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ABSTRACT

Three-dimensional (3D) models of industrial plant primitives are used extensively 

in modern asset design, management, and visualization systems. Such systems allow 

users to efficiently perform tasks in Computer Aided Design (CAD), life-cycle 

management, construction progress monitoring, virtual reality training, marketing walk­

throughs, or other visualization. Thus, capturing industrial plant models has 

correspondingly become a rapidly growing industry. The purpose of this research was to 

demonstrate an efficient way to ascertain physical model parameters o f reflectance 

properties of industrial plant primitives for use in CAD and 3D modeling visualization 

systems.

The first part of this research outlines the sources of error corresponding to 3D 

models created from Light Detection and Ranging (LiDAR) point clouds. Fourier 

analysis exposes the error due to a LiDAR system’s finite sampling rate. Taylor 

expansion illustrates the errors associated with linearization due to flat polygonal 

surfaces. Finally, a statistical analysis o f the error associated with LiDAR scanner 

hardware is presented.

The second part o f this research demonstrates a method for determining Phong 

specular and Oren-Nayar diffuse reflectance parameters for modeling and rendering 

pipes, the most ubiquitous form of industrial plant primitives. For specular reflectance, 

the Phong model is used. Estimates o f specular and diffuse parameters o f two ideal



cylinders and one measured cylinder using brightness data acquired from a LiDAR 

scanner are presented. The estimated reflectance model of the measured cylinder has a 

mean relative error of 2.88% and a standard deviation of relative error of 4.0%.

The final part of this research describes a method for determining specular, 

diffuse and color material properties and applies the method to seven pipes from an 

industrial plant. The colorless specular and diffuse properties were estimated by 

numerically inverting LiDAR brightness data. The color ambient and diffuse properties 

are estimated using k-means clustering. The colorless properties yielded estimated 

brightness values that are within an RMS of 3.4%, with a maximum of 7.0% and a 

minimum of 1.6%. The estimated color properties effected an RMS residual of 13.2% 

with a maximum of 20.3% and a minimum of 9.1%.
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CHAPTER 1

INTRODUCTION

1.1 The Need for 3D Models of Industrial Plants 

Three-dimensional (3D) models of industrial plant primitives are used extensively 

in modern asset design, management, and visualization systems. Such systems allow 

users to efficiently perform tasks in Computer Aided Design (CAD), life-cycle 

management, plant inspection, construction progress monitoring, virtual reality training, 

marketing walk-throughs, or other visualization. From oil and gas, hydroelectric or 

nuclear power, to food and goods manufacturing, industrial plants are an ever-growing 

aspect of modern society. Virtual reality training systems, for example, rely on visually 

and geometrically accurate 3D models to provide realistic immersive environments to 

prepare individuals for emergency situations [1]-[4]. Marketing walk-throughs also 

provide a much more compelling effect when the visual aspect is of the highest quality

[5]-[7]. Thus, capturing, annotating, and visualizing industrial plants has correspondingly 

become a rapidly growing industry and an increasingly important aspect o f research.

“As-builts” are databases containing existing condition information about a 

human architected structure. Ascertaining as-built information for industrial plants 

usually involves taking measurements, utilizing those measurements to create geometric 

primitives (such as pipes, flanges, elbows etc.), annotating those primitives with



descriptive information, and storing the results in a database for future use. Such 

annotation information may include: color, material type, outer diameter, inner diameter, 

material density, melting point, specific heat, purchase price, purchase date, the current 

condition the material is in, or even its life expectancy.

Light Detection and Ranging (LiDAR) scanners are frequently used to capture 3D 

points and color photographic data of industrial plants. Such data contain vast amounts 

of information that is scarcely utilized to its full potential. For example, the visual aspect 

of the as-built information (if even available in a useful format) is underutilized in most 

circumstances [8]. Although many applications today can render massive amounts of 3D 

points (called “point clouds”), these systems do not exceed the visual quality of a 

polygonal 3D model, especially given the extreme capabilities of modern graphics 

hardware. Hence, point clouds are typically used to display and work with raw data, but 

not the final model.

An alternative to point clouds is photorealistic texture-based CAD rendering 

systems [9] [10]. These systems excel in visual quality, yet are not as widespread and 

still require powerful rendering graphics hardware to operate and require large amounts 

of storage space in RAM and on a computer’s hard drive. Point cloud and other texture- 

based rendering systems typically rely heavily on level of detail (LOD) engines to page 

points in and out of the rendering buffer. Even the world’s best graphics systems present 

artifacts when paging data in and out of the graphics hardware, causing visual artifacts, 

and heavy power usage. In fact, even with widespread availability of powerful graphics 

hardware, few existing computer aided design (CAD) visualization and utilization tools 

are even programmed to properly render photorealistic textures and material properties of
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3D CAD models [8].

1.2 Contributions 

The purpose of this research is to offer an efficient alternative to point clouds or 

texture mapping to achieve near photorealistic rendering with minimal storage for 3D 

models o f industrial plant primitives. First, geometric models o f pipes were created. 

Colorless specular and diffuse material properties were then estimated using LiDAR 

intensity data. Finally, colored ambient and diffuse material properties were determined 

and combined with the colorless specular and diffuse materials to create models that 

require very little digital storage resources and can be rendered efficiently on common 

graphics hardware.

1.2.1 Geometric Modeling from 3D Spatial Data

Effectively modeling the geometry of an industrial plant primitive is the first 

step in obtaining material properties of a model. Understanding the errors associated 

with 3D model geometries created from LiDAR data helps minimize errors estimated for 

material properties. To this end, an error analysis of modeling LiDAR data from 

terrestrial scanners is presented in this project. When a particular application requires 

additional accuracy, the solution typically involves scanning at a higher resolution of 3D 

spatial data. This reliance on data directly acquired from LiDAR scanners has forced 

many users to gather redundant data at the expense of efficiency. This paper explores the 

sources o f error associated with LiDAR data and the effects o f ray tracing polygonal 

LiDAR data as an alternate to acquiring and utilizing high density scans. The errors are



quantified for a paved surface; however, the results may be applied to many other types 

of surfaces. The results of this analysis demonstrate that polygonal models of terrestrial 

LiDAR data are accurate methods for representing Digital Terrain Models (DTMs). The 

results further demonstrate that the accuracy of a polygon created from LiDAR data can 

be higher than scanning at a higher resolution for many applications.

1.2.2 Colorless Specular and Diffuse Properties 

Specular reflectance is the modeling of light as it reflects off a surface at a single 

(or very limited number of) angle(s). Specular reflectance describes an object’s 

“shininess.” Diffuse reflectance is the reflectance of light that scatters in many angles, is 

not “shiny,” and is largely responsible for illustrating the contrast between brightness and 

darkness of the colors we see in objects. The methods presented in this project 

automatically extract colorless specular and diffuse material properties from raw LiDAR 

data of pipes found in industrial plants. These colorless quantities can be utilized to 

create life-like visual lighting effects on readily available graphics hardware, given the 

proper rendering engine.

1.2.3 Colored Ambient, Diffuse, and Specular Properties 

Ambient reflectance is a quantity commonly used in computer graphics systems 

to efficiently portray the color of an object or portion of an object that lacks direct 

illumination. The three quantities of ambient, diffuse, and specular color information, 

when utilized properly in a rendering engine, can provide a near photorealistic visual 

experience for a user of a CAD system, an asset management tool, a customer, or a

4
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trainee. This project presents a method for combining the colorless diffuse and specular 

material properties previously determined with colored photographic data to estimate 

colored specular, diffuse, and ambient material properties o f industrial plant primitives.

1.3 Material Property Estimation Experimental Setup

This project utilized two types o f measurement data acquired in an industrial 

plant. The first type was color image data from a digital camera found inside the LiDAR 

scanner. The second type was range, azimuth, polar, and intensity data acquired from a 

(Light Detection and Ranging) LiDAR scanner. The color image data consisted of red, 

green, and blue arrays o f detected light in the visible spectrum. The LiDAR data partially 

consisted of range, azimuth, and polar three-dimensional spatial data that were used to fit 

pipes to the measured points. The range, azimuth, and polar data are simply the three 

values that uniquely determine location in three dimensions in spherical coordinates and 

can be easily converted to x, y, and z values in Cartesian coordinates.

Intensity data were also acquired and utilized using the LiDAR scanner. This 

intensity value for each measured 3D point represents the reflectance value (ratio) 

between the transmitted and received brightness o f the near-infrared LiDAR source. 

Figure 1-1 , Figure 1-2, and Figure 1-3 are the color image, intensity image, and intensity 

image with labels marking the seven pipes that were analyzed for this project, 

respectively.

Pipe number 2 shown in Figure 1-3 is the same pipe analyzed in Chapter 4. The 

results of the estimation of the color material properties for the seven pipes are found in 

Chapter 5.



The LiDAR scanner was stationed on a tripod and a 360 degree (horizontally) 

scan was performed. The color camera is integrated with the LiDAR scanner, thus, each 

3D point acquired by the LiDAR scanner has a red, green, blue, and LiDAR intensity 

value associated with it.

1.4 Summary

This dissertation offers an efficient alternative to point clouds or texture mapping 

to achieve near photorealistic rendering and minimal storage for 3D models of industrial 

plant primitives. First, it provides a detailed explanation of the sources of error 

associated with 3D models made from LiDAR scan data. Next, it describes a method for 

extracting colorless specular and diffuse reflectance parameters for industrial plant 

primitives. Then, a method for determining color material properties is presented.

A detailed description of the format of this dissertation follows:

Chapter 2 outlines the current state of the art of this field of research.

Chapter 3 describes a numerical analysis of the sources of errors associated with 

3D modeling of planar surfaces from LiDAR scan data.

Chapter 4 provides a method for determining colorless specular and diffuse 

material properties from LiDAR intensity data. In Section 4.2, more details regarding 

related work found in the literature is presented. Section 4.3 outlines some details of 

industrial plant modeling of cylindrical objects such as pipes, railings, supports, etc., 

where the specific mathematical representations of specular and diffuse reflectance 

models are provided and described. Section 4.3.1 illustrates the difference between the 

Oren-Nayar and Lambertian diffuse reflectance models.

6



The numerical inversion process used in this paper is described in Section 4.4. 

The experimental results are outlined in Section 4.5.

Chapter 5 applies the method described in Chapter 4 to seven pipes in an 

industrial plant and then offers a method for determining ambient and diffuse color 

information from digital photographic data.

The methods outlined in Section 5.2 are divided into two parts. Section 5.2.1 

describes several case studies of the specular and diffuse estimation method proposed in

[11] applied to measurement data from seven different pipes found in an industrial plant. 

LiDAR scan intensity (brightness) data are used to estimate the specular and diffuse 

material properties. Section 5.2.2 offers a k-means color determination method applied 

to the same seven pipes. Digital photographic data of the pipes are used to estimate the 

ambient and diffuse colors. Section 5.3, which is also divided into two parts, offers the 

results and corresponding discussion of the estimations. Section 5.3.1 presents and 

describes the results for the colorless specular and diffuse estimation, and Section 5.3.2 

presents and describes the results of the ambient and diffuse color estimations. 

Concluding remarks for this chapter are provided in Section 5.4.

1.5 Publications

The work in this paper has been published in IEEE Geoscience and Remote 

Sensing Symposium in 2008 in Boston [12]; [11] has been submitted for publication in 

“Geometry, Imaging and Computing” and the content in Chapter 5 will soon be 

submitted to “Automation in Construction” for publication.
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Figure 1-1 Measured color image data acquired by a digital camera embedded in
the LiDAR scanner

Figure 1-2 Measured brightness data acquired by a LiDAR scanner

Figure 1-3 Measured brightness data with pipes that were analyzed and numbered



CHAPTER 2

3D MODELING AND VISUALIZATION OF INDUSTRIAL 

PLANT PRIMITIVES

2.1 The Current State of the Art of 3D Modeling Industrial Plant Primitives 

3D model material properties are difficult to attain yet can be used extensively for 

visualization in computer graphics systems. Such visualization systems are used in 

Computer Aided Design (CAD) and inspection [1],[2], virtual reality training [3]-[6], and 

marketing or other walk-through [7]-[9] applications. Automated or semi-automated 

CAD model generation from industrial plants is a growing area o f research and 

development. Methods used include photogrammetry [10],[11], Light Detection and 

Ranging (LiDAR) laser scanning [12]-[16], or both [17],[3]. Other applications of 3D 

model material properties may include automated object recognition, construction 

progress tracking [19], or object condition assessment [20].

These methods for modeling industrial plant primitives in the literature focus on 

determining the objects’ geometry -  size of pipe, orientation in space, its clearance from 

other objects, etc. This project uses LIDAR data similar to [14] and [17], but we 

automatically determine colored ambient, diffuse, and specular reflectance properties 

instead of primitive geometry.



2.2 Error Analysis of 3D Modeling from LiDAR Data 

Many researchers have performed error analyses on various algorithms that 

process aerial LiDAR scanning data [21]-[28]. In [21], the authors analyze various 

algorithms used to estimate spatial data from LiDAR data to create DEMs and DTMs. 

These previous works describe observations of error in specific environments but do not 

provide a complete mathematical basis to address the reasons why the particular results 

were observed. Additional publications discuss the processing of airborne LiDAR data 

for DTM extraction [29]-[31]. [29] analyzes LiDAR data DTM extraction via adaptive 

processing; [30] discusses modeling of LiDAR waveforms in vegetation populated 

terrains; [31] offers insight into techniques for analyzing bathymetric LiDAR data. 

Chapter 3 o f this paper explains the mathematics behind estimation theory as it applies to 

LiDAR scan data. Section 3.4 analyzes the sources o f error related to modeling 

polygonal models from LiDAR data. Chapter 3 also offers several illustrative examples 

o f the errors associated with actual and modeled scan data to make an accurate 

assessment of the strengths and limitations of ray tracing on polygonal models.

2.3 Reflectance Material Properties of 3D Models 

Properties o f light as they interact with an object and are perceived by human eyes 

have been researched for centuries [32]-[35]. Lambert offered a basic mathematical 

model that describes this interaction, and the Lambertian model [32] is still the most 

prevalent algorithm for computing diffuse reflectance today. The Lambertian model 

calculates the brightness of a particular point on an object based on the object’s inherent 

color, the reflected angle of the light source, and its relation to the angle of the viewing

11



direction. The visual properties of light, such as Lambertian reflectance, were applied to 

computer systems to enhance realism in computer graphics in the 1960s. Cook, 

Torrance, Sparrow, Phong, and Blinn contributed a great deal of pioneering work in the 

field [36]-[39]. The efficient approximation of specular reflectance is one aspect of early 

advances in computer graphics that has withstood the test of time.

2.3.1 Generalized Diffuse Reflectance 

Oren and Nayar introduced a generalization of Lambert’s solution to the diffuse 

reflectance model by accounting for rough surfaces that scatter light more prevalently 

than other relatively smooth surfaces [39]. This contribution, although not as 

computationally efficient as the Lambertian model, provides a much more accurate 

representation for rough surfaces. We utilize the Oren Nayar generalized model of 

diffuse reflectance as the model for our diffuse material property estimation. Chapter 4 

offers a method for calculating the Oren Nayar diffuse material properties from LiDAR 

scan data.

2.3.2 Phong Specular Reflectance 

Phong illustrated a method for calculating the bright reflective material property 

that shiny surfaces demonstrate [38]. We utilize the Phong model as the model for our 

specular material property estimation. In addition to estimating the Oren Nayar diffuse 

parameters, Chapter 4 also offers a method for calculating the Phong specular material 

properties from LiDAR scan data.

12
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2.3.3 Applications of Light Reflectance Modeling 

Applications utilizing diffuse and specular reflectance models have yielded 

advances in the field o f determining the geometric properties o f an object [40]-[59]. 

“Shape from shading,” as it is more commonly called, has seen dramatic advances over 

the years. Specular highlights, specifically, can provide detailed and accurate 

information regarding the detailed shape o f a surface in addition to its reflective 

properties. Nayar et al. uses reflectance to perform object recognition [50].

The general science of specular and diffuse reflectance has seen significant 

attention. Brelstaff et al. have utilized Lambertian constraints to detect specular 

reflection parameters [44]. Nayar et al. have published work relating the surface 

reflection parameters of a model to its physical and geometrical properties [48]. Soon 

thereafter, Nayar et al. contributed additional work outlining the identification and 

removal of specular highlights using color and polarization [60]. Wolff, Nayar, and Oren 

then published work that applies their enhanced reflectance models for computer vision

[56]. Lin and Lee provide several methods for enhancing the visual appearance of objects 

utilizing specular and diffuse properties [61]-[63]. Ragheb et al. illustrated a method for 

separating Lambertian and specular reflectance parameters for Machine Vision [64]. 

More recently, Nayar outlined a method for overcoming challenges in shape from 

shading techniques using a diffuse filter to alleviate specular highlights and shadowed 

regions common in digital images [65].

Chapter 5 of this paper describes how the theory proposed herein can be applied 

to real-world measurement data o f industrial plant pipes. Additionally, a method for 

determining color information is also provided in that chapter.
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2.4 Rendering 3D Models of Industrial Plant Primitives 

Although most CAD systems render very simple visual information associated 

with the model, some systems can render photorealistic textures [66], [67]. Photorealistic 

models are visually appealing, yet they require large amounts of hard drive and RAM 

storage space, and are computationally intensive to visualize. Even level of detail (LOD) 

engines cannot operate efficiently without storing, paging, and purging massive amounts 

of detailed visual information in real-time. The material properties determined in this 

paper can be efficiently applied to real-time rendering systems due to minimal memory 

storage requirements and readily available graphics hardware.

2.5 Summary of the Current State of the Art 

This paper describes a method for determining material properties of industrial 

plant primitives for visualization, design, object recognition, and other potential 

applications. Most research in the current state of the art for pipes in industrial plants 

focuses on fitting geometry only, while some applications apply bulky texture maps to 

the surface, but lack the physical descriptive data that characterize the objects’ 

fundamental material properties. This paper acquires those fundamental data and 

demonstrates how they can be applied to enhance 3D modeling and design applications.
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Abstract— This paper demonstrates that the error associated 
with ray tracing photorealistic polygonal models of Light 
Detection and Ranging (LIDAR) scan data is negligible for many 
applications. In some cases, the standard deviation of error is 
actually reduced by ray tracing to points on a polygonal model 
between LIDAR data rather than capturing more data from a 
scanner. Numerical analyses on the sources of error were 
performed using Fourier analysis, Taylor expansion, and a 
statistical model of LIDAR data. Ray tracing was then used to 
calculate the intersection of each polygon at a point of interest, 
allowing 3D data to be quantified at any location in between 
LIDAR points. Actual acquired from a LIDAR scanner and 
modeled data are then compared to the ray traced values. 
Results show that many data types have sufficiently low spectral 
content, allowing accurate representation of 3D data acquired 
from a LIDAR scanner as a polygonal model.

Index Terms—Light Detection and Ranging (LIDAR), error 
analysis, sensor signal processing, digital terrain model (dtm)

I. In t r o d u c t io n

THERE is a need for greater understanding of the error 
associated with the processing of data acquired by light 

detection and ranging (LIDAR) scanners [1], even though 
LIDAR scanners have acquired 3D spatial data for surveys, 
planning, development, inventory control and other 
applications for over a decade. An error analysis of modeling 
LIDAR data from terrestrial scanners is presented in this 
paper.

When a particular application requires additional accuracy, 
the solution typically involves scanning at a higher resolution 
of 3D spatial data. This reliance on data directly acquired 
from LIDAR scanners has forced many users to gather 
redundant data at the expense of efficiency. This paper 
explores the sources of error associated with LIDAR data and 
the effects of ray tracing polygonal LIDAR data as an 
alternate to acquiring and utilizing high density scans. The 
errors are quantified for a paved surface; however the results 
may be applied to many other types of surfaces.

The results of this analysis demonstrate that polygonal 
models of terrestrial LIDAR data are accurate methods for

representing DTMs. The results further demonstrate that the 
accuracy of a polygon created from LIDAR data can be 
higher than scanning at a higher resolution for many 
applications.

II. P r e v io u s  R e s e a r c h

Many researchers have performed error analyses on 
various algorithms that process aerial LIDAR scanning data 
[l]-[8]. In reference [1], the authors analyze various 
algorithms used to estimate spatial data from LIDAR data to 
create DEMs and DTMs. These previous works describe 
observations of error in specific environments but do not 
provide a complete mathematical basis to address the reasons 
why the particular results were observed. Additional 
publications discuss the processing of airborne LIDAR data 
for DTM extraction [9]-[ll]. Reference [9] analyzes LIDAR 
data DTM extraction via adaptive processing; [10] discusses 
modeling of LIDAR waveforms in vegetation populated 
terrains; [11] offers insight into techniques for analyzing 
bathymetric LIDAR data.

This paper explains the mathematics behind estimation 
theory as it applies to LIDAR scan data, and offers several 
illustrative examples of the errors associated with actual and 
modeled scan data to make an accurate assessment of the 
strengths and limitations of ray tracing on polygonal models.

III. D a t a  D e s c r ip t io n  a n d  A n a l y s is

A. Initial Error Estimates Using Actual LIDAR Data 
The LIDAR data chosen for this project are taken from a 

paved surface. Two separate LIDAR scans taken from the 
same location were captured a few minutes apart. Data from 
one scan were thinned and polygonal models were generated 
to represent a surface. The discrepancy between the acquired 
LIDAR data and the ray trace calculation were determined. 
The difference between LIDAR points from one scan to 
another, captured from the same location, was also computed. 
The differences were plotted as a function of distance from 
the scanner, up to 25m, as shown in Fig. 1. The LIDAR to 
LIDAR difference exceeded that of the ray trace to LIDAR 
difference for every distance plotted.

978-1-4244-2808-3/08/S25.00 ©2008 IEEE II - 257 IGARSS 2008
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LIDAR vs LIDAR

6 8 10 12 14 16 18 20 22 
Distance from Scanner (m)

Figure 1. Standard deviation of error vs. distance for the LIDAR vs.
LIDAR and ray trace vs. LIDAR examples

The discrepancies between the two plots found in Fig. 1 
are the result of low pass filtering. Inherent noise in LIDAR 
scanners can be reduced on relatively flat surfaces by creating 
polygons from lower resolution LIDAR points.

IV. Analysis of the Sources of Error

A. Overview
In general, there are fundamentally three sources for error 

when acquiring data. The first is discretization; this source 
was quantified using Fourier analysis. Second, the method 
applied in utilizing the data (connecting the dots), which was 
quantified using Taylor’s expansion. Third is the inaccuracy 
inherent in the acquisition process, which was analyzed using 
statistical methods. Models of anomalous elements, a groove, 
a bump, and an inclined plane, were created and the 
corresponding Fourier spectra were analyzed.

B. Fourier Analysis o f Error Due to Finite Sampling Rate
Using one dimensional Fourier analysis, a finite number of

harmonics (AT) can construct a function within an error of £N,

c N = ^  An cos(a>n</>) + Bn sin(con(p)' ( 1 )

Anomaly Width Height
Groove 428mm 21mm
Bump 8.56mm 11.5mm
Incline 500mm 25 mm

TABLE E.
Fs d £v

1,000 S/rad 2m 6.268 x 10-17 m
1,000 S/rad 5m 2.0163 x 10-6 m
1,000 S/rad 10m 6.2542 x 10-4 m
1,000 S/rad 50m 2.86 x 10-2 m

0 100 200 300 400 500 600 '
Horizontal Distance (mm)

Figure 2. Model of an anomalous groove in a paved surface

01 is the spatial frequency, (j) is the azimuth angle, and An and 
Bn are the amplitudes of the even and odd functions in the 
series, respectively. Dimensions of the various models are 
given in Table I. Fig. 2 and Fig. 3 depict a cross section of 
the groove with its corresponding Fourier spectra, 
respectively. The standard deviation of various errors due to 
band-limiting, (1), of modeled data for the anomalous groove 
were calculated for various sampling rates (Fs) and distances 
(d), and are given in Table II below.

TABLE I.

50 100 150 200 250 300 350 400 450 500 
Spatial Frequency (cycles per radian)

Figure 3. Fourier spectrum of anomalous groove from Figure 2

At 50m the standard deviation of the band-limiting error 
exceeds that of the maximum height of the anomaly itself. 
However, at that same sampling rate, the standard deviation of 
band-limiting error is less than a millimeter when capturing at 
or below a distance of 10m.

The bump modeled for this project is similar to the rough 
surface of pavement due to the shape of the pieces of gravel 
that are compacted as the road is made. The calculated errors 
of ray tracing polygonal approximations of the bump are 
given in Table III. These errors suggest that one must scan at 
an extremely high resolution from two meters away to achieve 
sub-millimeter accuracy when modeling a small anomaly.

The slightly curved incline in the paved surface is used to 
represent the slight crowning of a roadway that elevates 
towards the center of the road. The incline rises 
approximately 15mm over a span of lm. The computed errors 
for the incline are given in Table IV. The errors in Table IV 
seem extraordinarily high. However, this simply suggests that 
the reconstruction of an inclined surface should be 
accomplished by a means other than Fourier. The next 
section shows that the linear approximation is much better 
than the band-limited approximation for the modeled incline.

table m.
Fs d £n

10,000 S/rad 2m 3.278 x 10-4 m
10,000 S/rad 3m 1.153 x 10-3 m
10,000 S/rad 5m 2.717 x 10-1 m
10,000 S/rad 10m 5.00 x 10-1 m

TABLE IV.
Fs d £n

1,000 S/rad 2m 6.268 x 10-17 m
1,000 S/rad 5m 2.0163 x 10-6 m
1,000 S/rad 10m 6.2542 x 10-4 m
1,000 S/rad 50m 2.86 x 10-2 m

II - 258
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C. Error Due to Linearization
The preceding error estimation in (1) assumes that the 

function, f((j)) is approximated using sine’s and cosines. 
However, for this project, the function f((/>) is represented by 
planar surfaces (triangulated 3D polygons), which can be 
reduced to lines when analyzing LIDAR data as a function of 
azimuth angle only.

The error of a linear approximation to any function can be 
quantified by using Taylor’s expansion of the Fourier sine and 
cosine series. Taking the nonlinear terms of a particular 
frequency of cosine or sine, respectively, yields for each An 
and Bm respectively, the total error associated with the 
polygonal (linear) approximation. Thus,

w > 2"
(2m)!

W )2p+1
U (2p + l)!

(2)

f{<P) = ^ { A n + Bn(OJ ) + £ Aj + (3)

Anomaly Fs d £ n  + £ lin

Groove 1,000 S/rad 50m 0.474mm
Bump 1,000 S/rad 2m 0.599mm
Incline 1,000 S/rad 50m 0.008mm

the sum of which constitutes the linearization error for odd 
and even, non-linear functions, respectively.

The total error, then, of the polygonal model versus the true 
paved surface can be quantified by summing the errors from 
(1) and (2). Finally, the surface of the paved surface, f ( </>), can 
be represented as a function of the terms used in the polygonal 
(linear) approximation and the total error, as

A few of the results are given in Table V. The standard 
deviation of the total error for each model shows that the ill- 
effects of polygonalization can be neglected in many cases. 
In cases where the total error is less than the error due to 
band-limiting, one can assume that the linear approximation 
to the surface is a better approximation than the Fourier 
reconstruction, and thus the error is reduced when linearized.

The standard deviation of the total error for the anomalous 
bump as captured from 2m away with a sampling frequency of
1,000 S/rad was calculated to be 0.599mm (as shown in Table 
V). The linear approximation and original model for the 
anomalous bump is shown below in Fig. 4.

One can recognize from Fig. 4 where the largest errors are 
due to the polygonalization of LIDAR data. However, the 
standard deviation for these particular settings is still less than 
a millimeter. The results of this numerical analysis suggest 
that polygonalization is not the primary source of error in scan 
data. Rather, limitations due to noise in the scanning 
hardware contribute far more to the overall error in the data 
than polygonalization. In fact, polygonalization can actually 
reduce the error of scan data for certain objects.

TABLE V.

Horizontal Distance (mm)

Figure 4. Modeled surface anomaly (bump) and linear approximation

D. Error Due to Scanner Noise
The third source of error is the noise inherent in the 

scanning hardware. The polygonal model of the inclined 
plane shown in Fig 5 had a standard deviation of error of 
10mm. The noise in the data can be easily seen in the Fourier 
spectrum of a sample of data, as shown in Fig. 6.

By comparing the results of the data in Fig. 6 to the model 
in Fig. 5 of paved surface data, it can be readily seen that 
there is noise in the higher frequency bands in the actual data. 
If a perfectly flat surface were scanned, a time of flight 
scanner would still have errors from 6mm to 15mm, without 
further processing.

Contrastingly, reducing the sampling rate of the LIDAR 
data by polygonalization effectively removes the high 
frequency noise for relatively flat surfaces. Anomalous 
objects as small as or smaller than the noise region are 
difficult to detect in a single scan due to the random 
distribution of frequency components present in the noise. 
However, utilizing the statistical law of large numbers one 
could uncover anomalous elements within a series of scans of 
the same object or scene, even if the size of the object(s) were 
smaller than the level of noise.

E. The Law o f Large Numbers
The Law of Large Numbers mentioned above describes the 

evolution of statistical behavior as the number of samples in a 
set of random variables increases. It states that the average of 
a set of random variables approaches its statistical mean as the 
number of samples in the set increases.

0 50 100 150 200 250 300 350 400 450 500 
Spatial Frequency (cycles per radian)

Figure 5. Fourier spectrum of the gradual incline

WW
0 100 200 300 400 500 600

Spatial Frequency (cycles per radian)

Figure 6. Fourier spectrum of a single horizontal slice of LIDAR data 
on a paved surface
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To illustrate this concept, a set of samples of normally 
distributed random data, representing range data captured by a 
scanner with a standard deviation of error of 6mm, was 
analyzed. The errors of the first sample were not averaged. 
The errors of the next three sets of samples were then 
analyzed taking averages of 10, 100, and 1,000 points, 
respectively. A normalized probabilistic curve for each 
sample set is shown below as Fig. 7.

One can see the wide distribution of error for the first data 
set; roughly 67% of the samples have magnitudes of errors 
less than 6mm. The next set of sample data (upper right of 
Fig. 15) quantifies the error distribution of samples that have 
been averaged over 10 points.

The standard deviation of this sample set was calculated to 
be 1.9mm. Likewise, the third and fourth sets of random data 
(lower left and lower right of Fig. 7, respectively) correspond 
to smooth surfaces that are defined by 100 and 1,000 LiDAR 
points, respectively. The corresponding standard deviations 
of these data sets were computed to be 0.6mm and 0.19mm, 
respectively. Resultantly, when scans are processed 
accordingly, the accuracy can actually be better than the error 
tolerances published for the scan hardware. Beam divergence 
also plays a role in the ability to acquire high detail at far 
distances and could be explored as an additional source of 
error; however, an analysis of beam divergence is beyond the 
scope of this paper.

Although it may not practical to scan a scene or surface
1,000 times, the principle holds true that the data converge to 
the true values as the number of samples increases. This 
principle can be utilized to recover information that exists 
below the noise level of the hardware to further optimize a 
data set.

V . C o n c l u s io n s

An error analysis of polygonal models created from actual 
and modeled terrestrial LIDAR data was performed. Ray 
traced points were compared to actual LIDAR scan data and 
modeled data using Fourier spectra, Taylor expansion and 
statistics. The standard deviation of error for the polygonal 
model of the anomalous groove was 0.474mm; the error for 
the bump was 0.599mm; and the error for the incline was 
0.008mm.

This analysis showed that for objects with few high 
frequency features, scanning at a higher density actually 
increases measurement error. Polygonal models can act as 
filters to remove high frequency noise, thus lowering the 
errors inherent in LIDAR data utilization. Polygonal models 
created from LIDAR scan data can thereby be used to 
accurately represent real world objects. Furthermore, due to 
the error inherent in LIDAR scanning hardware, polygonal 
models can actually yield lower standard deviations of error 
than LIDAR scanning at a higher resolution.
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Figure 7. Probabilistic Curves Illustrating the Error of Scan Data
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CHAPTER 4

DETERMINING REFLECTANCE PROPERTIES OF 

INDUSTRIAL PLANT PRIMITIVES1

4.1 Abstract

This paper outlines a method for determining reflectance parameters for modeling 

and rendering industrial plant primitives. The reflectance parameters are diffuse and 

specular material properties and the industrial plant primitives are pipes from raw LiDAR 

brightness data. For diffuse reflectance, the Lambertian model is compared to the Oren- 

Nayar model, and methods for estimating both are presented. For specular reflectance, 

the Phong model, commonly used in computer graphics, is used. The brightness data 

acquired from LiDAR systems are modeled as two different ideal cylinders to recover the 

diffuse and specular reflectance parameters and to illustrate the proposed method. A 

measured cylinder using brightness data acquired from a LiDAR scanner is also 

analyzed, and the diffuse and specular reflectance parameters are estimated. The estimate 

for the specular coefficient and exponent of the ideal cylinder are within 3.5% and 3.6%, 

respectively and the estimate for the Lambertian reflectance albedo for the ideal cylinder 

is within 0.02% of the actual value. The estimate for the diffuse reflectance and

1 Content of this chapter is taken from an article coauthored with Dr. Cynthia Furse that has been submitted

to Geometry Imaging and Computing.



roughness parameters for the second ideal cylinder are within 0.3% and 1.2%, 

respectively. The estimated reflectance model o f the measured cylinder has a mean 

relative error of 2.88% and a standard deviation of relative error of 4.0%.

4.2 Introduction

As-built models of industrial plants are utilized extensively in asset management, 

asset virtualization, risk assessment, and emergency evacuation planning and training [7],

[14], [42]. “As-builts,” as they are commonly called, are databases containing existing 

condition information about a natural or human architected structure. Ascertaining as- 

built information for industrial plants usually involves taking measurements, utilizing 

those measurements to create geometric primitives (such as pipes, flanges, elbows etc.), 

annotating those primitives with descriptive information, and storing the results in a 

database for future use. This paper proposes methods for estimating specular and diffuse 

reflectance properties for pipes, the simplest and most prevalent o f all industrial plant 

primitives.

Specular reflectance is the modeling of light as it reflects off a surface at a single 

(or very limited number of) angle(s). Specular reflectance describes an object’s 

“shininess.” Diffuse reflectance is the reflectance of light that scatters in many angles, is 

not “shiny,” and is largely responsible for illustrating the contrast between brightness and 

darkness of the colors we see in objects.

Estimating specular and diffuse parameters has been performed for geometric 

modeling applications, where these two physical aspects o f reflectance are determined 

independent of each other [37]. The purpose of determining the reflectance properties in
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that paper was to help determine the shape of the object under inspection. The shapes of 

primitives in industrial plants can be created in a similar manner using photogrammetric 

methods [7], a hybrid of photogrammetry and LiDAR [11], or solely from LiDAR range 

images [9].

Once the geometry has been determined, the photorealistic attributes of geometric 

primitives are seldom utilized in industry today [42]. In fact, few existing computer aided 

design (CAD) visualization and utilization tools are even capable of properly rendering 

the specular and diffuse material properties of 3D CAD models (Toro et al. 2006).

Modern CAD models for industrial plants contain much more than simple 

geometric primitive information. Such information may include: material type, outer 

diameter, inner diameter, material density, melting point, specific heat, purchase price, 

purchase date, or life expectancy. If the specular and diffuse reflectance values of the 

industrial plant primitives in their current state were known, the material type could be 

automatically estimated. The material properties such as density, melting point, specific 

heat, life expectancy, or even the inner diameter could be automatically estimated (when 

utilized in conjunction with geometric information such as a cylinder’s outer radius) once 

they are identified with a matching material type in a database library.

All the methods found in the literature that determine reflectance properties of an 

object do so utilizing photogrammetric methods. The object’s shape and the light 

source(s) illuminating it are typically unknown, and the shape and light source have to be 

estimated along with the reflectance properties. The methods found in the literature that 

create CAD models of industrial plants focus on acquiring geometry; the visual aspect is 

of secondary concern. Furthermore, when a visual element is added to the model, raw



photographic imagery is typically draped over the geometry as a texture map; no material 

reflectance properties are estimated [9], [11], [7].

The methods outlined in this paper automatically extract specular and diffuse 

material properties from raw LiDAR data of pipes found in industrial plants. The sizes 

and spatial orientations of the pipes are assumed to be known, and the location and 

direction of the active light source emanating from the LiDAR scanner illuminating the 

pipes are also known. The determination of specular and diffuse reflectance properties is 

the sole objective of this paper, thus differing from related work found in the literature.

In Section 4.3, more details regarding related work found in the literature is 

presented. Section 4.4 outlines some details of industrial plant modeling of cylindrical 

objects such as pipes, railings, supports, etc., where the specific mathematical 

representations of specular and diffuse reflectance models are provided and described. 

Section 4.4.1 illustrates the difference between the Oren-Nayar and Lambertian diffuse 

reflectance models.

The numerical inversion process used in this paper is described in Section 4.5. 

The experimental results are outlined in Section 4.6. Reflective properties from two 

simulated ideal cylinders and a measured cylinder were determined. The first ideal 

cylinder was created to illustrate Phong specular and Lambertian diffuse reflectance. The 

second ideal cylinder was created to illustrate the differences between the Lambertian 

model and the more general Oren-Nayar model for diffuse reflectance. The final piece in 

this section outlines experimental results estimating specular and diffuse reflectance 

values of a measured cylinder using data acquired from a LiDAR scanner of an industrial 

plant pipe. Section 4.7 contains conclusions and lists potential future work.
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4.3 Related Research 

Properties o f light as they interact with an object and are perceived by human eyes 

have been researched for centuries [20], [15], [26], [19]. Lambert offered a basic 

mathematical model that describes this interaction, and the Lambertian model is the most 

prevalent algorithm for computing diffuse reflectance today [20]. The Lambertian model 

calculates the brightness of a particular point on an object based on the object’s inherent 

color, the reflected angle of the light source, and its relation to the angle of the viewing 

direction. The visual properties of light, such as Lambertian reflectance, were applied to 

computer systems to enhance realism in computer graphics in the 1960s. Cook, 

Torrance, Sparrow, Phong, and Blinn contributed a great deal of pioneering work in the 

field [3], [8], [36], [35]. The efficient approximation of specular reflectance is one aspect 

of early advances in computer graphics that has withstood the test of time.

Oren and Nayar introduced a generalization of Lambert’s solution to the diffuse 

reflectance model by accounting for rough surfaces that scatter light more prevalently 

than other relatively smooth surfaces [35]. This contribution, although not as 

computationally efficient as the Lambertian model, provides a much more accurate 

representation for rough surfaces.

Applications utilizing diffuse and specular reflectance models have yielded 

advances in the field of determining the geometric properties of an object [12], [18], [13],

[10], [4], [6], [28], [2], [32]. [16], [31], [25], [47], [39], [38], [27], [43], [45], [44], [40]. 

“Shape from shading,” as it is more commonly called, has seen dramatic advances over 

the years. Specular highlights, specifically, can provide detailed and accurate
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information regarding the detailed shape of a surface in addition to its reflective 

properties. Nayar et al. uses reflectance to perform object recognition [31].

The general science of specular and diffuse reflectance has seen significant 

attention. Brelstaff et al. have utilized Lambertian constraints to detect specular 

reflection parameters [3]. Nayar et al. have published work relating the surface reflection 

parameters of a model to its physical and geometrical properties [30]. Soon thereafter, 

Nayar et al. contributed additional work outlining the identification and removal of 

specular highlights using color and polarization [29]. Wolff, Nayar, and Oren then 

published work that applies their enhanced reflectance models for computer vision [43]. 

Lin and Lee provide several methods for enhancing the visual appearance of objects 

utilizing specular and diffuse properties [22]-[24]. Ragheb et al. illustrated a method for 

separating Lambertian and specular reflectance parameters for Machine Vision [37]. 

More recently, Nayar outlined a method for overcoming challenges in shape from 

shading techniques using a diffuse filter to alleviate specular highlights and shadowed 

regions common in digital images [28].

Other efforts have been made to model primitive objects found in industrial 

plants. Goulette automatically modeled CAD primitives found in industrial pipes using 

range images [9]. Hong similarly outlined how to obtain 3D models from industrial 

piping systems using digital photogrammetry in conjunction with laser scan data [11]. 

Chapman et al. presented an omni-directional imaging system for modeling industrial 

plants [7].

Previous methods for modeling industrial plant primitives focus on determining 

the objects’ the geometry -  size of pipe, orientation in space, its clearance from other
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objects, etc. This paper uses LIDAR data similar to [9] and [11], but we determine 

diffuse and specular reflectance properties instead of primitive geometry. The reflectance 

properties determined by methods outlined in this paper may enable one to more render 

realistic models more efficiently and determine the nature and well-being of primitive 

objects in industrial plants.

4.4 Industrial Plant Cylinder Modeling 

One of the most common and most basic primitive forms in industrial plants is the 

cylinder. Pipes, railings, conduit, heating and cooling ducts, to name a few, are all 

cylindrical. The typical geometric aspects of a CAD model of a cylinder are shown in 

Figure 4-1. We use a centerline vector, c ; a radius r; a starting point (not shown); an 

extrusion or length, l; a surface normal vector, k  ; a light source vector, £; and a light 

reflection vector, R . The reflectance properties for our model include: the specular 

coefficient, S  (a scalar), and exponent, n; and the diffuse coefficient (albedo), p, and 

surface roughness coefficient, a

Figure 4-2 shows some geometric elements used in the Oren-Nayar model. 0i is 

the azimuth incident angle, dr is the azimuth reflected angle, $  is the polar incident angle, 

(f>r is the polar reflected angle, k  and S are the same as in Figure 4-1, and i and j  are

orthogonal vectors tangential to the surface of the cylinder. A planar surface is shown in 

Figure 4-2, depicting a small area where the surface is a plane in the limit.

The specular brightness of a surface (kspec) is defined by the Phong model [36] 

given by

kspec = S (R  -vy . (4-1)
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A sample (ideal) cylinder is created and used for Sections 3.5.1 and 3.5.2. Various 

reflective properties are assigned to the ideal cylinder, to which noise is added, and then 

the assigned reflective properties are determined by numerical inversion. Next, in 

Section 3.5.3, LiDAR data of an actual measured cylinder from an industrial plant are 

used to create a geometric model, from which the reflective properties are determined by 

numerical inversion.

Since LiDAR scanners typically operate in the infrared or near infrared spectrum, 

passive light in the visible spectrum (from overhead lights, for example) will not interfere 

with the near infrared active light source provided by the LiDAR scanner. Due to the 

nature of LiDAR scanners, the emitting and detecting origins are identical, and likewise, 

the emitting and detecting paths are coaxial.

The Lambertian diffuse reflectance ratio Ld can be expressed as:

L = L  = ~, . (4-2)
i

where Lr is the red, green, or blue color value received at the sensor for a color imaging 

device, or the brightness value received in the LiDAR case (where the intensity o f the 

reflected light is mapped in grayscale); Li is the intensity of light emanating from the 

source; Ld is the ratio of reflected light versus emitted light; p  is the diffuse coefficient 

(albedo); di is the azimuth incident angle; and Lr is the resulting brightness [20]. 

Typically, a LiDAR scanner will record the ratio L^Li as a unitless reflectance ratio>; so 

we will use that quantity as the diffuse contribution to the “brightness” or the diffuse 

component of the “data vector.” In this paper, we utilize the quantity p /x  frequently for 

convenience, even though p is  the “albedo.”

The Oren-Nayar generalized reflectance model [35] can be expressed as:
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Ld = p cos 6i (A + (B max[ 0, cos(^. —$r )] sin a  tan /3')) (4-3)

where

(4-4)

B =  0.25 ( - 0 -  f a ) 2 ,Va2+ 0 .0 9  A  n2 /a 2+ 0 .0 9 .
(4-5)

a  = max[ 6r ,0i ], and

P  =  min[A ,A ].

(4-6)

(4-7)

where p is  the diffuse coefficient (albedo), and a i s  the surface roughness coefficient.

The Oren-Nayar reflectance model (4-3) simplifies to the Lambertian model (4-2) 

when a  = 0. The physical interpretation of a  is the standard deviation of the gradient of 

the surface elevation or slopes of the rough surface and thereby its upper limit is 

unbounded. An additional simplification can be made since the emitting and detecting 

axes and origins are identical for LiDAR scanners. This suggests that A = A and $  = (f>r; 

thus, (4-3) reduces to

4.4.1 Colorless Specular and Diffuse Determination by Numerical Inversion 

Brightness values for an ideal cylinder with Lambertian diffuse reflectance and an 

ideal cylinder with Oren-Nayar diffuse reflectance (both without specular reflectance) are 

shown in Figure 4-3 to emphasize the difference between the two models. The brightness 

values arranged as pixels in an image are shown in Figure 4-3. These brightness values 

are the data vector values, d, that will be used in the inversion process in the next section. 

The parameters of ideal cylinders for the Oren-Nayar diffuse model (left) are: p/n  = 0.5, 

a=  0.25, S = n = 0; and Lambertian model (right); p /n =  0.5, a=  0.0, S = n = 0.

L  = p cos A (A + (B s in a ta n ^ )) . (4-8)



Figure 4-4 shows brightness values along a cross section of the pipe, with the 

mean of intensity values at a given horizontal distrance from the pipe center plotted for 

the Oren-Nayar and the Lambertian models. The intensity rounds off gradually as the 

angle of incidence strays from the center for the Lambertian reflectance; whereas, the 

Oren-Nayar model (represented as a dash-dotted line) tapers off slowly around the center 

of the pipe, and then drops abruptly at the edges.

Figure 4-4 illustrates the reflectance values shown in Figure 4-3 that exist at 

different radial distances from the center. As shown in Figure 4-3, Figure 4-4 shows the 

gradual rounds off effect inherent in the Lambertian reflectance; whereas, the Oren-Nayar 

model demonstrates the slow tapering off around the center of the pipe, and then abruptly 

drops at the edges. Whereas the Oren-Nayar is more computationally intense, it also 

provides a more general characterization of an object’s diffuse reflectance properties, so 

it should provide added information that the Lambertian does not.

4.5 Numerical Inversion Process

Numerical inversion is an iterative process by which a set of unknown model 

parameters, m, can be estimated by using an initial guess of the model parameters and a 

known forward operator, A(m). The forward operator provides an approximation, d , to 

the data vector, d, and the difference between the d and d (in some sense) provides an 

update to the model parameters for the next iteration. The forward operator for the 

inverse problems found in this paper is

d = A(m) = kspec(S , n) + Ld (p / x ,a ) , (4-9)
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where kspec and Ld are determined by (4-1) and (4-8), respectively, and the model 

parameter vector, m, is {S, n, p a ) .

The forward operator for this problem is a nonlinear process, so a nonlinear 

inversion technique must be employed. Conjugate gradient, steepest descent, and 

Newton’s method are a few possible inversion techniques that may be used to solve this 

problem. For this paper, Newton’s method with line search was selected as the numerical 

inversion algorithm based on its reputation for rapid convergence.

Ideal cylinder #1 was modeled using Phong specular (4-1) and Lambertian diffuse 

reflectance (4-8). The model parameter vector {S, n, p /n) for ideal cylinder #1 has 

specular content (S = 0.154, and n = 26.8), and a Lambertian reflectance coefficient of 

p/n  = 0.498. We created the ideal model using brightness data calculated by (4-9) with 

the parameter values given above, then added 1.45% standard deviation of Gaussian 

noise. For this cylinder, (4-9) becomes:

A  (m) = S (F ■V )n +p cos#;. (4-10)

where a=  0.

Ideal cylinder #2 was modeled using only Oren-Nayar diffuse reflectance (4-8) 

without a specular component (kspec=0) to illustrate the differences between the 

Lambertian model and the Oren-Nayar model. For the numerical inversion of this 

cylinder (4-9) becomes:

Aon (m) = p cos 0t (A + (B sin a  ta n p )) . (4-11)

where m = [p, a]; A and B are computed by (4-4) and (4-5), and a  and P are determined 

by (4-6) and (4-7).
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Finally, the measured cylinder from LiDAR intensity data was modeled using 

specular and Oren-Nayar model parameters. Newton’s method for inverse problems 

iteratively updates m according to

m. = -inv(F' F )F ' (<di_1 -  d) , (4-12)

where F is the Frechet derivative of the forward operator, A ; and d is the brightness data 

vector. More information on the Frechet derivative, uniqueness, and Newton’s method 

can be found in [34], [46], [41].

The exit criterion for the inversion process is met when the change in the misfit 

between iterations is less than 0.0145 divided by the number of elements in the data 

vector; this corresponds to an average error of 1.45% per datum. LiDAR scanner 

manufacturers do not publish error metrics of brightness data, so we simply estimate this 

to be 1.45%.

4.6 Experimental Results

4.6.1 Ideal Lambertian and Specular Model

Figure 4-5 shows the data vector, d, from ideal cylinder #1 and the estimate of the 

data vector, d , from the inverted model.

The inversion process, in the presence of noise, was able to estimate the two 

quantities for specular reflectance (the specular coefficient S and the exponent n) within 

3.5% and 3.6% of their actual values, respectively, and the albedo to within 0.02%, as 

shown in Table 4-1. ( a = 0 in (4-2), so the final column on the table was not estimated.)

These results correspond reasonably well to the 1.45% standard deviation of noise 

added to the data vector. The effect of the specular component only affects a relatively
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small portion of the surface area of the cylinder (where the bright highlights appear on 

Figure 4-5), and therefore, a larger specular reflectance error is understandable. 

Contrarily, the diffuse coefficient affects the entire visible surface of the cylinder; 

therefore, the error is minimized in the presence of zero mean noise.

4.6.2 Ideal Lambertian and Specular Model

The second ideal model (ideal cylinder #2) uses the Oren-Nayar cylindrical model 

(4-8) and provides a more generalized estimation of diffuse reflectance phenomena than 

the Lambertian model by accounting for rough surfaces that exhibit a broader dispersion 

of light due to surface roughness. Figure 4-6 shows the noisy model (left) compared to 

the inverted estimate (right).

The ideal noisy cylinder and the inverted approximation have a similar 

appearance. The diffuse albedo was estimated within 0.3% of the actual value and the 

roughness was within 1.2% as shown in Table 4-2.

The numerical inversion process described in this paper for estimating reflectance 

parameters for cylinders (industrial pipes) has proven to effectively determine reflectance 

parameters in the presence of noise for ideal cylinders. In this section, we considered 

ideal cylinder models with noise added to the data. In the next section, we perform a 

similar operation using measured data on a metal pipe found in an industrial plant.

4.6.3 Measured Cylinder

In order to evaluate the Oren-Nayar and Lambertian models in an actual industrial 

application, LiDAR measurements of a metal pipe vertically aligned, had a radius of 0.20
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m, and was covered in light blue paint that exhibited a fair amount o f  specular 

reflectance. The LiDAR scanner used was a Leica C10 [21]. The diffuse roughness (a) 

o f  the measured pipe was assumed to be non-zero, so the more general Oren-Nayar 

diffuse model (11) was used for the inversion process. The albedo (p) was 0.498; the 

measured roughness (a) was 0.237. The measured specular coefficient (S) was 0.154, 

and the measured specular exponent (n) was 26.8.

A cross-sectional scatter-plot with all o f  the brightness values examined for the 

measured pipe is shown in Figure 4-7. The statistical mean dm of the data vector, d, and 

the statistical mean d m of the inverted estimate of the data vector, d , along the same 

cross section are shown in Figure 4-8. A detailed plot of dm and d m in the center section 

of the measured pipe is shown in Figure 4-9. The error (| dm - dm |) for the entire cross 

section of the pipe is shown in Figure 4-10, and the relative error for the entire cross 

section of the pipe ( | dm -  d m | / d m) is shown in Figure 4-11.

The inverted values closely resemble the brightness data vector near the center o f 

the pipe where the specular reflection and diffuse reflectance values are maximized. The 

estimate deviates significantly near the edge o f the pipe where the brightness drops below 

20%-25% reflectance. This is most likely caused by the nonlinear dynamics of the 

receiver circuitry. LiDAR scanners possess input signal amplifiers to compensate for the 

limited dynamic range in the analog to digital conversion process. When the input signal 

drops below a specified threshold, the analog amplifier boosts the input signal so a 

reading can be made. The estimate of the roughness coefficient was most adversely 

affected by this added circuitry. The inversion process attempts to estimate the
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brightness of the pipe at the edges, but this nonlinear phenomenon is not accounted for in 

the estimator model (4-9).

The inverted value for the specular highlight closely matches the brightness data 

vector. The equation for the specular reflectance (4-1) is used extensively in computer 

graphics and is not derived from any physics equation, but Figure 4-8 and Figure 4-9 

show that it is a close approximation to the actual physical phenomenon exhibited by 

light reflecting off of specular reflective surfaces. The detail plot of brightness data 

shown in Figure 4-9 illustrates the effectiveness of the inversion process for specular 

reflectance in the center of the pipe where the specular reflectance is most pronounced.

The mean relative error (mean of brightness values in Figure 4-12) is 2.88% and 

the standard deviation of the relative error is 4.0%. The values for each of the inverted 

model parameters are shown in Table 4-3 .

A photograph of the measured cylinder, its measured LiDAR reflectance values, 

and the approximated reflectance values obtained by numerical inversion are shown in 

Figure 4-12, arranged as pixels in an image array.

The photograph demonstrates visual anomalies inherently found in circumstances 

involving passive light sources. Although there are many light sources present, the 

dominant light source is above and to the right of the pipe, and there are shadows (and 

highlights) of other pipes and metal grates visible. A specular highlight appears on the 

right-hand side of the pipe, just above the middle, as labeled on Figure 4-12. Most of the 

other variations in brightness are due to highlights and shadows demonstrated by diffuse 

reflectance.
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The center image is LiDAR brightness of the measured pipe. There are obvious 

anomalies in the actual brightness data due to noise in the receiver circuitry of the LiDAR 

scanner. One may observe that there are obvious dark regions of similarities between the 

visible light image (left) and the LiDAR brightness (center). Both sensors failed to return 

adequate brightness in those regions due to a foreign substance on the pipe in those 

regions. Also, there is a weld near the bottom of the pipe that is visible in both measured 

images that is not present in the estimated image (right).

4.7 Conclusions

A method for determining the specular and diffuse reflectance properties for two 

ideal and one measured pipe from an industrial plant was presented. LiDAR data 

intensity values provided the brightness data for the measured cylinder. The reflectance 

properties determined include the specular coefficient and specular exponent commonly 

used in computer graphics, as well as the diffuse albedo parameter and the Oren-Nayar 

roughness parameter.

Newton’s method from numerical inversion was used to compute the estimate for 

the model parameters. The inversion process for the ideal cylinders recovered the model 

parameters within 3.6% of the actual values, providing a suitable method for recovering 

reflectance parameters.

Inversion of the model parameters for the measured cylinder provided an accurate 

estimate to the actual data to within 3.5% for all brightness values over 0.3. The relative 

errors associated with brightness estimation for data at the extreme edges of the pipe,
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where the incident angle is close to orthogonal to the surfaced normal, were as high as 

44.7% due to nonlinear amplifiers in the detection hardware.
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Figure 4-1: Geometric representation of cylinder model
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Figure 4-3: Brightness values, d, of ideal cylinders: Oren-Nayar diffuse model (left);
and Lambertian model (right);

distance (m)

Figure 4-4: Statistical mean for Lambertian reflectance (-•-•) and Oren-Nayar (-)
along a cross section of the pipe

Figure 4-5: Ideal cylinder #1: data vector , d, of Lambertian diffuse and Phong 
specular reflectance with noise (left), and inverted estimate, (right)
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Figure 4-6: Ideal cylinder #2: data vector, d, of Oren Nayar diffuse reflectance with 
noise (left), and inverted estimate, (right)

-0.2 -0.15 -0.1 -0.05 0 0 .05 0.1 0 .15 0.2 
d is tance  (m)

Figure 4-7: Cross section of brightness data vector, d, of measured cylinder

distance  (m)

Figure 4-8: Cross section of statistical mean of data vector, dm (dots) and numerical
inversion estimate m (line)

0

dis tance  (m)

Figure 4-9: Detail of statistical mean of data vector dm (dots) and numerical 
inversion estimate, m (line), around pipe center
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Figure 4-10: Cross section of error of statistical mean | d m -  d m |

distance  (m)

Figure 4-11: Cross section of relative error | dm -  d m | / d m

Figure 4-12: Photograph of measured pipe (left); LiDAR brightness data vector, d, 
(center); and inverted brightness estimate (right)
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Table 4-1 Inverted Model Vector, m, for Ideal
S n p/n a

Ideal 0.150 27.0 0.500 -
Estimate 0.145 25.9 0.499 -
|rel error| 3.5% 3.6% 0.02% -

ylinder #1

Table 4-2 Inverted Model Vector, m , for Ideal
S N p/n a

Ideal - - 0.500 0.250
Estimate - - 0.498 0.243
|rel error| - - 0.3% 1.2%

ylinder #2

Table 4-3 Inverted Model Vector, m, for Measured Cylinder
S n p/n a

Inverted 0.154 26.835 .4980 0.237



CHAPTER 5

DETERMINING SPECULAR, DIFFUSE, AND AMBIENT COLOR 

MATERIAL PROPERTIES OF INDUSTRIAL 

PLANT PRIMITIVES1

5.1 Abstract

This paper describes a method for determining specular, diffuse, and color 

material properties of industrial plant primitives and applies the method to seven pipes 

from an industrial plant. The properties are determined in two steps. First, colorless 

specular and diffuse properties were estimated by numerically inverting LiDAR 

brightness data. Then, color ambient and diffuse properties are estimated using digital 

photographs of the pipes using k-means clustering. The colorless properties yielded 

estimated brightness values that are within an RMS average of 3.4% of the measured 

data. The maximum RMS residual for the colorless properties was 7.0% and the 

minimum was 1.6%. The maximum residual occurred on a small (radius = 0.01m) pipe 

1.5m away from the scanner, while the minimum occurred on a small (radius = 0.02m) 

pipe 0.6 meters away from the scanner. The estimated color properties effected an 

average RMS residual of 13.2% with a maximum of 20.3% and a minimum of 9.1%.

1 Content of this chapter is taken from an article coauthored with Dr. Cynthia Furse that will be submitted

to Automation in Construction..



5.2 Introduction

This paper applies the specular and diffuse material property estimation technique 

described in [1] to several pipes in an industrial plant and introduces a method for 

determining color material properties from industrial plant primitives. 3D model material 

properties are difficult to attain yet can be used extensively for visualization in computer 

graphics systems. These visualization systems are used for Computer Aided Design 

(CAD) and inspection [2], [26], virtual reality training [3]-[6], and marketing or other 

walk-throughs [7]-[9]. Automated or semi-automated CAD model generation from 

industrial plants is a growing area of research and development. Methods used include 

photogrammetry [10], [11], Light Detection and Ranging (LiDAR) laser scanning [12]-

[16], or both [17], [3]. Other applications of 3D model material properties may include 

automated object recognition, construction progress tracking [18], or object condition 

assessment [19].

Most CAD models include pipe geometry, visual material properties, and in some 

cases, information about the model. Although most CAD systems render very simple 

visual information associated with the model, some systems can render photorealistic 

textures [22], [23]. Photorealistic models are visually appealing, yet they require large 

amounts o f  hard drive and RAM storage space, and are computationally intensive to 

visualize. Even level of detail (LOD) engines cannot operate efficiently without storing, 

paging, and purging massive amounts of detailed visual information in real-time. The 

methods outlined in this paper offer an efficient alternative to point clouds or texture 

mapping to achieve near photorealistic rendering and minimal storage for 3D models o f 

industrial plant primitives.
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The material properties determined in this paper include, specular, diffuse, and 

color (red, green, and blue). Specular properties consist of a coefficient (S) and an 

exponent (n). The diffuse properties comprise an albedo (p) and a roughness (a). The 

ambient color properties determined in this paper are the coefficients a r, ag, ab, for the 

primary colors of light: red, green, and blue, respectively. The diffuse color properties 

comprise the colored albedos pr, pg, pb, for red, green, and blue, respectively. The 

methods outlined in Section 5.3 of this paper are divided into two parts. Section 5.3.1 

describes several case studies of the specular and diffuse estimation method proposed in

[1] applied to measurement data from seven different pipes found in an industrial plant. 

LiDAR scan intensity (brightness) data are used to estimate the specular and diffuse 

material properties. Section 5.3.2 offers a k-means color determination method applied 

to the same seven pipes. Digital photographic data of the pipes are used to estimate the 

ambient and diffuse colors. Section 5.4, which is also divided into two parts, offers the 

results and corresponding discussion of the estimations. Section 5.4.1 presents and 

describes the results for the colorless specular and diffuse estimation, and Section 5.4.2 

presents and describes the results of the ambient and diffuse color estimations. 

Concluding remarks are provided in Section 5.5.

5.3 Methods

5.3.1 Colorless Specular and Diffuse Determination by Numerical Inversion 

As described in [1], determining a pipe’s specular (S, n) and diffuse (p, a) 

material properties by numerical inversion requires a geometric model of the pipe as well 

as a mathematical model of the laser scanning system. The geometric model for each
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pipe was created by isolating measured 3D points from a laser scan of the pipe, and then 

estimating the pipe’s centerline and radius using the Levenberg-Marquardt algorithm for 

nonlinear optimization [24]. The measured intensity (LiDAR brightness) value for each 

3D point was then used to estimate the specular and diffuse material properties o f  the 

pipe by numerical inversion.

The specular component o f  the material properties is modeled by:

kspec=s (r -v y  (5-1)

where S is the specular strength (coefficient), n is the specular exponent, r  is the 

reflected vector (the source light reflected off the surface), and v is the viewing vector 

(of the laser scanner’s sensor) [21].

The diffuse component is modeled by:

Ld =£  cos A (A + (B sin a  tan fi))
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where

A = 1 -  0.5- a'

B = 0.25 ( - 0 -  Yia^V,Va2+0.0̂ V n2 / ’

a  = max[#r ,0t ],

P = min[#r A ] . (5-2)

Each salient geometric quantity is illustrated in Figure 5-1, where A is the 

azimuth incident angle, dr is the azimuth reflected angle, fa is the polar incident angle, far 

is the polar reflected angle, k  and S are the same as in Figure 5-1, and i and j are 

orthogonal vectors tangential to the surface o f the cylinder.

2



The steepest descent method was used as the numerical inversion technique. 

First, the residual rn (at iteration n) is calculated:

rn = A ( m n ) -  d  , (5-3)

where A(mn) is the forward operator, d is the measured data vector, and mn is the model 

vector. The ascent vector is then calculated:

l = l(m ) = F * r , g =—F  l , (5-4)n V n / mn n  c>n mn n ’ V /

where F*m is the conjugate transpose of the Frechet derivative of A(m) at iteration n.

The step length is then estimated:

|| i ||2 /
K =U/ h . (5-5)

||<5 n
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And finally, the model parameters are updated:

m«+1 = mn — W knln (5-6)

where W is a diagonal weighting matrix with non-zero values determined by experiment 

to be [2, 1exp5, 1, 1] for S, n, p, a, respectively, and the forward operator that yields the 

estimated data vector is given by:

d = A(m) = kSpec(S, n) + Ld (p , a ) . (5-7)

The model parameters were initialized according to: So = max(d) -  median(d); no 

= 20; po = median(d); ao = 0.1. The steepest descent method iteratively updates the 

model parameters until the relative change in the misfit (the norm of the residual) is less 

than or equal to 1%. Nonlinearities at the edges of the pipe corrupt the results of the 

calculation [1], so any data that laterally exceed 70% of the pipe’s radius are discarded, 

as shown in Figure 5-2.



5.3.2 Color Determination by K-Means Clustering 

The nature of the pipe illumination for LiDAR scan data and photographic differ 

significantly. LiDAR scanners commonly use a wavelength in the near infrared spectrum 

which allows the scanner to operate as an active light source -  isolated from other 

electromagnetic interference that may be present in other spectra. Furthermore, the light 

source and detection mechanism for LiDAR scanners are co-axial, thus simplifying the 

mathematical representation used to model the scanner. Photographic systems for visible 

light, however, are extremely complicated.

First, the light may be emanating from a point (a small light), a sphere (a light 

bulb), a cylinder (a single fluorescent bulb), a rectangular plane (a covered fluorescent 

fixture), or in parallel waves (the sun), for example. These light sources may operate 

alone or in any combination and from virtually any location. Furthermore, obstructions 

occlude direct light casting shadows upon objects. In order to accurately estimate the 

ambient and diffuse color properties of pipes by numerical inversion, all of these items 

must be known a-priori -  to at least some degree. This is an unreasonable assumption; 

therefore, an alternative method is proposed.

K-means clustering [25] provides an algorithm for segmenting data into clusters. 

The photographic measurement data for this paper contain, in general, ambient, diffuse, 

and specular reflections of the pipes under consideration. The specular highlights, 

although visible in some images, constitute a statistically small number of data when 

compared to the amount of ambient and diffuse data. Therefore, the k-means clustering 

algorithm is directed to segment into two clusters -  for ambient and diffuse. An 

illustration of this process is given in Figure 5-3.
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The measured data are divided into two clusters for ambient and diffuse and 

sorted into 100 histogram bins. The a  and p  estimate for each color are then chosen from 

the highest non-negligible bin among each cluster. To avoid noise interfering with the 

results, a non-negligible bin is any bin that is at least 20% of the maximum bin in that 

cluster.

In cases where the pipe is extremely dark, two clusters are found, but one cluster 

contains diffuse data and the other (an extremely small number o f  points, by comparison) 

contains specular data, so the brighter cluster is ignored, the diffuse parameters are 

estimated based on the darker cluster, and the ambient terms are set to zero. One cluster 

is determined to be too small if  it contains less than ten percent of the number of points 

when compared to the other cluster. Since this only occurs with dark pipes, this has been 

determined to be a reasonable method for distinguishing dark pipes from light.

5.4 Results and Discussion

5.4.1 Colorless Specular and Diffuse Properties

Colorless specular (S, n) and diffuse (s, r) material properties were estimated and 

the results are presented and described in this section. The minimum relative RMS error 

was 1.6% and the maximum relative RMS error was 7%. The average RMS error was 

3.4%. The LiDAR scanner’s sensor exhibits fluctuations in intensity (brightness) 

readings due to internal electronic noise and the pipes’ surfaces are not one solid color 

(nonhomogeneities), in general, so deviations from the measured results are expected. 

Plots illustrating a cross-section o f the estimated values compared to the measured values 

are given in Figure 5-4 -  Figure 5-10. Table 5-1 presents the determined model
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parameters as well as the results for the colorless specular and diffuse property estimation 

for each pipe. RMSbw represents the error (residual) of the colorless (black and white) 

material estimate.

The RMS residuals of 2.7% and 2.4% for pipes 1 and 2, respectively, are 

reasonable due to the pipes’ large radii (0.23m and 0.20m, respectively). Pipe 2 in this 

paper is the same as the “measured pipe” in [1]. The estimated RMS residual in [1] for 

this pipe was 2.88% whereas the residual estimated in this paper is lower (2.4%). The 

difference can be accounted for by recognizing the elimination of data on the edges of the 

pipe, as shown in Figure 5-2, which was not performed in [1]. Pipe 3 had a residual of 

3.3%, more than double that of pipe 4, which had an RMS residual of 1.6%. When 

comparing the two pipes: although pipe 3 is larger, it is further away from the scanner 

(0.8m compared to 0.6m), which affects not only the quantity of data, but also the quality. 

Pipe 3 also exhibited a greater degree of nonhomogeneity in the surface color, which also 

contributed to the larger residual. And finally, the residual percentages were calculated 

based on a maximum value of 1.0, so the deviation between the estimate and the 

measured data will naturally be smaller for dark pipes.

Pipe 5 is a relatively far away (1.7m) cylindrical hand-rail with a radius of 0.02m 

(identical to pipe 4), with a painted surface that exhibits a high degree of homogeneity in 

the surface; thus the residual is a relatively low 2.7%. Pipes 6 and 7 were roughly the 

same distance from the scanner (1.5m), but varied in radius (0.03m, 0.01m, respectively). 

The RMS residuals of these pipes correlate with negative effect that distance and size 

have on the results with a 4.0% residual and 7.0% residual, respectively.
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In general, the Oren Nayar general model [20] of diffuse reflectance was effective 

in modeling the surface properties of the pipes. The surface roughness (a) estimated by 

the inversion process varied between 0.11 and 0.73 for the seven pipes. Although the 

inversion process was not performed using p  alone, (setting a  = 0), without the 

generalized diffuse representation (1 > a  > 0), it is safe to assume that the reflectance 

properties of the pipes would not be estimated as accurately.

The specular reflective properties of the pipes varied significantly. Pipe 3 

exhibited essentially no specular reflectance (S = 0) while pipes 6 and 7 demonstrated 

relatively high specular reflectance: S = 0.58 and 0.57, respectively. (A specular 

coefficient of S = 1.0 using LiDAR data signifies the object reflects and the sensor detects 

100% of the incident, transmitted light). Images of the measured data and the 

estimated data for each pipe are shown in Figure 5-11.

The inversion process for this paper ends once the misfit changes from iteration to 

iteration by 1%. A more sophisticated analysis of the noise in the system based on the 

overall brightness of the pipe may yield a better exit criterion; however, such an 

investigation is beyond the scope of this paper. One can see the convergence of the two 

diffuse model parameters (p  and a) for pipe 3 in Figure 5-12.

Solid dots denote the estimate. The circle “o” denotes the final iteration after 

exiting (misfit = 4.30), while the hash “x” denotes the combination of values that 

produces the minimum norm of the residual (misfit = 4.17).
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5.4.2 Ambient and Diffuse Color Properties

The ambient and diffuse color properties were estimated and the results are 

presented and described in this section. The complex nature of visible light, as described 

in Section 2.2, contributed significantly to the RMS residual of the color material 

properties. The mean RMS residual was 33.7 out of 255 (or 13.2%). The highest RMS 

error was 20.0% and the lowest was 9.l%, compared to 3.4%, 7.0%, and 1.6% for the 

colorless property estimates. Factors affecting the estimates include uncontrolled light 

sources, multiple light sources, prevalent shadows, and surface nonhomogeneities. Table 

5-2 shows the estimated values for each parameter as well as the RMS residual for each 

pipe.

The size of the pipe had less of an effect on the results when compared to the 

effect the harsh shadows demonstrated. Pipe 1 is roughly the same size as pipe 2 (0.23m 

and 0.20m, radii, respectively), yet pipe 1 had very few shadows while pipe 2 had many 

harsh shadows. Pipes 4 and 6 are very dark, and roughly the same size; however, pipe 4 

was 0.6m away and pipe 6 was 1.5m away, affecting both the quantity and the quality of 

data. Pipe 5 exhibited an RMS residual of 9.7% (nearly as low as the minimum 9.1% for 

pipe 4), is painted yellow, and has a relatively homogeneous surface color with very few 

shadows. Pipes 3 and 7 have relatively bright diffuse properties, are both rather small 

(0.03m and 0.01m, respectively), and thus have very similar RMS residuals of 37.6 and 

38.0, respectively.

Images of the measured data and the estimated data for each pipe are shown in 

Figure 5-13. The colorless specular values and colorless surface roughness values 

determined for each pipe (Section 5.3.1) were used in conjunction with the color ambient
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and diffuse values to create the images. A single point source light was manually placed 

for each image to approximate the complex lighting conditions seen by each pipe.

5.5 Conclusions

Specular, diffuse, and ambient material properties for seven different pipes from 

an industrial plant were estimated in this paper. The methods and results of this paper 

were divided into two sections, colorless and colored. The colorless specular and diffuse 

properties were measured using a LiDAR scanner. These material properties were then 

estimated using the numerical inversion technique outlined in [1]. The average RMS 

residual for the colorless properties was 3.4% while the minimum and maximum were 

1.6% and 7.0%, respectively. The most significant contributor to the residual was the 

distance to the pipe from the scanner. Other factors include the internal noise in the 

LiDAR measurement system, the brightness of the pipe, and the homogeneity of the 

surface color. Pipes with nonhomogeneous surface colors exhibit larger RMS residuals. 

Furthermore, darker pipes have lower brightness values, so the RMS residuals are 

inherently smaller.

Color ambient and diffuse properties were measured using digital photography. 

Due to the complex nature of natural visible light in an industrial plant, numerical 

inversion was not used to estimate these parameters. Instead, k-means clustering was 

used to separate ambient from diffuse data, and then optimal values for each color were 

chosen from histogram bins. An average RMS residual of 13.2% was observed for the 

color data. The minimum and maximum were 9.1% and 20.3%, respectively. These 

residual values are much larger than those of the colorless data due to the complexity and
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uncertainty of the lighting system for visible light. Harsh shadows contributed most 

significantly to the discrepancies. Multiple, unknown light sources also played a 

dominant factor. For both types of data, the distance to the scanner played a role in the 

accuracy.

The methods described in this paper can effectively estimate specular, diffuse, 

and ambient color material properties to accurately model primitives in an industrial 

plant. Although the techniques described herein focus on pipes, they can be applied to 

other primitive types. These models may be efficiently utilized in (CAD) and inspection, 

virtual reality training, marketing, or other visualization systems.
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Table 5-1: Results of Colorless Specular and Diffuse Parameter Estimation

pipe # dist(m) radius (m) 5 n pbw <j RMSbw Pbw

1 0.7 0.23 0.04 32.89 0.47 0.30 0.027

2 1.9 0.20 0.15 41.21 0.50 0.22 0.024

3 0.8 0.03 0.00 14.19 0.66 0.39 0.033

4 0.6 0.02 0.10 47.82 0.24 0.45 0.016

5 1.7 0.02 0.28 59.21 0.45 0.11 0.027

6 1.5 0.03 0.58 148.26 0.28 0.73 0.040

7 1.5 0.01 0.57 44.07 0.24 0.19 0.070

Table 5-2: Results of Ambient and Diffuse Color Estimation

Figure 5-1: Geometric representation for Oren Nayar diffuse model
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Figure 5-2: Geometric representation of regions of nonlinear data that were
discarded

Figure 5-3: Flowchart of the k-means clustering algorithm
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Figure 5-4: Estimated vs. measured data for pipe 1
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Figure 5-9: Estimated vs. measured data for pipe 6

distance (meters)

Figure 5-10: Estimated vs. measured data for pipe 7

Figure 5-11: Estimated vs. measured colorless (LiDAR) data for all pipes
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diffuse albedo p )
Figure 5-12: Convergence of the diffuse parameters for pipe 3
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Figure 5-13: Measured and estimated experimental results for colored pipes. Pipes 
4 and 5 appear to be leaning slightly in the estimated data, but not in the measured 
data. The pipes are actually leaning, but the image used for this figure occupies a

rectangle.



CHAPTER 6

CONCLUSION AND FUTURE WORK 

6.1 Contributions

The purpose of this research was to offer an efficient alternative to point clouds or 

texture mapping to achieve near photorealistic rendering with minimal storage for 3D 

models of industrial plant primitives. First, an analysis o f errors associated with creating 

3D model geometry from LiDAR data was presented. In order to estimate reflectance 

material properties, geometric models of pipes were then created manually from LiDAR 

data. Colorless specular and diffuse material properties were estimated using LiDAR 

intensity data. Finally, colored ambient and diffuse material properties were determined 

and combined with the colorless specular and diffuse materials to create corresponding 

3D models.

6.1.1 3D Modeling Error Analysis 

An error analysis of polygonal models created from actual and modeled terrestrial 

LIDAR data was performed. Ray traced points were compared to actual LIDAR scan data 

and modeled data using Fourier spectra, Taylor expansion, and statistics. The standard 

deviation of error for the polygonal model of the anomalous groove was 0.474mm; the 

error for the bump was 0.599mm; and the error for the incline was 0.008mm.



This analysis showed that for objects with few high frequency features, scanning 

at a higher density actually increases measurement error. Polygonal models can act as 

filters to remove high frequency noise, thus lowering the errors inherent in LIDAR data 

utilization. Polygonal models created from LIDAR scan data can thereby be used to 

accurately represent real-world objects. Furthermore, due to the error inherent in LIDAR 

scanning hardware, polygonal models can actually yield lower standard deviations of 

error than LIDAR scanning at a higher resolution.

6.1.2 Colorless Specular and Diffuse Estimation

A method for determining the specular and diffuse reflectance properties for two 

ideal and one measured pipe from an industrial plant was presented. LiDAR data 

intensity values provided the brightness data for the measured cylinder. The reflectance 

properties determined include the specular coefficient and specular exponent commonly 

used in computer graphics, as well as the diffuse albedo parameter and the Oren-Nayar 

roughness parameter.

Newton’s method from numerical inversion was used to compute the estimate for 

the model parameters. The inversion process for the ideal cylinders recovered the model 

parameters within 3.6% of the actual values, providing a suitable method for recovering 

reflectance parameters.

Inversion o f the model parameters for the measured cylinder provided an accurate 

estimate to the actual data to within 3.5% for all brightness values over 0.3. The relative 

errors associated with brightness estimation for data at the extreme edges of the pipe,
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where the incident angle is close to orthogonal to the surfaced normal, were as high as 

44.7% due to nonlinear amplifiers in the detection hardware.

6.1.3 Color Ambient and Diffuse Estimation 

Specular, diffuse, and ambient material properties for seven different pipes from 

an industrial plant were estimated in this paper. The methods and results of this paper 

were divided into two sections, colorless and colored. The colorless specular and diffuse 

properties were measured using a LiDAR scanner. These material properties were then 

estimated using the numerical inversion technique outlined in [1]. The average RMS 

residual for the colorless properties was 3.4% while the minimum and maximum were 

1.6% and 7.0%, respectively. The most significant contributor to the residual was the 

distance to the pipe from the scanner. Other factors include the internal noise in the 

LiDAR measurement system, the brightness of the pipe, and the homogeneity of the 

surface color. Pipes with nonhomogeneous surface colors exhibit larger RMS residuals. 

Furthermore, darker pipes have lower brightness values, so the RMS residuals are 

inherently smaller. Table 6-1 shows the results for each of the seven pipes.

A visual depiction o f the experimental results for the colorless specular and 

diffuse parameters is given in Figure 6-1. On some of the darker pipes, the specular 

spread seems to exceed that of the measured pipes. This is most likely due to the 

sensitive nature of the specular parameter. The specular component only affects a small 

portion of the overall data, and therefore, its contribution to the misfit is hidden by the 

noise in the system.
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The numerical inversion technique used to estimate the colorless material 

properties was the steepest descent algorithm. The model parameter convergence is 

illustrated in Figure 6-2. The diffuse albedo (p) is on the horizontal axis and the Oren 

Nayar surface roughness (a) is on the vertical axis. The exit criterion for the iterative 

process is when the relative change in the misfit is less than 1%. The misfit at the end of 

the process for this pipe (pipe number 3) was 4.30 and an array o f misfit values was 

computed for this pipe, and the overall minimum was found to be 4.17. One may observe 

from this that the exit criterion could possibly be improved to achieve a better 

approximation to the model parameters that yield the minimum misfit.

Color ambient and diffuse properties were measured using digital photography. 

Due to the complex nature of natural visible light in an industrial plant, numerical 

inversion was not used to estimate these parameters. Instead, k-means clustering was 

used to separate ambient from diffuse data, and then optimal values for each color were 

chosen from histogram bins. Table 6-2 shows the results for the seven pipes analyzed.

An average RMS residual o f 13.2% was observed for the color data. The 

minimum and maximum were 9.1% and 20.3%, respectively. These residual values are 

much larger than those of the colorless data due to the complexity and uncertainty of the 

lighting system for visible light. Harsh shadows contributed most significantly to the 

discrepancies. Multiple, unknown light sources also played a dominant factor. For both 

types o f data, the distance to the scanner played a role in the accuracy. Figure 6-3 

illustrates the measured data and the estimated data, and shows the root mean square 

residual associated with each pipe. The measured data shown are rectangular regions 

extracted from the original color image. In some instances (namely pipes 4 and 5) the
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pipe is oriented at an angle, which is reflected in the estimated image (no color 

information is estimated beyond the radius o f the pipe). In the measured data, the regions 

surrounding the pipe may appear in the image, but were not used in the estimation of the 

color material properties for those pipes. To see the slightly slanted pipes in the original 

image, refer to Figure 1-1 and Figure 1-2.

In spite o f these challenges, the methods described in this paper estimate specular, 

diffuse, and ambient color material properties to accurately model primitives in an 

industrial plant. This research offers an efficient alternative to rendering point clouds or 

texture mapped polygons to achieve near photorealistic rendering with minimal storage 

for 3D models of industrial plant primitives. Alternatives such as colored point clouds 

may be rendered in real-time; however, the visual quality is usually poor due to the lack 

of data between points. Furthermore, direct CAD work on point clouds is difficult due to 

the disparate nature of the data. Textured polygons can provide a rich viewing 

experience, but at a high cost of computational complexity, high texture memory 

bandwidth, and massive data storage. Additionally, textures are static elements of the 

model; without material properties, real-time lighting interaction is not possible.

Models created with the material properties discovered by this research may be 

efficiently utilized in (CAD) and inspection, virtual reality training, marketing, or other 

visualization systems. The storage requirements of the material properties estimated in 

this project for hard drive, RAM, and texture memory are minimal when compared to 

alternative methods. The computational complexity of a rendering system required to 

display objects with material properties instead of point clouds or textured models is 

significantly less. Dynamic lighting with the model is especially useful when doing
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marketing walk-throughs or virtual reality training, and is not possible with mere points 

or textures.

The methods in this project provide automated ways to contrive and utilize 

material properties from industrial plant primitives. These material properties can be 

used for visualization, object recognition, asset management, and improved computer 

storage and computational efficiency when compared with other methods.

6.2 Future Work

Many aspects of the research in this project can be investigated further. Some 

possibilities may include a performance evaluation, enhancements to the numerical 

inversion process, application to a broader type of industrial plant or other object, and 

object recognition.

An evaluation of the performance enhancement obtained by utilizing reflectance 

material properties obtained in this project instead of texture maps in a rendering system 

could be enlisted. Metrics such as hard drive storage capacity, texture memory 

utilization, rendering frame rate, or other could be compared. An alternate comparison 

study could also include a listing o f CAD or other visualization or design tools that would 

support the rendering of the material properties that were determined in this project. 

Such systems’ relative performance could also be measured and compared.

The numerical inversion process could be improved in a few ways. For one, the 

exit criterion for the steepest descent algorithm was based on the misfit changing by less 

than 1% from iteration to iteration. A more sophisticated criterion could be established if 

the relative noise levels for various pipe intensities, so that the inversion process
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converges to a more accurate result. Secondly, an alternate algorithm such as the 

stochastic or conjugate gradient or a regularized Newton method may be employed for at 

least an order of magnitude better (faster) convergence [2], [3]. The steepest descent 

algorithm was chosen due to its ease of implementation and comprehension. Now that 

the concept of utilizing numerical inversion to determine material properties has been 

demonstrated, a more powerful method may be employed. The stochastic gradient 

method is simple to implement, but can be somewhat more complicated to conceptualize. 

Newton’s method may demonstrate instabilities due to the inversion o f a matrix that may 

be ill conditioned, so a regularized method is advisable. Such a solution requires more 

investment in the implementation phase, but the convergence is the best of the three 

methods. Thirdly, the model chosen to represent the material properties was assumed to 

be homogeneous. This greatly simplified the numerical inversion, but may not be the 

most accurate. If the model parameters of the inversion varied along the length of a pipe, 

material properties of a nonhomogeneous surface could be detected. This would require 

additional terms in the model parameter vector used in the inversion process.

Alternately, if the specular and diffuse reflectance values of the industrial plant 

primitives in their current state were known, the material type could be automatically 

estimated. Furthermore, the annotation data such as density, melting point, specific heat, 

life expectancy, or even the inner diameter could be automatically estimated (when 

utilized in conjunction with geometric information such as a cylinder’s outer radius) once 

the object has been identified with a matching material type in a database library. 

Statistical data could be acquired, analyzed, and archived in a database to which future 

results could be compared. Such an exercise could be effective in automatically
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determining the object’s material type (such as wood, painted surface, stainless steel, 

vinyl, ceramic, or other).

Oren and Nayar [4] provided the generalized model for the diffuse reflectance, 

but few systems can readily render the surface roughness component in real-time. 

Additional work could reveal a high-efficiency alternative to the Oren Nayar model so 

more rendering systems could illustrate the generalized diffuse properties more 

efficiently in real-time.

Finally, the results in this paper need not be confined to pipe primitives, or even 

an industrial plant. There are many objects that demonstrate reflective properties that 

would be interesting to study. Research fields such as geology, studying material 

properties of the moon, or historical preservation are a few of the areas to which these 

methods could be applied.
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Table 6-1: Colorless Diffuse Parameter Results

pipe # dist(m} radius (m} 5 n Pbw (7 RMSbw pbw

1 0.7 0.23 0.04 32.89 0.47 0.30 0.027

2 1.9 0.20 0.15 41.21 0.50 0.22 0.024

3 0.8 0.03 0.00 14.19 0.66 0.39 0.033

4 0.6 0.02 0.10 47.82 0.24 0.45 0.016

5 1.7 0.02 0.28 59.21 0.45 0.11 0.027

6 1.5 0.03 0.58 148.26 0.28 0.73 0.040

7 1.5 0.01 0.57 44.07 0.24 0.19 0.070

Table 6-2: Colored Diffuse Parameter Results

pipe # radius (m) ar CCg O b Pr A pb rmsrgb

1 0.23 75 88 95 98 95 106 23.2

2 0.20 82 103 111 72 64 90 51.7

3 0.03 170 167 157 41 44 49 37.6

4 0.02 52 54 52 52 54 52 20.0

5 0.02 188 162 26 41 39 28 24.7

6 0.03 54 59 59 54 59 59 40.9

7 0.01 103 67 41 103 80 95 38.0
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Figure 6-1: Measured and estimated results for specular and 
diffuse material estimation
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diffuse albedo p )

Figure 6-2: Misfit tracking for roughness and albedo model parameters
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Figure 6-3: Measured and estimated experimental results for colored pipes. Pipes 4 
and 5 appear to be leaning slightly in the estimated data, but not in the measured 
data. The pipes are actually leaning, but the image used for this figure occupies a

rectangle


