136 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThree-dimensional (3D) models of industrial plant primitives are used extensively in modern asset design, management, and visualization systems. Such systems allow users to efficiently perform tasks in Computer Aided Design (CAD), life-cycle management, construction progress monitoring, virtual reality training, marketing walk-throughs, or other visualization. Thus, capturing industrial plant models has correspondingly become a rapidly growing industry. The purpose of this research was to demonstrate an efficient way to ascertain physical model parameters of reflectance properties of industrial plant primitives for use in CAD and 3D modeling visualization systems. The first part of this research outlines the sources of error corresponding to 3D models created from Light Detection and Ranging (LiDAR) point clouds. Fourier analysis exposes the error due to a LiDAR system's finite sampling rate. Taylor expansion illustrates the errors associated with linearization due to flat polygonal surfaces. Finally, a statistical analysis of the error associated with LiDar scanner hardware is presented. The second part of this research demonstrates a method for determining Phong specular and Oren-Nayar diffuse reflectance parameters for modeling and rendering pipes, the most ubiquitous form of industrial plant primitives. For specular reflectance, the Phong model is used. Estimates of specular and diffuse parameters of two ideal cylinders and one measured cylinder using brightness data acquired from a LiDAR scanner are presented. The estimated reflectance model of the measured cylinder has a mean relative error of 2.88% and a standard deviation of relative error of 4.0%. The final part of this research describes a method for determining specular, diffuse and color material properties and applies the method to seven pipes from an industrial plant. The colorless specular and diffuse properties were estimated by numerically inverting LiDAR brightness data. The color ambient and diffuse properties are estimated using k-means clustering. The colorless properties yielded estimated brightness values that are within an RMS of 3.4% with a maximum of 7.0% and a minimum of 1.6%. The estimated color properties effected an RMS residual of 13.2% with a maximum of 20.3% and a minimum of 9.1%

    Using Linear Features for Aerial Image Sequence Mosaiking

    Get PDF
    With recent advances in sensor technology and digital image processing techniques, automatic image mosaicking has received increased attention in a variety of geospatial applications, ranging from panorama generation and video surveillance to image based rendering. The geometric transformation used to link images in a mosaic is the subject of image orientation, a fundamental photogrammetric task that represents a major research area in digital image analysis. It involves the determination of the parameters that express the location and pose of a camera at the time it captured an image. In aerial applications the typical parameters comprise two translations (along the x and y coordinates) and one rotation (rotation about the z axis). Orientation typically proceeds by extracting from an image control points, i.e. points with known coordinates. Salient points such as road intersections, and building corners are commonly used to perform this task. However, such points may contain minimal information other than their radiometric uniqueness, and, more importantly, in some areas they may be impossible to obtain (e.g. in rural and arid areas). To overcome this problem we introduce an alternative approach that uses linear features such as roads and rivers for image mosaicking. Such features are identified and matched to their counterparts in overlapping imagery. Our matching approach uses critical points (e.g. breakpoints) of linear features and the information conveyed by them (e.g. local curvature values and distance metrics) to match two such features and orient the images in which they are depicted. In this manner we orient overlapping images by comparing breakpoint representations of complete or partial linear features depicted in them. By considering broader feature metrics (instead of single points) in our matching scheme we aim to eliminate the effect of erroneous point matches in image mosaicking. Our approach does not require prior approximate parameters, which are typically an essential requirement for successful convergence of point matching schemes. Furthermore, we show that large rotation variations about the z-axis may be recovered. With the acquired orientation parameters, image sequences are mosaicked. Experiments with synthetic aerial image sequences are included in this thesis to demonstrate the performance of our approach

    On the popularization of digital close-range photogrammetry: a handbook for new users.

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική

    Limited resource visualization with region-of-interest

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Automated Building Information Extraction and Evaluation from High-resolution Remotely Sensed Data

    Get PDF
    The two-dimensional (2D) footprints and three-dimensional (3D) structures of buildings are of great importance to city planning, natural disaster management, and virtual environmental simulation. As traditional manual methodologies for collecting 2D and 3D building information are often both time consuming and costly, automated methods are required for efficient large area mapping. It is challenging to extract building information from remotely sensed data, considering the complex nature of urban environments and their associated intricate building structures. Most 2D evaluation methods are focused on classification accuracy, while other dimensions of extraction accuracy are ignored. To assess 2D building extraction methods, a multi-criteria evaluation system has been designed. The proposed system consists of matched rate, shape similarity, and positional accuracy. Experimentation with four methods demonstrates that the proposed multi-criteria system is more comprehensive and effective, in comparison with traditional accuracy assessment metrics. Building height is critical for building 3D structure extraction. As data sources for height estimation, digital surface models (DSMs) that are derived from stereo images using existing software typically provide low accuracy results in terms of rooftop elevations. Therefore, a new image matching method is proposed by adding building footprint maps as constraints. Validation demonstrates that the proposed matching method can estimate building rooftop elevation with one third of the error encountered when using current commercial software. With an ideal input DSM, building height can be estimated by the elevation contrast inside and outside a building footprint. However, occlusions and shadows cause indistinct building edges in the DSMs generated from stereo images. Therefore, a “building-ground elevation difference model” (EDM) has been designed, which describes the trend of the elevation difference between a building and its neighbours, in order to find elevation values at bare ground. Experiments using this novel approach report that estimated building height with 1.5m residual, which out-performs conventional filtering methods. Finally, 3D buildings are digitally reconstructed and evaluated. Current 3D evaluation methods did not present the difference between 2D and 3D evaluation methods well; traditionally, wall accuracy is ignored. To address these problems, this thesis designs an evaluation system with three components: volume, surface, and point. As such, the resultant multi-criteria system provides an improved evaluation method for building reconstruction

    Multimodal Content Delivery for Geo-services

    Get PDF
    This thesis describes a body of work carried out over several research projects in the area of multimodal interaction for location-based services. Research in this area has progressed from using simulated mobile environments to demonstrate the visual modality, to the ubiquitous delivery of rich media using multimodal interfaces (geo- services). To effectively deliver these services, research focused on innovative solutions to real-world problems in a number of disciplines including geo-location, mobile spatial interaction, location-based services, rich media interfaces and auditory user interfaces. My original contributions to knowledge are made in the areas of multimodal interaction underpinned by advances in geo-location technology and supported by the proliferation of mobile device technology into modern life. Accurate positioning is a known problem for location-based services, contributions in the area of mobile positioning demonstrate a hybrid positioning technology for mobile devices that uses terrestrial beacons to trilaterate position. Information overload is an active concern for location-based applications that struggle to manage large amounts of data, contributions in the area of egocentric visibility that filter data based on field-of-view demonstrate novel forms of multimodal input. One of the more pertinent characteristics of these applications is the delivery or output modality employed (auditory, visual or tactile). Further contributions in the area of multimodal content delivery are made, where multiple modalities are used to deliver information using graphical user interfaces, tactile interfaces and more notably auditory user interfaces. It is demonstrated how a combination of these interfaces can be used to synergistically deliver context sensitive rich media to users - in a responsive way - based on usage scenarios that consider the affordance of the device, the geographical position and bearing of the device and also the location of the device

    Electromagnetic ray-tracing for the investigation of multipath and vibration signatures in radar imagery

    Get PDF
    Synthetic Aperture Radar (SAR) imagery has been used extensively within UK Defence and Intelligence for many years. Despite this, the exploitation of SAR imagery is still challenging to the inexperienced imagery analyst as the non-literal image provided for exploitation requires careful consideration of the imaging geometry, the target being imaged and the physics of radar interactions with objects. It is therefore not surprising to note that in 2017 the most useful tool available to a radar imagery analyst is a contextual optical image of the same area. This body of work presents a way to address this by adopting recent advances in radar signal processing and computational geometry to develop a SAR simulator called SARCASTIC (SAR Ray-Caster for the Intelligence Community) that can rapidly render a scene with the precise collection geometry of an image being exploited. The work provides a detailed derivation of the simulator from first principals. It is then validated against a range of real-world SAR collection systems. The work shows that such a simulator can provide an analyst with the necessary tools to extract intelligence from a collection that is unavailable to a conventional imaging system. The thesis then describes a new technique that allows a vibrating target to be detected within a SAR collection. The simulator is used to predict a unique scattering signature - described as a one-sided paired echo. Finally an experiment is described that was performed by Cranfield University to specifications determined by SARCASTIC which show that the unique radar signature can actually occur within a SAR collection

    Evaluation of mmWave 5G Performance by Advanced Ray Tracing Techniques

    Get PDF
    Technological progress leads to the emergence of new concepts, which can change people’s everyday lives and accelerate the transformation of many industries. Among the more recent of these revolutionary concepts are big data analysis, artificial intelligence, augmented/virtual reality, quantum computing, and autonomous vehicles. However, this list would be incomplete without referring to fifth-generation (5G) technology, which is driven by several trends. First, the exponential growth of the worldwide monthly smartphone traffic up to 50 petabytes during the next three years will require the development of mobile networks supporting high datasharing capabilities, excellent spectral efficiency, and gigabits per second of throughput. Another trend is Industry 4.0/5.0 (also called the smart factory), which refers to advanced levels of automation requiring millions of distributed sensors/devices connected into a scalable and smart network. Finally, the automation of critical industrial processes, as well as communication between autonomous vehicles, will require 99.999% reliability and under 1 ms latency as they also become the drivers for the emergence of 5G. Besides traditional sub-6 GHz microwave spectrum, the 5G communication encompasses the novel millimeter-wave bands to mitigate spectrum scarcity and provide large bandwidth of up to several GHz. However, there are challenges to be overcome with the millimeter-wave band. The band suffers from higher pathloss, more atmospheric attenuation, and higher diffraction losses than microwave signals. Because the millimeter-wave band has such a small wavelength (< 1 cm), it is now feasible to implement compact antenna arrays. This enables the use of beamforming and multi-input and multi-output techniques. In this thesis, advanced ray tracing methodology is developed and utilized to simulate the propagation mechanisms and their effect on the system-level metrics. The main novelty of this work is in the introduction of typical millimeter-wave 5G technologies into channel modelling and propagation specifics into the system-level simulation, as well as the adaptation of the ray tracing methods to support extensive simulations with multiple antennas
    corecore