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Abstract 

 

Synchrotron computed tomography requires a large number of angular projections to reconstruct 

tomographic images with high resolution for detailed and accurate diagnosis. However, this 

exposes the specimen to a large amount of x-ray radiation. Furthermore, this increases scan time 

and, consequently, the likelihood of involuntary specimen movements. One approach for 

decreasing the total scan time and radiation dose is to reduce the number of projection views 

needed to reconstruct the images. However, the aliasing artifacts appearing in the image due to the 

reduced number of projection data, visibly degrade the image quality. According to the compressed 

sensing theory, a signal can be accurately reconstructed from highly undersampled data by solving 

an optimization problem, provided that the signal can be sparsely represented in a predefined 

transform domain. Therefore, this thesis is mainly concerned with designing compressed sensing-

based reconstruction algorithms to suppress aliasing artifacts while preserving spatial resolution 

in the resulting reconstructed image. First, the reduced-view synchrotron computed tomography 

reconstruction is formulated as a total variation regularized compressed sensing problem. The 

Douglas-Rachford Splitting and the randomized Kaczmarz methods are utilized to solve the 

optimization problem of the compressed sensing formulation.  

In contrast with the first part, where consistent simulated projection data are generated for image 

reconstruction, the reduced-view inconsistent real ex-vivo synchrotron absorption contrast micro 

computed tomography bone data are used in the second part. A gradient regularized compressed 

sensing problem is formulated, and the Douglas-Rachford Splitting and the preconditioned 

conjugate gradient methods are utilized to solve the optimization problem of the compressed 

sensing formulation. The wavelet image denoising algorithm is used as the post-processing 

algorithm to attenuate the unwanted staircase artifact generated by the reconstruction algorithm. 

Finally, a noisy and highly reduced-view inconsistent real in-vivo synchrotron phase-contrast 

computed tomography bone data are used for image reconstruction. A combination of prior image 

constrained compressed sensing framework, and the wavelet regularization is formulated, and the 

Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to 

solve the optimization problem of the compressed sensing formulation. The prior image 
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constrained compressed sensing framework takes advantage of the prior image to promote the 

sparsity of the target image. It may lead to an unwanted staircase artifact when applied to noisy 

and texture images, so the wavelet regularization is used to attenuate the unwanted staircase artifact 

generated by the prior image constrained compressed sensing reconstruction algorithm. 

The visual and quantitative performance assessments with the reduced-view simulated and real 

computed tomography data from canine prostate tissue, rat forelimb, and femoral cortical bone 

samples, show that the proposed algorithms have fewer artifacts and reconstruction errors than 

other conventional reconstruction algorithms at the same x-ray dose. 
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1.   Introduction 

1.1   Introduction 

X-ray Computed Tomography (CT) is a non-invasive imaging technique where projections taken 

from different viewing angles are computer processed to reconstruct the tomographic image of the 

scanned object. Micro-CT scanners using synchrotron radiation sources can provide higher spatial 

resolution than conventional CT. An additional benefit of synchrotron scanner is that x-rays 

generated at synchrotron beamline are almost parallel and monochromatic which reduces noise 

and artifacts. Synchrotron x-rays are highly intense which boosts the signal to noise ratio allowing 

shorter scan times. Consequently, the advantages of synchrotron micro-CT scanner including 

shorter scan time, fewer artifacts/noise and higher spatial resolution makes this imaging method 

an important non-invasive inspection tool for biological research.  

 

1.2   Research Motivation and Objectives 

Traditionally, synchrotron tomographic reconstruction techniques require a large number of 

projection views to reconstruct synchrotron micro-CT images with the fine spatial resolution 

necessary to view as much detail as possible in the sample field of view. This exposes the specimen 

to a large amount of x-ray radiation which can damage living specimens. Furthermore, this 

increases scan time and consequently the likelihood of involuntary specimen movements so the 

presence of motion artifact in the reconstructed images will be more likely. One way to reduce the 

total scan time and radiation dose is to reduce the time of radiation at each projection, in fact, this 

is the only parameter that can be used to control the amount of synchrotron radiation used for each 

projection at each angle as the radiation intensity is almost constant per projection. However, 

detector sensitivity and readout speed may not allow the exposure time per projection to be less 

than a certain value. Also, a noisy tomographic image will be reconstructed in a low exposure time 

per projection because of the reduced projection signal to noise ratio. Another approach for 

decreasing the total scan time and radiation dose is to reduce the number of projections needed to 

reconstruct the tomographic images. Lately, Compressed Sensing (CS) theory has spurred great 

interest in the signal-processing research community. According to this theory, a signal can be 
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reconstructed from undersampled data by solving an optimization problem, provided that the 

signal can be sparsely represented in a predefined frame such as wavelet or gradient. At present, 

solution of very large-scale CS optimization problems is poorly characterized with real 

tomographic data which motivates us to propose fast-convergent CS-based synchrotron micro-CT 

reconstruction algorithms. Using the proposed reconstruction algorithms to reduce the number of 

projections in synchrotron micro-CT is an effective way to reduce overall x-ray dose and scan time 

which improves in-vivo imaging protocols.  

The main goal in this research project is to develop compressed sensing based reconstruction 

algorithms and to consider their application in reducing x-ray dose in synchrotron micro computed 

tomography while reconstructing higher quality tomography images than the ones reconstructed 

by the existing reconstruction algorithms. Considering the existing literature and application need, 

we set the following research objectives:  

• In order to develop CT reconstruction algorithms tailored for synchrotron imaging, the 

properties of synchrotron images, datasets and imaging techniques should be identified. 

• The proposed algorithms should be able to reduce overall radiation dose by reducing the 

number of projections needed and/or exposure time per projection. 

• The proposed algorithms should be able to suppress aliasing artifacts and/or noise appear 

in image typically reconstructed when reducing the number of projections and/or exposure 

time per projection.  

• The proposed algorithms should be able to preserve detailed information in the image as 

much as possible.   

• The quality of reconstructed images measured using mathematical methods should be 

higher than the quality of images reconstructed by existing algorithms.  

 

1.3   Organization of the Thesis 

This thesis is organized in a manuscript-based style. The results obtained are included in the form 

of published manuscripts. In each chapter, a brief introduction precedes each manuscript in order 

to connect the manuscript to the main context of the thesis. The thesis is organized as follows. 
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There are six chapters in total. The first chapter gives the motivation for the research and states the 

research objectives.  

Chapter 2 introduces x-ray computed tomography and the mathematical background behind the 

analytical and algebraic tomographic reconstruction methods and the compressed sensing-based 

tomography reconstruction techniques are discussed. Furthermore, the synchrotron CT imaging 

techniques and the freeware programs available for use in phase contrast computed tomography 

reconstruction are reviewed.  

The manuscript included in Chapter 3 proposes a compressed sensing based reduced-view image 

reconstruction algorithm to reconstruct the tomographic image from simulated synchrotron CT 

data. The goal is to suppress the aliasing artifacts which appear in the image because of reducing 

the number of projections. Poor conditioning of reduced-view synchrotron CT projection matrix 

and processing of large synchrotron CT data are numerical challenges which are addressed in this 

study. Total variation regularization and a combination of Douglas-Rachford Splitting and 

randomized Kaczmarz methods are used to solve these numerical issues. Visual assessment and 

quantitative performance evaluations of a reconstructed abdomen phantom and a reconstructed 

slice of a canine prostate tissue demonstrate the effectiveness of the proposed algorithm compared 

to other existing algorithms. 

Chapter 4 includes a manuscript that proposes a compressed sensing algorithm for reduced-view 

image reconstruction from real ex-vivo synchrotron absorption contrast micro-CT bone data. The 

goal is to reduce the scan time by further reducing the number of projections needed. In contrast 

with chapter 3, where consistent simulated projection data are generated and used for the image 

reconstruction, data inconsistency caused by noisy and reduced-view projection data is addressed 

in this chapter. In addition to data inconsistency, staircase artifact and long reconstruction time are 

other image reconstruction challenges addressed in this study. The gradient-based compressed 

sensing algorithm enforces consistency with the noisy and reduced-view projection data and help 

to attenuate the aliasing artifact and recover the spatial resolution. The post-processing 2D 

wavelet-based image denoising algorithm is used to attenuate the unwanted staircase artifact 

generated by the gradient-based compressed sensing algorithm while preserving the recovered 

spatial resolution. The conjugate gradient method and a modified back-projection operator are 

used to decrease the reconstruction time. Visual and quantitative-based performance assessments 
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of a reconstructed slice of a femoral cortical bone sample demonstrate the superiority of the 

proposed algorithm compared to other existing algorithms. 

The manuscript included in Chapter 5 proposes a compressed sensing algorithm for reduced-view 

image reconstruction from real in-vivo synchrotron phase contrast CT bone data. The goal is to 

reduce the radiation dose and scan time by reducing the number of projections. The in-vivo phase 

contrast projection dataset used in this chapter is noisier than the absorption contrast micro-CT 

projection dataset used for the ex-vivo study proposed in Chapter 4. Furthermore, the number of 

acquired projections and the radiation exposure time per projection are less than the values set for 

the ex-vivo study. A multi-regularization constraint compressed sensing algorithm is proposed in 

this chapter to address the image reconstruction challenges including highly reduced-view and 

noisy projection data. The prior image constrained compressed sensing framework takes advantage 

of a prior image to promote sparsity of target image. The gradient transformation has been shown 

to work well when dealing with piecewise smooth images, it may lead to unwanted staircase 

artifact when applied to images that contain textures. The 2D wavelet transform is good at 

capturing point singularities and textures, but not as good for approximating piecewise smooth 

regions because it penalizes jumps and causes oscillations around edges. The research presented 

in this chapter is focused on proposing a wavelet-gradient based prior image constrained 

compressed sensing algorithm to enforce consistency with the highly reduced-view and noisy 

projection data and at the same time attenuating the aliasing, staircase and ringing artifacts while 

preserving piecewise smooth regions with sharp edges, point singularities, and textures. Visual 

and quantitative-based performance assessments of reconstructed slices of a rat forelimb sample 

demonstrate the advantage of the proposed algorithm compared to other existing algorithms in 

suppressing artifacts and noise appear in the image and preserving detailed information. 

Finally, Chapter 6 summarizes the  thesis and suggests potential research problems for future work. 
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2.   Background 

2.1   X-Ray Computed Tomography 

X-ray Computational Tomography is a non-destructive imaging technique typically used to image 

specimen morphology. X-ray projections are generated on the x-ray sensors located on the 

opposite side of the object, either the object is rotating between the x-ray source and the sensors, 

or the x-ray source-sensors unit is rotating around the object. As the integral of the attenuation 

coefficient along the x-ray path forms the projections on the sensors, understanding the physics of 

x-ray interaction with matter is essential and is presented in brief here. Assume that there is a beam 

of x-ray photons propagating through a piece of material. The beam intensity attenuates because 

photons either being absorbed by the material atoms or by being scattered away from their 

traveling path. The Photoelectric Absorption and the Compton Scattering effects, respectively, are 

the mechanisms contributing to this beam intensity attenuation for the range of photon energies 

used for the diagnostic imaging (from 20 to 150 keV). Photoelectric Absorption effect consists of 

an x-ray photon giving its entire energy to a firmly bound inner electron in an atom. The electron 

utilizes part of this attained energy to overcome the binding energy inside its shell, and the 

remainder appears as the kinetic energy of the freed electron. The Compton Scattering effect, on 

the other hand, consists of the interaction of the x-ray photon with either a free electron or an 

electron lightly coupled to one of the exterior shells of an atom. This interaction results in 

deflection of the x-ray photon from its traveling path and loss of its energy, which is acquired by 

the electron. Both the Photoelectric Absorption and the Compton Scattering effects show energy 

dependency meaning that the likelihood of a photon to be lost from its traveling path because of 

either absorption or scattering is a function of the energy of that photon. The energy dependency 

of photoelectric absorption effect is higher than the Compton Scattering effect [C2.1].  

Assume x-ray beams are of the same energy and 𝜇(𝑥, 𝑦) represents the x-ray attenuation 

coefficient distribution of tissue of a 2D object and let 𝑙 represents the zero width straight x-ray 

path (no refraction or diffraction) from the x-ray focal spot to the detector pixel. The emitted x-ray 

photons are attenuated by the materials in the target object. According to Beer’s law, the detected 

photon number 𝐼 at a given sensor and the entering photon number 𝐼0 have the following 

relationship [C2.2]: 
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𝐼 = 𝐼0 𝑒𝑥𝑝(− ∫ 𝜇(𝑥, 𝑦)𝑑𝑙
𝑙

)                                                                                                            (2.1) 

Where the line integral is performed along the x-ray path. Alternatively, one can define: 

𝑦 = ∫ 𝜇(𝑥, 𝑦)
𝑙

𝑑𝑙 = 𝑙𝑛 (
𝐼0

𝐼
)                                                                                                                (2.2) 

Where 𝑦 is the so-called sinogram. Then the image reconstruction process consists of estimating 

the attenuation coefficients, 𝜇, from the detected sinogram 𝑦. In digital implementation, the 

attenuation coefficients are digitized into the so-called pixel representations: 

𝜇(𝑥, 𝑦) = ∑ 𝜇𝑖𝜔𝑖(𝑥, 𝑦)𝑖∈𝑆                                                                                                                 (2.3) 

Where 𝑆 denotes the index of the set of 𝑁 pixel locations, 𝑖 is the pixel index, and 𝜔𝑖(𝑥, 𝑦) is the 

basis function. Substituting (2.3) into the line integral equation in (2.2), one can obtain: 

𝑦 = ∑ 𝜇𝑖 ∫ 𝜔𝑖(𝑥, 𝑦)
𝑙

𝑑𝑙𝑖∈𝑆 = ∑ 𝐴𝑗𝑖𝑖∈𝑆 𝜇𝑖 = 𝐴𝜇                                                                                        (2.4) 

Where the system matrix 𝐴 is given by: 

𝐴𝑗𝑖 = ∫ 𝜔𝑖(𝑥, 𝑦)𝑑𝑙
𝑙𝑗

                                                                                                                        (2.5) 

Which is the line integral of the basis function 𝜔𝑖(𝑥, 𝑦) along the 𝑗𝑡ℎ x-ray path. The system matrix 

is only dependent on the CT scanner [C2.3]. While a CT scanner computes the linear attenuation 

coefficient of the tissue (at some effective energy), the numbers shown by the computer connected 

to the scanner are integers with values typically in the range of -1000 to 3000. These integers have 

been termed Hounsfield Units symbolized by HU. The relation between the linear attenuation 

coefficient and the equivalent Hounsfield Unit is: 

𝐻 =
𝜇−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
× 1000                                                                                                                  (2.6) 

Where H = 0 corresponds to the water attenuation coefficient and H = -1000 corresponds to μ = 0, 

which is the air attenuation coefficient. 
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2.2   Mathematical Background of X-Ray CT 

We are ready to introduce some mathematical tools that will be central to solving for the 

attenuation coefficient in Eq. (2.4). 

2.2.1   Radon Transform 

The Radon transform of a function Ɍ𝜇(𝑧) : 𝑅2 → 𝑅 is defined by:  

[Ɍ𝜇(𝑧)](𝑡, 𝜃): = ∫ 𝜇(𝑧) 𝑑𝑙
𝑙𝑡,𝜃

                                                                                                              (2.7)  

Where a point 𝑧 on the line 𝑙𝑡,𝜃 can be described as follows: 

𝑙𝑡,𝜃 = {𝑧:⟨𝑧, 𝛺 (𝜃)⟩ = 𝑡} = {𝑡𝛺(𝜃) + 𝑠𝛹(𝜃): 𝑠 ∈ 𝑅}                                                                         (2.8) 

⟨. , . ⟩ denotes the inner product in 𝑅2. The 𝑡 and 𝜃 parameters determine a specific line 𝑙𝑡,𝜃 and 𝑠 

determines specific point on that line. The variable 𝑡 is the orthogonal distance from the line 𝑙𝑡,𝜃 

to the origin. 𝛹(𝜃) = (− 𝑠𝑖𝑛( 𝜃), 𝑐𝑜𝑠( 𝜃)) is the unit vector which is aligned along the line 𝑙𝑡,𝜃 

and is perpendicular to the unit vector 𝛺(𝜃) = (𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃) (see Fig. 2.1). We can imagine that 

the combination of 𝑡 and 𝜃 define the line 𝑙𝑡,𝜃 in the plain and as 𝑠 varies we can move along the 

line. 

 

Figure 2.1   Object 𝜇(𝑧) and its projection are shown for an angle of 𝜃 

 

This parametric representation of the line 𝑙𝑡,𝜃 gives the following formula: 
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Ɍ𝜇(𝑡, 𝜃): = ∫ 𝜇(𝑡 𝑐𝑜𝑠 𝜃 − 𝑠 𝑠𝑖𝑛 𝜃 , 𝑡 𝑠𝑖𝑛 𝜃 + 𝑠 𝑐𝑜𝑠 𝜃)𝑑𝑠
𝑠∈𝑅

                                                                    (2.9) 

The goal is to find some type of inversion formula for the Radon transform that will allow us to 

recover attenuation coefficient 𝜇. 

2.2.2   Central Slice Theorem 

The Central Slice Theorem, also known as the Fourier Slice Theorem, is the fundamental analytical 

tomography reconstruction method. It states that one dimensional Fourier transform of the object 

projection data obtained at the angle 𝜃 is equal to one slice of the two-dimensional Fourier 

transform of the object which passes through the center at the same angle [C2.4, C2.5]. Based on 

this theorem, it is possible to reconstruct the scanned object by performing a two-dimensional 

inverse Fourier transform, as shown in Figure 2.2.  

To derive the Central Slice Theorem, the two-dimensional Fourier transform 𝐹(𝑢, 𝑣) of the object 

𝜇(𝑥, 𝑦) can be defined as: 

𝐹(𝑢, 𝑣): = ∫ ∫ 𝜇(𝑥, 𝑦) 𝑒−𝑖2𝜋(𝑥𝑢+𝑦𝑣) 𝑑𝑥 𝑑𝑦
+∞

−∞

+∞

−∞
                                                                                       (2.10) 

The line integration in the Eq. (2.7) can be rewritten as the integration of the 𝜇′(𝑡, 𝑠) along the s 

axis: 

𝑃𝜃(𝑡) = ∫ 𝜇′(𝑡, 𝑠)
+∞

−∞
𝑑𝑠                                                                                                                    (2.11)  

𝑃(𝜔, 𝜃) is defined as the Fourier transform of 𝑃𝜃(𝑡): 

𝑃(𝜔, 𝜃) = ∫ 𝑃𝜃(𝑡)
+∞

−∞
𝑒−𝑖2𝜋𝜔𝑡𝑑𝑡                                                                                                          (2.12) 

= ∫ ∫ 𝜇′(𝑡, 𝑠) 𝑑𝑠 𝑒−𝑖2𝜋𝜔𝑡 𝑑𝑡
+∞

−∞

+∞

−∞

 

= ∫ ∫ 𝜇′(𝑡, 𝑠) 𝑒−𝑖2𝜋𝜔𝑡 𝑑𝑠 𝑑𝑡
+∞

−∞

+∞

−∞

 

The coordinates (𝑡, 𝑠) can be converted to the Cartesian coordinates by the following equations: 

𝑡 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 ;  𝑠 = −𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 𝑐𝑜𝑠 𝜃                                                                            (2.13) 
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𝑑𝑡𝑑𝑠 = 𝐽𝑑𝑥𝑑𝑦 = |

𝜕𝑡

𝜕𝑥

𝜕𝑠

𝜕𝑥
𝜕𝑡

𝜕𝑦

𝜕𝑠

𝜕𝑦

| 𝑑𝑥𝑑𝑦                                                                                                   (2.14) 

         = |
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

| 𝑑𝑥𝑑𝑦 = 𝑑𝑥𝑑𝑦  

where 𝐽 is the Jacobian determinant. Using Eqs. (2.12), (2.13) and (2.14), we have 

𝑃(𝜔, 𝜃) = ∫ ∫ 𝜇(𝑥, 𝑦) 𝑒−𝑖2𝜋𝜔(𝑥 𝑐𝑜𝑠 𝜃+𝑦 𝑠𝑖𝑛 𝜃) 𝑑 𝑥𝑑𝑦
+∞

−∞

+∞

−∞
                                                                           (2.15) 

Two Eqs. (2.10) and (2.15) are equal if 𝑢 = 𝜔 𝑐𝑜𝑠 𝜃 and 𝑣 = 𝜔 𝑠𝑖𝑛 𝜃, which means: 

𝐹(𝜔 𝑐𝑜𝑠 𝜃 , 𝜔 𝑠𝑖𝑛 𝜃) = 𝑃(𝜔, 𝜃)                                                                                                     (2.16) 

The variables 𝑢 = 𝜔 𝑐𝑜𝑠 𝜃 and 𝑣 = 𝜔 𝑠𝑖𝑛 𝜃 define a line that passes through the origin and has 

the angle 𝜃 with reference to the positive 𝑢 axis. 

 

Figure 2.2   Fourier transform of a projection at the angle 𝜃 is equal to a slice of the two-

dimensional Fourier transform of that object which passes through the origin at the same angle 

 

 

2.3   Filtered Back Projection (FBP) 

The Fourier Slice Theorem states that the 1D Fourier transform of each projection is a slice of the 

2D frequency domain. Combining all these slices from all equiangular projection data form 

concentric circles in the frequency domain, as shown in Fig 2.3. Interpolation is necessary to fill 
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the unknown frequency values in the Cartesian grid and then 2D Inverse Fourier transform is used 

to reconstruct the image. However, interpolation error in the frequency domain spreads in the 

spatial domain and results in some image degradation.  

 

Figure 2.3   The intersection of radial lines with the concentric circles represents the frequency 

samples obtained from 1D Discrete Fourier transform of projection data    

 

Filtered back projection (FBP) method avoids the interpolation error and is fast so that it has 

become the standard reconstruction method in clinical CT.  

The image function 𝜇(𝑥, 𝑦), is derived by performing the inverse Fourier transform on 𝐹(𝑢, 𝑣): 

𝜇(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, 𝑣) 𝑒𝑖2𝜋(𝑥𝑢+𝑦𝑣) 𝑑 𝑢𝑑𝑣
+∞

−∞

+∞

−∞
                                                                                         (2.17) 

We know from the last section: 

𝑢 = 𝜔 𝑐𝑜𝑠 𝜃 ; 𝑣 = 𝜔 𝑠𝑖𝑛 𝜃                                                                                                                                (2.18) 

And, 

𝑑𝑢𝑑𝑣 = 𝐽𝑑𝜔𝑑𝜃 = |

𝜕𝑢

𝜕𝜔

𝜕𝑣

𝜕𝜔
𝜕𝑢

𝜕𝜃

𝜕𝑣

𝜕𝜃

| 𝑑𝜔𝑑𝜃                                                                                            (2.19) 

= |
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃

−𝜔 𝑠𝑖𝑛 𝜃 𝜔 𝑐𝑜𝑠 𝜃
| 𝑑𝜔𝑑𝜃 = 𝜔𝑑𝜔𝑑𝜃 
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Eq. (2.20) can be derived by combining Eqs. (2.16), (2.17), (2.18) and (2.19):   

𝜇(𝑥, 𝑦) = ∫ ∫ 𝐹( 𝜔 𝑐𝑜𝑠 𝜃 , 𝜔 𝑠𝑖𝑛 𝜃) 𝑒𝑖2𝜋𝜔(𝑥 𝑐𝑜𝑠 𝜃+𝑦 𝑠𝑖𝑛 𝜃) 𝜔 𝑑𝜔𝑑𝜃
+∞

0

2𝜋

0
                                              (2.20) 

= ∫ ∫ 𝑃(𝜔, 𝜃) 𝑒𝑖2𝜋𝜔(𝑥 𝑐𝑜𝑠 𝜃+𝑦 𝑠𝑖𝑛 𝜃) 𝜔 𝑑𝜔
+∞

0

𝑑𝜃
2𝜋

0

 

= ∫ ∫ 𝑃(𝜔, 𝜃) 𝑒𝑖2𝜋𝜔(𝑥 𝑐𝑜𝑠 𝜃+𝑦 𝑠𝑖𝑛 𝜃) 𝜔 𝑑𝜔
+∞

0

𝑑𝜃
𝜋

0

+ ∫ ∫ 𝑃(𝜔, 𝜃 + 𝜋) 𝑒𝑖2𝜋𝜔(𝑥 𝑐𝑜𝑠(𝜃+𝜋)+𝑦 𝑠𝑖𝑛(𝜃+𝜋)) 𝜔 𝑑𝜔
+∞

0

𝜋

0

𝑑𝜃 

𝑃𝜃+𝜋(𝑡) = 𝑃𝜃(−𝑡) results in from the symmetrical property of parallel beam geometry. Eq. (2.20) 

can be rewritten as Eq. (2.21) by substituting 𝑃(𝜔, 𝜃 + 𝜋) = 𝑃(−𝜔, 𝜃) in the equation:  

𝜇(𝑥, 𝑦) = ∫ ∫ 𝑃(𝜔, 𝜃)|𝜔| 𝑒𝑖2𝜋𝜔(𝑥 𝑐𝑜𝑠 𝜃+𝑦 𝑠𝑖𝑛 𝜃) 𝑑 𝜔
+∞

−∞
𝑑𝜃

𝜋

0
                                                                       (2.21) 

= ∫ [∫ 𝑃(𝜔, 𝜃)|𝜔| 𝑒𝑖2𝜋𝜔𝑡 𝑑 𝜔
+∞

−∞

]𝑑𝜃
𝜋

0

 

The inner integral of Eq. (2.21) is the Inverse Fourier transform of 𝑃(𝜔, 𝜃)|𝜔|. In practice, the 

ideal filter,|𝜔|, is approximated by the “Ram-Lak” filter, as shown in Figure 2.4. Although the 

Ram-Lak filter is the best approximation to the ideal filter, it amplifies the high-frequency noise 

and is discontinuous in the frequency domain. Therefore, other filters such as Hamming, or Shepp-

Logan filters are proposed to preserve small features in the image while attenuating high-frequency 

noise.  

 

Figure 2.4   The Ram-Lak filter is used to approximate the ideal filter response  
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We denote 𝑔(𝑡) as the Inverse Fourier transform of 𝑃(𝜔, 𝜃)|𝜔| which is equal to the convolution 

of 𝑃𝜃(𝑡) and 𝑓(𝑡): 

𝑔(𝑡) = ∫ 𝑃(𝜔, 𝜃)|𝜔| 𝑒𝑖2𝜋𝜔𝑡 𝑑 𝜔
+∞

−∞
                                                                                                     (2.22) 

𝑔(𝑡) = 𝑃𝜃(𝑡) ⊗ 𝑓(𝑡)             (2.23)                                                                                                                

Where 𝑓(𝑡) and 𝑃𝜃(𝑡) are the inverse Fourier transform of |𝜔| and 𝑃(𝜔, 𝜃) respectively, variable 

𝑡 is the orthogonal distance from the line 𝑙𝑡,𝜃 to the origin and ⊗ is the convolution operator. After 

combining Eqs. (2.21) and (2.22), we have: 

𝜇(𝑥, 𝑦) = ∫ 𝑔(𝑡)𝑑𝜃
𝜋

0
                                                                                                                     (2.24) 

Eq. (2.24) is the Filtered Back Projection formula as it states that the value of a point (𝑥, 𝑦) in the 

spatial domain is determined by the summation of all filtered projection samples passing through 

the point (𝑥, 𝑦).  

 

2.4   Aliasing Distortion  

The distortions that occur due to undersampling of projection data or because not enough 

projection data are collected are termed the aliasing distortions. Fig. 2.5 shows parallel beam 

reconstructions of a Shepp-Logan phantom with different number of projections (K) and 256 

number of rays in each projection (N). The original image size is 256 x 256 pixels and the images 

in Fig. 2.5 are displayed on a 256 x 256 matrix.  

 

Figure 2.5   Aliasing distortion in the reconstructed images of a Shepp-Logan phantom is shown 

for different number of projections 

 

It can be proved analytically that the number of projections should be roughly 𝑁 and the number 

of rays in each projection should also be roughly 𝑁 to reconstruct a distortion-free 𝑁 × 𝑁 image. 
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Based on the Fourier Slice Theorem, each radial line in the frequency domain, such as the 𝐴𝐶 line 

shown in Fig. 2.6 is generated by one dimensional Fourier transform of the corresponding 

projection data.  

 

Figure 2.6   Frequency domain representation of parallel projection data  

 

The angular interval 𝜃 between the radial lines, if 𝐾𝑝𝑟𝑜𝑗 projections are uniformly distributed over 

180°, is given by:  

𝜃 =
𝜋

𝐾𝑝𝑟𝑜𝑗
                                                                                                                                   (2.25) 

The spatial frequency bandwidth 𝐵𝑊of each projection shown as the disk radius in Fig 2.6 is given 

by:  

𝐵𝑊 =
1

2𝜏
                                                                                                                                     (2.26) 

Where 𝜏 is the spatial sampling interval of the projections. The distance between the successive 

sampling points on the edge of the disk, the azimuthal resolution, is equal to 𝐶𝐷 and is given by  

𝐶𝐷 = 𝐵𝑊𝜃 =
1

2𝜏

𝜋

𝐾𝑝𝑟𝑜𝑗
                                                                                                              (2.27) 

The number of sampling points in the frequency domain along the line 𝐴𝐶 is equal to 𝑁𝑟𝑎𝑦 the 

number of sampling points in each projection. Therefore, distance 𝜆, the radial resolution, on the 

radial lines is:  

𝜆 =
2𝐵𝑊

𝑁𝑟𝑎𝑦
=

1

𝜏𝑁𝑟𝑎𝑦
                                                                                                                       (2.28) 

The azimuthal resolution should be roughly equal to the radial resolution in the frequency domain. 

Using Eqs. (2.27) and (2.28) we will have:  
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1

2𝜏

𝜋

𝐾𝑝𝑟𝑜𝑗
≈

1

𝜏𝑁𝑟𝑎𝑦
                                                                                                                         (2.29) 

After rearranging Eq. (2.29):  

𝐾𝑝𝑟𝑜𝑗

𝑁𝑟𝑎𝑦
≈

𝜋

2
                                                                                                                                  (2.30) 

Which indicates the number of projections should be approximately equal to the number of rays 

in each projection [C2.1].  

 

2.5   Algebraic Reconstruction Algorithms 

A large number of projections uniformly distributed over 180° or 360° are required for the Filtered 

Back Projection (FBP) method to produce an image with the accuracy desired in medical imaging. 

There are situations where it is not possible to meet these requirements.  

In these situations, the linear system (2.4) can be solved by the following iterative algorithm which 

is called Simultaneous Iterative Reconstruction Technique (SIRT), which is used to solve large 

and sparse systems [C2.6, C2.7]: 

𝜇(𝑘 + 1) = 𝜇(𝑘) + 𝜂(𝑘) 𝐴𝑇( 𝑦 − 𝐴𝜇(𝑘))                                                                                        (2.31) 

Where 𝐴 is M × N system matrix, 𝜇 represents the x-ray attenuation coefficient, 𝑦 is the sinogram 

and 𝜂(𝑘) is a symmetric positive definite matrix, with upper bounded eigenvalues to ensure the 

stability of the algorithm. In the special scalar case, the learning rate 𝜂(𝑘), should satisfy the 

constraint 0 ≤ 𝜂(𝑘) ≤ 𝜆𝑚𝑎𝑥
−1  where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of 𝐴𝑇𝐴. Generally, the 

algorithm converges faster if the learning rate is near the upper limit.  A further increase of 

convergence speed can be obtained by applying the block iterative version of the algorithm. We 

obtain the block iterative algorithms by partitioning the dataset 𝑦 into (not necessary disjoint) 

subsets St, t = 1,2,…,T. In extreme case for T = 1, Algebraic Reconstruction Technique (ART) 

which also called Kaczmarz algorithm, will be obtained. This algorithm will iterate through the 

set of equations in a periodic fashion and can be written as: 

𝜇(𝑘 + 1) = 𝜇(𝑘) + 𝜂(𝑘)
𝑦𝑖−𝑎𝑖

𝑇𝜇(𝑘)

𝑎𝑖
𝑇𝑎𝑖

𝑎𝑖 𝑖 = 𝑘 𝑚𝑜𝑑𝑢𝑙𝑒 𝑀 + 1                                                    (2.32) 

Where M is the total number of rays, 0 < 𝜂𝑘 < 2 and at each iteration, we use only one row of 𝐴 

and a corresponding component of 𝑦 successively [C2.8].   

In the special two-dimensional case, the procedure starts with an initial guess. It is projected on 

the first line, then projecting on the second line, and projecting back onto the first line and so on. 
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The iterations converge to the intersection point of the lines. If the lines are perpendicular, the 

iterations converge in two steps. In contrast, a large number of iterations are required to find a 

solution if the lines are nearly parallel. The angle between the lines has a significant impact on the 

rate of convergence [C2.1, C2.9]. 

The solution does not converge to a unique point and oscillates around the intersections of the lines 

when the system is overdetermined i.e.; there are more lines than unknowns. On the other hand, 

an infinite number of solutions are possible when the system is underdetermined i.e., there are 

fewer lines than unknowns. Suppose there is only one line then the solution is the point on the line 

which is closest to the initial point [C2.7].    

In addition to the computational efficiency, algebraic reconstruction algorithms can integrate prior 

information into the solution. For example, we know that image pixel values are nonnegative, then 

in each iteration, the negative pixel values may be set to zero. As another example, if image pixel 

values are zero outside an interest region, this information can be incorporated in the iterations.   

  

2.6   Compressed Sensing Theory 

The idea of compressed sensing is to use the low-information content of most real-life signal and 

reconstruct signal without (or with a small) degradation in quality from undersampled data by a 

non-linear reconstruction procedure [C2.10, C2.11]. In general, if you know that the signal is 

sparse or compressible in a known transform domain and undersampling causes incoherent (noise 

like) aliasing artifact, then Nyquist’s limit does not apply. In this section we briefly review CS. Let 

𝑥 be a vector of N samples of a real-valued, discrete-time random process.  

𝑥 = 𝛹𝑠 = ∑ 𝑠𝑖𝛹𝑖
𝑁
𝑖=1                                                                                                                           (2.33) 

Where 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑁] is the weight vector 𝑠𝑖 =< 𝛹𝑖 , 𝑥 > and 𝛹 = [𝛹1|𝛹2|. . . 𝛹𝑁] is an N × 

N basis matrix with 𝛹𝑖 being the ith basis column vector. Vector 𝑥 is considered K-sparse, if only 

K out of N elements of 𝑆 are non-zero. Most natural signals can approximately be considered as a 

sparse i.e., compressible because they have many non-significant (close to zero) coefficients in 

domains other than the spatial domain such as discrete cosine, wavelet or gradient domains. 

Let 𝑦 be an M-length measurement vector given by: 

𝑦 = 𝛷𝑥                                                                                                                                         (2.34) 
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Where 𝐾 < 𝑀 ≪ 𝑁 and 𝛷 is M × N measurement matrix. Eq. (2.34) is an underdetermined 

equation, so there are an infinite number of solutions that satisfy the equation. However, signal 𝑆 

can be uniquely reconstructed from M measurements if the measurement matrix Φ is properly 

designed, i.e. if 𝐴 = 𝛷𝛹 satisfies the Restricted Isometry Property (RIP) [C2.12]. In other words, 

it means that all sub-matrices of 𝐴 = 𝛷𝛹 with at most 𝐾 columns are well-conditioned. 

Exact reconstruction of 𝑠 by minimizing the 𝑙0 norm (the number of non-zero elements) is both 

numerically unstable and NP-complete. Surprisingly, the convex optimization based on the 𝑙1 

norm known as “Basis Pursuit” can exactly recover the K-sparse signal with high probability using 

(2.35) if 𝑀 ≥ 𝑐𝐾 𝑙𝑜𝑔(
𝑁

𝐾
): 

�̑� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑠‖
𝑠

1 𝑠. 𝑡. 𝑦 = 𝛷𝛹𝑠                                                                                                   (2.35) 

In practical situations, we cannot assume that 𝑦 = 𝛷𝑥 is known with arbitrary precision in presence 

of noisy data and modeling error. More appropriately, we will assume instead 𝑦 = 𝛷𝑥 + 𝑒, where 

𝑒 is an unknown perturbation bounded by a known value ‖𝑒‖2
2 < 𝜀. To be broadly applicable, the 

recovery procedure must be stable i.e. small changes in measurement vector should result in small 

changes in the reconstructed signal. As a result, a modified convex optimization (2.36) based on 

the 𝑙1 norm known as “Basis Pursuit Denoising” can recover the K-sparse signal with an error at 

most proportional to the noise level [C2.13]. 

�̑� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑠‖
𝑠

1 𝑠. 𝑡. ‖𝑦 − 𝛷𝛹𝑠‖
2

2
< 𝜀                                                                                         (2.36) 

In general, calculating RIP is NP-hard and it is only a sufficient and not necessary condition for 

the accurate recovery in CS problems. A necessary ingredient for accurate recovery in CS is 

existence of the incoherent aliasing interference in the sparse transform domain. The mutual 

coherence is a natural tool to measure incoherence. The mutual coherence is defined by: 

𝜇𝐴 = 𝑚𝑎𝑥
𝑖≠𝑗

|⟨𝑎𝑖,𝑎𝑗⟩|

‖𝑎𝑖‖‖𝑎𝑗‖
           𝑎𝑖, 𝑎𝑗 are two different columns of 𝐴 ∈ 𝑅𝑀×𝑁                                  (2.37) 

Aliasing interference between the pixels is zero i.e. the mutual coherence is zero when 𝑖 ≠ 𝑗 under 

the Nyquist sampling rate. Undersampling causes interference between the pixels i.e. the mutual 

coherence is nonzero. A nonlinear reconstruction procedure is illustrated in Fig. 2.7. The procedure 

is based on thresholding the reconstructed signal to find the strongest component, then subtracting 

the calculated aliasing interference caused by the strongest component from the reconstructed 

signal. This resulting reconstructed signal shows a reduced level of aliasing interference and make 
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it possible to threshold the previously hidden weaker components. The other signal components 

are reconstructed by repeating this procedure. 

A one-dimensional sparse signal with three nonzero samples is shown in Fig 2.7(A). A random 

Gaussian matrix (each entry i.i.d. Gaussian) is used as the measurement matrix. The number of 

measured samples is M = 22 which is less than signal length N = 32. As illustrated in Fig 2.7(C), 

in the first iteration, the reconstructed signal is similar to an additive noise (incoherent aliasing). 

In fact, it is not an additive noise but the leakage due to undersampling causes energy of each 

nonzero component of the original signal leaks into adjacent bins. This pseudo-randomness 

eliminates the inherent uncertainty which exists in the uniform sampling. The strongest component 

is selected, and its calculated interference is subtracted from the reconstructed signal. This 

procedure is iteratively repeated for three times until all signal components are recovered. As 

illustrated in Fig. 2.7(F), the reconstructed signal is identical to the original sparse signal shown in 

Fig 2.7(A). Donoho et al. proposed a fast-approximate CS reconstruction algorithm based on the 

interference cancellation model [C2.14].    

 

2.7   Compressed Sensing in X-Ray CT  

2.7.1   Sparse Features in Spatial Domain  

Accurate reconstruction of the vessel tree and simultaneously a great reduction in view-angle 

sampling can be achieved if volumetrically sparse structure of blood vessels is used to design a CS 

based iterative reconstruction algorithm [C2.15, C2.16]. 

The model shown in Eq. (2.38) used an equality constraint forcing the final image to agree with 

the available measured data and considered a smooth 𝐿𝑝=1.1 norm minimization of the voxel 

representation.  

𝑚𝑖𝑛
𝑋

‖𝑥‖𝑃
𝑃

𝑆. 𝑇. 𝑦 = 𝐴𝑋, 𝑃 = 1.1                                                                                            (2.38) 

An iterative algorithm was used for the above constrained minimization problem which was based 

on the dual coordinate ascent method. Accurate reconstructions were reported for only 4 to 15 

projections which are substantially fewer than the number of projections mentioned in standard 

CT scanning protocols.  
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(A) Sparse signal (K = 3, N = 32) 

 
(B) Signal measured by random Gaussian measurement matrix (M = 22) 

 
(C) Aliasing interference caused by undersampling  

 
(D) Reconstructed signal in the first iteration  

 
(E) Reconstructed signal in the second iteration  

 
(F) Reconstructed signal in the third iteration  

 Figure 2.7 Reconstruction of a sparse signal from random undersampling 
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2.7.2   Prior Image Constrained Compressed Sensing (PICCS)  

Some other research efforts have also been done to apply CS to dynamic CT imaging [C2.17]. In 

dynamic CT imaging, the same image slice is scanned many times to measure the object dynamic 

changes. In the PICCS method, the FBP algorithm was used to reconstruct a prior image XP from 

the union of the interleaved dynamic projection datasets. In this prior image, the static background 

objects were reconstructed without aliasing artifacts while the dynamic changes in the image were 

attenuated. The target image was sparsified by the subtraction of prior image containing the 

aliasing-free static objects from the target image. In addition, the known Total Variation (TV) 

operator was used to further sparsify the subtracted image X−XP. The following constrained 

minimization problem is the final cost function of PICCS image reconstruction algorithm:  

𝑚𝑖𝑛
𝑋

𝛼𝑇𝑉(𝑋 − 𝑋𝑝) + (1 − 𝛼)𝑇𝑉(𝑋) 𝑆. 𝑇. 𝑦 = 𝐴𝑋                                                               (2.39) 

𝑇𝑉(𝑋) has been used in the PICCS cost function with a relative weight of 1 − 𝛼 to mitigate the 

effect of potential artifacts in the prior image. 

The constrained PICCS problem (2.39) was converted to the unconstrained PICCS problem (2.40) 

to be solved by classical minimization algorithms, given that the gradient of the cost function can 

be computed [C2.18].  

𝑚𝑖𝑛
𝑋

𝛼𝑇𝑉(𝑋 − 𝑋𝑝) + (1 − 𝛼)𝑇𝑉(𝑋) + 𝜆‖𝐴𝑋 − 𝑦‖𝑙2

2
                                                                   (2.40) 

Two algorithms are commonly used to solve multivariate unconstrained minimization problem, 

Steepest Descent (SD) and Nonlinear Conjugate Gradient (NCG) which offer linear and quadratic 

rates of convergence, respectively. At each iteration, the above algorithms select a search direction 

and there are line search methods computing the size of the step to be taken in that direction. Thus, 

in [C2.18] two line searching algorithms were applied for each minimization algorithm i.e.  

backtracking (BT) line search and fast Newton-Raphson (NR) line search. Each algorithm was 

applied to the PICCS objective function (2.40) for 16 different values 𝜆 to investigate the 

convergence speed and reconstruction accuracy.  The parameter 𝛼 was set to 0.5. Based on the 

results in [C2.18], NCG–NR is the superior algorithm. 

In-vivo experimental animal studies were conducted to validate the potential advantage of PICCS 

algorithm in reducing the dose. The results indicate that PICCS can reconstruct dynamic CT 
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images accurately using 20 view angles, which corresponds to a 32-fold undersampling. The 

undersampled PICCS image is compared with the fully sampled FBP images with 642 views of 

projections in [C2.17]. The quality of reconstruction is nearly identical. 

The concept of PICCS was extended to other imaging methods using an algorithm called 

deformable Prior Image Registration, Penalized-Likelihood Estimation (dPIRPLE) [C2.19] where 

superior reconstruction accuracy was reported using this algorithm as compared to other 

conventional reconstruction methods. The idea is that the dose can be reduced using prior images 

from previous studies that contain lots of patient-specific anatomical information. However, 

patient motion results in misregistration between the prior image and the current anatomy. In 

[C2.19], a joint registration-reconstruction framework was proposed that estimates the 3D 

deformation between an unregistered prior image and the current anatomy and reconstructs the 

current anatomical image using a model-based reconstruction based on the deformed prior image. 

The main part of this framework is to use a 3D B-spline-based free-form-deformation model. The 

proposed framework was solved by alternating optimization of both the registration parameters 

and the reconstructed image.  

2.7.3   Adaptive Steepest Descent Projection On to Convex Sets (ASD-POCS)  

Another important iterative algorithm, based on compressed sensing, is the work proposed in 

[C2.20, C2.21]. This algorithm was designed for volume reconstruction from a circular cone-beam 

scan, but it can also be used in other scanning geometries. The algorithm minimizes the Total 

Variation (TV) of the reconstructed volume subject to the constraint that the voxels are non-

negative and more importantly the estimated projection data should be within a specified tolerance 

of the available measured data.  

Generally, from all images that agree with the data within tolerance 𝜀 labeled as region 𝐼(𝜀), the 

minimum TV image will be on the boundary of 𝐼(𝜀). In this algorithm, two image distances 𝑑𝑝 

and 𝑑𝑔 which are respectively the magnitudes of the change in the image due to POCS and TV-

steepest descent, control the reconstruction trajectory i.e. when the current image estimate is 

outside of 𝐼(𝜀), 𝑑𝑔 is controlled to be less than 𝑑𝑝 and vice versa. The resulting image trajectory 

terminates at the optimal solution 𝑓∗ on the boundary of 𝐼(𝜀).  
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A comprehensive study of using ASD-POCS for reduced-view reconstruction of real CT data was 

carried out in paper [C2.22] to verify the performance of the algorithm in mitigating aliasing 

artifacts in non-ideal practical scenarios. In this study, data were acquired using a bench-top Cone 

Beam Computed Tomography (CBCT) system that was designed for image-guided surgery and 

radiotherapy. A spectrum of quantitative performance metrics was applied with the purpose of 

thoroughly clarifying image quality characteristics of resulting reconstructions, including image 

noise, correlation, similarity (to a ‘true’ reference image) and task-based detectability. A full 

dataset related to the anthropomorphic head phantom was collected at 960 views that are uniformly 

distributed over 2π. 60 views which are evenly distributed over 2π was extracted from the full 

dataset to be used in reconstruction of image with a pixel size of 0.045 cm. The average values of 

𝜀 per ray measurement were chosen to be about 1.7 × 10−5 in the ASD-POCS algorithm. As shown 

in [C2.22], The ASD-POCS algorithm can reconstruct detailed structures of nasal region of the 

head phantom that are only observed in the full-view reference image. 

In [C2.23], the application of ASD-POCS algorithm in low-dose micro-CT of real animal organs 

was investigated. The results show that the ASD-POCS algorithm with using only one-sixth to one 

quarter of the 360-view data currently used in typical micro-CT imaging, can reconstruct images 

with quality comparable to that obtained with conventional algorithms. The image-quality 

evaluation was performed by different methods such as visualization-based, quantitative-metric-

based, and task-specific evaluation. For example, the segmentation-based evaluation which is one 

form of task-specific evaluation was carried out by separating the voxels representing two types of 

distinct materials i.e. contrast-enhanced blood vessels and the rest of the specimen.  

The disadvantage of ASD-POCS algorithm is that the convergence of this heuristic algorithm has 

not been demonstrated theoretically. Also, another problem with this approximate algorithm is that 

the reconstructed image depends on the parameters of the algorithm itself. More parameters make 

characterization of the algorithm more difficult. 

2.7.4   First-order algorithms for total variation based image reconstruction 

The nonsmooth regularizers such as total variation (TV) and sparsity-promoting ones based on the 

𝑙1 -norm [C2.24] are not differentiable everywhere, so, conventional gradient methods (e.g., NCG 

or SD) employs differentiable approximation (e.g., using “corner-rounding” [C2.24]) which leads 

to slow convergence [C2.25]. For solving this problem, first-order splitting based algorithms such 
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as (M)FISTA [C2.26, C2.27], and Split-Bregman-type (SB) schemes [C2.28] which can handle 

nonsmooth regularizers without corner rounding were proposed. In addition, there are other 

methods such as ADMM [C2.29] and Chambolle-Pock [C2.30, C2.31]. These algorithms are inter-

related [C2.32], but there are differences in parameterization which can have significant impact on 

convergence in practice. Split-Bregman (SB) method converges to a reasonable practically useful 

precision very fast [C2.33] and was used in reduced-view CT reconstruction algorithm [C2.34]. 

TV-based reconstruction algorithms such as SB-TV have been shown to work well when dealing 

with piecewise smooth images [C2.34], but, it may lead to unwanted staircase artifact when applied 

to images that contain textures and shading [C2.35, C2.36].  

 

2.8   Douglas-Rachford Splitting method 

Douglas-Rachford Splitting (DRS) is a simple but powerful method for distributed convex 

programming which was first proposed in [C2.37]. Much like Newton’s method which is a 

standard tool for solving unconstrained smooth minimization problems of modest size, DRS 

algorithm can be viewed as an analogous tool for non-smooth, constrained, large-scale problems. 

The algorithm solves problems in the form: 

𝑚𝑖𝑛
𝑢∈𝑅𝑛,𝑣∈𝑅𝑑

𝑓1(𝑢) + 𝑓2(𝑣) 𝑆𝑇 𝑣 = 𝐺𝑢                                                                                         (2.41) 

Where 𝐺 ∈ 𝑅𝑑×𝑛. The application of this method to the problem at hand will be described in detail 

in the next chapters. We now recall the theorem by Eckstein and Bertsekas [C2.38], in which 

convergence of Douglas-Rachford Splitting (DRS) method is shown. This theorem applies to 

problems with the form Eq. (2.41). 

Theorem (Eckstein-Bertsekas): Consider problem (2.41), where 𝑓1 and 𝑓2 are closed, proper 

convex functions, and 𝐺 ∈ 𝑅𝑑×𝑛 has full column rank. Consider arbitrary 𝜇 > 0 and 𝑣0, 𝑑0 ∈ 𝑅𝑑. 

Let 𝜂𝑘 ≥ 0, 𝑘 = 0,1, . .. and 𝜆𝑘 ≥ 0, 𝑘 = 0,1, . .. be two sequences such that: ∑ 𝜂𝑘 < ∞∞
𝑘=0  and 

∑ 𝜆𝑘 < ∞∞
𝑘=0 . Consider three sequences 𝑢𝑘 ∈ 𝑅𝑛, , 𝑣𝑘 ∈ 𝑅𝑑, and 𝑑𝑘 ∈ 𝑅𝑑, 𝑘 = 0,1, . .. that satisfy: 

𝜂𝑘 ≥ ‖𝑢𝑘+1 − (𝑎𝑟𝑔𝑚𝑖𝑛
𝑢

𝑓1(𝑢) +
𝜇

2
‖𝐺𝑢 − 𝑣𝑘 − 𝑑𝑘‖2

2)‖                                                                           (2.42) 

𝜆𝑘 ≥ ‖𝑣𝑘+1 − (𝑎𝑟𝑔𝑚𝑖𝑛
𝑣

𝑓2(𝑣) +
𝜇

2
‖𝐺𝑢𝑘+1 − 𝑣 − 𝑑𝑘‖2

2)‖                                                                        (2.43) 
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𝑑𝑘+1 = 𝑑𝑘 + 𝐺𝑢𝑘+1 − 𝑣𝑘+1                                                                                                               (2.44) 

Then, if (2.41) has a solution, the sequence {𝑢𝑘} converges, 𝑢𝑘 → 𝑢∗ where 𝑢∗ is a solution of 

(2.41). If (2.41) does not have a solution, then at least one of the sequences {𝑣𝑘} or {𝑑𝑘} diverges. 

One of the important consequences of this theorem is that it shows that it is not necessary to exactly 

solve the minimization problem in (2.42) and (2.43); as long as sequence of errors is absolutely 

summable, global convergence is not compromised. The convergence of the DRS method has been 

demonstrated theoretically so it eliminates the need to study dependence of the image on algorithm 

parameters; if the final image is the solution of the stated optimization problem the path taken in 

getting there is irrelevant. 

As discussed in [C2.39], the DRS method is more general than the other unconstrained solvers 

such as steepest descent and nonlinear conjugate gradient in the sense that the cost function does 

not need to be differentiable or finite so, this algorithm can handle 𝑙1 regularization which is used 

in Basis Pursuit Denoising optimization problem (2.36) without corner rounding technique. 

Another disadvantage of these unconstrained solvers is that they may be quite slow, especially 

when 𝜀 is very small and/or the matrix A is very ill-conditioned (because of reduced-view 

sampling) that both conditions are true in our case. The spirit of CS-style image reconstruction 

involves solving unconstraint optimization problem for small 𝜀 which is technically challenging. 

When the slowness is caused by using a small value of 𝜀, continuation schemes have been found 

quite effective in speeding up the algorithm. The idea is to use the iterative algorithm for a larger 

value of 𝜀 (which is usually fast), then decrease it in steps toward its desired value, running 

algorithm with warm start for each successive value of 𝜀. The drawback is that as 𝜀 becomes very 

small, the intermediate minimization problems become very ill-conditioned, thus causing 

numerical problems. On the other hand, DRS method can work with small value of 𝜀 without using 

continuation scheme because in addition to Lagrange term, a quadratic penalty term is also 

included in the DRS optimization cost function. In addition, DRS algorithm can perform 

distributive optimization which is useful in solving large-scale problem such as synchrotron CT 

reconstruction. Firstly, it lets you to break up a larger problem into smaller, more manageable ones 

and the smaller problems can be solved using any favorite solver. After that the algorithm 

coordinate these smaller optimization routines to cooperatively solve the primary larger problem.  
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In [C2.40], several practical problems discussed to show how DRS method or generally proximal 

operators can be used in practice. Lasso, stochastic optimization, matrix decomposition, robust 

and risk-averse optimization problems and many others, are some examples in which DRS method 

can be applied. In [C2.41], the indicator function of the constraint set is used to transfer the BPDN 

optimization problem (2.36) into an unconstrained convex composite optimization problem, and 

the DRS method is utilized to solve the resulting problem. A closed-form solution for computation 

of the proximity operator of the indicator function of the constraint set is proposed in [C2.41] when 

the system matrix 𝐴 satisfies 𝐴𝐴∗ = 𝐼. This often happens in CS when a subset of rows is randomly 

selected from an orthonormal matrix such as the discrete Fourier or cosine transforms. In [C2.42], 

the DRS method is utilized to solve a low-rank matrix approximation optimization problem which 

is constrained by the CS measurement equations. The CS measurement constraints prevent over 

smoothness. Furthermore, nonlocal similarity patches are utilized in the optimization problem to 

reduce the staircase artifacts generated in the Block-based CS reconstruction.  

Table 2.1 summarizes some advantages and disadvantages of the CT reconstructions algorithms. 

 

Table 2.1   Summary of CT reconstruction algorithms 

Algorithm Main advantage Main disadvantage 

FBP [C2.1] Accuracy problem in working with 

incomplete projection data  

Algebraic [C2.1] capable to handle incomplete 

projection data 

problem in working with  

inconsistent data   

(noisy data and modeling error) 

ASD-POCS  

[C2.20, C2.21] 

capable to handle 

inconsistent data (noisy data 

and modeling error) 

path-dependent convergence 

SD-BT, SD-NR, NCG-BT, 

NGR-NR [C2.18, C2.25] 

path-independent 

convergence 

slow to achieve convergence while 

working with non-smooth 

regularizer 

TV based First Order 

Splitting Algorithm 

 [C2.34, C2.29, C2.31, C2.36]  

fast to achieve convergence 

while working with non-

smooth regularizer 

Suffer from undesirable staircase 

artifact  
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2.9   Synchrotron CT 

2.9.1   Canadian Light Source (CLS)  

The electron source in the CLS is an electron gun that emits electrons using a hot tungsten cathode 

with a DC anode potential of 220KV. The electron gun primarily transmits electrons to the linear 

accelerator. The linear accelerator moves electrons to a maximum energy of 250 MeV. The next 

step is a booster ring in the electron path, in the booster ring, electrons get an energy boost from 

250MeV to 2.9GeV from microwaves produced by radio frequency cavities. After that, electrons 

at very near levels of the light speed are kept in the storage ring along a circular path consisting of 

vacuum chambers. In general, during linear uniform motion, electrons do not radiate, but during 

acceleration, their electric fields are rearranged which causes electromagnetic radiation. In the 

storage ring, transverse acceleration due to magnetic forces is responsible for the observed 

synchrotron radiation. Such magnetic forces come either from bending magnets or from special 

insertion device magnets like undulators and wigglers. The accelerated electrons lose their energy 

when they generate synchrotron radiation, so a superconducting radio frequency cavity is used to 

compensate for this energy loss. It maintains the electron beam to stay continuous and steady. The 

storage ring has openings that allow the radiation to escape and follow the radiation line into the 

vacuum chamber of the experimenters [C2.43].  

Synchrotron CT is a recognized technique for characterizing the inner 3D structure of the samples 

in biological and medical applications. Synchrotron-based CT has some benefits regarding the lab-

based CT. Firstly, the synchrotron monochromatic beams demonstrate temporal coherence. This 

allows the reconstructed images to be free of nonlinear beam hardening artifacts, which make it 

possible to use the linear calibration procedures [C2.44]. Secondly, the small angular divergence 

of synchrotron beams - spatial coherence - allows the spatial resolution of the reconstructed image 

to be almost determined only by the detector resolution. Thirdly, the synchrotron high brilliance 

beam makes it possible to implement a fast CT data acquisition process [C2.45]. Finally, the spatial 

coherence of the beam allows the phase-sensitive imaging techniques to be used [C2.46]. On the 

other hand, the advantages of lab-based CT are cost effectiveness, ease of use, large field of view 

and high scanning speed (scanned volume per time) [C2.47]. 
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2.9.2   X-ray Phase Contrast Imaging 

X-ray phase contrast imaging uses phase changes rather than absorption, this is particularly helpful 

in cases where imaging soft tissue samples [C2.48] or where the attenuation coefficient is too small 

between various regions in the sample [C2.49]. Phase contrast imaging can also be useful in 

biological and medical research because it is mainly based on x-ray refraction, not absorption so 

it decreases at higher energy levels less rapidly than absorption contrast imaging. As a result, 

higher energy can be used for phase contrast imaging where the absorbed radiation dose could be 

lower, thereby minimizing potential tissue damage. 

Several techniques have been developed for phase contrast imaging, such as interferometric, 

analyzer-based and propagation-based phase contrast imaging. These three techniques, at the base 

physics level, measure 𝜑, 𝛻𝜑 and 𝛻2𝜑 respectively, where 𝜑 is the x-ray phase change when it 

passes through the sample [C2.50].  

2.9.2.1   X-ray Interferometry 

Three similar crystals in the parallel arrangement act like an x-ray interferometer. After collimation 

and filtering of incident x-ray beams by a monochromator, which usually consists of additional 

one or more crystals so that only the x rays of the desired energy are reflected toward the 

interferometer, the first interferometer crystal splits the incident beam. The middle crystal works 

like a mirror, reflecting the beams to each other. The third crystal, the analyzer crystal, reunifies 

the beams. Through taking multiple interferometric images at various rotational directions of a 

sample, a three-dimensional map of the sample refractive index is reconstructed. The 

interferometer is best suited to high-resolution scanning of small samples because it requires near 

perfect crystal alignment and setup stabilization [C2.50]. 

2.9.2.2   Analyzer-Based Imaging  

In a typical Analyzer-Based Imaging (ABI) setup, synchrotron radiation coming out of a 

monochromator is almost parallel. The x-ray beams can be absorbed, scattered or refracted by 

going through a sample between the monochromator and the analyzer crystal. Refraction occurs 

because of the small variations in the sample refractive indices. X rays that emerge from the 

specimen and enter the analyzer crystal will only follow the Bragg diffraction requirement for a 

very narrow angle range, usually of a few μrad. X rays scattered throughout the specimen will fall 
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outside this range and will not be reflected. However, refracted x rays are reflected within this 

range and the reflectivity depends on the angle of incidence. This dependency is known as the 

Rocking Curve. If the analyzer crystal is perfectly aligned with the monochromator, the refracted 

x-ray beams form an image in the x-ray detector, which is like the x-ray radiograph, but its contrast 

is enhanced due to scatter rejection. Alternatively, if the analyzer crystal is detuned at a small angle 

with respect to the monochromator then there will be less reflections on x-rays refracted by a 

smaller angle and more refraction on x rays refracted by a greater angle. As a result, the detected 

image contrast is formed based on the different refraction angles in the sample.  

A detuned analyzer crystal creates an image which includes both refraction and absorption effects. 

However, pure refraction and apparent absorption images can be reconstructed by merging images 

captured on either side of the rocking curve. The pure refraction image is sensitive to the refractive 

index gradient and greatly enhance the edges between the regions with different refracting indices 

[C2.50]. 

2.9.2.3   Propagation-based Phase Contrast Imaging 

In a typical Propagation-based Phase Contrast Imaging (PPCI) or in-line holography setup, phase-

contrast images can be generated when the x-ray source provides a spatially coherent illumination. 

The experimental setup of this synchrotron-based technique is like the setup used in radiography 

i.e. synchrotron x-ray source, the sample and the detector are inline, without any optical element 

between the sample and the detector. Instead of placing the detector directly behind the sample, 

which is convenient in the conventional absorption image, it is placed in some distance from the 

sample which is often called propagation distance. As a result, the x-rays that are refracted by 

different tissues due to different refractive indices inside the sample can interfere with the 

unaffected beam on the detector. The phase contrast image formed in the detector is sensitive to 

abrupt variations of refractive indices; so, the structural boundaries between different tissues inside 

the sample are enhanced in this technique. With this capability, the synchrotron based PPCI can 

provide higher tissue contrast and spatial resolution compared with conventional x-ray CT. The 

optimal detector location depends on the size of features of interest and the x-ray wavelength 

[C2.50]. 

The image obtained based on PPCI includes effects of absorption as well as refraction, so it needs 

the phase retrieval process to extract the pure phase data. The phase retrieval process usually 
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requires at least two intensity measurements at two distinct distances between sample and detector 

[C2.51, C2.52]. Taking PPCT data at two different distances increases the scanning time and 

exposes the specimens to a higher radiation dose that might impede its biomedical applications. 

2.9.3   Synchrotron CT Reconstruction   

The conventional methods of phase contrast computed tomography reconstruction can be divided 

into two main categories. Filtered Back Projection and Algebraic Iterative Algorithms [C2.53].  

Three software programs (NRecon1, PITRE2 and HPITRE3) are commonly used for the phase 

contrast computed tomography reconstruction in biomedical application [C2.54]. Basically, these 

software programs use the FBP algorithm, but include various filters to generate the required image 

reconstruction. The reconstruction of the phase contrast computed tomography requires the 

adjustment of certain settings and criteria for a given dataset. The following parameters have been 

adjusted either with the above listed software programs or in combination with other software. 

These may include dark and flat-field calibration, phase retrieval for propagation-based phase-

contrast imaging, diffraction-enhanced phase-contrast imaging information extraction, sinogram 

generation, sinogram pre-processing before reconstruction, and finally slice reconstruction which 

is based on FBP algorithm [C2.55]. The approach for phase-contrast computed tomography in this 

thesis is the direct propagation-based phase-contrast computed tomography without phase 

retrieval. In other words, in this approach one acquires a single inline phase-contrast image for 

each tomographic projection, and 2D tomograms (two-dimensional image representing a slice) are 

reconstructed from the corresponding sinogram of these projection images directly without the 

phase retrieval by means of a CT reconstruction algorithms including FBP, algebraic 

reconstruction techniques, total-variation based reconstruction methods or the proposed 

compressed sensing based slice reconstruction algorithms.   

 
1 Software for CT reconstruction (NRecon), SkyScan (Bruker-microCT), Kontich, Belgiuim 

https://www.bruker.com/service/support-upgrades/software-downloads/micro-ct.html 
2 PITRE (Phase-sensitive x-ray Image processing and Tomography REconstruction),  INFN Trieste, Trieste, Italy 

http://journals.iucr.org/s/issues/2012/05/00/mo5035/ 

https://sites.google.com/site/rongchangchen/ 
3 HPITRE (High performance Phase-sensitive x-ray Image processing and Tomography REconstruction),  INFN 

Trieste, Trieste, Italy 

http://journals.iucr.org/s/issues/2012/05/00/mo5035/ 

https://sites.google.com/site/rongchangchen/ 

 

https://www.bruker.com/service/support-upgrades/software-downloads/micro-ct.html
http://journals.iucr.org/s/issues/2012/05/00/mo5035/
https://sites.google.com/site/rongchangchen/
http://journals.iucr.org/s/issues/2012/05/00/mo5035/
https://sites.google.com/site/rongchangchen/
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3.   Compressed Sensing based Reduced-view Image Reconstruction 

      from Simulated Synchrotron CT Data 

Published as: Melli, Seyed Ali, Khan A. Wahid, Paul Babyn, James Montgomery, Elisabeth 

Snead, Ali El-Gayed, Murray Pettitt, Bailey Wolkowski, and Michal Wesolowski. "A compressed 

sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase 

contrast computed tomography." Nuclear Instruments and Methods in Physics Research Section 

A: Accelerators, Spectrometers, Detectors and Associated Equipment 806 (2016): 307-317. 

In the previous chapter, analytical and algebraic reconstruction methods which are often used in 

the commercial CT scanners are discussed. These methods have acceptable performance when 

there are a large number of closely sampled projections over the scanning angular range, otherwise, 

artifacts will occur in the reconstructed image. Therefore, compressed sensing-based algorithm 

such as ASD-POCS, PICCS and Split-Bregman-type (SB) schemes are discussed to recover 

images from highly undersampled data.  

The manuscript included in this chapter proposes a compressed sensing based reduced-view image 

reconstruction algorithm to reconstruct the tomographic image from simulated synchrotron CT 

data. The goal is to suppress the aliasing artifacts that appear in the image because of the reduction 

of the number of projections. Poor conditioning of reduced-view synchrotron CT projection matrix 

and the processing of large synchrotron CT data are numerical challenges which are addressed in 

this study. Total variation regularization and a combination of Douglas-Rachford Splitting and 

randomized Kaczmarz methods are used to solve these numerical issues. Visual and quantitative 

performance evaluations of a reconstructed abdomen phantom and a reconstructed slice of a canine 

prostate tissue demonstrate the effectiveness of the proposed algorithm compared to other existing 

algorithms. 

The student (first author) designed the algorithm, processed the raw data, performed the numerical 

simulation, interpreted the results, designed the figures and wrote the manuscript, K. A. Wahid 

and, P. Babyn provided equal supervision effort. Other authors were involved in collection of 

synchrotron data at the Canadian Light Source, including the methods used to collect the data and 

the technical analyses supporting the quality of the measurements.  
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A compressed sensing-based reconstruction algorithm for 

synchrotron source propagation-based X-ray phase contrast 

computed tomography 

 

Ali Melli, Khan A. Wahid, Paul Babyn, James Montgomery, Elisabeth Snead, Ali El-Gayed, 

Murray Pettitt, Bailey Wolkowski, Michal Wesolowski 

 

Abstract 

Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly 

used in pre-clinical imaging. However, it typically requires a large number of projections, and 

subsequently a large radiation dose, to produce high quality images. To improve the applicability 

of this imaging technique, reconstruction algorithms that can reduce the radiation dose and 

acquisition time without degrading image quality are needed. The proposed research focused on 

using a novel combination of Douglas-Rachford Splitting and randomized Kaczmarz algorithms 

to solve large-scale total variation based optimization in a compressed sensing framework to 

reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative 

performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-

vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in 

reconstruction process compared with other well-known algorithms. An additional potential 

benefit of reducing the number of projections would be reduction of time for motion artifact to 

occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce 

the required number of projections in synchrotron source propagation-based X-ray phase contrast 

computed tomography is an effective form of dose reduction that may pave the way for imaging 

of in-vivo samples.  

 

Index terms 

synchrotron source imaging; propagation-based X-ray phase contrast computed tomography; 

compressed sensing; low X-ray dose computed tomography reconstruction algorithm. 
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3.1   Introduction 

One limitation of conventional x-ray Computed Tomography (CT) is that the tissue attenuations 

of soft tissue structures are similar in hard x-rays and these tissues cannot be examined without 

using iodine. For example, conventional x-ray CT cannot discriminate minor differences in tissue 

density/variation which occurs in the early stages of prostate cancer [C3.1]. To address this issue, 

X-ray Phase Contrast Computed Tomography (XPC-CT) [C3.2, C3.3] has been utilizing the 

change in phase of x-ray beams as they pass through a sample rather than solely relying on the 

amplitude attenuation, as is the case with conventional x-ray CT. The phase sensitivity to mild 

density variation in the soft tissues is three orders of magnitude higher than the amplitude 

sensitivity at 10-100 keV range [C3.4]. Therefore, XPC-CT has an improved ability to differentiate 

amongst different soft tissue structures without need for exogenous contrast. 

There are several experimental setups available to generate x-ray phase contrast images. Among 

them, propagation-based XPC-CT (also known as “in-line holography”) has a simple setup with 

high spatial resolution (a few tens of microns) and low dose capability. Some encouraging results 

have been reported for the application of this technique in clinical experiments [C3.5]. Phase-

contrast images can be generated with this technique when the x-ray source provides a spatially 

coherent illumination [C3.6]. Propagation-based XPC-CT techniques have been developed with 

synchrotrons sources as they provide spatially coherent high brilliance radiation [C3.7, C3.8]. The 

experimental setup of this synchrotron-based technique is like the setup used in radiography i.e. 

synchrotron x-ray source, the sample and the detector are inline, without any optical element 

between the sample and the detector. Instead of placing the detector directly behind the sample, 

which is convenient in radiography, it is placed in some distance from the sample (often called 

propagation distance). As a result, the x-rays that are refracted by different tissues due to different 

refractive indices inside the sample can interfere with unaffected beam on the detector [C3.9]. The 

phase contrast image formed in the detector is sensitive to abrupt variations of refractive indices; 

so the structural boundaries between different tissues inside the sample are enhanced in this 

technique [C3.10].  

With this capability, the synchrotron-based propagation-based XPC-CT can provide higher tissue 

contrast and spatial resolution of prostate images compared with conventional x-ray CT [C3.11]. 

To achieve the requisite spatial resolution, a large number of projection views (>1000) is necessary 

https://en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging#cite_note-Snigirev1995-13
https://en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging#cite_note-Wilkins1996-57
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to discriminate fine details of small structures in the sample field of view [C3.12, C3.13, C3.14]. 

This exposes the specimen to high radiation that would be detrimental when imaging a live patient 

or animal in-vivo. One approach to decrease total x-ray dose and imaging time is to reduce 

exposure time per projection which is the only parameter that can be used to control the amount 

of x-ray dose in each projection since the photon brightness of synchrotron x-ray is fixed [C3.15]. 

However, the minimum exposure time is limited by detector sensitivity and readout speed. Also, 

low exposure time generally results in lower projection signal to noise and accordingly lower 

quality of reconstructed image [C3.16]. Sparse-view imaging technique is another approach which 

can reduce the number of projections and consequently the total x-ray dose and imaging time, 

while maintaining acceptable diagnostic image quality.  

Analytical algorithms such as Filtered Back Projection (FBP) remain the standard reconstruction 

algorithm for most commercial CT scanners. When sparse-view imaging technique is used with 

this algorithm, serious aliasing artifacts, such as sharp streaks, can be observed in the reconstructed 

images [C3.17]. Unlike analytical algorithms, iterative algorithms are increasingly used for 

reconstruction of images when noisy and incomplete projection data are available [C3.18]. 

Iterative algorithms are based on solving a system of linear equations subject to the constraints 

that are obtained from prior information about the reconstructed image. A number of well-known 

iterative algorithms include: Projection onto Convex Sets (POCS) [C3.19], Maximum Likelihood 

Expectation Maximization (MLEM) [C3.20] and Adaptive Steepest Descent - Projection onto 

Convex Sets (ASD–POCS) [C3.21]. POCS, also known as the alternating projection algorithm, 

has relatively low computational complexity and is utilized to find the intersection point of two or 

more closed convex sets to solve a system of linear equations. The MLEM algorithm attempts to 

solve a system of linear equations which have non-negative coefficients in both the system matrix 

and observation vector. The ASD–POCS algorithm attempts to reconstruct the assumed non-

negative images by minimizing the total variation semi-norm in the image, subject to the constraint 

that the estimated projected data should be within a known tolerance of the acquired data.  

Recently, Compressed Sensing (CS) theory has attracted huge attention in the imaging community 

because of its ability to formulate the principles for exact recovery of signal from highly 

incomplete frequency information [C3.22, C3.23]. This theory is applicable to images that are 

compressible in a predefined basis/frame such as wavelet, gradient, Fourier i.e. most of the 
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transformed image pixels should be approximately zero. Use of the gradient basis such as Total 

Variation (TV) has proven advantageous for tomographic images as they have uniform tissues 

with only abrupt changes at boundaries [C3.24]. It motivates us to propose a CS-based algorithm 

to reconstruct large-scale high-resolution images from significantly reduced projection data. 

The algorithm proposed in this paper aims to recover the image from sparse-view synchrotron 

source propagation-based phase contrast data using a combination of Douglas-Rachford Splitting 

(DRS) and randomized Kaczmarz algorithms to optimize large-scale TV-based optimization in a 

compressed sensing framework. The DRS algorithm was first formulated in [C3.25] and is 

applicable to convex programming in which a large problem can be divided into smaller and easier 

to solve problems. The randomized Kaczmarz algorithm is an iterative algorithm that can be used 

to solve linear equations. One application of this algorithm in solving linear equations is illustrated 

by reconstruction of a band-limited function from non-uniform spaced sampling values in [C3.26]. 

We hypothesize that the proposed algorithm can reconstruct smooth image regions while 

preserving prominent edges at the borders of different regions better than existing reconstruction 

algorithms. 

Our proposed algorithm may also be applicable to other synchrotron-based medical imaging 

technologies including micro Computed Tomography (micro-CT) [C3.27], K-Edge Subtraction 

Computed Tomography (KES-CT) [C3.28] and Diffraction Enhanced Imaging Computed 

Tomography (DEI-CT) [C3.29] to reduce radiation dose and imaging time.  

 

3.2   Material and Methods 

3.2.1   XPC-CT data acquisition  

Phase contrast projection data were collected at the Biomedical Imaging and Therapy Bending 

Magnet (BMIT-BM) Beamline at the Canadian Light Source, Inc. (CLS) [C3.15]. This is a bend 

magnet beamline with a field strength of 1.354 T. The ring energy is 2.9 GeV and the storage ring 

current is a maximum of 250 mA operating in decay mode. The critical energy of the bend magnet 

source is 7.57 keV. The Beamline uses a Si (2,2,0) Bragg double crystal monochromator at a 

distance of 13.2 m from the source. A formalin fixed canine prostate was suspended in a plastic 
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specimen tube within Knox Gelatin4. The sample was placed on a rotating mechanical stage that 

was 25m away from the synchrotron source so that the x-ray beam can be assumed to be parallel. 

The x-ray beam energy was 30 keV. A Photonic Science VHR-90 radiation detector5 (FOP coupled 

CCD detector, 18.67 µm x 18.67 µm pixel size) was placed 5m behind the sample to allow 

propagation phase contrast imaging. The sample was then rotated over 180.096˚ and 3,751 

projections were taken, each at a rotational step size of 0.048˚. Dark and flat calibration images 

were taken before and after the tomogram projections for each 3.1 mm thick slice of the prostate 

gland under scan. The detector processed these projections in a 12-bit TIFF greyscale digital 

format.  

Synchrotron source propagation-based XPC-CT raw data requires preprocessing prior to 

reconstruction, including dark and flat field calibration, rotation center alignment and ring artifact 

correction. These modifications should be done before application of the reconstruction algorithm 

[C3.30]. NRecon developed in Bruker microCT6 [C3.31] and PITRE (Phase-sensitive X-ray Image 

processing and Tomography REconstruction) [C3.32] are two commercial software systems used 

at the Canadian Light Source to preprocess raw data and reconstruct tomographic images. PITRE 

offers parallel-beam tomographic reconstruction for phase contrast CT data. In this program, dark 

and flat field calibration is performed on the projections. After sinogram generation, PITRE 

implements image cutting, extended field of view CT data conversion, ring artifacts correction and 

rotation center alignment. On the other hand, NRecon is a general-purpose and easy to use 

software. It does not support some preprocessing tasks which are required for preparation of 

synchrotron CT raw data for reconstruction; for example, the software does not implement dark 

and flat field calibration. Consequently, a macro plugin for ImageJ [C3.33] is used for dark and 

flat field calibration. After opening calibrated raw data in NRecon, it will automatically find the 

best settings for rotation center alignment, ring artifact correction and smoothing filter. NRecon 

needs a large number of angular projections to generate the reference image and the corresponding 

sinogram dataset for performance evaluation of different algorithms.  

 

 
4 Knox Gelatin, Associated Brands LP, Toronto, ON  
5 Photonic Science VHR90, Photonic Science, Ltd., Millham, Mountfield, UK 
6 Bruker microCT, Kontich, Belgium 
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3.2.2   Sparse View Imaging 

It is possible to reconstruct a significant (high signal to noise) 3D object from non-significant (low 

signal to noise) 2D projections, if the number of projections is large [C3.34]. In practice, the upper 

limit to the number of projections over which the dose can be fractionated is given by the 

requirement that the 2D projections have to be aligned to a common origin before a 3D 

reconstruction can be computed [C3.35]. After some trial and error, we have concluded that 

shortening the exposure time per projection to less than 100 milliseconds would lead to significant 

decrease in projection signal to noise so the requirement that the 2D projections must be aligned 

to a common origin may be violated. Each prostate requires between 6 and 12 slices to image the 

whole gland with each slice consisting of nearly 4000 projections as per Nyquist-Shannon 

sampling theory to guarantee appropriate reconstruction [C3.14, C3.36]. As a result, high total 

radiation exposure is inevitable which is harmful to live bodies. Besides, an average acquisition 

time of 60 minutes to image the whole gland tends to be too long for live bodies because motion 

artifact may occur if the sample moves during image acquisition. The compressed sensing theory 

intends to reconstruct images with a good accuracy from considerably fewer projections than 

required by the Nyquist-Shannon theory [C3.37]. The proposed compressed sensing-based method 

reduces the number of projections to proportionally decrease radiation dose as well as acquisition 

time while maintaining acceptable diagnostic contrast and spatial resolution in the reconstructed 

image.   

3.2.3   Imaging model and optimization formulation 

In the XPC-CT experiment, the collected noisy data 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑀)𝑇and the reconstructed 

image 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇, where T is the transpose of a vector, can be inferred as a discrete linear 

system: 

𝑏 = 𝐴𝑥 + 𝑛                                                                                                                               (3.1) 

Where, A represents an underdetermined 𝑀 × 𝑁 (𝑀 < 𝑁) system matrix that models a parallel x-

ray beam forward projection and 𝑛 represents zero mean additive white Gaussian noise model. 

The objective is to accurately reconstruct an image from incomplete noisy data. When 𝑀 < 𝑁, a 

unique solution of Eq. (3.1) does not exist leading to an infinite number of solutions. To solve this 

problem, regularization should be applied which outlines a weak smoothness constraint for 
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selecting a solution from a set of infinite solutions. In other words, the regularization controls the 

trade-off between fidelity to measured data and to prior information (smoothness of computed 

tomography images), so the regularized energy function to be minimized is a weighted sum of two 

functions as shown below in Eq. (3.2): 

𝐽(𝑥, 𝛼) =
1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝛼𝐽(𝑥)   With   𝛼 > 0                                                                        (3.2) 

Where the first term is the data fidelity function and the second term is the regularizing function. 

One well known regularizing function is Tikhonov function [C3.38] where the J(x) is the squared 

L2-norm (the square root of the sum of the squared pixel values, i.e. ‖𝑥‖2
2

= 𝑥1
2 + 𝑥2

2 + ⋯ +

𝑥𝑛
2 of an image. However, Tikhonov function tends to make images excessively smooth and 

poorly preserves important image characteristics, such as sharp edges. As a result, L1-norm (the 

sum of the absolute pixel values, i.e.‖𝑥‖1 = |𝑥1| + |𝑥2| + ⋯ + |𝑥𝑛| of the gradient image also 

known as total variation (TV) function [C3.39] is commonly used as the regularizing function for 

image reconstruction [C3.40]. The benefit of TV regularization over Tikhonov quadratic 

regularization is that it makes the recovered image sharper by accurately preserving the edges 

especially in piecewise smooth images and the solution is insensitive to some data values that are 

far away from others [C3.41]. 

According to the above description, let us consider a TV-based optimization problem called 

generalized Lasso [C3.42]: 

Minimize   
1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝜆‖𝐹𝑥‖1                                                                                           (3.3) 

Here, parameter λ compromises between data fidelity and regularizing function. Let 𝑥𝑖,𝑗 denote 

the pixel in the ith row and jth column of an 𝑛 × 𝑛 image 𝑥 and define the difference operators as 

follows: 

𝐹𝐻𝑖𝑗𝑥 = {
𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗

0

:
:
𝑖 < 𝑛
𝑖 = 𝑛

         𝐹𝑣𝑖𝑗𝑥 = {
𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗

0

:
:
𝑗 < 𝑛
𝑗 = 𝑛

         𝐹𝑖𝑗𝑥 = (
𝐹𝐻𝑖𝑗𝑥

𝐹𝑣𝑖𝑗𝑥
)           (3.4) 

Where, 𝐹𝐻𝑖𝑗𝑥 and 𝐹𝑣𝑖𝑗𝑥 are horizontal and vertical difference operators respectively. With this 

definition, the second term in Eq. (3.3) is called TV operator. The difficulties that arise in solving 

this optimization problem are related to non-differentiability of L1-norm ‖𝐹𝑥‖1at zero which leads 

to numerical instabilities for common gradient-based optimization algorithms. Some are related to 
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noisy data and ill-conditioning of the system matrix which causes the solution of optimization 

problem deviate strongly from noise-free solution. Lastly, optimization in large-scale makes some 

methods which use second order primal-dual interior-point inefficient and impractical.  

3.2.4   Proposed algorithm 

Our approach to solve the problem is to modify Eq. (3.3) into an equivalent constrained 

optimization problem as shown in Eq. (3.5) below:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝑥

1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝜆‖𝑧‖1 subject to 𝐹𝑥 − 𝑧 = 0                                                        (3.5) 

In order to find a global minimum of a function subject to equality constraint, an unconstrained 

optimization problem should be formed as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑧,𝑦

  𝐿𝜌(𝑥, 𝑧, 𝑦) =
1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝜆‖𝑧‖1 + 𝑦𝑇(𝐹𝑥 − 𝑧) +
𝜌

2
‖𝐹𝑥 − 𝑧‖2

2                      (3.6) 

Where, 𝑦𝑇is called the vector of dual variables and 𝜌 > 0 is called the penalty parameter [C3.43, 

C3.47]. The benefit of including the penalty term 
𝜌

2
‖𝐹𝑥 − 𝑧‖2

2 is to ensure global convergence 

which means better handling of ill-conditioned measurement. The measurement equation 𝑏 = 𝐴𝑥 

is ill-conditioned because small changes in 𝑏 or even 𝐴 may lead to large changes in solution vector 

𝑥. Defining the residual 𝑟 = 𝐹𝑥 − 𝑧 and using Eq. (3.7) that is a simple mathematic formula, Eq. 

(3.6) can be rewritten in a new form that is illustrated in Eq. (3.8) by merging the linear function 

𝑦𝑇(𝐹𝑥 − 𝑧) and quadratic function 
𝜌

2
‖𝐹𝑥 − 𝑧‖2

2, and scaling the dual variables.  

𝑦𝑇𝑟 +
𝜌

2
‖𝑟‖2

2 =
𝜌

2
(‖𝑟 + 𝑢‖2

2 − ‖𝑢‖2
2)     𝑢 =

𝑦

𝜌
                                                                       (3.7)  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝑥,𝑧,𝑢

𝐿𝜌(𝑥, 𝑧, 𝑦) =
1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝜆‖𝑧‖1 +
𝜌

2
‖𝐹𝑥 − 𝑧 + 𝑢‖2

2 −
𝜌

2
‖𝑢‖2

2                       (3.8) 

We propose to solve the minimization problem in Eq. (3.8) by applying Douglas-Rachford 

Splitting (DRS) algorithm [C3.44]. Using this algorithm, Eq. (3.8) will be decomposed into sub 

optimization problems by separately minimizing it with respect to 𝑥 and 𝑧 while assuming the 

other variable to be fixed. This method is most useful when the optimization problem with respect 

to 𝑥 and 𝑧 (i.e. Eq. (3.9) and Eq. (3.10)) can be efficiently evaluated whereas the joint minimization 
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of Eq. (3.8) is not easy to evaluate. This minimizing process is completed by a dual variable update 

operation. The sub optimization steps are given below: 

Loop 

𝑥𝑘+1 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥

  
1

2
‖𝐴𝑥 − 𝑏‖2

2 +
𝜌

2
‖𝐹𝑥 − 𝑧𝑘 + 𝑢𝑘‖2

2                                              (3.9) 

𝑧𝑘+1 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑧

  𝜆‖𝑧‖1 +
𝜌

2
‖𝐹𝑥𝑘+1 − 𝑧 + 𝑢𝑘‖2

2                                                   (3.10) 

𝑢𝑘+1 = 𝑢𝑘 + 𝐹𝑥𝑘+1 − 𝑧𝑘+1                                                                                       (3.11) 

Until stop condition is satisfied 

Where, k is a loop counter. In each of the x and z -update steps, 𝐿𝜌(𝑥, 𝑧, 𝑦) is minimized over the 

corresponding variable, using the most recent value of the other variables 𝑥, 𝑧 and 𝑢. The fixed 

terms such as 
𝜌

2
‖𝑢‖2

2 that are ineffective in finding the optimal solution are removed from sub 

optimization update steps. Structures in Eq. (3.9) and Eq. (3.10) can be utilized to find closed form 

solution or an iterative formulation to update 𝑥 and 𝑧 efficiently.   

Although 𝜆‖𝑧‖1 in Eq. (3.10) is not differentiable, sub differential calculus techniques [C3.45, 

C3.47] can be used to compute a closed form formula. The solution is an element-wise soft 

threshold formula as given below: 

𝑧𝑘+1 = 𝑆𝜆

𝜌

(𝐹𝑥𝑘+1 + 𝑢𝑘)                                                                                                        (3.12) 

Where, operator S is defined as follows: 

𝑆𝜅(𝑎) = {
𝑎 − 𝜅 𝑎 > 𝜅

0 |𝑎| ≤ 𝑘
𝑎 + 𝜅 𝑎 < −𝑘

                                                                                                      (3.13) 

This formula shrinks the vector elements toward zero without making any discontinuity.  The next 

step is to find a closed form formula to solve optimization problem in Eq. (3.9). This is a least 

square minimization problem and the solution is as follows [C3.46]: 

𝑥𝑘+1 = (𝐴𝑇𝐴 + 𝜌𝐹𝑇𝐹)−1(𝐴𝑇𝑏 + 𝜌𝐹𝑇(𝑧𝑘 − 𝑢𝑘))                                                                (3.14) 
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According to Eq. (3.14), a system of linear equations with the coefficient matrix 𝐴𝑇𝐴 + 𝜌𝐹𝑇𝐹 and 

right hand matrix 𝐴𝑇𝑏 + 𝜌𝐹𝑇(𝑧𝑘 − 𝑢𝑘) should be solved to update 𝑥.  

Here, we propose to use the randomized Kaczmarz iterative algorithm for solving large-

scale linear systems. The algorithm converges to the accurate answer without a need to inverse the 

coefficient matrix. The randomized Kaczmarz algorithm is as follows [C3.26]: 

Algorithm (Randomized Kaczmarz algorithm): Assume 𝐴𝑥 = 𝑏, 𝐴 ∈ 𝑅𝑀×𝑁 to be a system of 

linear equations and 𝑥0 be the first approximation of the final solution. We represent the rows of 

A by 𝑎1, 𝑎2, . . . , 𝑎𝑀 and let 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑀)𝑇. The iterative formula to compute the final 

solution is as follows: 

𝑥𝑘+1 = 𝑥𝑘 +
𝑏𝑟(𝑖)−⟨𝑎𝑟(𝑖),𝑥𝑘⟩

‖𝑎𝑟(𝑖)‖
2

2                                                                                                         (3.15) 

Where, 𝑟(𝑖) is randomly selected with probability proportional to ‖𝑎𝑟(𝑖)‖
2

2
 from the number set 

{1, 2 . . . M}. 

The proposed algorithm is summarized below: 

Initialize: A, b, F and 𝜌, 𝜆 > 0 

Loop 

 Compute 𝑥𝑘+1 using Eq. (3.14) with 𝑧 = 𝑧𝑘, 𝑢 = 𝑢𝑘 - randomized Kaczmarz 

 Compute 𝑧𝑘+1 using Eq. (3.12) with 𝑥 = 𝑥𝑘+1, 𝑢 = 𝑢𝑘 - soft threshold 

 Compute 𝑢𝑘+1 using Eq. (3.11) with 𝑧 = 𝑧𝑘+1, 𝑥 = 𝑥𝑘+1 and 𝑘 = 𝑘 + 1  

Until  
‖𝑥𝑘+1−𝑥𝑘‖

2

𝑀𝑎𝑥{‖𝑥𝑘‖
2

,1}
< 𝜀 (tolerance 𝜀, e.g. 10-4) 

We can now “warm start” each iteration in randomized Kaczmarz algorithm by initializing each 

iteration with solution 𝑥𝑘 which is obtained in the previous DRS iteration. See [C3.47] for further 

explanation. Therefore, the number of x-update iterations in randomized Kaczmarz algorithm 

(inner iterations) reduces to a small number while the global DRS algorithm (outer iterations) 

converges. This can provide considerable time savings. 
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The proposed algorithm was implemented using MATLAB R2014b. Element-wise soft threshold 

formula in Eq. (3.12) was implemented by “wthresh” command in the MATLAB environment. 

Randomized Kaczmarz algorithm in Eq. (3.14) was implemented by “randkaczmarz” command 

which is included in the “AIR Tools” package in MATLAB [C3.48].  

3.2.5   Assessment of image quality 

Both visual and quantitative evaluations are used to compare the performance of the proposed 

algorithm with other related algorithms. They are described in the next section. 

3.2.5.1   Quantitative based assessment 

Three quantitative metrics, Structural SIMilarity (SSIM) index, Peak Signal to Noise Ratio 

(PSNR), and Relative Error (RE) are used to evaluate the quality of reconstructed images. The 

SSIM is a degradation-based quality metric for measuring the structural similarity between two 

images and it has been proven to be consistent with human visual system [C3.49]. If 𝜌 and 𝑡 are 

two local image windows selected from the same position of two input images, SSIM can be 

calculated as:  

𝑆𝑆𝐼𝑀( 𝜌, 𝑡) =
2𝜇𝜌𝜇𝑡+𝐶1

𝜇𝜌
2 +𝜇𝑡

2+𝐶1
.

2𝜎𝜌𝜎𝑡+𝐶2

𝜎𝜌
2+𝜎𝑡

2+𝐶2
.

𝜎𝜌𝑡+𝐶3

𝜎𝜌𝜎𝑡+𝐶3
                                                                           (3.16) 

Where, 𝜇𝜌 and 𝜇𝑡 are the averages, 𝜎𝜌 and 𝜎𝑡 are the standard deviations and 𝜎𝜌𝑡 is the covariance 

of the local windows. 2𝐶3 = 𝐶2, 𝐶1 are constants to stabilize division. The overall SSIM index is 

calculated by averaging the SSIM map along the entire image. A higher SSIM index indicates 

superior image quality.  

The PSNR is an error sensitive quality metric used to estimate reconstruction accuracy and is 

defined as follows: 

𝑃𝑆𝑁𝑅(𝑑𝑏) = 10 𝑙𝑜𝑔10 (
𝑃𝑒𝑎𝑘2

𝑀𝑆𝐸
)                                                                                             (3.17) 

Where, Peak is the highest pixel value, e.g. in the case of 12-bit pixel representation, it is 1023; 

MSE is the mean square error between the reconstructed and reference images.  

Lastly, Relative error between a reconstructed and reference image is defined as follows:  
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𝑅𝐸(%) =
‖𝑥𝑟𝑒𝑓−𝑥𝑟𝑒𝑐‖

2

‖𝑥𝑟𝑒𝑓‖
2

× 100                                                                                                 (3.18) 

3.2.5.2   Visual Assessment 

The images were reconstructed by five different algorithms at four different sampling rates of 

projected data. In addition to comparison of these reconstructed images, enlarged regions of 

interest from these images were also compared with the corresponding region of interest from 

reference image to visually assess the reconstruction process. 

 

3.3   Experimental Results and Discussion 

The proposed algorithm along with four existing methods were used to reconstruct a synthetic 

abdomen phantom image and a 3.1 mm thick single transverse slice of a canine prostate. In both 

cases, the reconstruction algorithms were implemented at different number of projected data that 

are uniformly extracted from a full dataset. MATLAB R2014b software was used to implement 

the algorithms on a Desktop PC with Intel® Xeon® CPU 2GHz processor and 32GB memory.   

3.3.1   Reconstructed images of synthetic abdomen phantom  

A noise-free synthetic abdomen phantom [C3.50] is used as the first experiment because it covers 

large and small structures. The size of this phantom image is 512×512 pixels. Five images were 

reconstructed using FBP, POCS, MLEM, ASD-POCS and the proposed algorithm where equally 

spaced 7%, 10%, 20% and 40% of the full dataset have been used. Fig. 3.1 shows the reference 

image compared with reconstructed images using 20% (72 views) of the full dataset. As it is 

evident from Fig. 3.1, the proposed algorithm is able to perfectly reconstruct the phantom image 

using only 20% of projected data. Fig. 3.2 shows structure similarity index maps for four 

algorithms so that a pixel-by-pixel comparison can be performed. The SSIM map was not shown 

for the proposed algorithm because the reconstruction is almost perfect for this algorithm. The 

enlarged image areas are shown in Fig. 3.3 to better illustrate the quality of the reconstructed 

images. As shown in Figs. 3.1, 3.2 and 3.3, FBP reconstructs detailed (high spatial frequency) 

features such as edges better than POCS and MLEM; however, the POCS and MLEM algorithms 

can better recover smooth (low spatial frequency) regions and suppress streak artifacts generated 

by incomplete projected data relative to images reconstructed with FBP. Also, ASD-POCS and 
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the proposed algorithm can recover prominent edges and simultaneously reduce or completely 

remove streak artifacts which means that these two algorithms are more successful in forming 

artifact-resolution trade-off than FBP, POCS and MLEM algorithms.  

Table 3.1 shows the quality metrics for different number of projected data. To better illustrate the 

effectiveness of the proposed algorithm, the quality metrics are plotted and shown individually in 

Fig. 3.4. It can be seen from Table 3.1 and Fig. 3.4 that the proposed algorithm has lower 

reconstruction error and higher structural similarity to the reference image compared with other 

algorithms. This advantage is the result of combination of the total variation regularizer which is 

well suited to piecewise smooth images with DRS and randomized Kaczmarz algorithm. 

3.3.2   Reconstructed images of ex-vivo canine prostate 

The proposed algorithm was used to reconstruct a 3.1 mm thick single transverse slice of an ex-

vivo canine prostate. The raw data were collected at the Canadian Light Source by the Prostate 

Imaging Research Group. A reference image is reconstructed by SkyScan NRecon package using 

all 3,751 projections. The size of the image is 2500×2500 pixels. Like before, five images were 

then reconstructed by FBP, POCS, MLEM, ASD-POCS and the proposed algorithm using equally 

spaced 20%, 30%, 40% and 50% of the full dataset. Figs. 3.5, 3.6 and 3.7 show the visual 

comparison among the reference image and reconstructed images using 20% (750 views) and 50% 

(1875 views) of full dataset. Table 3.2 shows three quality metrics, SSIM, PSNR, RE related to 

different percentages of the projected data. To make clear the advantage of the new proposed 

algorithm, the quality metrics are plotted separately and shown in Fig. 3.8. Each quality metric is 

sensitive to a different aspect of image quality and it is shown that the proposed algorithm is 

superior in all metrics compared to the existing reconstruction algorithms. Fig. 3.9 shows the 

horizontal intensity profile of images reconstructed by the proposed algorithm and other 

algorithms. These graphs show that the intensity profile of the proposed algorithm was much closer 

to the reference image intensity profile in non-edge and specifically in edge regions demonstrating 

its ability to produce superior quality edges.   
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Table 3.1   Quality metrics of reconstructed synthetic abdomen phantom 

Data 

Percentage 
7%   

 
10%   

 
20%   

 
40%   

Method SSIM RE%  PSNR   SSIM RE% PSNR  SSIM RE% PSNR  SSIM RE% PSNR 

Proposed 0.97 0.93 50.64  1 0.05 74.78  1 0.02 82.60  1 0.01 84.83 

FBP 0.12 34.96 19.18  0.14 29.19 20.75  0.27 16.57 25.67  0.55 9.6 30.41 

POCS 0.82 13.28 27.59  0.84 11.59 28.77  0.89 9.82 30.21  0.93 9.21 30.77 

MLEM 0.88 11.44 28.89  0.89 9.39 30.60  0.91 6.98 33.17  0.96 5.54 35.17 

ASDPOCS 0.88 10.8 29.39  0.93 7.32 32.76  0.96 4.6 36.80  0.98 2.6 41.75 

 

 
A) Reference 

 
B) Proposed 

 
C) MLEM 

 
D) FBP 

 
E) POCS 

 
F) ASD-POCS 

Figure 3.1   Reconstructed synthetic abdomen phantom images with 20% of projected data 

 

 
A) MLEM  

 
B) FBP  

 
C) POCS  

 
D) ASD-POCS  

Figure 3.2   SSIM index map of images reconstructed with 20% of projected data 



50 
 

 
A) Reference 

 
B) Proposed 

 
C) MLEM 

 
D) FBP 

 
E) POCS 

 
F) ASD-POCS 

Figure 3.3   Enlarged region of interest in Fig. 3.1 

 

 
A)SSIM 

 
B)PSNR 

 
C)RE 

Figure 3.4   Phantom quality metrics vs percentage of projected data 
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One slice of these reconstructed images is shown in Fig. 3.5, the prostatic urethra is in the central 

part of image and is zoomed in Figs. 3.6 and 3.7 to better visualize performance of the various 

algorithms. The FBP reconstructed images in Figs. 3.6 and 3.7 and the line profile in Fig. 3.9 show 

a large number of pervasive streak artifacts because of the low sample rate. The resolution and 

image quality are considerably reduced due to these artifacts. As shown in Figs. 3.6 and 3.7 and 

the line profile in Fig. 3.9, in the POCS and MLEM images, the streak artifacts and noise are 

decreased, but residual artifacts are still pervasive especially in the POCS (noise and streak 

artifacts in the black background surrounding the prostate in Fig. 3.5). Moreover, blurring artifact 

is present and low contrast structures are not visible.  

Table 3.2   Quality metrics of reconstructed canine prostate images 

Sample 

Percentage 
20%   

 
30%   

 
40%   

 
50%   

Method SSIM RE%  PSNR   SSIM RE% PSNR  SSIM RE% PSNR  SSIM RE% PSNR 

Proposed 0.61 8.55 28.49  0.68 7.33 29.82  0.74 6.43 30.97  0.78 5.72 31.98 

FBP 0.38 15.52 23.31  0.53 11.09 26.23  0.54 10.64 26.59  0.70 7.31 29.85 

POCS 0.55 13.25 24.68  0.59 12.39 25.27  0.61 11.96 25.57  0.63 11.7 25.76 

MLEM 0.54 11.48 25.93  0.56 10.68 26.56  0.58 10.10 27.04  0.62 8.74 28.30 

ASD-POCS 0.60 10.49 26.72  0.66 9.09 27.96  0.70 8.27 28.78  0.73 7.73 29.37 

 

It can be seen in Table 3.2 and Fig. 3.8 that POCS and MLEM algorithms are better than FBP with 

respect to existing quality metrics at the lower sampling rate (20%). Contrary to this, FBP is more 

successful than POCS and MLEM using a higher sampling rate (50%). ASD-POCS applies total 

variation to remove streak artifacts without generation of undesirable effects but as illustrated in 

Figs. 3.6 and 3.7 a number of low frequency blocky-shaped structures are seen in the smooth 

regions. In clinical practice, these blocky-shaped structures may obscure the presence of small low 

contrast details. Finally, as demonstrated in Figs. 3.6 and 3.7 and the line profile in Fig. 3.9, the 

proposed algorithm is successful in controlling the trade-off between artifact suppression and 

spatial resolution. We can also see from Fig. 3.8 that the RE is below 10% and the PSNR is more 

than 25dB for the proposed algorithm. These results indicate that high reconstruction accuracy is 

achieved using the proposed algorithm. As well, from the SSIM value and visual observation of 

Figs. 3.6 and 3.7, one may conclude that the proposed algorithm is capable of suppressing streak 

artifacts and noise, leading to a9n image of acceptable quality from a lower number of views.  
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A) Reference 

 
B) Proposed 

 
C) MLEM 

 
D) FBP 

 
E) POCS 

 
F) ASD-POCS 

Figure 3.5   Reconstructed canine prostate slice with 20% of projected data; the corresponding 

zoomed areas are shown in Fig. 3.6 
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A) Reference 

 
C) Proposed 

 
C) MLEM 

 
D) FBP 

 
E) POCS 

 
F) ASD-POCS 

Figure 3.6   Zoomed reconstructed canine prostate slice with 20% of projected samples 

 
A) Reference 

 
B) Proposed 

 
C) MLEM 

 
D) FBP 

 
B) POCS 

 
B) ASD-POCS 

Figure 3.7   Zoomed reconstructed canine prostate slice with 50% of projected samples 
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A)SSIM 

 
B)PSNR 

 
C)RE 

Figure 3.8   Canine prostate image quality metrics vs percentage of projected data 

 

The future work is directed towards using distributed hardware (such as, cloud computing) with 

our algorithm to reconstruct images from a very large dataset which is typical in synchrotron based 

medical tomography.  
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A)FBP 

 

B)MLEM 

 

C) POCS 

 

D) ASDPOCS 

Figure 3.9 Intensity profiles (red line in Fig. 3.5) of reconstructed canine prostate images with 

20% of projected data 
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3.4   Conclusions 

The proposed research reveals the potential of total variation minimization in reconstructing 

Synchrotron source propagation-based X-ray Phase Contrast Computed Tomography (XPC-CT) 

by using a novel combination of Douglas-Rachford Splitting (DRS) and randomized Kaczmarz 

algorithms. After applying DRS to optimize this large-scale non smooth regularized model and 

using iterative randomized Kaczmarz algorithm, an optimal balance between artifact suppression 

and spatial resolution is obtained. The algorithm is applied to tomography data collected in the 

Biomedical Imaging and Therapy Bending Magnet (BMIT-BM) beamline at the Canadian Light 

Source Visual assessment and quantitative based evaluation metrics are used to show the 

superiority of the proposed algorithm with respect to a number of recognized reconstruction 

algorithms using different numbers of projections. The results show that, without compromising 

image quality, the radiation dose and imaging time can be reduced which is an important step 

towards transitioning to clinically applicable propagation-based XPC-CT.  
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4. A Compressed Sensing Algorithm for Reduced-view Image 

Reconstruction from Real Ex-vivo Synchrotron Absorption Contrast 

Micro-CT Bone Data 

Published as:  Melli, S. Ali, Khan A. Wahid, Paul Babyn, David ML Cooper, and Varun P. Gopi. 

"A sparsity-based iterative algorithm for reconstruction of Micro-CT images from highly 

undersampled projection datasets obtained with a synchrotron X-ray source." Review of Scientific 

Instruments 87, no. 12 (2016): 123701. 

In the previous chapter, a compressed sensing based reduced-view image reconstruction algorithm 

was proposed to reconstruct the tomographic image from simulated synchrotron CT data.  

The manuscript included in this chapter proposes a compressed sensing algorithm for reduced-

view image reconstruction from real ex-vivo synchrotron absorption contrast micro-CT bone data. 

The goal is to reduce the scan time by reducing the number of projections. In contrast with the 

previous chapter, where consistent simulated projection data are generated and used for the image 

reconstruction, data inconsistency caused by noisy and reduced-view projection data is addressed 

in this chapter. In addition, staircase artifact and long reconstruction time are other image 

reconstruction challenges. The gradient-based compressed sensing algorithm enforces consistency 

with the noisy and reduced-view projection data, attenuates the aliasing artifact and recover the 

spatial resolution. The post-processing 2D wavelet-based image denoising algorithm is used to 

attenuate the unwanted staircase artifact generated by the gradient-based compressed sensing 

algorithm while preserving the recovered spatial resolution. The conjugate gradient method and a 

modified back-projection operator are used to decrease the reconstruction time. Visual and 

quantitative performance assessments of a reconstructed slice of a femoral cortical bone sample 

demonstrate the superiority of the proposed algorithm compared to other existing algorithms. 

The student (first author) designed the algorithm, processed the raw data, performed the numerical 

simulation, interpreted the results, designed the figures and wrote the manuscript. K. A. Wahid 

and, P. Babyn provided equal supervision effort. David ML Cooper was involved in collection of 

synchrotron data at the Canadian Light Source, including the methods used to collect the data and 

the technical analyses supporting the quality of the measurements.   
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A sparsity-based iterative algorithm for reconstruction of Micro-CT 

images from highly undersampled projection datasets obtained with 

a synchrotron X-ray source   

    

S. Ali Melli, Khan A. Wahid, Paul Babyn, David M.L. Cooper, Varun P. Gopi 

 

Abstract 

Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is 

increasingly used for non-invasive in-vivo preclinical imaging. However, it often requires a large 

number of projections from many different angles to reconstruct high-quality images leading to 

significantly high radiation doses and long scan times. To utilize this imaging technique further 

for in-vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose 

and scan time without reduction of reconstructed image quality. This research is focused on using 

a combination of gradient-based Douglas-Rachford Splitting and discrete wavelet packet 

shrinkage image denoising methods to design an algorithm for reconstruction of large-scale 

reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality 

metrics are computed by comparing the reconstructed images with a high-dose reference image 

reconstructed from 1800 equally spaced projections spanning 180 degrees. Visual and 

quantitative-based performance assessment of a synthetic head phantom and a femoral cortical 

bone sample imaged in the Biomedical Imaging and Therapy Bending Magnet (BMIT-BM) 

beamline at the Canadian Light Source demonstrate that the proposed algorithm is superior to the 

existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the 

number of projections in synchrotron Micro-CT is an effective way to reduce overall radiation 

dose and scan time which improves in-vivo imaging protocols. 

  

Index terms 

medical imaging; synchrotron imaging; low-dose Micro-CT; image reconstruction; compressed 

sensing; 
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4.1   Introduction   

X-ray Computed Tomography (CT) is a non-invasive imaging technique where projections 

(radiographs) taken from different viewing angles are processed by a computer to reconstruct the 

cross-sectional (tomographic) image of the scanned object. After the development of the digital 

computer, the first commercial CT scanner was introduced early in the 1970s [C4.1]. Since then, 

there has been competing trends to increase scanner resolution and decrease the needed x-ray dose. 

Micro Computed Tomography (Micro-CT) scanners can provide high spatial resolution [C4.2]. 

Micro-CT using synchrotron x-ray radiation sources can provide spatial resolution between 1 and 

10 µm [C4.3]. Synchrotron beamlines generate parallel beam monochromatic x-rays in a pre-

selectable energy to eliminate cone beam and beam-hardening artifacts. Synchrotron x-rays are 

also highly intense which boosts the signal to noise ratio allowing faster scan time [C4.4, C4.5]. 

Thus, these advantages of synchrotron Micro-CT make this imaging method an important tool for 

biological research and an excellent platform for testing reconstruction algorithm improvements 

which can be ported to conventional systems.   

Traditionally, tomographic reconstruction techniques require a large number of projection views 

to reconstruct synchrotron Micro tomographic images with the fine spatial resolution necessary to 

view as much detail as possible in the sample field of view [C4.6]. This exposes the specimen to 

a large amount of x-ray radiation which can damage living specimens. This also increases scan 

time and consequently the likelihood of involuntary specimen movements so motion artifact in the 

reconstructed images will be more likely. One way to reduce overall scan time and radiation dose 

is to reduce the acquisition time for each projection, in fact, this is the only parameter that can be 

used to control the amount of synchrotron radiation at each angle as the radiation intensity is almost 

constant per projection [C4.7]. However, detector sensitivity and readout speed may not allow the 

exposure time per projection to be less than a certain value. Also, a very noisy tomographic image 

will be reconstructed in a low exposure time per projection because of the low projection signal to 

noise ratio [C4.8]. Another approach for decreasing the total scan time and radiation dose is to 

reduce the number of projections needed to reconstruct the tomographic images. Analytical 

reconstruction methods such as Filtered Back Projection (FBP) which is often used in medical CT 

scanners has acceptable performance when there are a large number of closely sampled projections 

over the scanning angular range, otherwise, aliasing artifacts will occur in the reconstructed image 
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[C4.9]. On the other hand, iterative reconstruction methods such as Projection onto Convex Sets 

(POCS) [C4.10, C4.11] can be utilized to reconstruct high-quality tomographic images when noisy 

and/or slightly reduced projection data are available. Methods based on iteratively solving linear 

tomographic equations may also fail to maintain image quality with a highly reduced number of 

projections. The reason is that when the number of projections is severely reduced, the linear 

tomographic equations will be highly ill-conditioned, and the subsequently reconstructed image 

will be highly sensitive to data noise and modeling error [C4.12].  

Lately, Compressed Sensing (CS) theory has spurred great interest in the signal-processing 

research community. Although, there is no equations that show the relationship between image 

sparsity and sufficient number of projections for tomographic image recovery in CS theory, the 

results in [C4.13, C4.14] demonstrate that a phase transition from non-recovery to recovery as 

happened in compressed sensing can also take place in sparse-view tomographic reconstruction. 

For practical large-scale tomographic reconstruction, a compressed sensing algorithm called ASD-

POCS was proposed in [C4.15, C4.16] to minimize the total variation (TV) of the image subject 

to the constraint that the estimated projection data is within a specified tolerance of the available 

data and that the values of the volume image are non-negative. In [C4.17], the application of this 

algorithm to low-dose Micro-CT of real animal organs was investigated. The problem of this 

heuristic algorithm is that the reconstructed image depends on the parameters of the optimization 

problem, which the algorithm aims to solve, and all the parameters of the algorithm itself [C4.18]. 

More parameters make characterization of the algorithm more difficult. Moreover, the nonsmooth 

regularizers such as sparsity-promoting ones based on the 𝑙1-norm are not differentiable 

everywhere, so, conventional methods (e.g., ASD-POCS) employs differentiable approximation 

(e.g., using “corner-rounding”) which leads to slow convergence [C4.19]. For solving this 

problem, in the past few years, state-of-the-arts first-order splitting based algorithms such as 

(M)FISTA [C4.20, C4.21], Split-Bregman-type (SB) [C4.22], ADMM [C4.23] and Chambolle-

Pock [C4.24, C4.25] which can handle nonsmooth regularizers without corner rounding were 

proposed. These algorithms are inter-related [C4.26], but there are differences in parameterization 

which can have significant impact on convergence in practice. Split-Bregman (SB) method 

converges to a reasonable practically useful precision quickly and was used in the reduced-view 

CT reconstruction algorithm (SpBR-TV) [C4.27]. However, total variation (TV)-based 

reconstruction algorithms such as SpBR-TV have been shown to work well when dealing with 



65 
 

piecewise smooth images, but it may lead to unwanted staircase artifact when applied to images 

that contain textures and shading [C4.28, C4.29]. 

Our proposed algorithm combines gradient-based Douglas-Rachford Splitting (DRS) and discrete 

wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of 

large-scale synchrotron Micro-CT images from a reduced number of projections. The DRS method 

is a simple but powerful method for distributed convex programming first proposed in [C4.30] for 

solutions of small-scale and easy-to-solve sub-problems which can be coordinated to find the 

solution of large-scale optimization problems. This method was used to solve the gradient-based 

large-scale compressed sensing optimization problem to reconstruct uniform regions within organs 

while preserving strong edges at organ boundaries. The discrete wavelet packet shrinkage image 

denoising was used to mitigate the effect of any potential noise in the final reconstructed image 

[C4.31]. The wavelet packet transform compacts the energy of prominent features (e.g., edges) 

which are dominant and global into a small number of coefficients with large magnitude and 

spreads the energy of noise which is sub-dominant and local into a large number of coefficients 

with small magnitude. Typically, keeping large coefficients and removing small ones reduces the 

energy of the noise [C4.32, C4.33]. 

 

4.2   Material and Methods 

4.2.1   Synchrotron Micro-CT data acquisition  

Micro-CT data were obtained from at the Biomedical Imaging and Therapy Bending Magnet 

(BMIT-BM) Beamline at the Canadian Light Source (CLS). This is a bend magnet beamline with 

a field strength of 1.354 T. The ring energy is 2.9 GeV and the storage ring current is a maximum 

of 250 mA operating in decay mode. The critical energy of the bend magnet source is 7.57 keV. 

The beamline uses a Si (2,2,0) Bragg double crystal monochromator at a distance of 13.2 m from 

the source. A block of femoral cortical bone was placed on a rotating mechanical stage that was 

26 m away from the synchrotron source so that the x-ray beam can be assumed to be parallel. 

Projection data were collected with a Hamamatsu C9300 (Hamamatsu Photonics, Hamamatsu, 

Japan) CCD camera fitted with a beam monitor with a 10 μm thick gadolinium oxysulfide 

scintillator. The white beam filtered with aluminum (6 mm) and tin (0.5 mm) was used to generate 
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a spike of x-rays in the 25–29 keV energy range. The sample was rotated through 180° in 0.1° 

steps, generating 1800 projections. An exposure time of 1 sec per frame and two-frame averaging 

was employed for each of the 1800 projections.  The optical configuration provided an effective 

pixel size of 5 μm. Dark and flat projections were taken before and after the sequential angular 

projections. The acquisition system used 12-bit TIFF greyscale digital format to save the 

calibration and tomographic data. 

4.2.2   Synchrotron Micro-CT data preprocessing  

Projection data required preprocessing before sinogram formation, including dark and flat field 

correction, projection alignment, beam power normalization and logarithm transformation. Dark 

and flat field correction compensates spatial variation in beam intensity caused by different 

detector pixel sensitivities and/or distortions in optical path and it also compensates different dark 

currents in detector pixels so that a uniform signal creates a uniform output.  Projection alignment 

was needed because it is practically difficult to exactly match specimen rotation center with the 

center of the projection images and finally beam power normalization was used to compensate the 

slight variations in the beam intensity happening over time. After logarithm transformation, the 

full sinogram dataset (1800 projections) was formed by collecting the preprocessed signal along a 

specific detector row in the 2D projection plane for all angular views along the 180° angular range 

and arranging them side by side to reconstruct the reference image. Also, the projection data was 

sampled uniformly along angular views and preprocessed to produce undersampled sinogram 

datasets which were used in the reconstruction algorithms. Ring artifact created by defective pixels 

on the detector or a small variation in filtered beam can be removed from full and undersampled 

sinogram datasets before the application of the reconstruction algorithms [C4.34]. 121 by 2791 

pixel preprocessed projection datasets which were acquired at angles 0°and 180° (initial and final 

angles) and a 270 by 2791 pixel sinogram dataset which was created by putting together the middle 

rows of the preprocessed projection data of 270 angular views along the 180° angular range, were 

shown in Fig. 1. 

 

 

 

https://en.wikipedia.org/wiki/Dark_current_(physics)
https://en.wikipedia.org/wiki/Dark_current_(physics)
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(A)  

(B) 

(C) 

Figure 4.1   (A) Projection dataset at angle 0°, (B) projection dataset at angle180°,  

(C) sinogram dataset (270 views)    
 

4.2.3   Imaging model and optimization formulation 

The basic algebraic imaging model for a 2D synchrotron X-ray Micro-CT is: 

𝑦 = 𝐴𝑢                                                                                                                                      (4.1) 

Where 𝑢 ∈ 𝑅𝑛 is a vector of image pixel values modeling spatially varying linear attenuation 

coefficient, 𝐴 ∈ 𝑅𝑚×𝑛 is the discrete radon transform [C4.11] modeling the parallel forward 

projection operator which yields noisy undersampled (𝑚 < 𝑛) sinogram dataset 𝑦 ∈ 𝑅𝑚. As 

discussed in [C4.35, C4.36, C4.37, C4.39], both sides of Eq. (4.1) can be multiplied by the FBP 

operator to form an equivalent preconditioned Eq. (4.2). The eigenvalues of square matrix 𝐹𝐴 

which is diagonally dominant with positive diagonal elements are positive and clustered closer 

together than the eigenvalues of square matrix 𝐴𝑇𝐴 [C4.37].  

𝐹𝑦 = 𝐹𝐴𝑢, 𝐹 = 𝐴𝑇𝑅                                                                                                              (4.2) 

The superscript T represents the transpose operation, 𝐴𝑇 is the discrete counterpart of the adjoint 

of the radon transform modeling the parallel back-projection operator and 𝑅 is the discrete 

counterpart of 1D convolution operator (band-limited ramp filter kernel) which is defined in the 

discrete inverse radon transform [C4.38]. To view this as an optimization problem, we must find 

a generalized squared-error function that is minimized by the solution 𝑢 given by Eq. (4.3) [C4.39]: 

𝑓1(𝑢) ≡
1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 =
1

2
(𝐴𝑢 − 𝑦)𝑇𝑅(𝐴𝑢 − 𝑦)                                                                     (4.3) 

Taking the derivative of Eq. (4.3) with respect to 𝑢 and putting it equal to zero yields Eq. (4.2). 

On the other hand, the medical tomographic images are almost uniform within the organs with 

small number of abrupt variations at the organ boundaries [C4.18], so the 2D gradient transform 

is used as the sparsifying transformation.  
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According to the CS theory, an optimization problem called generalized Lasso [C4.40, C4.41] is 

formed to search a sparse gradient image while minimizing the generalized squared-error function 

in Eq. (4.3): 

𝑚𝑖𝑛
𝑢∈𝑅𝑛

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 + 𝜆‖𝐺𝑢‖𝑙1 , 𝜆 > 0                                                                              (4.4) 

Where 𝐺 ∈ 𝑅𝑛×2𝑛 is 2D gradient operator defined in Eq. (4.5), ‖𝑥‖𝑙1
is ℓ1-norm which is defined 

as sum of the absolute pixel values and 𝜆 is the parameter which controls the trade-off between 

spatial resolution and the suppression of artifacts/noise.  

𝐺𝐻𝑖𝑗(𝑢): = {
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

0

:
:
𝑖 < √𝑛

𝑖 = √𝑛
                                     𝐺𝑣𝑖𝑗(𝑢) : = {

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

0

:
:
𝑗 < √𝑛

𝑗 = √𝑛
        

𝐺(𝑢) : = (
𝐺𝐻𝑖𝑗(𝑢)

𝐺𝑣𝑖𝑗(𝑢)
)                                                                                                                  (4.5) 

4.2.4   Proposed Reconstruction algorithm 

Consider a generalization of problem (4.4) where a regularizing function is added to a data fidelity 

function, i.e.:  

𝑚𝑖𝑛
𝑢∈𝑅𝑛

𝑓1(𝑢) + 𝑓2(𝐺𝑢)                                                                                                              (4.6) 

Where 𝑓1: 𝑅𝑛 → 𝑅 is a data fidelity function and 𝑓2: 𝑅𝑝 → 𝑅 is a regularizing function which is a 

closed, proper and convex function and 𝐺 ∈ 𝑅𝑛×𝑝 is an arbitrary linear operator.  

Our approach to solve the optimization problem (4.6) is to convert it into an equivalent constrained 

optimization problem by using variable splitting method as shown in Eq. (4.7):      

𝑚𝑖𝑛
𝑢,𝑣

𝑓1(𝑢) + 𝑓2(𝑣) 𝑆. 𝑇. 𝑣 = 𝐺𝑢                                                                                     (4.7) 

The global minima of a convex function subject to equality constraint can be found by forming an 

unconstrained optimization problem followed by a dual variable update as follows [C4.42]: 

Loop 

𝑚𝑖𝑛
𝑢,𝑣

𝑓1(𝑢) + 𝑓2(𝑣) + 𝑏𝑇(𝐺𝑢 − 𝑣) +
1

2𝜇
‖𝐺𝑢 − 𝑣‖𝑙2

2
                                                            (4.8) 
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𝑏: = 𝑏 +
1

𝜇
(𝐺𝑢 − 𝑣)                                                                                                                 (4.9) 

Until stop condition is satisfied 

Where, 𝑏 ∈ 𝑅𝑝 is the vector of dual variables, ‖𝑥‖𝑙2
 is Euclidean norm which is defined as square 

root of sum of the squared pixel values and 𝜇 > 0 is called the penalty parameter. The advantage 

of adding the penalty term  
1

2𝜇
‖𝐺𝑢 − 𝑣‖𝑙2

2  to the unconstrained formula is to guarantee the global 

algorithm convergence. 

The optimization problem (4.8) and dual variables update formula (4.9) are rewritten in a new 

form by merging the linear function 𝑏𝑇(𝐺𝑢 − 𝑣) and quadratic function 
1

2𝜇
‖𝐺𝑢 − 𝑣‖𝑙2

2  , and also 

scaling the dual variables: 

Loop 

𝑚𝑖𝑛
𝑢,𝑣

𝑓1(𝑢) + 𝑓2(𝑣) +
1

2𝜇
‖𝐺𝑢 − 𝑣 + 𝑑‖𝑙2

2
, 𝑑 = 𝜇𝑏                                                        (4.10) 

𝑑: = 𝑑 + (𝐺𝑢 − 𝑣)                                                                                                                   (4.11) 

Until stop condition is satisfied 

The optimization problem in Eq. (4.10) is solved by applying Douglas-Rachford Splitting (DRS) 

algorithm. This algorithm is helpful when the optimization problem with respect to 𝑢 and 𝑣 (Eq. 

(4.12) and Eq. (4.13)) is efficiently solved while the joint minimization of Eq. (4.10) is difficult to 

evaluate. For that reason, Eq. (4.10) is decomposed into sub-optimization problems by separately 

minimizing with respect to 𝑢 and 𝑣. These operations are followed by a dual variable update 

formula as below:  

Loop 

𝑢𝑘+1: = 𝑚𝑖𝑛
𝑢

𝑓1(𝑢) +
1

2𝜇
‖𝐺𝑢 − (𝑣𝑘 − 𝑑𝑘)‖𝑙2

2
                                                     (4.12) 

𝑣𝑘+1: = 𝑚𝑖𝑛
𝑣

𝑓2(𝑣) +
1

2𝜇
‖𝑣 − (𝐺𝑢𝑘+1 + 𝑑𝑘)‖𝑙2

2
                                                 (4.13) 

𝑑𝑘+1: = 𝑑𝑘 + (𝐺𝑢𝑘+1 − 𝑣𝑘+1)                                                                               (4.14) 

Until stop condition is satisfied 
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Where, k is a loop counter. The convergence analysis of the DRS algorithm was discussed in 

[C4.43]. It shows that it is not necessary to exactly solve the minimization problem in Eq. (C4.12) 

and Eq. (C4.13); if the sequence of errors is absolutely summable, global convergence will be 

guaranteed. Depending on the functions used in Eq. (C4.12) and Eq. (C4.13), closed form or 

iterative formulations are used to update 𝑢 and 𝑣 efficiently. If the data fidelity function 𝑓1(𝑢) is 

smooth, which is normally the case, the gradient method can be used to solve Eq. (4.12). Moreover, 

the regularizing function 𝑓2(𝑣) which is normally used in the compressed sensing reconstruction 

is a non-smooth ℓ1-norm function. In this case, sub differential calculus and proximal operator 

[C4.44] defined in Eq. (4.15) can be used to evaluate Eq. (4.13). The proximal operator 

𝐩𝐫𝐨𝐱𝑓: 𝑅𝑛 → 𝑅𝑛 of  𝑓 with parameter 𝜇 is defined by: 

𝐩𝐫𝐨𝐱𝜇𝑓(𝑤) : = 𝑚𝑖𝑛
𝑠

𝑓(𝑠) +
1

2𝜇
‖𝑠 − 𝑤‖𝑙2

2
                                                                             (4.15) 

Using this operator and smoothness of data fidelity function, the DRS algorithm equations are 

recast as follows: 

Loop 

𝑢𝑘+1: = 𝐑𝐨𝐨𝐭 (
∂𝑓1

∂𝑢
+

1

𝜇
𝐺𝑇(𝐺𝑢 − (𝑣𝑘 − 𝑑𝑘)))                                                         (4.16) 

𝑣𝑘+1: = 𝐩𝐫𝐨𝐱𝜇𝑓2
(𝐺𝑢𝑘+1 + 𝑑𝑘)                                                                                   (4.17) 

𝑑𝑘+1: = 𝑑𝑘 + (𝐺𝑢𝑘+1 − 𝑣𝑘+1)                                                                                 (4.18) 

Until stop condition is satisfied 

The described algorithmic framework is applied to Eq. (4.4). This problem has the form (4.6) with: 

𝑓1(𝑢) ≡
1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 =
1

2
(𝐴𝑢 − 𝑦)𝑇𝑅(𝐴𝑢 − 𝑦),𝑓2(𝑣) ≡ 𝜆‖𝑣‖𝑙1

                                         (4.19)  

Derivative of quadratic data fidelity function 𝑓1(𝑢) is 
∂𝑓1

∂𝑢
= 𝐴𝑇𝑅(𝐴𝑢 − 𝑦) which is used to 

instantiate Eq. (4.16). After doing some basic mathematical operations, Eq. (4.20) is derived: 

𝑢𝑘+1: = (𝐴𝑇𝑅𝐴 +
1

𝜇
𝐺𝑇𝐺)−1(𝐴𝑇𝑅𝑦 +

1

𝜇
𝐺𝑇(𝑣𝑘 − 𝑑𝑘))                                                           (4.20) 
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The linear conjugate gradient (CG) method [C4.45] is used to approximately solve this equation. 

The advantage of this method is that it can solve large-scale linear equations without a need to 

explicitly inverse the coefficient matrix.   

Definition of proximal operator, element-wise sub differential calculus and derivative of absolute 

value [C4.46] are used to instantiate Eq. (4.17). After doing some basic mathematical operations, 

Eq. (4.21) is derived:  

𝑣𝑘+1: = 𝑆𝑇𝜇𝜆(𝐺𝑢𝑘+1 + 𝑑𝑘),𝑆𝑇𝜅(𝑎) = {
𝑎 − 𝜅 𝑎 > 𝜅

0 |𝑎| ≤ 𝑘
𝑎 + 𝜅 𝑎 < −𝑘

                                                      (4.21) 

This shrinkage operator which is called soft threshold operator is extremely fast and requires only 

a few operations per element of operand.  

Additionally, the discrete wavelet packet shrinkage image denoising technique was used to 

suppress the remaining noise. Therefore, the Symlet’ 4-tap orthonormal wavelet filter bank, 

universal threshold selection rule [C4.47] and soft thresholding method were selected to be used 

in a 5-level wavelet packet decomposition and reconstruction.  

Finally, the proposed algorithm is summarized as follows:  

Initialize 𝜆 > 0, 𝜇 > 0, 𝑢 = 0, 𝑣 = 0, 𝑑 = 0, 𝑘 = 0 

Loop (𝑘: = 𝑘 + 1) 

𝑢𝑘+1: = (𝐴𝑇𝑅𝐴 +
1

𝜇
𝐺𝑇𝐺)−1(𝐴𝑇𝑅𝑦 +

1

𝜇
𝐺𝑇(𝑣𝑘 − 𝑑𝑘))                                           (4.22) 

𝑣𝑘+1: = 𝑆𝑇𝜇𝜆(𝐺𝑢𝑘+1 + 𝑑𝑘)                                                                                     (4.23) 

𝑑𝑘+1: = 𝑑𝑘 + (𝐺𝑢𝑘+1 − 𝑣𝑘+1)                                                                                (4.24) 

Until  
‖𝑢𝑘+1−𝑢𝑘‖𝑙2

‖𝑢𝑘‖𝑙2
< 𝜀  

𝑢: = 𝑊𝑃−1Γ𝐺𝑊𝑃(𝑢)                                                                                                          (4.25) 

Where the operators 𝑊𝑃 and 𝑊𝑃−1 stand for the forward and inverse discrete wavelet packet 

transformations, respectively, and  Γ𝐺  is a wavelet-domain point-wise threshold operator with a 

global threshold. 
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To decrease the convergence time, the linear conjugate gradient method should be initialized by 

solution 𝑢𝑘 obtained in the previous DRS iteration. With this initialization procedure, the number 

of iterations in CG method (inner iterations) reduces to a few numbers while the global DRS 

method (outer iterations) converges [C4.48]. 

4.2.5   Assessment of image quality 

Both reference-based quantitative and visual assessments were used to compare the performance 

of the proposed algorithm with other existing reconstruction methods. It is assumed that a high x-

ray dose image is available to be used as a reference image against which the reconstructed image 

is to be compared.  

4.2.5.1   Quantitative assessment 

Structural SIMilarity (SSIM) index is a metric for measuring the structural similarity between two 

images. If 𝜌 and 𝑡 are two local image windows selected from the same position of two input 

images, SSIM is defined as follows [C4.49]:  

𝑆𝑆𝐼𝑀( 𝜌, 𝑡) =
2𝜇𝜌𝜇𝑡+𝐶1

𝜇𝜌
2 +𝜇𝑡

2+𝐶1
.

2𝜎𝜌𝜎𝑡+𝐶2

𝜎𝜌
2+𝜎𝑡

2+𝐶2
.

𝜎𝜌𝑡+𝐶3

𝜎𝜌𝜎𝑡+𝐶3
                                                                           (4.26) 

Where, 𝜇𝜌 and 𝜇𝑡 are the averages, 𝜎𝜌 and 𝜎𝑡 are the standard deviations and 𝜎𝜌𝑡 is the covariance 

of the local windows. 2C3 = C2 and C1 are constants to stabilize division. The overall SSIM index 

is calculated by averaging the SSIM map along the entire image. A higher SSIM index indicates 

superior image quality.  

Peak Signal to Noise Ratio (PSNR) and Relative error (RE) are error sensitive quality metrics 

defined as follows: 

𝑃𝑆𝑁𝑅(𝑑𝑏) = 10 𝑙𝑜𝑔10 (
𝑃𝑒𝑎𝑘2

𝑀𝑆𝐸
)                                                                                             (4.27) 

Where, Peak is the highest pixel value, e.g. in the case of 12-bit pixel representation, it is 1023; 

MSE is the mean square error between the reconstructed and reference images.  

𝑅𝐸(%) =
‖𝑢𝑟𝑒𝑓−𝑢𝑟𝑒𝑐‖

2

‖𝑢𝑟𝑒𝑓‖
2

× 100                                                                                                 (4.28) 
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Where, 𝑢𝑟𝑒𝑐 and 𝑢𝑟𝑒𝑓 are the reconstructed and reference images which are converted into the 

column vectors.  

The SSIM index considers image degradations as perceived changes in structural information. 

Therefore, it is more consistent then PSNR and RE with human visual system because human 

visual perception is highly adapted for extracting structural information from a scene [C4.49].  

4.2.5.2   Visual Assessment 

The images which were reconstructed by the different reconstruction algorithms i.e. FBP, POCS, 

ASD-POCS, SpBR-TV and the proposed algorithm at different numbers of projections were 

visually compared with the reference image to assess the reconstruction process. 

 

4.3   Experimental Result and Discussion 

The proposed algorithm along with four existing reconstruction methods was used to reconstruct 

a synthetic FORBILD head phantom and a single transverse slice of a femoral cortical bone. In 

both cases, the reconstruction algorithms were implemented at different numbers of projections 

that were uniformly sampled from the full projection dataset. MATLAB R2014b software was 

used to implement the algorithms on a Desktop PC with six Intel® Xeon® CPU 2GHz processors 

and 32GB memory.   

4.3.1   Simulation - reconstructed images of a synthetic head phantom  

A synthetic FORBILD head phantom [C4.50] was used as the ground truth image in the first 

experiment because it has features with different sizes. The size of this phantom image is 256×256 

pixels. Five images were reconstructed by the FBP, POCS, ASD-POCS, SpBR-TV methods and 

the proposed algorithm using 15, 25, 45 and 90 projections. Table 4.1 shows the quality assessment 

metrics of reconstructed images with different numbers of projections. The proposed algorithm 

has the highest PSNR, SSIM and lowest RE with respect to other methods even when the number 

of projections is only 15. The difference in results between the proposed algorithm and the other 

methods is from the fact that FORBILD head phantom is uniform within organs and has a limited 

number of abrupt variations at the organ boundaries. This structure completely corresponds with 

the prior assumption in the proposed algorithm i.e. gradient domain sparseness. To better illustrate 
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the effectiveness of the proposed algorithm, the quality metrics were plotted individually in Fig. 

4.2. In addition, a visual comparison of the reference image with the other reconstructed images 

using 45 projections was shown in Fig. 4.3. As shown in Fig 4.3E, the aliasing artifact generated 

by incomplete projected data is obviously apparent in the image reconstructed by FBP method. 

Although the aliasing artifact is somewhat suppressed in the image reconstructed by POCS method 

(Fig. 4.3F), the blurring artifact is generated which reduced the image spatial resolution. The ASD-

POCS method recovers smooth (low spatial frequency) regions and reduces or completely removes 

aliasing artifacts in these areas but as shown in the enlarged area (Fig. 4.3C), the small (high spatial 

frequency) structures are over-smoothed. The image reconstructed by the SpBR-TV method in 

Fig. 4.3D shows that the method is successful in preserving prominent edges and at the same time 

suppressing aliasing artifact without generation of blurring artifact or over-smoothed image. 

However, this method suffers from staircase effect. On the other hand, as shown in Fig. 4.3B, the 

proposed algorithm suppresses the aliasing artifact and simultaneously almost preserve all image 

features. The enlarged image areas are shown in Fig. 4.3 to better visualize the quality of the 

reconstructed images. According to the result shown, we can conclude that the proposed algorithm 

is more successful in forming artifact suppression – spatial resolution trade-off than the other 

methods. 

 

Table 4.2   Quality metrics of reconstructed synthetic FORBILD head phantom Images 

Number of 

Projections 
15   

 
25   

 
45   

 
90   

Method SSIM RE%  PSNR   SSIM RE% PSNR  SSIM RE% PSNR  SSIM RE% PSNR 

Proposed 0.77 21.78 26.31  0.99 8.64 33.58  0.99 3.82 38.96  1 2.93 40.09 

SpBR-TV 0.66 32.88 24.35  0.90 13.11 29.77  0.92 8.96 31.57  0.99 3.28 39.12 

FBP 0.19 69.93 16.18  0.22 48.80 18.36  0.29 29.69 21.17  0.47 19.45 23.66 

POCS 0.40 44.26 20.15  0.45 36.94 20.78  0.50 27.51 21.85  0.62 19.98 23.43 

ASD-POCS 0.58 35.78 22.00  0.78 22.85 24.95  0.91 18.16 25.44  0.96 12.26 27.67 
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Figure 4.2   Synthetic FORBILD head phantom image quality metrics vs Number of projections 

 

4.3.2   Real data - reconstructed images of a femoral cortical bone 

The proposed algorithm was used to reconstruct a single 2D slice of a block of femoral cortical 

bone. A reference image with the size of 2791×2791 pixels was reconstructed by the FBP method 

using the full sinogram dataset derived from all 1800 equally spaced projections spanning 180 

degrees. Five images were reconstructed by FBP, POCS, ASD-POCS, SpBR-TV and the proposed 

algorithm using three different collections of undersampled sinogram data i.e. 5% (90 views), 10% 

(180 views) and 15% (270 views) that were uniformly sampled from the full projection dataset. 

The features of interest in these bone sections are holes (vascular canals) with different sizes.  

The images reconstructed by the FBP method in Figs. 4.5E, 4.6E and the line profiles in Figs. 4.7, 

4.8A show a pervasive aliasing artifact which is created because of insufficient numbers of 

projection. Therefore, the image quality is considerably reduced and there is a high chance that 

false features that are created by this severe artifact incorrectly identified as true holes. The image 

reconstructed by the POCS method in Figs. 4.5F, 4.6F and the line profiles in Figs. 4.7 and 4.8B 

show that the aliasing artifact is decreased but blurring artifact that is created by this method 

reduces the spatial resolution. Thus, image details such as small holes that are visible in the FBP 

reconstructed image have been hidden by the blurring artifact. However, as illustrated in Table. 

4.2 and Fig. 4.4, the POCS method is far superior to the FBP method in terms of existing quality 

metrics especially at highly incomplete projected data. 
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A) Ground Truth (256 × 256) 

 
B) Proposed (45 views) 

 
C) ASD-POCS (45 views) 

 
D) SpBR-TV (45 views) 

 
E) FBP (45 views) 

 
F) POCS (45 views) 

Figure 4.3   Reconstructed Synthetic FORBILD head phantom Images using 45 views 
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The ASD-POCS method applies total-variation operator to preserve sharp edges and 

simultaneously remove aliasing artifacts without generation of undesirable effects. As illustrated 

in Figs. 4.5C, 4.6C and the line profiles in Figs. 4.7 and 4.8C, although, this method is successful 

in suppression of aliasing artifact in the smooth regions (low-resolution features), the small 

structures (high-resolution features) of the image such as small holes are over-smoothed which 

reduces the spatial resolution. The image reconstructed by the SpBR-TV method in Figs. 4.5D, 

4.6D and the line profiles in Figs. 4.7 and 4.8D show that the method is successful in preserving 

prominent edges and at the same time suppressing aliasing artifact without generation of blurring 

artifact or over-smoothed image. However, this method leads to pervasive staircase effect which 

manifests itself as perceptually annoying artifact.  

 

Table 4.2   Quality metrics of reconstructed femoral cortical bone image 

Number of 

Projections 
90  

  
180  

  
270  

 

Method SSIM PSNR (dB)  RE (%)  SSIM PSNR (dB) RE (%)  SSIM PSNR (dB) RE (%) 

Proposed 0.6595 29.29 18.77  0.6739 30.74 14.69  0.7160 32.45 12.28 

SpBR-TV 0.6119 27.91 21.99  0.6522 29.56 16.83  0.6929 31.32 13.99 

ASD-POCS 0.5537 26.03 27.29  0.6346 28.67 18.64  0.6886 30.35 15.64 

POCS 0.4979 24.76 31.6  0.5276 26.53 23.85  0.6006 28.79 18.71 

FBP 0.1386 18.36 66.02  0.2533 22.11 39.67  0.3700 25.27 28.06 

 

 

   

Figure 4.4   Femoral cortical bone image quality metrics vs Number of projections 
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A) Reference (1800 views) 

 
B) Proposed (270 views) 

 
C) ASD-POCS (270 views) 

 
D) SpBR-TV (270 views) 

 
E) FBP (270 views) 

 
F) POCS (270 views) 

Figure 4.5   The femoral cortical bone reconstructed by the different algorithms using 15% of 

full projection data (270 views) 
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A) Reference (1800 views) 

 
B) Proposed (270 views) 

 
C) ASD-POCS (270 views) 

 
D) SpBR-TV (270 views) 

 
E) FBP (270 views)  

F) POCS (270 views) 

Figure 4.6   The zoomed regions (the white dotted boxes in Fig. 4.5) in the femoral cortical bone 

reconstructed by the different algorithms using 15% of full projection data (270 views). The 

features of interest are holes (vascular canals) with different sizes 
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Figure 4.7   Noise profiles (the white dotted lines in Fig. 4.5) in the air that surrounds the 

femoral cortical bone reconstructed by different algorithms using 15% of full projection data 

(270 views) 

 

Finally, as demonstrated in Figs. 4.5B, 4.6B and the line profiles in Figs. 4.7 and 4.8, the proposed 

algorithm is the most successful method in controlling the trade-off between aliasing artifact 

suppression and keeping spatial resolution. As shown in the zoomed area in Fig 4.6, the proposed 

algorithm reconstructed almost all the holes which are present in the reference image while 

suppressing the aliasing artifact without generation of any annoying distortion. As shown in Table 

4.2 and Fig. 4.4, the proposed algorithm has the highest PSNR and SSIM and lowest RE with 

respect to the other methods even when the number of projections is only 90. From the SSIM 

values, one can conclude that the proposed algorithm is the best algorithm in suppressing aliasing 

artifacts and the PSNR and RE values indicate that the highest reconstruction accuracy can be 

achieved using the proposed algorithm. Moreover, Fig. 4.7 shows that the noise profiles (white 

dotted line in the surrounding air shown in Fig. 4.5) of the proposed algorithm and ASD-POCS 

method are closer to the linear attenuation coefficient of air which is zero than the other methods 

noise profiles. Also, Fig. 4.8 shows that the feature profile (white dotted line in the bone section 

shown in Fig. 4.5) of the proposed algorithm is the closest profile to the reference image feature 

profile. As shown in Fig. 4.6, the vascular canal (black holes) boundaries (relatively sharp contour 

edges) inside the rather uniform bone background which are the features of interest were accurately 

recovered. However, the image reconstructed by the proposed algorithm shown in Fig. 4.6B, suffer 

from loss of structures with low contrast boundaries. To resolve this problem, number of 
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projections should be increased and/or the properties of the sparse regularization should be 

matched with the characteristics of specific samples, i.e. specific structures.  

4.3.3   Parameters selection  

The proposed algorithm will be successful in controlling the trade-off between artifact-suppression 

and spatial resolution, if the parameter λ set to a proper value. If λ is selected too low, the problem 

remains inconsistent, and if it is selected too high, the final image will be over smoothed. Based 

on our experience, the lowest reconstruction error for our datasets was obtained when 

approximately 𝜆 = 0.1𝜆𝑚𝑎𝑥 where 𝜆𝑚𝑎𝑥 is the critical value above which the solution of the 

problem is u = 0. The values of 𝜆 for bone data were chosen to be 0.1, 0.075 and 0.033 for 90, 180 

and 270-view, respectively. Also, the values of 𝜆 for synthetic phantom data were chosen to be 

0.021, 0.019, 0.016 and 0.012 for 15, 25, 45 and 90-view, respectively. The regularization 

parameter in SpBR-TV method was empirically chosen to ensure the lowest reconstruction error. 

The values of this parameter for bone data were chosen to be 6, 8 and 17 for 90, 180 and 270-view, 

respectively. Also, these values for synthetic phantom data were chosen to be 22, 27, 30 and 42 

for 15, 25, 45 and 90-view, respectively. For any regularization parameter used in the SpBR-TV 

method, there is a corresponding 𝜀 which was used in the ASD-POCS method to ensure fair 

comparison between algorithms [C4.51, C4.52]. For the ASD-POCS method, the values of 𝜀 per 

ray measurement for bone data were chosen to be 5.25 × 10−4, 2.18 × 10−4 and 8.49 × 10−5 for 

90, 180 and 270-view, respectively. Also, the values of 𝜀 per ray measurement for synthetic 

phantom data were chosen to be 1.40 × 10−3, 9.05 × 10−4, 4.47 × 10−4 and 1.06 × 10−4 for 15, 

25, 45 and 90-view, respectively.  

4.3.4   Convergence Curve 

The objective function of the unconstrained problem (4.4) and the objective function of the SpBR-

TV method [C4.22] along with the number of iterations for the bone dataset (270 projections) were 

plotted in Fig. 4.9. It shows that the proposed algorithm is faster than SpBR-TV method to 

converge to practically acceptable accuracy that is needed for the kinds of real large-scale practical 

problems we consider. The value of the penalty parameter 𝜇 can change the path taken in getting 

to the final reconstructed image, so it is involved in determining the convergence speed.  
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A) FBP  

 
B) POCS  

 
C) ASD-POCS  

 
D) SpBR-TV  

Figure 4.8   Feature profiles (the white dotted lines in Fig. 4.5) in the femoral cortical bone 

reconstructed by different algorithms using 15% of full projection data (270 views) 
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Based on our experience, the initial value of this parameter was set to 𝜇 = 0.1𝜆−1 and then we 

used a varying penalty parameter scheme discussed in [C4.53] to increase the convergence speed 

and making the performance less dependent on the initial value. The convergence speed is also 

affected by the number of linear CG method iterations. We suggest selecting it as small as possible, 

e.g., less than 10.  

 

  

Figure 4.9    Convergence curve of the proposed and SpBR-TV algorithms for bone slice with 

270 views (For better comparison, SpBR-TV objective function was multiplied by 1.5 × 10−2)  

 

Table 4.3   Reconstruction time of the reconstruction algorithms for bone slice with 270 views 

 ASD-POCS  POCS  SpBR-TV  Proposed Algorithm  FBP  

Total reconstruction time (seconds) 15435  13780 11020 4560 3.75 

Iteration time (seconds) 735  530 290 250 - 

 

The proposed algorithm reconstruction time is directly proportional to the number of projections. 

The absolute run time of wavelet denoising algorithm for a 270-projection bone dataset is 1 minute 

which can be ignored because the total absolute run time of the proposed algorithm for this dataset 

is approximately 75 minutes. The reconstruction times of the proposed and competitive algorithms 

for bone slice with 270 views are shown in Table. 4.3. The reconstruction time of the proposed 

algorithm is almost 1200 times longer than the traditional FBP method reconstruction time. 

However, the proposed algorithm reconstruction time is less than the other iterative algorithms 

reconstruction time. As shown in Table. 4.3, the proposed algorithm needs fewer number of 

iterations than SpBR-TV to converge. Thus, the total reconstruction time of the proposed algorithm 

is less than the total reconstruction time of SpBR-TV method. Each algorithm was run until the 

stopping criteria i.e. relatively small change in the final image was met (𝜀 = 10−4). 
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4.4   Conclusions 

In this article, we have developed and investigated a compressed sensing-based reconstruction 

algorithm which aims to reconstruct high-quality images from synchrotron Micro-CT datasets with 

potential for a significant reduction in the number of projections. The proposed algorithm which 

is a combination of gradient-based Douglas-Rachford Splitting and discrete wavelet packet 

shrinkage image denoising was applied to Micro-CT dataset collected in the Biomedical Imaging 

and Therapy Bending Magnet beamline at the Canadian Light Source. The algorithm solved a 

large-scale compressed sensing-based optimization problem to achieve an optimal balance 

between artifact suppression and spatial resolution. Visual and quantitative performance 

assessment metrics were used to show the potential advantage of the proposed algorithm to the 

other existing reconstruction algorithms. The results illustrated that radiation dose and scan time 

were reduced without reduction of image quality which is an important step towards improving 

in-vivo imaging protocols.  
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5. A Compressed Sensing Algorithm for Reduced-view Image 

Reconstruction from Real In-vivo Synchrotron Phase Contrast CT 

Bone Data  

Published as: Melli, S. Ali, Khan A. Wahid, Paul Babyn, David ML Cooper, and Ahmed M. 

Hasan. "A wavelet gradient sparsity-based algorithm for reconstruction of reduced-view 

tomography datasets obtained with a monochromatic synchrotron-based X-ray 

source." Computerized Medical Imaging and Graphics 69 (2018): 69-81. 

In the previous chapter, a compressed sensing algorithm was proposed for reduced-view image 

reconstruction from real ex-vivo synchrotron absorption contrast micro-CT bone data.  

The manuscript included in this chapter proposes a compressed sensing algorithm for reduced-

view image reconstruction from real in-vivo synchrotron phase contrast CT bone data. The goal is 

to reduce the radiation dose and scan time by reducing the number of projections. The in-vivo 

phase contrast projection dataset used in this chapter is noisier than the absorption contrast micro-

CT projection dataset used for the ex-vivo study proposed in the previous chapter. Furthermore, 

the number of acquired projections and the radiation exposure time per projection are less than the 

values set for the ex-vivo study. A multi-regularization constraint compressed sensing algorithm 

is proposed in this chapter to enforce consistency with the highly reduced-view and noisy 

projection data and at the same time attenuating the aliasing, staircase and ringing artifacts while 

preserving piecewise smooth regions with sharp edges, point singularities, and textures. Visual 

and quantitative-based performance assessments of reconstructed slices of a rat forelimb sample 

demonstrate the advantage of the proposed algorithm compared to other existing algorithms.  

The student (first author) designed the algorithm, processed the raw data, performed the numerical 

simulation, interpreted the results, designed the figures and wrote the manuscript. K. A. Wahid 

and, P. Babyn provided equal supervision effort. David ML Cooper was involved in collection of 

synchrotron data at the Canadian Light Source, including the methods used to collect the data and 

the technical analyses supporting the quality of the measurements.   
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reduced-view tomography datasets obtained with a monochromatic 
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Abstract 

High-resolution synchrotron computed tomography (CT) is very helpful in the diagnosis and 

monitor of chronic diseases including osteoporosis. Osteoporosis is characterized by low bone 

mass and cortical bone porosity best imaged with CT. Synchrotron CT requires a large number of 

angular projections to reconstruct images with high resolution for detailed and accurate diagnosis. 

However, this poses great risks and challenges for serial in-vivo human and animal imaging due 

to a large amount of x-ray radiation dose required that can damage living specimens. Also, longer 

scan times are associated with increased risk of specimen movement and motion artifact in the 

reconstructed images. We developed a wavelet-gradient sparsity-based algorithm to be utilized as 

a synchrotron tomography reconstruction technique allowing accurate reconstruction of cortical 

bone porosity assessed for in-vivo preclinical study which significantly reduces the radiation dose 

and scan time required while maintaining satisfactory image resolution for diagnosis. The results 

of our study on a rat forelimb sample imaged in the Biomedical Imaging and Therapy Bending 

Magnet (BMIT-BM) beamline at the Canadian Light Source show that the proposed algorithm can 

produce satisfactory image quality with more than 50 percent x-ray dose reduction as indicated by 

both visual and quantitative-based performance. 

 

Index terms 

reduced-view computed tomography reconstruction; x-ray dose reduction in high-resolution 

imaging of bone microstructure; reduction of in-vivo synchrotron-based x-ray source computed 

tomography scan time  
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5.1   Introduction 

Synchrotron X-ray Computed Tomography (CT) is an imaging technique which is progressively 

used for non-invasive in-vivo preclinical imaging [C5.1]. The benefit of synchrotron CT over 

conventional CT scanner is that x-rays generated at synchrotron beamline are almost parallel and 

monochromatic in a pre-selectable energy which eliminate cone beam and beam-hardening 

artifacts, respectively. Also, synchrotron x-rays are highly intense which boosts the signal to noise 

ratio in a much shorter scan time [C5.2, C5.3]. These benefits make this imaging method an 

important non-invasive inspection tool for the biological research.    

There are several experimental setups available to generate x-ray images. Among them, 

propagation-based phase contrast CT has a simple setup with high spatial resolution (a few tens of 

microns). Some encouraging results have been reported for the application of this technique in 

clinical experiments [C5.4]. Propagation-based phase contrast CT techniques have been developed 

with synchrotrons sources as they provide spatially coherent high brilliance radiation [C5.5, C5.6, 

C5.7]. The experimental setup of this synchrotron-based technique is like the setup used in 

radiography i.e. synchrotron x-ray source, the sample and the detector are inline, without any 

optical element between the sample and the detector. Instead of placing the detector directly behind 

the sample, which is convenient in radiography, it is placed in some distance from the sample. As 

a result, the x-rays that are refracted by different tissues due to different refractive indices inside 

the sample can interfere with unaffected beam on the detector [C5.8]. The phase contrast image 

formed in the detector is sensitive to abrupt variations of refractive indices; so the structural 

boundaries between different tissues inside the sample are enhanced in this technique [ C5.9]. 

Traditionally, synchrotron tomographic reconstruction techniques require a large number of 

projection views to reconstruct images with a sufficed spatial resolution to view as much detail as 

possible in the sample field of view [C5.10, C5.11]. This exposes the specimen to a large amount 

of x-ray radiation which can damage living specimens. Furthermore, this increases scan time and 

consequently the likelihood of involuntary specimen movements so the formation of motion 

artifact in the reconstructed images will be more likely.  

Currently, the standard reconstruction method in synchrotron CT is the Filtered Back Projection 

(FBP) algorithm, which requires a large number of projections for yielding accurate 

https://en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging#cite_note-Snigirev1995-13
https://en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging#cite_note-Wilkins1996-57
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reconstruction, otherwise, aliasing artifacts will occur in the reconstructed image. However, there 

are situations where it is not possible or undesirable to measure a large number of projections. 

Problems of this type may be amenable to solution by algebraic techniques [C5.12]. For the case 

where the data are consistent yet are not sufficient to determine a unique solution, the algebraic 

algorithm such as Projection Onto Convex Sets (POCS) [C5.13] finds the image that is consistent 

with the data and minimizes the sum-of-squares of the image pixel values. However, because of 

modeling errors and noise which is inevitable in real data, the inconsistency in linear CT projection 

equation is almost impossible to avoid [C5.14].  

Compressed sensing (CS) is a nonlinear reconstruction paradigm that has been shown of value to 

successfully reconstruct undersampled datasets using nonlinear image-reconstruction algorithms, 

provided that the images have a sparse representation in one or more domains. Progress in CS 

theory has intensified research to develop fast-convergent solvers for the large-scale CT 

reconstruction problems which are required in practice. Therefore, a CS- based algorithm called 

ASD-POCS was proposed in [C5.15, C5.16] to minimize the Total Variation (TV) of the image 

subject to the constraint that the estimated projection data is within a specified tolerance of the 

available data and that the values of the volume image are not negative. A comprehensive study 

using ASD-POCS for reduced-view reconstruction of real CT data was carried out in [C5.17]. 

Also, in [C5.18], the application of this algorithm in low-dose micro-CT of real animal organs was 

investigated. The results show that the ASD-POCS algorithm using only one-sixth to one-quarter 

of the conventional 360-view data can reconstruct images with comparable quality to that obtained 

with conventional algorithms. However, the problem with this heuristic algorithm is that the final 

image depends on algorithm parameters [C5.14]. To solve this problem, in the past few years, 

state-of-the-art first-order splitting based algorithms such as FISTA [C5.19], and Split-Bregman-

type (SB) schemes [C5.20] which can handle non-smooth regularizers such as 𝑙1-norm have been 

proposed to eliminate the need to study the dependence of the final image on algorithm parameters. 

The Split-Bregman (SB) method converges to a reasonable precision very fast [C5.21] and has 

been used in reduced-view CT reconstruction algorithm [C5.22]. Although TV-based 

reconstruction algorithms such as SpBR-TV (Split Bregman - Total Variation) have been shown 

to work well when dealing with piecewise smooth images [C5.22], it may lead to unwanted 

staircase artifact when applied to images that contain textures and shading [C5.23, C5.24]. In 

contrast, 2D wavelet transform is good at capturing point singularities and small patches [C5.25], 
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thus preserving fine structures, but not as good for approximating piecewise smooth regions 

because it penalizes jumps and cause oscillations around edges known as Pseudo-Gibbs 

Phenomena [C5.26, C5.27]. Consequently, the currently proposed algorithm is based on 

combining gradient and wavelet transformation to remove the staircase and oscillations artifacts 

while preserving piecewise smooth regions with sharp edges and point singularities. Also, Prior 

Image Constrained Compressed Sensing (PICCS) reconstruction framework was proposed in 

[C5.28] to apply CS to CT imaging when we need a highly reduced-view reconstruction. PICCS 

aims to take advantage of a prior image to promote sparsity of target image. More recent 

applications of PICCS framework have focused on using it to reduce CT dose [C5.29, C5.30]. For 

these applications, a prior image is formed by spatially low-pass filtering of FBP image to generate 

a low-noise low-spatial resolution prior image.  

This research is focused on proposing a wavelet-gradient sparsity based prior image constrained 

compressed sensing algorithm to be used as a synchrotron tomography reconstruction technique. 

The PICCS framework, which is based on a low noise, low-spatial resolution prior image enforces 

consistency with the projection data to recover spatial resolution. At the same time, it suppresses 

the unwanted artifacts by using the combination of gradient and wavelet transformation. The 

Douglas-Rachford Splitting (DRS) method [C5.31] was used to minimize the optimization 

problem. This method is powerful for solving non-smooth, constrained, large-scale problems as is 

the case here. The DRS method can coordinate the solutions of small-scale and easy-to-solve sub-

problems to find the solution of a large-scale optimization problem.  

 

5.2   Material and Methods 

5.2.1   Synchrotron CT data acquisition  

CT data were obtained from the Biomedical Imaging and Therapy Bending Magnet (BMIT-BM) 

Beamline at the Canadian Light Source (CLS). The target was a rat forelimb (including the radius 

and ulna bones) which was placed on a rotating mechanical stage that was 26 m away from the 

synchrotron source so that the X-ray beam can be assumed to be parallel. Projection data were 

collected with a C4742-95 – 12HR (Hamamatsu) camera which includes a C4742-56 – 12HR CCD 

Detector. It provides an effective pixel size of 13 μm. The sample was rotated continuously with 
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a rotation velocity of 0.20 degree/sec through 0 to 180°, generating 750 projections (matrix of 

4000 × 104 pixels). The total amount of measured x-ray surface dose was 2.98 Gy. Dark and flat 

projections were taken before and after the sequential angular projections. The acquisition system 

used 12-bit TIFF grey scale digital format to save the calibration and tomographic data. 

5.2.2   Synchrotron CT data preprocessing  

Projection data required preprocessing before sinogram formation, including dark and flat field 

correction, projection alignment, beam power normalization and logarithmic transformation. Dark 

and flat field correction compensates the spatial variation in beam intensity caused by different 

detector pixel sensitivities and distortions in the optical path and it also compensates different dark 

currents in detector pixels so that a uniform signal creates a uniform output.  Projection alignment 

was needed because it is practically difficult to exactly match specimen rotation center with the 

center of the projection images and finally beam power normalization was used to compensate the 

slight variations in the beam intensity happening over time. After logarithmic transformation, 

preprocessed projections under different angles along the 180° angular range are organized side 

by side in 2D projection plane to form sinogram. Ring artifacts created by defective pixels on the 

detector or a small variation in filtered beam were removed from sinogram datasets before the 

application of the reconstruction algorithms [C5.1]. The flat field image, the dark field image, the 

projected image before pre-processing, the projected image after pre-processing and the sinogram 

after ring removal (750 views) were shown in Fig. 5.1. 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

Figure 5.1   (A and B) Flat and Dark field images, (C) Projected image before pre-processing, 

(D) Projected image after pre-processing, (E) Sinogram after ring removal (750 views)    

https://en.wikipedia.org/wiki/Dark_current_(physics)
https://en.wikipedia.org/wiki/Dark_current_(physics)
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5.2.3   Imaging model and optimization formulation 

The basic algebraic imaging model for a 2D synchrotron x-ray Micro-CT is: 

𝑦 = 𝐴𝑢 + 𝑛                                                                                                                                 (5.1) 

Where 𝑢 ∈ 𝑅𝑁 is a vector of image pixel values modeling spatially varying linear attenuation 

coefficient, 𝐴 ∈ 𝑅𝑀×𝑁is the discrete radon transform [C5.12] modeling the parallel forward 

projection operator which yields noisy undersampled (𝑀 < 𝑁) sinogram dataset 𝑦 ∈ 𝑅𝑀 and 𝑛 

represents zero mean additive white Gaussian noise model.  As discussed in [C5.32, C5.33], both 

sides of Eq. (5.1) can be multiplied by the FBP operator to form an equivalent preconditioned Eq. 

(5.2). The eigenvalues of square matrix 𝐹𝐴 which is diagonally dominant with positive diagonal 

elements are positive and clustered closer together than the eigenvalues of square matrix 𝐴𝑇𝐴 

[C5.32].  

𝐹𝑦 = 𝐹𝐴𝑢, 𝐹 = 𝐴𝑇𝑅                                                                                                              (5.2) 

The superscript T represents the transpose operation, 𝐴𝑇 is the discrete counterpart of the adjoint 

of the radon transform modeling the parallel back-projection operator and 𝑅 is the discrete 

counterpart of 1D convolution operator (band-limited ramp filter kernel) which is defined in the 

discrete inverse radon transform [C5.34]. To view this as an optimization problem, we must find 

a generalized squared-error function that is minimized by the solution 𝑢 given by Eq. (5.2) [C5.33]: 

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 =
1

2
(𝐴𝑢 − 𝑦)𝑇𝑅(𝐴𝑢 − 𝑦)                                                                                   (5.3) 

Taking the derivative of Eq. (5.3) with respect to 𝑢 and putting it equal to zero yields Eq. (5.2). 

According to the compressed sensing theory, an optimization problem called Basis Pursuit 

DeNoising (BPDN) is formed to search a prior image constrained wavelet - gradient sparse image, 

subject to a relaxed data constraint as follows [C5.35]:  

𝑚𝑖𝑛
𝑢

‖𝐺(𝑢 − 𝑢𝑝)‖
𝑙1

+ 𝛼1‖𝐺𝑢‖𝑙1
+ 𝛼2‖𝑊𝑢‖𝑙1 𝑆. 𝑇.

1

2
‖𝐴𝑢 − 𝑦‖

𝑅

2
< 𝜀                         (5.4) 

Where 𝑢𝑝 is the low noise low spatial resolution prior image obtained by filtering FBP 

reconstructed image with a 2D rotationally symmetric Gaussian smoothing kernel of size [3, 3] 

with standard deviation of 1. The difference image 𝑢 − 𝑢𝑝 contains two main high spatial 
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frequency signals: edges and noise. Since noise is not inherently sparse, it is minimized preferably 

in the reconstructed image [C5.28, C5.29]. 
1

2
‖𝐴𝑢 − 𝑦‖𝑅

2  is used to enforce consistency with the 

projection data in order to recover spatial resolution. 𝐺 ∈ 𝑅𝑁×2𝑁 is the 2D first-order anisotropic 

gradient operator defined in Eq. (5.5), 𝑊 ∈ 𝑅𝑁×𝑁consists of 2D fourth order Daubechies wavelets 

(db4) with four levels of decomposition which are orthogonal basis of wavelets characterized by 

a maximal number of vanishing moments [C5.36]. Using the combination of gradient and wavelet 

transformation suppresses the aliasing artifacts caused by insufficient number of the projections. 

‖𝑥‖𝑙1
is the ℓ1-norm to encourage sparsity, 𝛼1, 𝛼2> 0 are parameters controlling the relative 

strengths of the sparsity constraints and 𝜀 is the parameter which controls the trade-off between 

spatial resolution and the suppression of artifacts/noise.  

‖𝐺𝑢‖𝑙1
: = ∑ |𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗|𝑖,𝑗 + |𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗|                                                                           (5.5) 

5.2.4   Proposed Reconstruction Algorithm 

The constrained BPDN problem (5.4) is changed to an equivalent unconstrained problem (5.6), by 

adding the ℓ1-norm of the gradient and wavelet operators to the data fidelity term. 

𝑚𝑖𝑛
𝑢∈𝑅𝑛

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 + 𝛼3(‖𝐺(𝑢 − 𝑢𝑝)‖
𝑙1

+ 𝛼1‖𝐺𝑢‖𝑙1
+𝛼2‖𝑊𝑢‖𝑙1

)                                    (5.6) 

For any 𝜀, a solution of problem (5.4) is a null vector or a minimizer of problem (5.6) for a 

corresponding 𝛼3 > 0 [C5.37]. Our approach to solve the optimization problem (5.6) is to convert 

it into an equivalent constrained optimization problem.  

𝑚𝑖𝑛
𝑢,𝑣

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 + 𝜆1‖𝑣1‖𝑙1
+ 𝜆2‖𝑣2‖𝑙1

+ 𝜆3‖𝑣3‖𝑙1
 

𝑆. 𝑇. 𝑣1 = 𝐺(𝑢 − 𝑢𝑝), 𝑣2 = 𝐺𝑢, 𝑣3 = 𝑊𝑢                                                        (5.7) 

Where 𝜆1 = 𝛼3, 𝜆2 = 𝛼3𝛼1, 𝜆3 = 𝛼3𝛼2. The global minima of a convex function subject to 

equality constraint can be found by forming an unconstrained optimization problem followed by a 

dual variable update as follows [C5.38]: 

 

 

https://en.wikipedia.org/wiki/Moment_(mathematics)
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Initialize 𝜆1, 𝜆2, 𝜆3, 𝜇1 =
0.1

𝜆1
, 𝜇2 =

0.1

𝜆2
, 𝜇3 =

0.1

𝜆3
, 𝑢 = 0, 𝑣1, 𝑣2, 𝑣3 = 0, 𝑏1, 𝑏2, 𝑏3 = 0 

Loop  

𝑚𝑖𝑛
𝑢,𝑣1,𝑣2,𝑣3

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 + 𝜆1‖𝑣1‖𝑙1
+ 𝜆2‖𝑣2‖𝑙1

+ 𝜆3‖𝑣3‖𝑙1
+ 𝑏1𝑇

(𝐺(𝑢 − 𝑢𝑝) − 𝑣1) 

+
1

2𝜇1
‖𝐺(𝑢 − 𝑢𝑝) − 𝑣1‖

𝑙2

2
+ 𝑏2𝑇

(𝐺𝑢 − 𝑣2) +
1

2𝜇2

‖𝐺𝑢 − 𝑣2‖𝑙2

2 + 𝑏3𝑇
(𝑊𝑢 − 𝑣3) 

+
1

2𝜇3
‖𝑊𝑢 − 𝑣3‖𝑙2

2                                                                                                                     (5.8) 

𝑑1: = 𝑑1 + (𝐺(𝑢 − 𝑢𝑝) − 𝑣1) , 𝑑1 = 𝜇1𝑏1                                                                               (5.9) 

𝑑2: = 𝑑2 + (𝐺𝑢 − 𝑣2) , 𝑑2 = 𝜇2𝑏2                                                                                          (5.10) 

𝑑3: = 𝑑3 + (𝑊𝑢 − 𝑣3) , 𝑑3 = 𝜇3𝑏3                                                                                        (5.11) 

Until stop condition is satisfied 

Where 𝑏1 ∈ 𝑅2𝑁, 𝑏2 ∈ 𝑅2𝑁, 𝑏3 ∈ 𝑅𝑁 are the vectors of dual variables and 𝜇1, 𝜇2, 𝜇3 > 0 are called 

the penalty parameters. The benefit of including the quadratic penalty term is to bring robustness 

which means better handling of ill-conditioned functions. 

The optimization problem (5.8) is rewritten in a new form Eq. (5.12) by merging the linear and 

quadratic functions: 

𝑚𝑖𝑛
𝑢,𝑣1,𝑣2,𝑣3

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 + 𝜆1‖𝑣1‖𝑙1
+ 𝜆2‖𝑣2‖𝑙1 + 𝜆3‖𝑣3‖𝑙1

+
1

2𝜇1
‖𝐺(𝑢 − 𝑢𝑝) − 𝑣1 + 𝑑1‖

𝑙2

2
+

1

2𝜇2
‖𝐺𝑢 − 𝑣2 + 𝑑2‖𝑙2

2 +
1

2𝜇3
‖𝑊𝑢 − 𝑣3 + 𝑑3‖𝑙2

2                                                                     (5.12) 

The optimization problem in Eq. (5.12) is solved by applying the Douglas-Rachford Splitting 

(DRS) algorithm [C5.39]. This algorithm is helpful where optimization problems with respect to 

𝑢, 𝑣1, 𝑣2and  𝑣3 (Eqs. (5.13), (5.14), (5.15) and Eq. (5.16)) are efficiently solved while the joint 

minimization of Eq. (5.12) is difficult to evaluate. For that reason, Eq. (5.12) is decomposed into 

sub-optimization problems by separately minimizing with respect to 𝑢, 𝑣1, 𝑣2and 𝑣3. 
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𝑢: = 𝑚𝑖𝑛
𝑢

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 +
1

2𝜇1
‖𝐺(𝑢 − 𝑢𝑝) − (𝑣1 − 𝑑1)‖

𝑙2

2
+

1

2𝜇2

‖𝐺𝑢 − (𝑣2 − 𝑑2)‖𝑙2

2 + 

1

2𝜇3
‖𝑊𝑢 − (𝑣3 − 𝑑3)‖𝑙2

2                                                                                                          (5.13) 

𝑣1: = 𝑚𝑖𝑛
𝑣1

𝜆1‖𝑣1‖𝑙1 +
1

2𝜇1
‖𝑣1 − (𝐺(𝑢 − 𝑢𝑝) + 𝑑1)‖

𝑙2

2
                                                  (5.14) 

𝑣2: = 𝑚𝑖𝑛
𝑣2

𝜆2‖𝑣2‖𝑙1 +
1

2𝜇2
‖𝑣2 − (𝐺𝑢 + 𝑑2)‖𝑙2

2
                                                              (5.15) 

𝑣3: = 𝑚𝑖𝑛
𝑣3

𝜆3‖𝑣3‖𝑙1 +
1

2𝜇3
‖𝑣3 − (𝑊𝑢 + 𝑑3)‖𝑙2

2
                                                             (5.16) 

The convergence analysis of the DRS algorithm was discussed in [C5.39]. It shows that it is not 

necessary to exactly solve the sub-optimization problems. Global convergence will be guaranteed, 

provided that the sequence of errors is absolutely summable. Depending on the functions used in 

the sub-optimization problems, gradient method can be used to find the iterative or closed form 

formulations to update 𝑢 and 𝑣1, 𝑣2, 𝑣3 efficiently.  

The next step is to minimize the convex quadratic function in Eq. (5.13). This is a least square 

minimization problem and the solution is a normal equation as follows [C5.37]: 

𝑢: = (𝐴𝑇𝑅𝐴 +
1

𝜇1
𝐺𝑇𝐺 +

1

𝜇2
𝐺𝑇𝐺 +

1

𝜇3
𝑊𝑇𝑊)−1(𝐴𝑇𝑅𝑦 +

1

𝜇1
𝐺𝑇𝐺𝑢𝑝 +

1

𝜇1
𝐺𝑇(𝑣1 − 𝑑1) +

1

𝜇2
𝐺𝑇(𝑣2 − 𝑑2) +

1

𝜇3
𝑊𝑇(𝑣3 − 𝑑3))                                                                                       (5.17) 

Eq. (5.17) is a system of linear equations with the coefficient matrix (𝐴𝑇𝑅𝐴 +
1

𝜇1
𝐺𝑇𝐺 +

1

𝜇2
𝐺𝑇𝐺 +

1

𝜇3
𝑊𝑇𝑊) and the right hand matrix (𝐴𝑇𝑅𝑦 +

1

𝜇1
𝐺𝑇𝐺𝑢𝑝 +

1

𝜇1
𝐺𝑇(𝑣1 − 𝑑1) +

1

𝜇2
𝐺𝑇(𝑣2 − 𝑑2) +

1

𝜇3
𝑊𝑇(𝑣3 − 𝑑3)). The linear Conjugate Gradient (CG) method [C5.40] is used to approximately 

solve Eq. (5.17). The advantage of this method is that it can solve large-scale linear equations 

without a need to explicitly inverse the coefficient matrix. 

Sub differential calculus can be used to find a closed form formula as a solution for the 

optimization problems in Eqs. (5.14, 5.15 and 5.16). After doing some basic mathematical 

operations, Eqs. (5.18, 5.19 and 5.20) are derived. These solutions are based on shrinkage soft 

threshold operator [C5.41]: 



100 
 

𝑣1: = 𝑆𝑇𝜇1𝜆1
(𝐺(𝑢 − 𝑢𝑝) + 𝑑1)                                                                                                             (5.18) 

𝑣2: = 𝑆𝑇𝜇2𝜆2
(𝐺𝑢 + 𝑑2)                                                                                                                            (5.19) 

𝑣3: = 𝑆𝑇𝜇3𝜆3
(𝑊𝑢 + 𝑑3)                                                                                                                           (5.20) 

Where the soft threshold operator is defined as below [C5.42]: 

𝑆𝑇𝜅(𝑎) = {
𝑎 − 𝜅 𝑎 > 𝜅

0 |𝑎| ≤ 𝑘
𝑎 + 𝜅 𝑎 < −𝑘

                                                                                                                    (5.21) 

This operator is extremely fast and requires only a few operations per element of operand. As a 

result, the proposed algorithm is summarized as follows: 

Initialize 𝜆1, 𝜆2, 𝜆3, 𝜇1 =
0.1

𝜆1
, 𝜇2 =

0.1

𝜆2
, 𝜇3 =

0.1

𝜆3
, 𝑢 = 0, 𝑣1, 𝑣2, 𝑣3 = 0, 𝑑1, 𝑑2, 𝑑3 = 0, 𝑘 = 0 

Loop (𝑘: = 𝑘 + 1) 

𝑢𝑘+1 ≔ (𝐴𝑇𝑅𝐴 +
1

𝜇1
𝐺𝑇𝐺 +

1

𝜇2
𝐺𝑇𝐺 +

1

𝜇3
𝑊𝑇𝑊)−1(𝐴𝑇𝑅𝑦 +

1

𝜇1
𝐺𝑇𝐺𝑢𝑝 + 

1

𝜇1
𝐺𝑇(𝑣𝑘

1 − 𝑑𝑘
1) +

1

𝜇2
𝐺𝑇(𝑣𝑘

2 − 𝑑𝑘
2) +

1

𝜇3
𝑊𝑇(𝑣𝑘

3 − 𝑑𝑘
3))                                (5.22) 

𝑣𝑘+1
1 : = 𝑆𝑇𝜇1𝜆1

(𝐺(𝑢𝑘+1 − 𝑢𝑝) + 𝑑𝑘
1)                                                                      (5.23) 

𝑑𝑘+1
1 : = 𝑑𝑘

1 + (𝐺(𝑢𝑘+1 − 𝑢𝑝) − 𝑣𝑘+1
1 )                                                                    (5.24) 

𝑣𝑘+1
2 : = 𝑆𝑇𝜇2𝜆2

(𝐺𝑢𝑘+1 + 𝑑𝑘
2)                                                                                  (5.25) 

𝑑𝑘+1
2 : = 𝑑𝑘

2 + (𝐺𝑢𝑘+1 − 𝑣𝑘+1
2 )                                                                                (5.26) 

𝑣𝑘+1
3 : = 𝑆𝑇𝜇3𝜆3

(𝑊𝑢𝑘+1 + 𝑑𝑘
3)                                                                                 (5.27) 

𝑑𝑘+1
3 : = 𝑑𝑘

3 + (𝑊𝑢𝑘+1 − 𝑣𝑘+1
3 )                                                                               (5.28) 

Until  ‖𝑢𝑘+1 − 𝑢𝑘‖2 < 𝜀 (tolerance 𝜀, e.g. 10-4) 
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5.2.5   Performance evaluation   

5.2.5.1   Reference-based (high x-ray dose image) quantitative assessment  

Structural SIMilarity (SSIM) index is a metric for measuring the structural similarity between two 

images. If 𝜌 and 𝑡 are two local image windows selected from the same position of two input 

images, SSIM is defined as follows:  

𝑆𝑆𝐼𝑀( 𝜌, 𝑡) =
2𝜇𝜌𝜇𝑡+𝐶1

𝜇𝜌
2 +𝜇𝑡

2+𝐶1
.

2𝜎𝜌𝜎𝑡+𝐶2

𝜎𝜌
2+𝜎𝑡

2+𝐶2
.

𝜎𝜌𝑡+𝐶3

𝜎𝜌𝜎𝑡+𝐶3
                                                                                              (5.29) 

Where, 𝜇𝜌 and 𝜇𝑡 are the averages, 𝜎𝜌and 𝜎𝑡 are the standard deviations and 𝜎𝜌𝑡 is the covariance 

of the local windows. 2C3 = C2 and C1 are constants to stabilize division.  

Peak Signal to Noise Ratio (PSNR) and Relative Error (RE) are error sensitive quality metrics 

defined as follows: 

𝑃𝑆𝑁𝑅(𝑑𝑏) = 10 𝑙𝑜𝑔10 (
𝑃𝑒𝑎𝑘2

𝑀𝑆𝐸
)                                                                                                                            (5.30) 

Where, Peak is the highest pixel value, e.g. in the case of 12-bit pixel representation, it is 1023; 

MSE is the mean square error between the reconstructed and reference images.  

𝑅𝐸(%) =
‖𝑢𝑟𝑒𝑓−𝑢𝑟𝑒𝑐‖

2

‖𝑢𝑟𝑒𝑓‖
2

× 100                                                                                                                               (5.31) 

Where, 𝑢𝑟𝑒𝑐 and 𝑢𝑟𝑒𝑓 are the reconstructed and reference images [C5.43].  

5.2.5.2. Visual assessment  

The images reconstructed by the different reconstruction algorithms at different numbers of 

projections were visually compared with the reference image to assess the reconstruction 

algorithms. 

 

 

 



102 
 

5.3   Experimental Results  

MATLAB R2016b software was used to implement the algorithms on a Desktop PC with six 

Intel® Xeon® CPU 2GHz processors and 32GB memory. 

5.3.1   Experiment Results using Simulated Data 

5.3.1.1   Reconstructed images of a noise-free rat forelimb bone 

A noise-free image of rat forelimb bone was used as the first experiment because it covers large 

and small structures. The size of this image is 512×512 pixels which is used to generate a fully 

sampled sinogram (512 views). Eight images were reconstructed by FBP, PICCS, Wavelet CS and 

the proposed algorithm using equally spaced 30 and 60 views subsampled sinograms which are 

uniformly extracted from the fully sampled sinogram (512 views).   

The proposed algorithm is the combination of the wavelet based compressed sensing algorithm 

and the gradient based PICCS algorithm. The following optimization problems derived from the 

Eq. (5.7) were used to compare the wavelet CS and PICCS methods with the proposed method. 

The comparison results were shown in Fig. 5.2.   

Wavelet based CS: 𝑚𝑖𝑛
𝑢∈𝑅𝑛

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 +𝜆3‖𝑊𝑢‖𝑙1
                                                                   (5.32) 

Gradient based PICCS: 𝑚𝑖𝑛
𝑢∈𝑅𝑛

1

2
‖𝐴𝑢 − 𝑦‖𝑅

2 + 𝜆1‖𝐺(𝑢 − 𝑢𝑝)‖
𝑙1

+ 𝜆2‖𝐺𝑢‖𝑙1                        (5.33) 

The features of interest in these bone images are black holes (vascular canals) with different 

dimensions. These black holes, especially the smaller ones, are hidden because of severe aliasing 

artifacts in the images reconstructed by FBP in the Figs. 5.2E and 5.2F. However, as shown in the 

Figs. 5.2H and 5.2I, the gradient based PICCS algorithm is good in dealing with piecewise smooth 

regions, but it generates undesirable staircase artifact. On the other hand, as shown in the Figs. 

5.2K and 5.2L, the wavelet-based CS algorithm is good at preserving fine structures, but it is not 

good for approximating piecewise smooth regions because of oscillations around edges. Finally, 

as demonstrated in Figs. 5.2B, 5.2C, the proposed algorithm is applied to remove the aliasing 

artifact while preserving the piecewise smooth regions and their internal fine structures. The Figs. 

5.2D, 5.2G and 5.2J show three quality metrics, SSIM, PSNR, RE to clarify that the proposed 

algorithm is superior to the other algorithms tested. From the SSIM values, one may conclude that 
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the proposed algorithm can suppress the artifacts, and the PSNR and RE values indicate that the 

highest reconstruction accuracy can be achieved using the proposed algorithm.  

5.3.1.2   Reconstructed images of a noisy rat forelimb bone data 

The second experiment was performed using noisy simulated data. Additive zero mean Gaussian 

white noise 𝑛 of different relative magnitudes was purposely added to the sinograms. The 

reconstructed images were displayed in Fig. 5.3. To better compare the proposed algorithm with 

other methods, Table 5.1 and Fig.5.4 show three quality metrics, SSIM, PSNR, RE with respect to 

the sinogram SNR.  

Compared to the conventional FBP method, the POCS method is more robust to noise and thus 

has greatly suppressed noise and streaking artifacts. However, as shown in Fig. 5.3E, blurring 

artifact is present and fine structures are not visible. As can be seen in Table 5.1 and Fig 5.4, POCS 

method is more successful than the FBP method with respect to the existing quality metrics at 

different levels of noise. The ASD-POCS and SpBR-TV methods apply gradient operator to 

remove noise and streak artifacts without generation of blurring effects but as illustrated in Figs. 

5.3F and 5.3D, a number of blocky-shaped structures are seen in the images. Finally, as 

demonstrated in Figs. 5.3 and 5.4, the proposed algorithm is successful in controlling the trade-off 

between noise suppression and spatial resolution. From the Fig. 5.4 (25db SNR), we can see that 

the RE is below 25%, the PSNR is more than 28dB and the SSIM is more than 0.575 for the 

proposed algorithm. These results indicate that high reconstruction accuracy is achieved using the 

proposed algorithm and it is evident that the proposed algorithm showing robustness against noise. 

5.3.1.3 Parameters selection – simulated data 

The noise-free simulated rat forelimb bone dataset (60 views) described in section 5.3.1.1 was 

used as an example to show the procedure of determining the optimal parameters. For the proposed 

algorithm, there are six parameters 𝜆1, 𝜆2, 𝜆3 and 𝜇1, 𝜇2, 𝜇3 to be determined. The reconstruction 

relative error (RE) was alternately plotted against one parameter keeping the others fixed. We 

started by setting 𝜆2 = 0.01, 𝜆1 = 0.01. The Fig. 5.5A shows that the lowest reconstruction error 

is obtained when 𝜆3 = 0.01. Then we set  𝜆3 = 0.01, 𝜆1 = 0.01 and searched the optimal value 

for 𝜆2 that gives the lowest relative error, it is 𝜆2 = 0.02 as shown in Fig. 5.5B.  
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A) Reference  

 
B) Proposed (30 views)  

 
C) Proposed (60 views) 

 
D) SSIM  

 
E) FBP (30 views) 

 
F) FBP (60 views) 

 
G) PSNR 

 
H) PICCS (30 views) 

 
I) PICCS (60 views) 

 
J) RE 

 
K) Wavelet CS (30 views) 

 
L) Wavelet CS (60 views) 

Figure 5.2   Rat forelimb bones images reconstructed by the different algorithms using 30 and 60 

views from simulated data   
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A) Reference  

 
B) Proposed  

 
C) FBP  

 
D) SpBR-TV  

 
E) POCS  

 
F) ASD-POCS  

Figure 5.3   The rat forelimb bones reconstructed by the different algorithms using a noisy 

sinogram (60 views, 30db SNR). The features of interest are cortical bone pores (vascular canals) 

with different sizes 

 

Table 5.1   Quality metrics of reconstructed rat forelimb bone image from noisy sinograms 

Sinogram 25    30    35   

SNR SSIM PSNR (dB)  RE   SSIM PSNR (dB) RE   SSIM PSNR (dB) RE  

Proposed 0.575 27.98 0.234  0.769 31.97 0.090  0.890 34.78 0.0585 

SpBR-TV 0.488 27.72 0.229  0.659 29.80 0.119  0.703 29.90 0.1045 

ASD-POCS 0.420 27.06 0.239  0.687 30.92 0.105  0.779 30.54 0.0933 

POCS 0.274 24.24 0.333  0.405 27.03 0.173  0.432 26.74 0.1482 

FBP 0.064 17.14 0.813  0.171 20.64 0.334  0.275 22.64 0.2366 

 

 

Finally, we set 𝜆2 = 0.02, 𝜆3 = 0.01 and searched the optimal value for 𝜆1, the optimum value is 

𝜆1 = 0.01 which can be verified in Fig. 5.5C. Thus, we used this repetitive process to find the 

optimum values of  𝜆1, 𝜆2, 𝜆3. As described in section 2.4, the other three parameters  𝜇1, 𝜇2, 𝜇3 

was determined by these equations 𝜇1 =
0.1

𝜆1
, 𝜇2 =

0.1

𝜆2
, 𝜇3 =

0.1

𝜆3
.  
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Figure 5.4   Rat forelimb bone image quality metrics vs sinogram signal noise ratio 

 

This recurring procedure was conducted for the Wavelet CS and PICCS methods using the same 

dataset to find the corresponding optimal parameters (Table 5.2).  

A similar searching procedure was used to find the regularization parameters for the proposed 

algorithm, SpBR-TV and ASD-POCS methods using the noisy dataset (60 views, 30db SNR) 

described in Section 5.3.1.2. The optimum parameter values for the proposed algorithm are 𝜆1 =

0.005, 𝜆2 = 0.04, 𝜆3 = 0.015 and 𝜇1 = 20, 𝜇2 = 2.5, 𝜇3 = 6.7. The optimum regularization 

parameter in the SpBR-TV method is 25 and finally the optimum value of 𝜀 per ray measurement 

for the ASD-POCS method is 1.15 × 10−4.  

 

Table 5.2   Optimum parameter selections for rat forelimb bone simulated datasets  

Data  

(60 views) 

Wavelet 

CS  

 PICCS           Proposed Algorithm               

𝜆1, 𝜇1 𝜆2, 𝜇2 𝜆1, 𝜇1 𝜆2, 𝜇2 𝜆3, 𝜇3 
𝜆3, 𝜇3 

Rat forelimb bone data 

without noise  
0.05,2  0.02,5 0.03,3.3  0.01,10 0.02,5 0.01,10 
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A) Searching for the optimum 3 when 2 10.01, 0.01 = =  

 
B) Searching for the optimum 2 when 3 10.01, 0.01 = =  

 
C) Searching for the optimum 1 when 2 30.02, 0.01 = =  

Figure 5.5   Analysis to find the optimum regularization parameters for the proposed method 

 

5.3.2   Experiment Results using Real Data 

5.3.2.1   Reconstructed images of a rat forelimb bone data  

The proposed algorithm along with four existing reconstruction methods was used to reconstruct 

two randomly selected transverse slices of the rat forelimb. A reference image with the size of 

4000×4000 pixels was reconstructed by the FBP method using the full sinogram dataset derived 

from all 750 equally spaced projections spanning 180 degrees. Five images were reconstructed by 

FBP, ASD-POCS, POCS, SpBR-TV and the proposed algorithm using three different collections 

of subsampled sinogram data i.e. 20% (150 views), 30% (225 views) and 40% (300 views) that 

were uniformly sampled from the 750 equally spaced projections spanning 180 degrees.  

Fig. 5.6, shows the rat forelimb including two bones (radius and ulna), soft tissues and a plastic 

positioning rod (round structure to the left) which are reconstructed by the different algorithms 

using 30% of full projection data (225 views).  
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Fig. 5.7, shows the zoomed regions (the white dotted boxes in Fig. 5.6) of the periphery of the rat 

forelimb consisting of restraining tape and fur (visible due to phase contrast). Fig. 5.8, shows the 

zoomed region (the white dotted boxes in Fig. 5.6) of the rat forelimb including the radius and 

ulna bones (left and right, respectively). As it is evident in this figure, the features of interest are 

vascular canals (black holes in the white background) with different sizes. Fig 5.9, shows the 

restraining tape and fur in the second slice which are reconstructed by the different algorithms 

using 20% of full projection data (150 views) and Fig. 5.10, shows the radius and ulna bones 

reconstructed by the different algorithms using 40% of full projection data (300 views). Table 5.3 

shows three metrics PSNR, SSIM and RE to quantify the reconstruction accuracy and the amount 

of noise suppression. The metrics are shown individually in Fig. 5.11, to better illustrate the 

effectiveness of the proposed algorithm.  

5.3.2.2 Parameters selection – real data 

The proposed algorithm is successful in controlling the trade-off between suppressing 

artifacts/noise and preserving the spatial resolution, if the parameters λ set to the proper values. If 

the values of 𝜆 are selected too low, the problem remains inconsistent, and if  𝜆1, 𝜆2, 𝜆3 are selected 

too high, the final image will have aliasing, over smoothing and ringing artifacts, respectively. 

Based on our experience, the lowest reconstruction error for our datasets is obtained when 

approximately 𝜆𝑖 = 0.1𝜆𝑖𝑚𝑎𝑥
 where 𝜆𝑖𝑚𝑎𝑥

 are the critical values above which the solutions are 

𝑢 = 𝑢𝑝 𝑎𝑛𝑑 𝑢 =0, respectively. Therefore, the 𝜆1, 𝜆2, 𝜆3 values were chosen to be 

(𝜆1, 𝜆2, 𝜆3) = (0.025, 0.1, 0.075), (𝜆1, 𝜆2, 𝜆3) = (0.019, 0.075, 0.056) and (𝜆1, 𝜆2, 𝜆3) =

(0.008, 0.033, 0.025) for 150, 225 and 300-view in our bone dataset, respectively. As described 

in section 5.2.4, the other three parameters 𝜇1, 𝜇2, 𝜇3 can be determined by the following equations 

𝜇1 =
0.1

𝜆1
, 𝜇2 =

0.1

𝜆2
, 𝜇3 =

0.1

𝜆3
. The regularization parameter in SpBR-TV method was empirically 

chosen to ensure the lowest reconstruction error. The values of this parameter for bone data were 

chosen to be 10, 13.3 and 30.3 for 150, 225 and 300-view, respectively. For any regularization 

parameter used in the SpBR-TV method, there is a corresponding 𝜀 which was used in the ASD-

POCS method to ensure fair comparison between algorithms [C5.17]. For the ASD-POCS method, 

the values of 𝜀 per ray measurement for bone data were chosen to be 3.15 × 10−4, 1.31 × 10−4and 

4.76 × 10−5 for 150, 225 and 300-view, respectively.  
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A) Reference (750 views) 

 
B) Proposed (225 views) 

 
C) FBP (225 views) 

 
D) SpBR-TV (225 views) 

 
E) POCS (225 views) 

 
F) ASD-POCS (225 views) 

Figure 5.6   Slide 1: The rat forelimb showing the two bones (radius and ulna), soft tissues and a 

plastic positioning rod (round structure to the left) reconstructed by the different algorithms 

using 30% of full projection data (225 views) 
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A) Reference (750 views) 

 
B) Proposed (225 views) 

 
C) FBP (225 views) 

 
D) SpBR-TV (225 views) 

 
E) POCS (225 views) 

 
F) ASD-POCS (225 views) 

Figure 5.7   Slice 1: The zoomed regions (the white dotted boxes in Fig. 5.6) of the periphery of 

the rat forelimb consisting of restraining tape and fur (visible due to phase contrast) 

reconstructed by the different algorithms using 30% of full projection data (225 views)  

 
A) Reference (750 views) 

 
B) Proposed (225 views) 

 
C) FBP (225 views) 

 
D) SpBR-TV (225 views) 

 
E) POCS (225 views) 

 
F) ASD-POCS (225 views) 

Figure 5.8   Slice1: The zoomed regions (the white dotted boxes in Fig. 5.6) of the rat forelimb 

including the radius and ulna bones (left and right, respectively) reconstructed by the different 

algorithms using 30% of full projection data (225 views). The features of interest are cortical 

bone pores (vascular canals) with different sizes 
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A) Reference (750 views) 

 
B) Proposed (150 views) 

 
C) FBP (150 views) 

 
D) SpBR-TV (150 views) 

 
E) POCS (150 views) 

 
F) ASD-POCS (150 views) 

Figure 5.9   Slice 2: The zoomed regions of the rat forelimb reconstructed by the different 

algorithms using 20% of full projection data (150 views). The details (the white dotted boxes) 

were zoomed in the left corner to better demonstrate the details 

 
A) Reference (750 views) 

 
B) Proposed (300 views) 

 
C) FBP (300 views) 

 
D) SpBR-TV (300 views) 

 
E) POCS (300 views) 

 
F) ASD-POCS (300 views) 

Figure 5.10   Slice 2: The zoomed regions of the rat forelimb bones reconstructed by the 

different algorithms using 40% of full projection data (300 views). The features of interest are 

cortical bone pores (vascular canals) with different sizes 
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Table 5.3   Quality metrics of reconstructed rat forelimb bone image 

Projection 20%    30%    40%   

Percentage SSIM PSNR (dB)  RE   SSIM PSNR (dB) RE   SSIM PSNR (dB) RE  

Proposed 0.7014 30.49 0.2203  0.7627 32.95 0.1664  0.7877 33.74 0.1389 

SpBR-TV 0.6587 27.71 0.2805  0.7013 28.58 0.2749  0.7120 29.10 0.2615 

ASD-POCS 0.7023 29.84 0.2375  0.7461 31.25 0.2023  0.7537 31.60 0.1862 

POCS 0.6123 25.68 0.3835  0.6523 26.98 0.3307  0.6769 27.60 0.2817 

FBP 0.3606 23.86 0.4731  0.5011 27.09 0.3267  0.5949 28.93 0.2418 

            
 

  
 

Figure 5.11   Rat forelimb bone image quality metrics vs percentage number of projections 

 

5.4   Discussion  

As expected, the images reconstructed by the FBP method in Figs. 5.10C show a great amount of 

aliasing artifact and noise over the entire image which are due to the limited number of projections 

(sampling rate lower than Nyquist rate). The image spatial resolution is significantly reduced, and, 

in some cases, it is difficult to view the features of interest i.e. vascular canals (cortical bone 

porosity) hidden by artifacts. Furthermore, these artifacts can mislead physicians to wrong 

diagnosis. In the Figs. 5.10E which show the images reconstructed by the POCS algorithm, the 

aliasing artifact and noise are reduced but edge blurring artifact reduces the spatial resolution and 

lower contrast and small details that are visible in the FBP reconstructed image are no longer be 
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accurately distinguished. However, as illustrated in Table 5.3, and Fig. 5.11, the POCS method is 

superior to the FBP method especially at the highly incomplete number of projected data. The 

ASD-POCS method utilizes total-variation operator to reconstruct the sharp edges without 

generation of aliasing or blurring artifacts. As illustrated in Figs. 5.10F, although, this method is 

successful in recovering of the piecewise smooth area with the sharp edges, the lower contrast 

features are over-smoothed which obscure the presence of these features. The SpBR-TV method 

images in Figs. 5.10D show that the method is successful in preserving high-contrast edges without 

creating aliasing and blurring artifacts or generation of over-smoothed regions. However, this 

method leads to staircase (patchy) artifacts which in clinical practice, may mimic lesions. Finally, 

as demonstrated in Figs. 5.10B, the proposed algorithm is the most successful method in 

controlling the trade-off between artifact suppression and keeping spatial resolution. The proposed 

method minimizes noise and artifacts using both the gradient and wavelet domains and as shown 

in the zoomed area in Fig 5.8 and 5.10, almost all the vascular canals which are present in the 

reference image were reconstructed without generation of unwanted distortion.  

The proposed algorithm has the highest PSNR and SSIM and lowest RE with respect to other 

methods even when the number of projections is only 150. From the SSIM values, one may 

conclude that the proposed algorithm is capable of suppressing artifacts and noise, leading to an 

image of acceptable quality at a lower number of view and the PSNR and RE values indicate that 

the highest reconstruction accuracy can be achieved using the proposed algorithm.  

 

5.5   Conclusions 

In this article, we have developed and investigated a wavelet-gradient based prior image 

constrained compressed sensing algorithm which aims to reconstruct diagnostically acceptable 

images from synchrotron datasets with potential for a significant reduction in the number of 

projections. The proposed algorithm was applied to a dataset collected at the Biomedical Imaging 

and Therapy Bending Magnet beamline at the Canadian Light Source. At present, a solution of 

large-scale CS optimization problems is poorly characterized with real synchrotron tomographic 

data which motivated us to propose a CS-based synchrotron CT reconstruction algorithm. The 

proposed algorithm achieved an optimal balance between artifact suppression and preserving 
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spatial resolution which is assessed by visual and quantitative performance metrics. Using the 

proposed reconstruction algorithm to reduce the number of projections in synchrotron CT is an 

effective way to reduce the x-ray dose and scan time which improves in-vivo imaging protocols. 
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6.   Summary and Suggestions for Further Studies 

6.1   Summary of Work 

Traditionally CT requires a large number of angular projections to reconstruct images with high 

resolution, which is necessary for detailed and accurate diagnosis. However, this poses great risks 

and challenges for in vivo human and animal imaging due to a large amount of x-ray radiation 

dose that can damage living specimens and induce genetic and cancerous diseases. In addition, 

longer scan times increase the risk of specimen movement, which introduces motion artifact in the 

reconstructed images. The CS field addresses the issue of how little data one can acquire and still 

be able to recover the image. Typically, 𝑁 linearly independent samples are required to reconstruct 

an image 𝑥 ∈ 𝑅𝑁. According to the CS theory, when the image 𝑥 is sparse enough then by 

acquiring the right but fewer than 𝑁 samples, the image 𝑥 can be accurately reconstructed by 

solving a sparsity regularized (SR) minimization problem. Random sensing matrices that are dense 

and incoherent, play a key role in the CS theory and it is shown that random sampling gives higher 

recoverability performance than structured sampling [C6.1]. In contrast, the object in CT is 

scanned by line integrals, each line integral samples a small section of the object, so forming a 

highly structured, sparse and coherent CT sampling matrix. In chapter 3, CT projection views are 

collected using a realistic synchrotron imaging setup and a compressed sensing based algorithm is 

proposed to reconstruct the image of sufficient quality compared with the results of the 

conventional CT reconstruction methods. Simulated noise-free CT data are considered in this 

chapter to simplify the reconstruction challenges, such as application-specific varying noise levels 

and inconsistencies in the data.  

We require a solver that can be applied to solve the non-smooth and high-resolution synchrotron 

CT reconstruction problem (3.3), where the reconstructed images may contain 2500×2500 or more 

pixels. In chapter 3, the Douglas–Rachford Splitting (DRS) method originally used in [C6.2] for 

solving matrix equations is proposed to solve the SR reconstruction problem (3.3). The 

convergence of this method is shown in a theorem by Eckstein and Bertsekas in [C6.3]. As 

discussed in [C6.4], the DRS method converges under much more relaxed conditions in the sense 

that the cost function does not need to be differentiable or finite so the DRS algorithm can handle 

non-smoothness in Eq. (3.3) without corner rounding technique. Furthermore, the DRS algorithm 

can perform distributive optimization, which is useful in solving large-scale problems such as 
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synchrotron CT reconstruction. Finally, the spirit of CS-style image reconstruction involves 

solving unconstraint optimization problems for small 𝜆 as is the case in Eq. (3.3) which is 

technically challenging. DRS method can work with small values of 𝜆 because in addition to the 

Lagrange term, a quadratic penalty term is also included in the DRS cost function. 

The lowest reconstruction error will be achieved if the regularization parameter λ set to a proper 

value. The proper value of λ shifts if the dataset and/or the system matrix change. Generally 

speaking, the greater number of projection views or the greater number of nonzero entries in the 

gradient of the final image, the smaller the value of optimal λ, and vice versa. Based on our 

experience, the SR reconstruction problem (3.3) is first solved with the regularization parameter 

𝜆 = 0.2𝜆𝑚𝑎𝑥 where  𝜆𝑚𝑎𝑥 = ‖𝐴𝑇𝑏‖∞ is an estimation of the critical value of 𝜆 above which the 

solution of the problem (3.3) is zero. If the selected 𝜆 = 0.2𝜆𝑚𝑎𝑥 is too low, the final image will 

have the aliasing artifact and if it is too high, the final image will be over smoothed. Depending 

on the result of this experiment, the other values of λ that are spaced from 0.01𝜆𝑚𝑎𝑥to 

0.95𝜆𝑚𝑎𝑥will be tested to find the lowest reconstruction error. The benefit of including the penalty 

term 
𝜌

2
‖𝐹𝑥 − 𝑧‖2

2 in Eq. (3.6) is to improve the conditioning of the problem and thus improve the 

convergence of the randomized Kaczmarz method for updating x. One method for adjusting the 

parameter 𝜌 is to increase it until the randomized Kaczmarz method converges quickly enough. 

Based on our experience, the penalty parameter is set to 𝜌 = 20λ for the iterations. The variables 

𝑢, 𝑧 and 𝑥 are initialized to zero. The SR reconstruction problem (3.3) is a convex optimization 

problem and there is only one globally optimal solution; so, the final result is not dependent on the 

choice of 𝜌 and the initial values for 𝑢, 𝑧 and 𝑥. 

The Kaczmarz algorithm is used to solve linear Eq. (3.14). It requires an initial guess and generates 

a sequence of iterations {𝑥𝑘} that converge. The reason for selecting this method is because only 

one matrix row is used in each iteration and the iterations are faster when the matrix is sparse. This 

is especially useful when the number of rows is very large. Both conditions are true in Eq. (3.14). 

The convergence rate of the algorithm depends on the angle between the convex sets formed by 

the rows of the matrix [C6.5]. It is demonstrated that a random selection of the matrix rows 

(randomized Kaczmarz algorithm) can improve the convergence rate [C6.6]. The guarantee of 

randomized Kaczmarz algorithm convergence is shown in [C6.7].  
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In selecting a test phantom, we look for an image with a sparse gradient domain to demonstrate 

the efficacy of total variation in reducing the number of projection views. A computer abdomen 

phantom of 512×512 pixels is used for the first experiment because it covers large and small-scale 

structures. Five images were reconstructed by the proposed algorithm and other reconstruction 

methods using four different collections of subsampled sinogram data i.e. 7% (25 views), 10% (36 

views), 20% (72 views) and 40% (144 views) that were uniformly sampled from the 360 equally 

spaced projections spanning 180 degrees. As it is evident from Table 3.1, a sharp recovery 

transition takes place when the number of projection views is increased from 7% (25 views) to 

20% (72 views). As shown in Fig. 3.1, the proposed algorithm is able to perfectly reconstruct the 

abdomen phantom using only 20% (72 views) of the projected data. Simple geometric shapes of 

uniform grey levels are used in the computer phantoms that are typically utilized in the CT image 

reconstruction. However, phantoms should also include texture features that are somewhat 

reflective of what is found in CT applications. Thus, we generate a parallel-beam synchrotron CT 

dataset of a canine prostate. The data consists of 3751 equiangular projections acquired on a 

photonic Science VHR-90 array radiation camera at the Canadian Light Source (CLS) operated at 

30 kV monochromatic synchrotron x-ray source, 25m source-to-sample and 5m sample-to-

detector distances. The central slice is reconstructed onto a 2500-pixel image (pixel size 18.67 µm) 

from the corresponding rows of data using the Filtered Back Projection (FBP) reconstruction 

method. Five images were reconstructed by the proposed algorithm and other reconstruction 

methods using four different collections of subsampled sinogram data i.e. 20% (750 views), 30% 

(1125 views), 40% (1500 views) and 50% (1875 views) that were uniformly sampled from the 

3751 equally spaced projections spanning 180 degrees. As it is evident from Table 3.2 and Fig. 

3.7, the results for the texture phantom are visually accurate for as few views as 50% (1875 views) 

of the projection views, however, there is no sharp recovery transition for the texture phantom.  

In contrast with chapter 3, where consistent simulated projection data are generated for image 

reconstruction, the reduced-view inconsistent real ex-vivo synchrotron absorption contrast bone 

data are used in chapter 4. A gradient based SR image reconstruction problem is formulated, and 

the DRS and the preconditioned conjugate gradient methods are utilized to solve the optimization 

problem. The wavelet image denoising algorithm is used as the post-processing algorithm to 

attenuate the unwanted staircase artifact generated by the reconstruction algorithm. 
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Depending on the final image gradient sparsity and the number of projection views, the values of 

λ that are spaced from 0.01𝜆𝑚𝑎𝑥to 0.95𝜆𝑚𝑎𝑥 where 𝜆𝑚𝑎𝑥 is the critical value of 𝜆 above which 

the solution of the problem (4.4) is zero, should be tested to find the lowest reconstruction error. 

If the selected 𝜆 is too low, the final image will have the aliasing artifact and if it is too high, the 

final image will be over smoothed. After some trial and error, the SR reconstruction problem (4.4) 

is solved with the regularization parameter 𝜆 = 0.1𝜆𝑚𝑎𝑥 to achieve the lowest reconstruction error. 

The variables 𝑢, 𝑣 and 𝑑 are initialized to zero. The initial value of the penalty parameter was set 

to 𝜇 = 0.1𝜆−1 and then a varying penalty parameter scheme discussed in [C6.8] is used to make 

the performance less dependent on the initial value. The SR reconstruction problem (4.4) is a 

convex optimization problem; so, the final optimal result is not dependent on the choice of 𝜇 and 

the initial values for 𝑢, 𝑣 and 𝑑.  

In addition to the Kaczmarz algorithm, which is very popular in the computed tomography image 

reconstruction, there are other methods to solve linear equations. It is shown in [C6.7] that the 

conjugate gradient algorithm can outperform the randomized Kaczmarz algorithm in terms of 

computational efficiency when the number of equations and unknowns are close in value. 

Therefore, the conjugate gradient algorithm is used in this chapter. Also, an unmatched 

backprojector is used to speed up the conjugate gradient algorithm. As shown in Eq. (4.2), a ramp 

filter 𝑅 is used to form the unmatched backprojector 𝐹 = 𝐴𝑇𝑅 where matrix 𝐴 is the projector in 

Eq. (4.1) and the transposed matrix 𝐴𝑇is the matched backprojector. A valid backprojector should 

not have negative eigenvalues in the backprojector–projector matrix to guarantee the convergence. 

As shown in [C6.9], the eigenvalues of the square matrix 𝐹𝐴 are positive because the matrix is 

diagonally dominant with positive diagonal elements. Furthermore, the conjugate gradient 

algorithm converges faster using unmatched backprojector 𝐹, because the square matrix 𝐹𝐴 is 

closer to the identity matrix, in the sense that the eigenvalues of the matrix are clustered closer 

together than the eigenvalues of the square matrix 𝐴𝑇𝐴 [C6.9].  

In selecting a test phantom, we look for an approximately piecewise smooth bone image with the 

gradient domain sparsity to demonstrate the efficacy of total variation in reducing the number of 

projection views. Furthermore, an exposure time of 1 second per frame and two-frame averaging 

are employed for each projection to increase the data signal to noise ratio. The data consists of 

1800 equiangular projections of a block of femoral cortical bone acquired with a Hamamatsu 
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C9300 CCD camera at the Canadian Light Source (CLS). The detector is placed directly behind 

the sample in the experimental setup used for acquiring the synchrotron absorption contrast micro-

CT dataset and the sample was placed on a rotating mechanical stage that was 26 m away from the 

synchrotron source. The central slice is reconstructed onto a 2791-pixel reference image (pixel 

size 5 µm) from the corresponding rows of data using the Filtered Back Projection (FBP) 

reconstruction method. Five images were reconstructed by the proposed algorithm and other 

reconstruction methods using three different collections of subsampled sinogram data i.e. 5% (90 

views), 10% (180 views) and 15% (270 views) that were uniformly sampled from 1800 equally 

spaced projections spanning 180 degrees. The features of interest in the reconstructed images are 

holes (vascular canals) with different sizes. As it is evident from Table 4.2, Fig. 4.5 and Fig. 4.6, 

the results for the phantom is visually accurate for as few views as 15% (270 views) of the 

projection views.  

In contrast with chapter 4, where the reduced-view real ex-vivo synchrotron absorption contrast 

bone data are utilized for image reconstruction, the highly reduced-view noisy real in-vivo 

synchrotron phase contrast CT bone data are used in chapter 5. A multi-regularization constraint 

SR image reconstruction problem which is a combination of prior image constrained CS 

framework, and the wavelet regularization is formulated, and the DRS and the preconditioned 

conjugate gradient methods are utilized to solve the optimization problem. The prior image 

constrained CS framework takes advantage of the prior image to promote the sparsity of the target 

image. It may lead to an unwanted staircase artifact when applied to noisy and texture images, so 

the wavelet regularization is used to attenuate the unwanted staircase artifact generated by the prior 

image constrained CS reconstruction algorithm. 

As described in the parameter selection section of chapter 5, if the selected values of 𝜆 are too low, 

the problem remains inconsistent and if  𝜆1, 𝜆2, 𝜆3 are selected too high, the final image will have 

the aliasing, over smoothing and ringing artifacts, respectively. Based on the result of the 

experiment, the values of λ that are spaced logarithmically from 0.01𝜆𝑖𝑚𝑎𝑥
 to 0.95𝜆𝑖𝑚𝑎𝑥

 where 

𝜆𝑖𝑚𝑎𝑥
 are the critical values above which the solutions are 𝑢 = 𝑢𝑝 and 𝑢 = 0 respectively, will be 

tested to find the lowest reconstruction error. After some trial and error, the lowest reconstruction 

error for the SR reconstruction problem (5.7) is obtained when approximately 𝜆𝑖 = 0.1𝜆𝑖𝑚𝑎𝑥
. 

After some trial and error, the penalty parameters 𝜇1, 𝜇2, 𝜇3 are set to 𝜇1 =
0.1

𝜆1
, 𝜇2 =

0.1

𝜆2
, 𝜇3 =

0.1

𝜆3
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for the iterations. The variables 𝑢, 𝑣1, 𝑣2, 𝑣3 and 𝑑1, 𝑑2, 𝑑3 are initialized to zero. The SR 

reconstruction problem (5.7) is a convex optimization problem; so, the final optimal result is not 

dependent on the choice of 𝜇 and the initial values of 𝑢, 𝑣1, 𝑣2, 𝑣3 and 𝑑1, 𝑑2, 𝑑3. Prior image 𝑢𝑝 

in Eq. (5.4) is a low noise low spatial resolution image obtained by filtering FBP reconstructed 

image with a 2D rotationally symmetric Gaussian smoothing kernel of size [3, 3] with standard 

deviation of 1. The Gaussian filter kernel size and the standard deviation are determined by trial 

and error. The difference image 𝑢 − 𝑢𝑝 should contain two main high spatial frequency signals: 

edges and noise. Since noise is not inherently sparse, it is minimized preferably in the reconstructed 

image. However, the data fidelity term in Eq. (5.4) enforces consistency with the projection data 

to recover the edges in the final image.  

In selecting a test phantom, we aim to illustrate the effectiveness of the combination of prior image 

constrained CS framework, and the wavelet regularization in reducing the necessary number of 

projection views. The in-vivo phase contrast projection dataset used in this chapter is noisier than 

the absorption contrast micro-CT projection dataset used for the ex-vivo study proposed in the 

previous chapter. Furthermore, the number of acquired projections and the radiation exposure time 

per projection are less than the values set for the ex-vivo study. The data consists of 750 

equiangular projections of a rat forelimb (including the radius and ulna bones) acquired with a 

C4742-95 – 12HR camera which includes a C4742-56 – 12HR CCD Detector at the Canadian 

Light Source (CLS). The sample was rotated continuously with a rotation velocity of 0.20 

degree/sec through 0 to 180°, generating 750 projections. The central slice is reconstructed onto a 

4000-pixel reference image (pixel size 13 µm) from the corresponding rows of data using the 

Filtered Back Projection (FBP) reconstruction method. Five images were reconstructed by the 

proposed algorithm and other reconstruction methods using three different collections of 

subsampled sinogram data i.e. 20% (150 views), 30% (225 views) and 40% (300 views) that were 

uniformly sampled from the 750 equally spaced projections spanning 180 degrees. As it is evident 

from Table 5.3, Fig. 5.6, Fig. 5.7 and Fig. 5.8, the results for the phantom is visually accurate for 

as few views as 30% (225 views) of the projection views.  
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6.2   Suggestions for Further Study 

Although the reconstruction algorithms proposed in this thesis can solve very large problems such 

as high-resolution CT reconstruction on a multicore processor, it is also well suited to distributed 

computing. As a future study, we aim to demonstrate the feasibility of the implementation of the 

proposed reconstruction algorithms on a cluster of CPUs and/or graphics processing units (GPUs) 

to speed performance. We expect the result shows speed-ups of several orders of magnitude, with 

a negligible impact on image accuracy. This solves the compressed sensing-based CT problem 

much faster which helps us to reconstruct images quickly after the acquisition of the last projection 

dataset. 

One way for decreasing the total scan time and radiation dose is to reduce the number of 

projections needed to reconstruct the tomographic images which is addressed in this thesis. 

Another approach is to reduce the time of radiation or radiation intensity at each projection without 

decreasing the number of projections. Reducing the time of radiation or radiation intensity 

generates noisy projection data which results in a lower quality reconstructed image. In this case, 

the goal is to transfer an image whose quality is poor due to low-dose imaging to a higher quality 

image. One approach is to use a learning algorithm such as sparse dictionary learning [C6.10] to 

recognize patterns in the training high-dose tomographic images within the same class, then the 

general dictionaries such as wavelet dictionary which is often used as the regularization term in 

the compressed sensing reconstruction can be replaced by this learned dictionary. It is expected 

the learned dictionaries to show a better performance in distinguishing weak structures than 

general dictionaries. 

This study focuses on computer phantoms and preclinical imaging of animals with synchrotron as 

a test platform. The algorithm benefits can be used to image human subjects with the proximate 

goals of producing faster and safer scans. This, in turn, will advance the goal of pushing the limits 

of safe imaging of human subjects in terms of improved resolution in the future. 
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