breathing 

amplitude error of LIFT compared to the diaphragm-based method was 11.2% while it is 

10.68% compared to the internal markers method. LIFT was able to extract the 

respiration signal in all projections of all datasets without the dependence on a particular 

anatomical structure (such as the diaphragm). 
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CHAPTER 3 IMAGE-BASED RESPIRATORY SIGNAL EXTRACTION USING INTENSITY FLOW 

DIMENSIONALITY REDUCTION IN CONE BEAM CT PROJECTIONS 

This chapter presents an algorithm that detects an image-based respiratory signal 

automatically in each Cone Beam Computed Tomography (CBCT) projection for 

respiratory phase sorting. The proposed method, termed Intensity Flow Dimensionality 

Reduction (IFDR), has been developed and experimentally validated on clinical datasets. 
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3.1 INTRODUCTION 

Respiratory motion detection from CT scan images is important because it can be 

a major source of error in determining the position of thoracic and upper abdominal 

tumor targets and critical normal tissues during radiotherapy planning and delivery. Four-

dimensional or respiration-correlated CT (4DCT) imaging techniques have become the 

mainstay for imaging of respiratory-influenced tissues for guiding radiation therapy 

planning. Volumetric image guidance techniques, such as cone beam CT (CBCT), for 

verifying tumor position during treatment have also been enhanced with 4D techniques to 

account for respiration-induced tissue motion [1] [3] [34]. Current methods to reconstruct 

4DCT images retrospectively require a one-dimensional signal related to respiration 

(“respiratory signal”) to sort each 4D image or projection into a respiratory bin.  

The respiratory signal serving as a surrogate of the tumor position is acquired in 

temporal synchrony with the raw cone beam CT imaging data acquisition. The surrogate 

is used to assign each projection to the appropriate breathing phase bin in a process 

termed ‘sorting’. Respiratory signals are currently generated from external sources (skin 

markers, abdominal belts, or spirometry) [1] [2] [97] or by an image-based measure of 

diaphragm position [3] [4] [5]. The disadvantage with using an external signal is not only 

the requirement of additional hardware, but also the external signal and tumor motion 

trajectories are often phase-shifted in time, with the phase shift varying from cycle to 

cycle and day to day [17] [18] [19] [20] [21] [22] [23] [24]  [25]  [26]. Projection sorting 

based on diaphragm position may have similar issues [20], and in some vendors’ systems 

the limited longitudinal field of view may prohibit use of this method in the middle and 

upper lung. Another option is to use an implanted fiducial marker near the tumor to aid in 
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extracting the respiratory motion [6], [7]. This solves the problem, but at the expense of 

an additional invasive and often morbid procedure which could significantly delay 

treatment initiation.  

In this chapter, we propose a novel Intensity Flow Dimensionality Reduction 

(IFDR) method; an image-based respiration signal extraction method based on the organ 

tissues motion local to the tumor. This method has the advantages over the previous 

mentioned methods in that neither external equipment nor internal markers are required, 

and visibility of high-contrast objects such as the diaphragm is not necessary. Moreover, 

this method is fully automatic in that no prior information about the anatomy or training 

data are required. Since the signal can be extracted from a pre-defined region near the 

tumor, the respiration signal should ideally correlate better with the tumor position.  

IFDR detects the respiration signal by computing a dense optical flow on every 

pixel of each pair of adjacent CBCT projection images of the patient dataset. Since we 

know a pattern of a respiration motion exists in the optical flow displacement dataset, we 

apply linear and non-linear dimensionality reduction techniques to the consecutive optical 

flow displacement vectors detected to extract this respiratory motion. The principal 

components of the eigen system resulting from the linear dimensionality reduction 

method are used to represent the respiratory signal. Similarly, the dimensions of the 

reduced-dimension dataset resulting from the non-linear dimensionality reduction method 

serve as the respiratory signal of the lung. Both linear and non-linear dimensionality 

reduction methods are applied to the clinical datasets and a comparison between them is 

accomplished. 
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Previous work using optical flow analysis of cone beam CT projections has 

guided our work. Bergner et al. [27] developed an optical flow-based algorithm for 

measuring motion between 4DCBCT projections using a Horn-Schunk implementation to 

obtain the dense optical flow (of each pixel in each projection) [31]. The purpose of their 

algorithm was to improve reconstruction quality in stationary regions of the anatomy. 

Optical flow was used to classify regions of pixels as moving or stationary, but they did 

not explicitly use the dense optical flow to measure a respiratory signal. For respiration 

sorting, they used an image-based measure of diaphragm position similar to Sonke et al. 

method [3]. Dimensionality reduction methods, such as manifold learning [32], have been 

used for image-based respiratory signal detection; however, these techniques were 

applied only for fixed view (fluoroscopic) images, as opposed to the rotational view 

(tomographic) projections used here.  The works [4] [28] [29] [30] are also related. In the 

work [4], thousands of interest points are selected in the projection images. These points 

are tracked across projections using a Block Matching Algorithm. Signal processing 

techniques are then used to acquire a breath signal. However, the results showed that the 

accuracy of the sorting of projections depends on the number of desired phase bins. In 

[28], Siochi developed a technique that locates a bounding box for the diaphragm motion 

for all projections based on two pairs of full-inhale and full-exhale views. However, this 

technique requires the diaphragm to be present in the field of view. In [29], the breathing 

pattern is acquired from analyzing the variation in pixel values between projection 

images by developing a simple pixel value summation followed by a high pass filtering. 

This method is powerful, but its efficiency should be demonstrated for various CBCT 

patient cases and compared to other methods in the literature. Vergalasova et al. [30]  
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proposed a markerless method for respiration signal detection based on the principles on 

the Fourier Transform theory. However, when they use the entire projections of patient 

data, their results showed a big phase shift between their extracted signal and the ground 

truth signal. 
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3.2  PROPOSED METHODS 

3.2.1 INTENSITY FLOW DIMENSIONALITY REDUCTION (IFDR) ALGORITHM 

The IFDR algorithm developed here automatically extracts a breathing signal that 

directly corresponds to the motion of the internal tissues of the lung. This method 

estimates the optical flow motion of objects in the projections, near the target volumes. 

Then, dimensionality reduction techniques are used to extract the motion patterns in the 

optical flow displacement vectors. The reduced dimensional datasets represent the 

respiration signal of the patient. Fig. 12 shows the modules that work to estimate the 

respiratory motion of the patient. In the motion estimation model, the only input required 
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is the CBCT projection images. The motion of the lung internal tissues is estimated using 

a dense optical flow estimation of every pixel in each pair of the projection images. The 

dense optical flow displacement dataset is used by the motion analysis model to extract 

the respiration signal and sort projections according to their respiration state. This model 

uses linear and non-linear dimensionality reduction methods to detect the motion patterns 

in the optical flow dataset which serve as a respiration signal. The respiration signal 

extracted is used to sort projections into numbered bins by breathing phase in a process 

called “phase sorting”. In the methods evaluation model, IFDR algorithm is 

experimentally evaluated and compared to other algorithms in the literature.  

3.2.2 ALGORITHM DETAILS 

Soft	Tissue	Motion	Estimation	

IFDR follows a tracking and motion analysis process. The optical flow of the 

moving tissues was extracted for every pixel in the CBCT scan projections. Tissue 

motion from one view to another is estimated through the whole dataset. As shown in 

Fig. 12, the motion analysis model consists of two phases. The first phase is the 

background subtraction phase. We subtract the background to eliminate the effect of the 

noisy motion existing in the background intensity. We use thresholding to subtract the 

background by setting the pixel intensity value to 0 if it is less than a threshold T. The 

second phase used is tissue motion estimation. We use dense optical flow to find the 

displacement of the intensity in each pair of adjacent projection images. We used the 

original dense optical flow algorithm proposed by Horn-Schunck [31] with improvements 

by Sun, Roth, and Black [98] in which the accuracy of the “classical” OF such as median 

filtering of intermediate flow fields and optimization has been improved.  
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Let I(u,v,t) represent the brightness of a pixel at (u,v) at time t. The respiratory motion 

estimated on images using optical flow is derived from the continuity equation:   

I I I
u v t

u v t
    

 
  

,   (10) 

which results in 

0u v tI U I V I   , 

where U and V are the horizontal and vertical components of velocity or optical flow of 

( , , )I u v t  respectively, and u
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 are the derivatives of the image at 

( , , )u v t in the corresponding directions. A constrained minimization problem can be 

formulated to calculate optical flow vector for the frame at t+1. 

Using perspective projection in cone beam CT, mapping between voxel ( , , )x y z and the 

projections is described by: 

. .
, ,

x y
u v w

z z

     ,  (11),   

where   is the focal length which is fixed.  

Dense optical flow is computed between each pair of successive frames in the 

entire dataset. The displacement between two corresponding points pf in projections f and 

pf+1  in projection f+1 is defined as , ,( , )f p f pu v  , so the 2D point of the next projection 

frame f+1 can be written as: 1, 1, , , , ,( , ) ( , ) ( , )f p f p f p f p f p f pu v u v u v      . Our algorithm finds 

the optical flow displacement vectors in all pixels and does not discriminate between 

pixels that show a respiratory motion through projections (e.g., tumor features, 

bronchioles, or bronchiole vessels) and static pixels (e.g., bony regions, background 

regions). Static pixels show only orbital movement (due to the gantry rotation of the 
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system), while respiratory pixels are shown having sinusoidal component of motion. Fig. 

13 shows two projections from a patient’s dataset that shows a shift in the tumor position 

during CT scan image acquisition. This figure shows the displacement vector for one 

pixel , ,( , )f p f pu v   in a pair of CBCT images.  

 

(a)    (b) 

Fig. 13. Two consecutive projections from a patient CBCT scan showing a slight difference in the 
tumor position 
This difference is due to the patient breathing during the CT scan image acquisition. The circle shows the 
tumor and the illustrative horizontal red lines shows the change of the position of the tumor in both images: 
(a) Projection #408 in Patient 1 dataset, (b) Projection #409 in Patient 1 dataset. 
	

Respiratory	Signal	Detection	using	Linear	Dimensionality	Reduction	

The optical flow step results in a set of 2D displacement vectors for each pixel in 

a projection.  This is a large dataset for each CBCT scan, which must be distilled into a 

1D signal for each projection. In the respiratory signal detection phase, the respiratory 

signal is extracted and analyzed from this set of trajectories. Pixels containing tissues of 

the lung have motion related to respiration, while others (e.g., bony regions) are 

stationary and only exhibit the rotational trajectory of the scanner. Because of this fact, 

we aim to discover the motion patterns of the moving tissues. So, we use the 

dimensionality reduction approaches to discover motion patterns related to respiration 

  
pfv ,
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that exist in the dataset. First, a linear dimensionality reduction approach using Principal 

Component Analysis (PCA) is used as follows: 

Optical flow displacement components , ,( , )f p f pu v   are written in data matrix PFA 2:   

so that the optical flow components of each pixel exist in one row. F  is the number of 

projections and  P  is the number of points. 

1,1 1,1 1, 1,

,1 ,! , ,

P P

F F F P F P

u v u v

A

u v u v

    
   
     



   



   ,      (12) 

We obtain the eigensystem of the displacement data and extract the Principal 

Components of this eigensystem by using the Singular Value Decomposition (SVD) of 

the optical flow displacement vectors matrix A as described: 

T
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i ii TSeA 
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1
..         (13) 

where r is the rank of A. SVD decomposes the matrix A into two sets of eigenvectors; S1, 

S2,…, Si defined in space and T1, T2,…, Ti defined in time i.e. the equivalent direction as 

the number of projections. The eigenvalues e1, e2, …, ei are sorted in decreasing order 

and so are their associated eigenvectors. Eigenvectors are assumed to be scaled to unit 

length. The principal eigenvector specifies the main changes in the values of the optical 

flow displacement vectors which may indicate the motion patterns in the optical flow 

components. The eigenvectors associated with the smallest eigenvalues may indicate the 

motion patterns with less significance. The magnitude of the eigenvalues may indicate a 

quantitative measure of optical flow values variation along the directions of the 

eigenvectors. So, the lung motion state can be approximated by a linear combination of 

eigenvectors that correspond to the first i largest eigenvalues as follows: 
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The first few principal components are analyzed for signatures of the respiratory motion.  

Because a respiration motion signal will have a quasi-periodic and oscillatory nature, we 

can represent it by one of the principle components that correspond to one of the largest 

eigenvalues. 

 

Respiratory	Signal	Detection	using	Non‐Linear	Dimensionality 	Reduction	

While a linear method such as PCA maximizes the amount of the original 

variance present in the transformed dataset, it does not (in general) preserve “complex” 

structures [99]. Formally, for PCA to work properly, the N-dimensional space formed by 

the variables must be linear. Consider an N-dimensional space formed by all pixels in a 

projection as the variables in this space.  Each projection image then represents a point in 

this N-dimensional space.  A linear space would require all points to be valid, which 

cannot be true otherwise this would produce random images of noise and of all other 

possible images.  Each set of projections should generate a reduced dimension manifold 

in the N-dimensional space, consisting of only points that represent images of only the 

patient. We use non-linear mappings between the original space and the reduced one to 

be able to describe the data with greater accuracy and/or by fewer factors than linear 

mapping such as PCA, given that there are sufficient data to support the formulation of 

this more complex mapping function. 

To reduce the dimensionality of datasets non-linearly, multi-dimensional scaling 

is used [100]. A new lower-dimensional dataset is constructed which has structure that is 

as similar to the original dataset as possible. We map the original data matrix PFA 2:   
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defined in (12) into a lower N -dimensional space NFA :'  as N  is the number of 

dimensions in the desired space.  


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where a1,1, …, aF,1 are the first dimension and a1,N, …, aF,N is the last dimension in the 

reduced space. 

The matrix B=AAT
 is computed. This matrix contains distance information. It is 

different than the covariance matrix C=ATA. The matrix B is factorized into eigenvectors 

to yield the reduced dimensionality data. The N  largest eigenvalues give the N -

dimensional representation of the dataset A . 

We start from an initial matrix A’ filled with random values. The distance between two 

points in the original matrix A is denoted by dij, while the distance between two points in 

A’ is denoted by dij’. Let E be the mapping error, which represents how well the present 

configuration of the points in the original dataset A fits the points in the N -dimension 

matrix A’. The error E represents the amount of structure present in the original dataset 

but lost in the transformed one. E is defined as follows according to the non-linear 

mapping by Sammon [100]: 
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The error E is calculated by summing up the squared differences (before versus 

after mapping) in pairwise distances between points. The summations are over the range i 

< j so that each pairwise distance is counted once (i and j are not swapped). We used 

Euclidean distance. The existence of the factor of dij in the denominator of the main 
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summation ensures that if the original distance between two points is small, then the 

weighting given to their squared difference is greater.  

Each time we find new values for d that minimize E. This is repeated until 

convergence. This will give this method its tendency to preserve topology of the dataset. 

The points in A’ iteratively are adjusted to change the reduced space configuration and 

then to decrease the error. Fig. 14 shows the original space and the reduced one.  

 

(a)        (b) 

Fig. 14. Original dataset and reduced dimensionality data using non-linear reduction.  
(a)The original multi-dimension dataset A with displacement vectors has been reduced to (b) two-
dimensional dataset A’. 
 
 
Phase	sorting	based 	on	Respiratory	Signal 	

Here, we describe how the respiratory signal is extracted using linear and non-

linear mapping methods. We sort the output respiratory signal from both methods 

individually for comparison purpose. This output signal 'R  may contain some noise. In 

order to get accurate breath phases for the respiratory motion, we first smooth the 

respiratory signal detected using Savitzky Golay smoothing filter [93]. Then, the 

smoothed respiratory signal R  is used for breath phase extraction. The respiration motion 

phases are determined in a ‘phase sorting’ manner as follows: All peak projections are set 

to a phase of '1'. The remaining projections between two peaks are assigned to the other 
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phase bins by taking the total number of projections divided by the number of phases, and 

then sort the projections so each bin contains roughly the same number of projections. 

Fig. 5 shows the breath phases extracted from the smoothed respiratory signal. 

3.2.3 CLINICAL EVALUATION 

The motion analysis algorithm was evaluated on three clinical CBCT datasets, 

each from a different patient. Table 8 lists the imaging geometry for each clinical dataset. 

Each dataset had a gold standard respiratory signal, although the standard was different 

for the datasets.  The gold standard used for patient 1 and 3 datasets is the result of the 

diaphragm-position based method, while the gold standard for patient 2 dataset is the 

position of implanted fiducial markers located in and near the tumor. Four markers were 

used and their trajectories through the projection images are estimated. For comparison 

purposes, we are using the average trajectory over the four markers. For experiments, we 

used MATLAB installed on 16 GB RAM Dell PC with Intel Core i7 CPU 3.07 GHz.  

 

 

Table 8: Multiple Patient Datasets Specifications 
Patient 
number 

Number of 
projections 

CBCT system Projection size 
(pixel) 

Pixel size at isocenter 
(mm/pixel)  

Gold standard signal 

1  701  XVI 3.5 (Elekta)  512x512  0.518  Diaphragm position  

2  2396  OBI (Varian)  768x1024  0.258  Internal markers 

3  2436  OBI (Varian)  768x1024  0.258  Diaphragm position  
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3.3 EXPERIMENTAL RESULTS 

3.3.1 RESPIRATORY SIGNAL DETECTION USING THE PROPOSED DIMENSIONALITY 

REDUCTION METHODS  

Fig. 15 shows the eigenvalues spectrum for the three patients datasets used in this 

study recovered using the linear method, with the eigenvalues sorted in descending order 

by variance. The eigenvectors associated with the largest eigenvalues are used in 

extracting the respiration motion in the dataset.  

 

Fig. 15. Eigenvalues spectrum using linear dimensionality reduction method for the three 
patient datasets 

 

Fig. 16 shows the stress value through the number of iterations in the three 

patients’ datasets for the non-linear mapping. The stress value decreases when the 

number of iterations increases. As shown, the mapping converges after 50 iterations in 

the three datasets. 
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Fig. 16. Non-linear mapping stress value E vs. the number of iterations for three patient 
datasets. 
 

Fig. 17 shows the extracted signal using the linear and non-linear methods for 

each patient dataset compared to the gold standard. For the linear method, one of the first 

two principal components (coefficients) is used to represent the respiration signal. For the 

non-linear method, one of the first two dimensions of the reduced dataset is chosen to 

represent the respiratory signal. The extracted signal is compared to the respiratory signal 

detected using the diaphragm position based method in the datasets of Patient#1 and 

Patient#3 and to the signal extracted using the internal markers method in the dataset of 

Patient# 2. For Patient# 1 dataset, the second coefficient was chosen to represent the 

respiration signal, while in Patient#2 and Patient#3 datasets, the first coefficient is chosen. 

Using the non-linear method, the second dimension was used to represent the respiration 

signal for Patient#1 and Patient #3 datasets and the first dimension for Patient#2 dataset. 
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(a) 

 
(b) 

 
(c) 

Fig. 17. Computed breath signal using Linear and non-linear DR method versus measured 
breath signal for (a) Patient 1, (b) Patient 2, and (c) Patient 3 
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As you can see in Fig. 17, the respiration signal extracted using the linear and the 

non-linear method correlate with the gold standard signal in Patient#2 which is based on 

the internal markers position. However, it has a small phase shift with the gold standard 

signal in Patient#1 and Patient#3 datasets which is based on the diaphragm position. This 

happens because the respiratory signal extracted using our method uses the motion of the 

organ tissues of the lung as its input, which is the same location of the implanted markers. 

However, the diaphragm-based method extracts the respiration signal depending on the 

diaphragm position which doesn’t always correlate exactly to the internal tissues of the 

lung or the tumor position. 

Fig. 18 is an illustrative figure showing selected projections from one breathing 

cycle extracted using Non-linear method. Those projections are associated with their 

location in the breath signal extracted. An auxiliary line exists to help the reader to 

observe the lung movement. 

 

Fig. 18. Selected projections from one breathing cycle  
Dashed vertical lines connect the projection images to their location in the signal. The horizontal 
auxiliary (diaphragm/tumor level) line on the projection images helps the reader to observe the 
lung movement. The red circle shows the end of inhalation in the diaphragm-position based 
signal and the red triangle shows the end of inhalation in the IFDR-based signal. 
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As shown in Fig. 18, projection #402 represents the end of inhalation in 

diaphragm position based respiration signal, while using the IFDR-based signal, this 

phase happens in projection #399 in both the linear and the nonlinear implementations 

which indicate a phase shift of 3 projections. The diaphragm is in its lowest position 

through the cycle in projection #402, while using IFDR the organ tissues of the lung, like 

the tumor, appear to have their lowest position in projection # 399.  

3.3.2 PROJECTION PHASE SORTING 

Table 9 shows the accuracy of the breath signal estimation and sorting in terms of 

overall average and standard deviation phase shifting between the computed signal and 

the other methods as gold standard. Average phase shift is calculated by sorting the 

projections into phases according to the respiration signal extracted using each compared 

method. Then, the difference in terms of the number of projections between phase ‘1’ 

(end of exhale) in the corresponding breath cycles of the compared methods is computed. 

The average ‘projection difference’ is computed for all breathing cycles of each method 

as the average phase shift. Also, the breathing amplitude error is computed by dividing 

the average number of projections that are phase shifted, by the average number of 

projections in each cycle. We applied those criteria on linear and non-linear methods with 

“six” as the number of bins used.  
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As shown in Table 9, the phase shift in the Patient#2 dataset is the minimal 

among other datasets. This is because the gold standard we are comparing to was 

generated by using trajectories of the internal markers which are implanted in the organ 

tissues of the lung local to the tumor position. Also, in all patient datasets, non-linear 

method correlates more with the gold standard more than the linear method. It has a less 

phase shift and breath amplitude error than the linear method. 

3.3.3 COMPARISON TO OTHER METHODS 

We compare the IFDR algorithm to three approaches existing in the literature. 

First, we compare to the diaphragm-based approach [3] [5] [4] which detects the 

diaphragm position directly in the 4DCBCT radiographic projections and uses it as a 

surrogate of the respiratory signal. Second, we compare to the implanted marker-based 

approach [6] [7] in which implanted radio-opaque markers in and near the tumor, are 

tracked through the projections and the position of those markers is estimated and used as 

respiration signal. The third approach is an image based Local Intensity Feature Tracking 

(LIFT) [9] which extracts feature points that are local to the tumor and tracks them 

through consecutive lung CT scan projections resulting in a set of feature 

correspondences. Feature correspondences that have a motion pattern similar to the 

Table 9: Overall Average and Standard Deviation of Phase Shift in Multiple Patient Datasets 
Patient # Method Average phase 

shift 
Average STD 

phase shift 
Breathing amplitude error (%) 

1 Linear 3.77 1.31 25.138.73 

 Non-Linear 3.08 0.81 20.535.40 

2 Linear 3.59 2.44 18.8212.82 

 Non-Linear 2.72 1.99 14.2810.44 

3 Linear 3.83 2.65 22.0215.24 

 Non-Linear 2.79 1.71 16.049.83 
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breathing motion are selected to be used in a 2D/3D mapping procedure to recover the 

3D motion of the lung. The respiratory signal is a component of the 3D motion of the 

lung. 

In Table 10, we discuss the results of the comparison of LIFT and IFDR (using 

the non-linear implementation) with respect to the diaphragm-based method in Patient 1 

and Patient 3 datasets, and with respect to implanted markers method in Patient 2 dataset. 

The average and standard deviation phase shift between them and the average breath 

amplitude error is presented.  

 

 

As you can see in Table 10, our proposed IFDR method has less phase shift and 

breathing amplitude error than LIFT when compared to internal markers method used in 

Patient # 2 dataset. However, comparing to the diaphragm-position based method, LIFT 

has less phase shift and breathing amplitude error than the proposed IFDR.  

Also, we compare IFDR to the other mentioned methods based on their 

limitations such as missing data. Missing data represents the number and percentage of 

projections in which the method was unable to produce a respiration signal. Table 11 

compares IFDR with all other methods based on missing data.  

 

Table 10: Average Phase Shift in Projections Using LIFT and IFDR Compared to Other Existing 
methods 

Patient # Method Average phase shift Average STD phase 
shift 

Average Breathing amplitude error (%) 

1 LIFT 1.68 1.09 11.207.27 

 IFDR 3.08 0.81 20.535.40 

2 LIFT 3.04 1.52 15.967.98 

 IFDR 2.72 1.99 14.2810.44 

3 LIFT 1.25 0.83 7.194.77 

 IFDR 2.79 1.71 16.049.83 

 



 

 62

 

Table 11 shows that the diaphragm-based method was unable to estimate the 

respiratory signal in nearly 50% of the projections in Patient#3 dataset. This is because 

the diaphragm was not visible. For the internal markers method, two markers (#3 and #4) 

were invisible in around 30% of Patient #2 dataset. The other two markers represent the 

breath signal with almost 0% missing respiration information. Respiration extraction 

methods depending on the local intensity tracking like our proposed IFDR and LIFT were 

able to detect the respiration signal with 0% missing respiration data. In this study, IFDR 

and LIFT were more reliable than other methods as they were able to generate a 

respiration signal depend only on the CBCT projections. 

Eventually, the goal of developing this algorithm is to use an image-based 

surrogate to the respiratory signal without the dependence on any structure in the images. 

This algorithm has a limitation that it cannot be applied in real time due to its high 

computational cost. 

  

Table 11: Average Error in Respiratory Motion Compared to Other Existing methods 

Method Samples # Projections with Missing data (%) 

  Diaphragm position based Patient 1 dataset 

Patient 3 dataset 

0 

1235 out of 2436 (50.70) 

 Internal Markers  Marker 1 

Marker 2 

Marker 3 

Marker 4 

2 out of 2395 (0.08) 

2 out of 2395 (0.08) 

648 out of 2395 (27.05) 

719 out of 2395 (30.02) 

Local Intensity Feature Tracking (LIFT) N/A 0 

Proposed IFDR N/A 0 
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3.4 SUMMARY 

An image-based respiratory motion extraction method for breath phase sorting in 

cone beam CT images was developed and evaluated in three clinical research subjects. 

The respiratory motion extracted was based on the intensity flow of patient’s organ 

tissues existing in the CBCT scan images. Because we seek a respiratory motion pattern 

existing in the CT images of the lung, we applied dimensionality reduction methods to 

the dataset of the intensity flow displacement vectors to recover those motion patterns. 

Experimental results conducted showed that Non-linear dimensionality reduction method 

showed less phase shift and breathing amplitude error than the linear method. IFDR using 

the non-linear implementation has an average phase shift of 2.94  1.26 projections with 

the diaphragm position-based signal and an average breathing amplitude error of 18.04 

7.62. Compared to the implanted-markers based signal, IFDR under the non-linear 

approach has an average phase shift of 2.72  1.99 projections and an average breathing 

amplitude error of 14.28  10.44. IFDR using the linear and non-linear approaches were 

able to extract the breath signal in all projections of the patients’ dataset. 
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CHAPTER 4 PROJECTION GENERATION BASED ON RESPIRATION MOTION FOR 4D-CBCT 

RECONSTRUCTION 

In cone-beam computed tomography (CBCT) and related application, 4D-CBCT 

reconstruction accuracy depends highly on the phase sorting technique used. In this 

chapter, we study the quality of 4D-CBCT reconstructed images based on different phase 

sorting techniques: internal markers, external markers, and image-based phase sorting 

methods (LIFT and IFDR discussed in CHAPTER 2 and CHAPTER 3, respectively). 

Also, the quality of the reconstruction is affected by the number of projections used in the 

reconstruction. Reconstructing a 4D-CBCT image with too few projections in each 

respiratory phase leads to characteristic streak artifacts in the reconstructed image. To 

overcome this problem, generating additional projections by means of interpolation has 

been suggested. For this purpose, a new interpolation algorithm based on the respiratory 

motion existing in the CT projections of a human lung is developed. Experiments were 

conducted to generate additional projections via interpolation and quantitative evaluation 

evaluates the reconstruction result. 
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4.1 INTRODUCTION 

The reconstruction of Cone Beam Computed Tomography (CBCT) projections of 

a moving anatomy, such as a lung, results in blurring volume due to the respiratory 

motion artifacts [27]. Four-dimensional or respiration-correlated CBCT (4D-CBCT) has 

been developed to provide respiratory phase resolved volumetric imaging in image 

guided radiation therapy. Phase-correlated (PC) reconstruction is achieved by correlating 

the reconstruction with this motion phase signal. Filtered backprojection-type Feldkamp–

Davis–Kress (FDK) algorithm is the conventional PC reconstruction method used to 

reconstruct an image from projections of only a single motion phase [3] [42] [44]. The 

resulting image will have angular gaps corresponding to the other projections of the 

motion cycle that are not used for the reconstructions. Thus, reconstruction with too few 

projections results in low quality reconstructed images with obvious streaking artifacts 

and high noise levels [3] [45] [46]. Autoadaptive Phase Correlation (AAPC) 

reconstruction algorithm was proposed to reduce those artifacts by estimating the motion 

within the projections and reconstructing an image from unaffected projection areas 

regardless of the motion phase [27]. Algebraic reconstruction (ART) techniques [101] are 

well suited when there is a small number of projections. However, they are rarely used in 

practice for CBCT applications because of their computational cost.  

Different strategies have been proposed in the literature to alleviate the effects of 

the view aliasing artifacts. Compressed Sensing (CS) was applied to tomographic beam 

problems by Sidkey et al. [50]. It uses a transformation onto the image and tries to find 

the transformed representation of the image with the least significant entries, while 

simultaneously bounding the error between the projected image and the measured data. 
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Another CS example was [51] which uses a simple gradient descent for the optimization. 

More work on CS can be found in [53] [54] [52] [55]. Motion compensating algorithms 

are also available. Those algorithms use further prior information, i.e., deformation fields 

calculated from the planning CT [59] [56] [58] [43] [60] [61]. In [60] [61], an algorithm 

based on the PCA lung motion model has been proposed and evaluated to reconstruct 

volumetric images and extract 3D tumor motion information in real-time from a single x-

ray projection in a markerless implantation. These motion compensating approaches are 

believed to give the best results when accurate deformation information are available as 

the motion can potentially be almost completely compensated in the reconstruction 

algorithm [63]. However, the calculation of the deformation maps is costly and the results 

depend on the accurate registration of the deformation map to the current patient position 

of each treatment session. 

Increasing the sampling density by projections generation may help reducing the 

effects of the view aliasing artifacts. The topic of image interpolation has been studied in 

medical imaging research [67] [68] [69] [70] [71] [72] [27] [73] [74] [75]. For parallel 

beam geometry, Weiss et al. [69], estimated intermediate phantom views using linear 

interpolation and demonstrated their efficiency in minimizing view aliasing streaks. A set 

of interpolation schemes have been described in the literature, for medical and 

nonmedical applications, such as optimized interpolation kernels [71] [72] [76], and 

shape-adaptive image interpolation algorithms [77] [78] [79] [80]. Few advanced 

interpolation methods have been proposed in the literature [67] [68] [81]. In [67] [68], a 

shape-driven directional interpolation algorithm based on a structure tensor approach is 

developed. The algorithm is locally adaptive to the orientation of gray value structures to 
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be interpolated. Quantitative evaluation shows that this method outperforms conventional 

scene-based interpolation schemes and reduces streak artifacts and noise in the 

reconstructed images. However, this method was applied to a non-moving anatomy, i.e. 

human head, as opposed to the human lung datasets used here. 

This study investigates the effect of sorting the projections using different 

respiratory signals on the reconstruction quality. Also, a motion-based interpolation 

technique is proposed to generate 2D projections of a moving anatomy in order to 

increase the number of projections used in reconstruction. Those new generated 

projections belong to the same breath phase of the desired reconstruction phase. Thus, the 

number of projections in desired reconstruction phase is increased and streaking artifacts 

can be reduced. A dense motion analysis of image pixels using an optical flow approach 

is conducted for every image in the sequence [88]. The intensity of every pixel is tracked 

through the projection sequence and a set of trajectories are formed. The location of the 

anatomy in the original projections in the desired reconstruction phase is used to compute 

the corresponding location of the anatomy in the interpolated projections. Pixel intensity 

values in the original corresponding projections are used to compute the intensity values 

of the interpolated projections.  

The remainder of this chapter is organized as follows. In Section 4.2, details on 

4D-CBCT reconstruction are presented. Section 4.3 presents the proposed respiration-

based projection generation. Section 4.4 discusses the experimental results. The findings 

are summarized in Section 4.5.  
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4.2 RESPIRATORY-CORRELATED CONE-BEAM CT (4DCBCT) RECONSTRUCTION 

The purpose of this section is to reconstruct respiratory-correlated (4D) CBCT 

volumes from on-board CBCT scans using different phase sorting techniques. We study 

the reconstruction quality using different phase sorting techniques and compare between 

the reconstructed volumes based on different assessment criteria [102].  

Phase sorting techniques used are: 

 Internal markers  

 External markers  

 LIFT (discussed in CHAPTER 2) 

 IFDR (discussed in CHAPTER 3) 

 Proposed projection generation method (discussed in 4.3) 

Assessment criteria used to evaluate the reconstruction quality are: 

 Difference 

The signed difference of the reconstructed images using the ground truth and other phase 

sorting techniques are computed to show the difference between the reconstructed images. 

 Noise level in regions of interests (RIOs) 

The noise level in selected regions of interests is estimated to evaluate the quality of the 

reconstructed images. Several regions of interests (ROIs) in the reconstructed images are 

chosen to be evaluated. The noise is measured by computing the standard deviation of the 

intensity in the ROI. 

 Edge profiles 

A profile is a one-dimensional image extracted from a two-dimensional image along a 

line segment. Computing edge profiles is used to evaluate the spatial resolution of an 
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image in some regions. For our assessment, several positions are selected in the 

reconstructed images and the edge profiles are computed and compared among all images 

reconstructed using different phase sorting techniques. 

 Histogram entropy and normalized mutual information 

To compare the similarity between different 4D-CBCT reconstructed images using 

different phase sorting methods, two measures has been used, the histogram entropy and 

the normalized mutual information. Those measures quantify the impact of artifacts, e.g., 

streaks and motion blurring, and evaluate the similarity of the reconstructed volume with 

the ground truth. 

a. Histogram Entropy 

The entropy measure using the gray-level histogram h(q) over all intensities q of a given 

volume X with volume size N is calculated by 

ሺܺሻܪ ൌ െ∑ ௛ሺ௤ሻ

ே
ln ௛ሺ௤ሻ

ே௤    (16) 

In case of all volume voxels contain the same value, the histogram has one single peak 

resulting in the minimum entropy of H = 0. On the other hand, a volume with an equal 

number of voxels for all intensities has a constant histogram producing the maximum 

entropy. The entropy measure has already been proven to be a suitable criterion to 

qualitative measure image artifacts in the case of a misalignment correction and is also 

used for motion correction. 

b. Normalized mutual information (NMI) 

The definition of entropy can be extended to the joint entropy H(X,Y) to gain information 

on the similarity of two volumes X and Y by replacing the probability of one value 

occurring in a single volume with the probability of two values occurring together in two 
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different volumes. Based on both entropy and joint entropy the mutual information 

measures the information that two volumes share and is given by: 

,ሺܺܫ ܻሻ ൌ െ∑ ௛ሺ௤೉,௤ೊሻ

ே೉,ேೊ
ln ௛ሺ௤೉,௤ೊሻ

௛ሺ௤೉ሻ௛ሺ௤ೊሻ
௤೉,௤ೊ 											

Mutual information is widely used as a similarity measure in the field of image 

registration [103]. Applying the normalized mutual information rather than the mutual 

information I(X,Y) avoids the dependence on the amount of volume overlap. The 

normalized mutual information is given by: 

,ሺܺܫܯܰ ܻሻ ൌ ூሺ௑,௒ሻ

ுሺ௑,௒ሻ
      (17) 

Those four criteria discussed above are used in 4.4 to evaluate the 4D-CBCT 

reconstruction quality based on different respiratory signal extraction method. 

4.3 RESPIRATION-BASED PROJECTIONS GENERATION 

In this section, the details of the respiration-based projection generation are discussed. 

The proposed projection generation algorithm comprises of the following three steps. 

Step 1: Respiratory motion estimation and projection sorting- An image-based 

respiratory signal extraction algorithm has been used in this study to extract the 

respiratory signal and sort the CBCT projections into phases based on their respiratory 

signal. A specific phase is chosen for reconstruction, i.e. the end of inhale. In this study 

we consider the respiratory signal extraction algorithm described in CHAPTER 2 to be 

used.  

Step 2: Dense intensity flow tracking: Optical flow motion is computed for every 

point in each pair of adjacent projections in the sequence 1,…, F. Each point is tracked in 



 

 71

the sequence of projections forming point trajectories as shown in Fig. 19. The optical 

flow motion through the sequence of projections is regularized from projection to another 

based on the motion of the adjacent pixels. The regularization of optical flow smoothes 

the motion of the anatomy and enhances the interpolation results. 

 

 

Step 3: Motion-based image interpolation- In this procedure, we aim to generate 

projections based on the respiratory motion and the intensity information existing in the 

corresponding original projections. The coordinate system of the CBCT imaging 

equipment that is used for generation is shown in Fig. 20. The position of the kilovoltage 

source rotates in the XY plane, with the Z direction corresponding to the patient cranio-

caudal axis, with positive Z pointing away from the linac gantry.  The xyz coordinate 

Fig. 19. Dense intensity flow tracking 
Yellow dots show the points and green lines show the trajectories through the sequence of projections

Fig. 20. Coordinate systems of the Cone Beam CT.  
The world coordinates of the object point sp are XYZ and the homogeneous coordinates of the image points 
p are xvz.  
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system is fixed to the imaging system, and rotates with the source and detector. The xyz 

coordinate system is the world coordinate system and is stationary.  

Generating the in-between projections requires the following: (1) two images If 

and If+n 
, representing views of the same patient’s lung and are in the same phase, (2) the 

original in-between image Ii, where f < i < f+n, and (3) a dense pixel correspondence 

between images If, Ii and If+n. Fig. 21 is illustrative figure showing the process of 

respiration-based image interpolation. In this procedure, point locations in the generated 

image I’i are estimated based on the locations of their flow correspondences in the other 

original images in the desired phase If  and
 
If+n. To calculate point locations in the 

generated image I’i, we assume that the location of the anatomy has been changed due to 

the gantry rotation only and we subtract the location change due to respiration motion.  

The interpolated projection at location i : I’i, is considered as the same phase of 

the two images If and If+n. The generated projection Ii is calculated according to the 

Fig. 21. Interpolation process of projections in the same breathing phase. 
If and If+n exist in the same breath phase (i.e. phase “1” of pink color). The projection I’i (shown in yellow) 
is the in-between interpolated projection which is supposed to be in the same phase as the projections used 
in the interpolation (i.e. phase “1”). The intensity information used in generating the projection I’i is taken 
from projection Ii. 

Rotating X-Ray source

Phase   …6         1        2      3      4         5        6         1        2        3        4   .       .       
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equation : 

I’i [ (f+n-i) xf,p +(i-f) xf+n,p , (yf,p + yf+n,p )/2 ] = Ii  [xi,p , yi,p],   (18) 

where p is the point number, xi,p , yi,p are the image coordinates at projection i. 

Using equation (18), point locations in the generated image I’i are estimated based 

on the locations of their correspondences in the original images in the desired phase If  

and
 
If+n. Once the location of the point has been computed, the intensity value of the 

point is copied from the corresponding original image in the sequence Ii. The same 

procedure is applied to all points of to generate the interpolated image I’i. Thus, the 

generated images in one respiratory cycle all appear as having a static anatomy projection 

from different projection angles.  
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4.4 EXPERIMENTAL RESULTS 

In this section, the quantitative evaluation of the 4D-CBCT reconstruction based 

on different phase-sorting methods is conducted in 4.4.1. Also, the results of the proposed 

respiration-based projections generation method are discussed in 4.4.2. 

4.4.1 4D-CBCT RECONSTRUCTION BASED ON DIFFERENT PHASE-SORTING METHODS 

In this section, the reconstruction quality is discussed using different phase sorting 

methods as mentioned in 4.2. Table 12 shows the set of phase sorting methods used in 

this section and datasets available for this study.  

Table 12: Ground truth and phase sorting methods using in Multiple Patient Datasets 
      Method 
 Datasets 

Number of 
projections 

Ground Truth 
Internal 
markers 

External 
markers 

LIFT IFDR 
Projection 
generation

Phantom 720 known   √  √ 
Patient 2 2396 Internal markers √  √ √  
Patient 4 3517 Internal markers √ √ √   

 

Patient 2: 

For patient 2 dataset, the internal markers’ respiratory signal is used as the ground 

truth. Fig. 22 shows the reconstructed images using phase sorting based on the internal 

markers trajectories. The figure shows the reconstructed images in the end of exhale (a) 

and end of inhale (b) in three views: axial, coronal and sagittal views. A difference image 

is also presented in (c) to show the difference is shown in the first column from right.  
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 (a) End Exhale  (b) End Inhale (c) End Exhale – End Inhale 
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Fig. 22. 4D-CBCT Reconstruction from projections of Patient 2 in two different phases 
Ground truth (internal markers’ result) of the patient 2 in end-exhale (a) as well as end-inhale (b) phase bin, 
and the difference of the corresponding images (c). The bin width is 17%. All images are displayed at a 
grayscale window of min = −6711 HU, max = 9917 HU. There are some streak artifacts (shown in red 
arrows) in these images due to the small number of projections used in the reconstruction. 
 

As you can see from Fig. 22 (c), the difference between the images in different 

respiratory phases appear mainly on motion affected regions, such as chest wall, 

diaphragm and soft tissues. Fig. 23 showd the reconstruction result using different phase 

sorting techniques: Internal markers result which acts as the ground truth (a), LIFT (b), 

and IFDR (c). 
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 (a) Internal Markers (b) LIFT (c) IFDR 
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Fig. 23 4D-CBCT Reconstruction from projection of Patient 2 sorted using different methods 
Ground truth (marker’s result) as well as reconstruction of patient 2 using FDK with different phase sorting 
methods: An axial (top row), a coronal (middle row), and a sagittal view (bottom row) of the end-inhale 
phase bin is shown here. The different phase sorting methods used are: Internal markers (a), LIFT (b), and 
IFDR (c). All images are displayed at a grayscale window of min = −6711 HU, max = 9917 HU. 
 

Difference 

Difference is the first criterion used to compare the 4D reconstructed images. Fig. 

24 shows the signed difference images of the conventional reconstructed images using 

different phase sorting. The difference between LIFT-based image and internal markers-

based image is shown (a) and the difference between IFDR-based image and internal 

markers-based images is shown in (b). Those different images are dominated by streak 

artifacts due to the different projections used in each bin.  
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 (a) LIFT – internal markers  (b) IFDR- internal markers 
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Fig. 24. Signed difference images of 4DCBCT reconstructed images of Patient 2 using different phase 
sorting methods compared to the ground truth (internal markers result) 
Axial (top row), a coronal (middle row), and a sagittal view (bottom row) of differences for the end-inhale 
phase bin is shown here. All images are displayed at a grayscale window of min = -4348 HU, max = 3885 
HU. 
 

Noise measurement 

Noise measurement is the second criterion used to evaluate the quality of the 4D-

CBCT reconstruction. In Fig. 25, the noise level is evaluated in three regions of interest 

(ROI). A soft tissue region (ROI 1), a lung tissue region (ROI 2), and an air region (ROI 

3) are considered as depicted in Fig. 25 (a).  The table in Fig. 25 (b) shows the 

corresponding standard deviations in a single reconstructed image for each ROI.  Noise 

measurement results show that the 4D images reconstructed using the image-based phase 

sorting methods, have nearly similar noise measurements. 
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(a) Regions of interest (ROI) 

 
 

(b) the standard deviation of the intensity in a ROI 
 Internal markers LIFT IFDR 

ROI 1 388.21 351.5 370.91 
ROI 2 616.39 482.70 420.02 
ROI 3 1552.4 1234.9 1276.9 

Fig. 25. ROI positions and noise values 
Noise was measured in reconstructed images using FDK, with different phase sorting techniques.  

 

Edge Profiles 

Edge profile analysis is the third criterion used to evaluate the quality of the 4D-

CBCT reconstructed images. Several edge profiles were examined for axial, coronal and 

sagittal views of patient 2 dataset in the ROIs shown in Fig. 26. The regions of interest 

are placed in various places, e.g., in motion-affected and motionless regions. The edge 

profiles are measured for the reconstructions based on phase sorting using LIFT, IFDR 

and the ground truth (internal markers result). The edge profiles for Fig. 27 (a) show the 

change of CT values for a part of the moving chest wall, for Fig. 27 (b) a moving 

pulmonary vessel and for Fig. 27 (c) a stationary edge between the spine and the lung. In 

addition, Fig. 27 (d) is a part of a soft tissue and a moving pulmonary blood vessel. Fig. 

27 (e) is two moving pulmonary blood vessels. Fig. 27 compares these measured edge 

profiles to demonstrate that effect of different phase sorting methods on the spatial 

ROI 1

ROI 2

ROI 3
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resolution. These profiles all indicate that there is no loss of edge information due to 

different phase sorting methods compared to the internal markers’ sorting method. In 

particular, the edge profiles for Fig. 27 (b), (d), (e) demonstrate that the position of the 

moving blood vessels is detected in the almost same position compared to the ground 

truth.  

 
 
Fig. 26. ROI positions for edge profiles for Patient 2 
Five different regions of interest (a)–(e) in three different views of the reconstructed images of patient 1. 
The ROIs are selected for the evaluation of spatial resolution. 
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(c) 

 
(d) 

 
(e) 

Fig. 27. Edge profiles in reconstructed images of Patient 2 
Edge profiles in images reconstructed using ground truth (implanted markers) and different phase sorting 
algorithms (LIFT, IFDR) for five different regions of interest (a)–(e) as depicted in Fig. 26. The respective 
edge profiles are given for internal markers (solid blue line), LIFT (dashed red line), and IFDR (dashed-
dotted green line). The first profile (a) shows a part of the moving chest wall, the second profile (b) a 
moving pulmonary blood vessel, the third profile (c) a stationary edge next to the spine, the fourth profile 
(d) a part of a soft tissue and a moving pulmonary blood vessel, and finally the fifth profile (e) two moving 
pulmonary blood vessel again.  
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Histogram entropy and normalized mutual information (NMI) 

This is the forth criterion used in this study to evaluate the 4D-CBCT 

reconstruction result. Table 13 shows quantitative measurements for image quality. The 

entropy, defined in equation (16), is used as an image quality measure to determine the 

impact of artifacts such as streak artifacts or blurry edges on the reconstruction result. 

4D-CBCT results shown earlier have streaks and artifacts due to the small number of 

projections used in the reconstruction. Regarding the entropy, all methods have close 

results. The values of the normalized mutual information, defined in equation (17), show 

that LIFT and IFDR have similar reconstructed images as the ground truth. 

Table 13. Entropy and normalized mutual information measurements for different phase sorting techniques 
of Patient 2. The volumes are cropped before calculating those results.  

X E(X) NMI(X, markers) 
Markers 6.9330 0.9992 

LIFT 6.8341 0. 2622 
IFDR 6.8608 0.2700 

 
 

Patient 4: 

For patient 4 dataset, the internal markers-based respiratory signal is used as the 

ground truth. Fig. 28 shows the reconstructed images using phase sorting based on the 

internal markers results. The figure shows the reconstructed images in the end of exhale 

(a) and end of inhale (b) in three views: axial, coronal and sagittal views. A difference 

image is also presented to show the difference is shown in (c).  
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 (a) End Exhale  (b) End Inhale (c) End Exhale – End Inhale 
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Fig. 28 4D-CBCT Reconstruction from projection of Patient 4 in two different phases 
Ground truth (internal markers’ result) of the patient 4 in end-exhale (a) as well as end-inhale (b) phase bin, 
and the difference of the corresponding images (c). The bin width is 17%. All reconstructed images are 
displayed at a grayscale window of min = −12067 HU, max = 14416 HU and the difference images are 
displayed at a grayscale window of min= -10297 HU, max= 10812 HU. 
 
Difference 

Fig. 29 shows the reconstruction result using different phase sorting techniques: 

Internal markers which acts as the ground truth (a), LIFT (b), and external markers (c). 

 (a) Internal Markers (b) LIFT (c) External markers 
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Fig. 29. 4D-CBCT Reconstruction from projection of Patient 4 sorted using different methods 
Ground truth (marker’s result) as well as reconstruction of patient 4 using FDK with different phase sorting 
methods: An axial (top row), a coronal (middle row), and a sagittal view (bottom row) of the end-inhale 
phase bin is shown here. The different phase sorting methods used are: Internal markers (a), LIFT (b) and 
external markers (c). All images are displayed at a grayscale window of min = −12067 HU, max = 14416 
HU. 

 
Fig. 30 shows the differences of the conventional reconstructed images using 

different phase sorting methods compared to the ground truth (internal markers signal). 

The difference between LIFT and markers is shown in (a) and between the external and 

the internal markers is shown in (b). The signed difference images are dominated by 

streak artifacts due to the different projections used in each bin.  

   
 (a) LIFT – internal markers  (b) External -internal markers 
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Fig. 30. Signed difference images of 4DCBCT reconstructed images of Patient 4 using different phase 
sorting methods compared to the ground truth (internal markers result) 
An axial (top row), a coronal (middle row), and a sagittal view (bottom row) of differences for the end-
inhale phase bin is shown here. All images are displayed at a grayscale window of min= -10297 HU, max= 
10812 HU. 
 

Noise measurement 

In Fig. 31, noise level is evaluated in three regions of interest (ROI). A soft tissue 

region (ROI 1), a lung tissue region (ROI 2), and an air region (ROI 3) are considered as 

depicted in Fig. 31 (a).  The table in Fig. 31 (b) shows the corresponding standard 

deviations in a single reconstructed image for each ROI. The noise level of the phase 

sorting methods used here is similar and LIFT has better results for ROI1 and ROI2. 

(a) Regions of interest (ROI) 

 

ROI 1

ROI 2

ROI 3
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(b) the standard deviation of the intensity in a ROI 
 Internal markers LIFT External markers 

ROI 1 659.24 583.079 616.76 
ROI 2 1026.9 886.21 985.74 
ROI 3 394.04 441.57 421.56 

Fig. 31. ROI positions and noise values 
Noise was measured in reconstructed images using FDK, with different phase sorting techniques.  

 

Edge Profiles 

Several edge profiles were measured for axial, coronal and sagittal views of 

patient 4 in the positions shown in Fig. 32. The regions of interest are placed in various 

places, e.g., in motion-affected and motionless regions. The edge profiles are measured 

for the reconstructions based on phase sorting using LIFT, external markers and the 

ground truth (internal markers result). The edge profiles for Fig. 33 (a) show the change 

of CT values for a part of the moving chest wall, for Fig. 33 (b) a moving pulmonary 

vessel and for Fig. 33 (c) a stationary edge between the spine and the lung. In addition, 

Fig. 33 (d) is a part of a soft tissue. Fig. 33 (e) is two moving pulmonary blood vessels. 

Fig. 33 compares these measured edge profiles to demonstrate that effect of different 

phase sorting methods on the spatial resolution. Those profiles all indicate that there is no 

loss of edge information due to different phase sorting methods compared to the internal 

markers’ sorting method. In particular, the edge profiles for Fig. 33 Fig. 33(b), (e) 

demonstrate that the position of the moving blood vessels is detected in the almost same 

position compared to the ground truth.  
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Fig. 32. ROI positions for edge profiles 
Five different regions of interest (a)–(e) in three different views of the reconstructed images of patient 1. 
The ROIs are selected for the evaluation of spatial resolution. 
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(d) 

 
(e) 

Fig. 33. Edge profiles in reconstructed images based on different phase sorting methods 
Phase sorting methods used are implanted markers as ground truth and image-based sorting algorithms 
(LIFT, IFDR) for five different regions of interest (a)–(e) as depicted in Fig. 32. The respective edge 
profiles are given for internal markers (solid blue line), LIFT (dashed red line), and IFDR (dashed-dotted 
green line). The first profile (a) shows a part of the moving chest wall, the second profile (b) a moving 
pulmonary blood vessel, the third profile (c) a stationary edge next to the spine, the fourth profile (d) a part 
of a soft tissue, and finally the fifth profile (e) two moving pulmonary blood vessel again.  
 
 

Histogram entropy and normalized mutual information (NMI) 

Table 14 shows quantitative measurements for image quality. The entropy is used 

as an image quality measure to determine the impact of artifacts such as streak artifacts or 

blurring on the reconstruction result. 4D-CBCT results shown earlier have streaks and 

artifacts due to the small number of projections used in the reconstruction. Regarding the 

entropy, all compared methods have similar results. The second criterion used is the 

normalized mutual information. It shows the similarity between the reconstructed 
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volumes. As you can see, the NMI for the reconstructed volume using markers result with 

LIFT and External markers is very similar. 

Table 14 Entropy and normalized mutual information measurements for different phase sorting techniques 
of Patient 4. 
The volumes are cropped before calculating those results.  

X E(X) NMI(X, markers) 
Markers 6.626 0.9992 

LIFT 6.719 0.4111 
External markers 6.625 0.4418 

 

The experimental results in this section showed that the proposed image-based 

phase sorting methods LIFT and IFDR, are performing well when used for 4D 

reconstruction comparing to the standard phase sorting methods. 

 
 
4.4.2 RESPIRATION-BASED GENERATION AND RECONSTRUCTION 

The experimental results of the respiratory-based projection generation and the 

4D-CBCT reconstruction are discussed in this section. The image generation and 4D-

CBCT reconstruction was evaluated using the digital XCAT phantom [103] [104]. The 

phantom body represents an average human male in shape, proportion and composition. 

The physical pixel size used is 0.65 x 0.65 x 3.125 (mm). The phantom was used to 

generate 2D projections from the phantom each as an 512 x 512 array. The full scan was 

performed by a single 360° gantry rotation resulted in projecting 720 projections with 0.5° 

degrees of projection angle between each pair of adjacent projections. A total of 40 

respiratory cycles were generated with each cycle consists of 18 projections. Those 2D 

projections are used to reconstruct a 4D-CBCT volume; the spatial resolution used was 

the same as the original resolution of the phantom.  
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Fig. 34 shows selected original 2D projections of the phantom dataset from one 

respiratory cycle (raw (a)) and the corresponding interpolated projections using the 

method discussed earlier in Section 4.3 (raw (b)). The auxiliary red dashed line is used to 

help the reader see the location of the anatomy in multiple images. As seen in row (a), the 

2D projections are from different respiratory phases, and the position of the anatomy, 

such as the diaphragm, differs among projections. In raw (b), the original projections are 

re-generated using the proposed method to represent an identical respiratory phase (end 

of exhale). It is clearly shown that the generated projections in raw (b) have similar 

anatomy position and thus can be sorted to the same respiratory phase. 

 

(a) 

(b) 
 

Fig. 34. Original and generated projections from the phantom dataset 
Row (a) shows the original projections #(4,8,12,16). Row (b) shows the corresponding ‘generated’ 
projections using the interpolation method suggested. The red dashed line is an auxiliary line to show the 
difference in the diaphragm position. In row (a), the projections are in different phases, while in row (b), 
the generated projections are in the same phase. 

 



 

 90

Fig. 35 shows the reconstructed 4D-CBCT images for the phantom dataset using 

the FDK algorithm [42]. The figure shows the reconstructed images in three views: axial, 

coronal and sagittal views. The images reconstructed using all the original projection 

sorted in all phases (a), only the original projections in the end of exhale (b) and using all 

the generated projections that are sorted in end of exhale (c). 

 

(a) All original projections 
from all phases 

(b) Original projections from 
one phases (end of exhale) 

(c) Original and generated 
projections from all phases 
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Fig. 35. Reconstructed 4DCBCT images of phantom dataset 
Phantom projections are reconstructed using (a) all original projections in the dataset, (b) only original 
projections in the end of the exhalation phase and (c) all generated projections in the dataset. The 
reconstructed volumes are shown in three views: Axial, coronal and sagittal. The red arrows show the 
motion-affected regions of the which appear blurred in the reconstructed image 

 

As you can see in Fig. 35, the reconstructed images in (a) are clear and do not 

contain noise comparing to the other images in (b) and (c). However, images in (a) are 

blurry due to the motion artifacts that result from reconstructing a volume using all 

projections in all phases. The red arrows in the images point to those motion affected 
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edges. The reconstructed images in (b) have almost sharp (non-blurry) edges comparing 

to (a). However, they contain a lot of noise and streaking artifacts due to the insufficient 

number of projections used in the reconstruction. In (c) the noise is less than (b) because 

of using the generated projections. Also, the motion affected edges appear to be sharp due 

to using generated projections in the same respiratory phase. 

Several edge profiles were measured for axial, coronal and sagittal views of the 

phantom dataset in the ROIs shown in Fig. 36. The ROIs are placed in various motion-

affected regions. The edge profiles for (a) show the change of CT values for a part of the 

moving anatomy (heart), for (b) a moving pulmonary vessel and for (c) a part of a 

moving anatomy. Fig. 37 compares these measured edge profiles to demonstrate that 

effect of using the generated projections instead of the original ones on the spatial 

resolution. The profiles (b) and (c) indicate that the reconstructed images using the 

generated projections have sharper edges comparing to the reconstruction images using 

all the original projections. Also, using only original projections sorted in one phase 

shows loss of edge information due to the streaks and noise. In particular, the edge 

profiles for Fig. 37 (b) and (c) demonstrate that the position of the moving blood vessels 

and diaphragm edge is sharper in the images reconstructed using the one phase 

reconstruction or generated projections as pointed at by the black arrows. The edge 

profile (a) shows a blurry edge in all the three reconstructed images. This indicates that 

the motion of the heart cannot be corrected using 4D reconstruction. 
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Fig. 36. ROI positions for edge profiles 
Three different regions of interest (a)–(c) in two views of the reconstructed images of the phantom. The 
ROIs are selected for the evaluation of spatial resolution. 

 
(a) 

 
(b) 

 
(c) 

Fig. 37. Edge profiles in reconstructed images 
Edge profiles in images reconstructed using all original projections in all phases, original projections in one 
phase (end of exhale) and all generated projections for three different regions of interest (a)–(c) as depicted 
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in Fig. 36. The respective edge profiles are given for all original projections (solid blue line), original 
projections in one phase (dashed red line), and all generated projections (dashed-dotted green line). The 
edge profiles for (a) show the change of CT values for a part of the moving anatomy, for (b) a moving 
pulmonary vessel and for (c) a part of a moving anatomy. 

 

In Fig. 38, the noise level is evaluated in three ROIs. A lung tissue region (ROI 1), 

a soft tissue region (ROI 2), and an air region (ROI 3) are considered in Fig. 38 (a).  The 

table in Fig. 38 (b) shows the corresponding standard deviations in a single reconstructed 

image for each ROI. The noise level of the reconstructed images using all generated 

projections is always less than the one using the reconstruction of one phase.  

 
(a) Regions of interest (ROI) 

 
(b) the standard deviation of the intensity in a ROI 

Fig. 38. ROI positions and noise values 
Noise was measured in reconstructed images using all original projections, original projections in one 
phase, and all generated projections.  

 

 

ROI 1ROI 2

ROI 3

 All original projection Projections in one phase All generated projections 

ROI 1 0.048 0.086 0.061 

ROI 2 0.022 0.051 0.032 
ROI 3 0.038 0.137 0.053 
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Table 15 shows the entropy and the NMI measurements of reconstructed images 

using all original projections, original projections in one phase and all generated 

projections.  

 

Table 15: Entropy and normalized mutual information measurements for reconstruction of phantom dataset 
using all original projections, one phase of original projections, and all generated projections.  
The volumes are cropped and before calculating the entropy measurement (E). 

X E(X) NMI(X, all original) 
All original  6.803 0.9993 

One phase original 6.769 0.2397 
All generated projections 6.746 0.2364 

 

Results in  

Table 15 show that the entropy values are very similar in all reconstructed images. 

Also, the NMI measurements of the reconstructed images using all generated projections 

have similar values as the one reconstructed using only original projections in one phase.  

This section showed the experimental results of the motion-based image 

generation method. This method used a phantom dataset to generate additional 

projections to be used in the 4D-CBCT reconstruction. The experimental results 

demonstrated the ability of the method in recovering the edges, adding no additional 

noise and visibly reducing streak artifacts. To determine the potential clinical impact of 

this study, clinical dataset should be used. 
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4.5 SUMMARY 

This chapter analyzed the effects of using different phase sorting algorithms on 

the 4D-CBCT reconstruction. The phase sorting algorithms used are internal markers, 

external markers, and image-based phase sorting methods (LIFT, described in CHAPTER 

2 and IFDR, described in CHAPTER 3). Also, a respiration-based image generation 

method is presented. This method is based on a motion analysis of image pixels through 

projections in a CBCT projection sequence. This method has been developed to generate 

new projections to be used in 4D-CBCT reconstruction to reduce the respiration streaking 

artifacts and improve the reconstruction quality. The experimental results showed that the 

proposed image-based phase sorting methods LIFT and IFDR, are performing well when 

used for 4D reconstruction comparing to the implanted markers result. The experimental 

results of the projection generation method demonstrated good recovery of edges, no 

additional noise and visibly reduced streak artifacts. To determine the potential clinical 

impact of this study, clinical datasets should be used. 

As the study shows the feasibility of the proposed image-generation method, 

future work can be done to improve it. Motion detection can be improved by eliminating 

the point mis-correspondences and regularizing the optical flow motion. Interpolation can 

be improved from pixel-to-pixel interpolation to regional interpolation using motion-

based image segmentation techniques. Also, advanced methods can be used to generate 

the intermediate projections. Machine learning and training techniques such as artificial 

neural networks (ANN) can be useful. 
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CHAPTER 5 CONCLUSIONS AND CONTRIBUTIONS 

5.1 CONCLUSIONS 

The following conclusions can be drawn from the results obtained in CHAPTER 2: 

5.1.1 LOCAL INTENSITY FEATURE TRACKING AND MOTION MODELING FOR 

RESPIRATORY SIGNAL EXTRACTION IN CONE-BEAM CT PROJECTIONS 

o LIFT is a novel method for respiratory motion extraction and breath phase sorting 

using CBCT projections. Feature points were extracted and tracked to form point 

trajectories. Trajectories with shapes similar to breathing curve were selected to 

be used in the 3D motion modeling module to recover the 3D motion of the lung. 

The 3D rotation around the Z-axis of the patient represented the respiratory 

motion in this study and the CBCT projections were then sorted according to the 

respiration signal. 

o LIFT was able to extract the respiration signal in all projections of all datasets 

without the dependence on a particular anatomical structure (such as the 

diaphragm). 

o The respiratory motion extracted using LIFT correlates with signals extracted 

using other standard methods with an average phase shift of 1.78 projections 

estimated between LIFT based signal and markers based signal, and of 1.68 

projections between LIFT based signal and the diaphragm-based signal. 

o The average breathing amplitude error of LIFT compared to the diaphragm-based 

method was 11.2% while it is 10.68% compared to the internal markers method. 
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o LIFT is able to extract regular and irregular breathing patterns existing in the 

datasets. 

 

The following conclusions can be made from the results obtained in CHAPTER 3: 

5.1.2 INTENSITY FLOW DIMENSIONALITY REDUCTION FOR RESPIRATORY SIGNAL 

EXTRACTION IN CONE-BEAM CT (CBCT) PROJECTIONS 

o IFDR is an image-based respiratory motion extraction method for breath phase 

sorting in cone beam CT images was developed and evaluated in three clinical 

subjects. The respiratory motion extracted was based on the intensity flow of 

patient’s organ tissues existing in the CBCT scan images. Dimensionality 

reduction methods are applied to the dataset of the intensity flow displacement 

vectors to recover those motion patterns.  

o Experimental results conducted showed that Non-linear dimensionality reduction 

method showed less phase shift and breathing amplitude error than the linear 

method.  

o IFDR using the non-linear implementation has an average phase shift of 2.94 

1.26 projections with the diaphragm position-based signal and an average 

breathing amplitude error of 18.04  7.62.  

o Compared to the implanted-markers based signal, IFDR under the non-linear 

approach has an average phase shift of 2.72  1.99 projections and an average 

breathing amplitude error of 14.28  10.44. IFDR using the linear and non-linear 

approaches were able to extract the breath signal in all projections of the patients’ 

dataset. 
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The following conclusions can be made from the results obtained in CHAPTER 4: 

5.1.3 PROJECTION GENERATION BASED ON RESPIRATION MOTION FOR 4DCBCT 

RECONSTRUCTION  

o Different respiration signals affect the 4D-CBCT reconstruction quality.  

o Image-based phase sorting methods (LIFT, and IFDR) perform reasonably well 

compared to internal markers. 

o A respiration-based interpolation method for image generation proposed to reduce 

the noise, streaking and motion artifacts in 4DCBCT projections. The proposed 

method is based on estimation the optical flow motion in the sequence of CBCT 

projections. It regenerates all the original projections from their current phase to 

one desired phase for reconstruction. 

o The proposed method has been applied on phantom dataset and the results showed 

that the reconstructed images has good edge recovery, visibly reduced streak 

artifacts and no additional noise. 

o Advanced motion detection and interpolation methods can be used in this work to 

improve the results. 

o Clinical studies are required to prove the clinical impact and feasibility of this 

method. 
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