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With recent advances in sensor technology and digital image processing 

techniques, automatic image mosaicking has received increased attention in a variety of 

geospatial applications, ranging from panorama generation and video surveillance to 

image based rendering. The geometric transformation used to link images in a mosaic is 

the subject of image orientation, a fundamental photogrammetric task that represents a 

major research area in digital image analysis. It involves the determination of the 

parameters that express the location and pose of a camera at the time it captured an 

image. In aerial applications the typical parameters comprise two translations (along the x 

and y coordinates) and one rotation (rotation about the z axis). Orientation typically 

proceeds by extracting from an image control points, i.e. points with known coordinates. 

Salient points such as road intersections, and building corners are commonly used to 

perform this task. However, such points may contain minimal information other than 

their radiometric uniqueness, and, more importantly, in some areas they may be 



impossible to obtain (e.g. in rural and arid areas). To overcome this problem we introduce 

an alternative approach that uses linear features such as roads and rivers for image 

mosaicking. Such features are identified and matched to their counterparts in overlapping 

imagery. Our matching approach uses critical points (e.g. breakpoints) of linear features 

and the information conveyed by them (e.g. local curvature values and distance metrics) 

to match two such features and orient the images in which they are depicted. In this 

manner we orient overlapping images by comparing breakpoint representations of 

complete or partial linear features depicted in them. By considering broader feature 

metrics (instead of single points) in our matching scheme we aim to eliminate the effect 

of erroneous point matches in image mosaicking. Our approach does not require prior 

approximate parameters, which are typically an essential requirement for successful 

convergence of point matching schemes. Furthermore, we show that large rotation 

variations about the z-axis may be recovered. With the acquired orientation parameters, 

image sequences are mosaicked. Experiments with synthetic aerial image sequences are 

included in this thesis to demonstrate the performance of our approach. 
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Chapter 1 

INTRODUCTION 

1.1 Automatic Mosaicking of Aerial Image Sequences 

Image mosaics are generated by pasting together individual frames to generate 

a synthetic image with large field of view. In geospatial applications, image mosaics are 

commonly generated using aerial and satellite photographs to produce large scale, map- 

like coverage for the depicted areas. For example, a strip mosaic (assembled from a 

single strip of photography) is commonly complementing existing maps when any type of 

route study is underway, such as for a highway, railroad, transmission line, pipe line, 

canal, or set of flood-control levees (Moffitt and Mikhail, 1980). With the advancement 

of digital techniques, automatic image mosaicking has become an active area of research 

and a number of techniques have been developed for this task (Takeuchi et a]., 1999; 

Shum and Szeliski, 2000; Su et al., 2004). We can identify two major steps involved in 

this process. First, a geonzetric trarzsformution is required to link together multiple 

overlapping images, a task commonly accomplished through the identification and 

matching of conjugate (corresponding) points in the overlapping area of the processed 

imagery. Second, a radiometric trnnsfornzutiolz is required, in order to blend image 

intensities in successive images, and thus generate visually seamless mosaics. This thesis 

addresses the first issue, namely thc geometric transformation of overlapping image 

sequences to generate image mosaics. 



At the age of digital imaging, mosaicking is becoming a rather popular 

process, as many commercial off-the shelf (COTS) software packages typically include 

tools to blend individual images in mosaics. Considering the currently available 

capabilities to annotate image files using text and/or graphics, one can easily see the great 

potential of mosaics to serve as map substitutes in geospatial applications: they can 

convey updated information in a user-friendly and content-rich manner. However, even 

though the geospatial community realized this potential early on, the use of mosaics as 

map substitutes has remained rather low, hampered by the lack of efficient automated 

techniques to solve the correspondence problem in overlapping imagery. Identifying and 

matching the same feature in two images remains a challenging task, despite the efforts 

made in this direction within the scope of automated image orientation. 

Image orientation is a fundamental task in photogrammetry and computer 

vision. It involves the determination of the parameters that express the position and pose 

in space of a camera at the instance it captured an image. Considering the various spaces 

(e.g. inside and outside the camera) and different types of coordinate systems (e.g. 

absolute or relative) involved, we can identify interior, relative and absolute orientatiorz 

(please refer to Appendix A for a more in-depth presentation). Developing automated 

orientation processes remains a major scientific challenge, with notable work on relative 

orientation (Schenk et al., 1991), point transfer in photogrammetric block triangulation 

(Agouris and Schenk, 1996) and exterior orientation (Drewniok and Rohr, 1996). Despite 

these advances, automated image orientation remains a challenge, typically affected by 

the lack of efficient and robust object extraction techniques to support feature selection, 

and the lack of efficient tcchniques to match such features. Notable literature in these 



topics tends to focus on rather limited tasks, e-g., road extraction (Baumgartner et al., 

1997; Katartzis et al., 2001; Tupin et al., 2002; Alhichri and Kamel, 2003) or edge 

detection (Basu, 2002) in very limited environments (such as high resolution imagery, 

rural scenes or intensity variation). 

The underlying problems that limit the success of automated orientation relate 

to the considerable variety of object types and scales in natural scenes, and the 

complexity of modeling and representing spatial relations between objects. In order to 

overcome these problems automated techniques focus on using conjugate points (instead 

of more complex features like linear elements) in massive amounts: often hundreds of 

points are matched in a single stereopair. This "brute force" approach to orientation 

works well for traditional photogrammetric applications as orientation parameters are 

estimated with high accuracy, but require substantial post-matching manual editing in 

order to identify and remove false matches. Thus, they remain in essence partially 

automated, and are therefore unsuitable for modem applications (e.g. processing motion 

imagery captured by digital cameras on-board unmanned aerial vehicles - UAVs) that 

involve very large numbers of images. Furthermore, UAV-type applications often involve 

rural terrain types where besides few linear features (e.g. roads) it is practically 

impossible to identify an adequate number of well-distributed distinguished points that 

may be used for matching. All these still unsolved issues and emerging capabilities are 

making the need for efficient automated image mosaicking processes a priority for 

geospatial applications. 



1.2 Statement of Objective 

The objective of this thesis is to automatically co-register sequences of aerial 

imagery using elongated features present in these photographs as control information. We 

are particularly interested in recovering and correcting rotation variations and translations 

in order to generate automatically mosaics of aerial imagery. We also consider mainly 

sequences of quasi-vertical imagery, with relatively small variations of flying height 

between successive frames. 

We are motivated by emerging data collection schemes, and especially ones 

involving UAVs and motion imagery, and aim to contribute a model to automatically 

recover rotations and translations in areas traversed by linear features such as rivers or 

curvilinear road segments. By recovering such orientation differences we are able to 

rectify and mosaic image sequences. 

The hypothesis of this thesis is that linear features provide an efficient 

alternative to single points for the recovery of orientation variations and the mosaicking 

of image sequences. We argue that the geometric information conveyed by linear features 

provides additional robust content for this process, minimizing the potential for blunders 

often associated with single point-based approaches. 

1.3 Intended Audience 

This thesis is presented from the perspectives of photogrammetry, remote 

sensing, and computer vision. A basic knowledge of photogrammetry is assumed, but to 

assist readers from the geospatial community at large we have included an overview of 

fundamental photogrammetric principles in the Appendix. The fields of photogrammetly, 



remote sensing, and computer vision will be able to expand the concepts and model for 

further complicated applications. 

1.4 Organization of Thesis 

This thesis is comprised of six chapters. Chapter 1 gives a brief introduction of 

the problem and its significance. In chapter 2, we provide a review of literature related to 

automatic techniques in the image mosaicking and relative orientation. The focus in this 

section will address automatic relative orientation with various types of control elements. 

The characteristics of our proposed approach will be introduced at the end of this section. 

Our detailed approach for automatic image mosaicking is described in Chapters 3 and 4. 

We start in Chapter 3 to describe the principles of road extraction with the active contour 

model (i.e., snake) as the basis of our approach. Based on the extracted linear features, we 

address our matching method in Chapter 4 using linear features. Chapter 5 focuses on the 

experiments with the synthetic aerial image sequence using the proposed approach. The 

precision estimation and analysis will be discussed in this section. In Chapter 6, we 

conclude with a summary of the research and suggestions for the future work. This thesis 

includes an appendix with an overview of fundamental photogrammetric principles, and a 

second appendix with an overview of orientation techniques in photogrammetry, to assist 

readers. 



Chapter 2 

LITERATURE REVIEW 

The objective of this section is to review previous work done within the scope 

of image mosaicking and image orientation. We focus on reviewing dominant methods to 

compute correspondences in the above two fields. The discussion will concentrate on 

automated techniques involving extraction and matching of control elements such as 

points, linear features or areas. We conclude this section with brief introduction of our 

approach and address the advantages of our approach compared with most closely related 

state-of-the-art works. 

2.1 Computing Correspondences in Automatic Image Mosaicking 

Image mosaicking creates a composite view or panoramic mosaic from a 

sequence or a collection of overlapping images with smaller fields of view. Composing 

has traditionally been done manually. But digital photography enabled new automatic 

implementations for mosaicking (Milgram, 1975; 1977; Peleg, 198 1 ; Burt and Adelson, 

1983; Irani et al., 1995; Shum and Szeliski, 2000) which were first applied to aerial and 

satellite images and later used for scene and object representation. Computing 

correspondences between image sequences is a key step in making panoramic image 

mosaics. Techniques can be mainly categorized into featureless methods and feature- 

based methods (Gong et a]., 1999). Featureless methods transform images with 

parameters acquired by minimizing a sum of squared differcnce function. Existing 



featureless techniques include cylindrical/spherica1 panoramas (Krishnan and Ahuja, 

1996; Shum and Szeliski, 2000), affine or a planar -projective transform-based 

panoramas (Hansen et al., 1994; Irani et al., 1995; Sawhney et al., 1995). However, 

methods in this category typically restrict their applications to small change (translation, 

rotation, etc) from one image to another, and good initial values for the parameters of the 

transform. Feature-based methods utilize the feature correspondence between image pairs 

to find transforms that register the image pairs. The challenge of these methods exists in 

the acquisition and tracking of image features due to the available features and noise or 

occlusion on the imagery. Point features such as corners, as the most common features, 

have been widely used (Zoghiami et al., 1997; Cape1 and Zisserman, 1998; Kanazawa 

and Kanataniy, 2002; Mallick, 2002; Gracias et al., 2003). Recently, the extending 

applications of image mosaics, such as virtual travel (Chen, 1995), visual maps for 

autonomous navigation of mobile robots (Garcia et al., 2001; Gracias, 2003), highlight 

the need of alternative features other than points for correspondence problems, typically 

in environments where distinctive points are impossible to identify, e.g., low-contrast, 

suburban areas with little man-made architecture. 

2.2 Conjugate Feature Detection in Digital Aerial Photogrammetry 

Selecting appropriate features to compute correspondences have been studied 

in aerial photogrammetry for a long time. In aerial photogrammetry, relative orientation 

reconstructs the relative position of the two consecutive images (please refer to Appendix 

A for a detailed description). With this knowledge, the two images can be mosaicked 

through a variety of transformations, ranging from simple affine to complex projective 

ones in terms of the distortion between imagery. Automating the process of relative 



orientation has been developed with the advent of digital photogrammetry and brought 

great challenge forward. 

During the last decade or so, photogrammetry has moved to an increasingly 

digital spectrum, fostered by a wide range of technological advances (e.g. large format 

digital cameras and scanners, stereoscopic glasses for video games). Digital imagery has 

effectively replaced its analog counterparts for photogrammetric applications. High- 

performance computers and sophisticated software have replaced the cumbersome 

optical/mechanical stereoplotters or analytical stereoplotters. Even though this evolution 

has materialized over the past 15 years, its origins go as back far as 1959 with the 

pioneering work of Gilbert Louis Hobrough on image correlation (Hobrough, 1959). 

Back then, the correlation process was an analog one, with hardware used to compare the 

gray levels of imagery. From this experimental and impractical early step we have now 

reached the point where digital photogrammetric workstations (DPWS) have become the 

standard equipment of most photogrammetric firms (Heipke, 1995). 

The automation of relative orientation is a fundamental process for digital 

stereo processing and thus has been the subject of substantial research activities in 

photogrammetry and computer vision (CV). Even though this work has resulted in 

substantial progress, often materialized in the form of competent software packages, we 

are still at a stage where existing solutions leave room for improvement. 

Automatic relative orientation requires the identification of control primitives 

(through feature extraction) from digital images, and establishing correspondences 

among them (through fentzlre matclzi~zg) in pairs (or multiples) of overlapping images. 

These processes can be performed with various degrees of ease by human operators, and 



their automation has been addressed in the development of numerous algorithms in 

photogrammetry and CV. The variety of information contained in aerial imagery provides 

a wealth for selecting control primitives in one hand, as well as a challenge in another 

hand for matching. Therein lies the fundamental difficulty for automatic relative 

orientation, e.g., point identification and matching (Schenk and Toth, 1993; Tang and 

Heipke, 1996), relational descriptions between points, lines or areas (Cho, 1995; 1996; 

Wang, 1996). We can identify two major types of strategies for solving the matching 

problem in the photogrammetric and CV literature, known as area-based and feature- 

based matching. It should be noted that when talking about area-based or feature-based 

matching in this chapter we not only refer to the whole matching process, but also the 

selection of the primitives. 

2.2.1 Area Based Matching 

In area based matching (ABM), the candidates for matching in overlapping 

images are windows of predefined size or even entire images. Matching is based on 

comparison of raw gray values (also referred to as pixel intensity) in a preset window 

(template) in one left image and of a search area in the other image. ABM can be 

implemented either through cross-correlation or least-square approaches. In cross- 

correlation, similarity is measured by assigning correlation values to each location by 

comparing the template window content to the corresponding matching candidate pixels 

(Ackerrnann, 1984; Hannah, 1989; Rottensteiner, 1993). Alternatively, the normalized 

spatial root mean square deviation, or absolute difference of normalized differences may 

be used to express correlation between these two windows. The local maxima (or 

minima) express best matching. Least-square approaches establish the correspondence 



between the windows that minimize the squared sum of the differences of their gray 

values (Forstner, 1982; Bergen et a]., 1992; Danuser, 1996; Berger, 1998). Although the 

precision of area based matching can be potentially high in well-textured image regions, 

it is affected by geometric distortions (e.g., due to the relief displacement). In addition, it 

is not invariant to rotation variations of two overlapping images. In a deviation from 

traditional orthogonal windows, some authors have recently proposed to use circular 

windows (Zitova and Flusser, 2003). 

2.2.2 Feature-based Matching 

Image features, from a photogrammetric and CV perspective, may range from 

local features such as points, edgelets (edge elements), and lines, to global features such 

as polygons and complex descriptions of the image content called stnictures. Even 

though the difference between the terms local and global is rather artificial (Heipke, 

1996), it is customary to consider local features as those contained within highly 

localized image windows (e.g., in the order of 50*50 pixels). On the other hand, the term 

global is commonly reserved for features that span larger areas, or even a complete 

image. The most popular feature-based approaches may be classified in two broad 

categories: ones that focus on points as features, and ones that use more complex entities 

like lines and objects. 

2.2.2.1 Point Features as  Primitives 

Point features are widely used in terms of their invariance to imaging geometry 

(Heipke, 1997) and their good perceptibility by a human observer. Distinct points such as 

road intersections, oil and gas pads, high variance points, sharp corners, are commonly 

used as control primitives in the photogrammetric comn~unity. Their automatic matching 



usually starts by searching for interesting points that have distinct differences in contrast 

to their vicinities. They are detected by so-called interest operators in the extensive body 

of research, e.g., Moravec operators (Moravec, 1977), Forstner operator (Forstner, 19861, 

statistical operator (Hannah, 1980). The underlying algorithms of these detectors differ in 

the manner in which they define the concept of a 'point'. For example, the high variance 

points detectors such as Moravec operators, Forstner operator work by finding those 

points which have high variant gray values with respect to their background (Muller and 

Hahn, 1992; Haala et al., 1993; Hahn and Kiefner, 1994; Liang and Heipke, 1996). 

Comers are more complex. Intuitively, comers are recognized as points with high 

curvature along region boundaries. However, defining corners mathematically is not a 

trivial issue. A great deal of effort has been spent on this problem, in particular on 

developing precise, robust and fast methods for comer detection. Second-order partial 

derivatives of the image function are exploited for corner detection (Kitchen and 

Rosenfeld, 1982). Gray scale level based comer detectors search the corners as the local 

extrema of the Gaussian curvature (Dreschler and Nagel, 1981). However, comer 

detectors based on the second-order derivatives of the image function are sensitive to 

noise. Gray scale level based corner detectors do not detect the exact position of a corner. 

Deriche and Giraudon (1993) proposed to localize the exact position of a corner with two 

properties: a) the Laplacian image is zero at the exact position of the corners (zero- 

crossing property), and b) the property associated with the measure they proposed to use. 

The most up-to-date and exhaustive survey of corner detectors can be found in Rohr 

(2001). 



In aerial photogrammetry, point feature matching is typically based on the 

powerful epipolar constraint (shown in Appendix B) in which the candidates of conjugate 

points should lie on epipolar lines. This assumption reduces the search space to a single 

dimension - the epipolar lines - and thus increases the speed and reliability of the 

matching algorithm. Furthermore, a radiometric check is incorporated in the algorithm 

such as the correlation coefficient (Liang and Heipke, 1996). The shortcoming is that the 

approximate orientation parameters should be known as initial values for matching. After 

feature matching, the use of a multitude of points provides higher redundancy and makes 

a least squares adjustment available to determine the relative parameters using the 

available model coordinates of the conjugate points as observations, which results in 

more reliable results with respect to the analytical relative orientation with few points. 

Hierarchical approaches are often employed to reduce the burden of 

computation since the number of detected points can be very high. In hierarchical 

approaches, images are often analyzed in multiple resolutions, from coarse to fine, using 

for example image pyramids (see Figure 2.1) or other multiresolutional analysis schemes. 

In such hierarchical approaches, feature extraction and matching are performed in each 

level separately, starting with coarse levels, and using the latest results to guide feature 

extraction and matching in finer resolutions. 



Figure 2.1: Example of an image pyramid 

2.2.2.2 High Level Features as Primitives 

High Level features, defined in the context of this thesis as all features other 

than points (e.g., roads, buildings, regions) are not only easier to find in the natural 

environments but also more meaningful than the point features. Nevertheless, they are 

more challenging from an algorithmic point of view, due to their substantial variations in 

nature, form, scale, and overall appearance characteristics. Furthermore, standard 

projection models used to support point matching in relative orientation are less suitable 

to support the deformations in the representation of longer and larger entities. Thus the 

use of higher-level features for relative orientation applications is rather limited. 

Even so, much effort has been devoted over the past decades to devise efficient 

and robust algorithms for it. Relational matching (Shapiro and Haralick, 1987; 

Vosselman, 1992) is one direction. It relies on the similarity of topological relations of 

features which are stored in feature adjacency graphs rather than on the similarity of gray 



levels or the similarity of point distributions. Topology is invariant under perspective 

transformation and thus relational matching is a rotation invariant solution for relative 

orientation and can be used to determine the image overlap. However, since it leads to 

rather complex search trees (Vosselman, 1995), the computational complexity is very 

high, thus limiting its use in practice. 

Other high level features such as curved lines (Schenk et al., 1991), and 

straight lines confront great limitations for automatic relative orientation. For example, 

relative orientation can only use straight lines that are parallel to the epipolar lines for 

solving the orientation parameters (Schenk, 1999). The collinearity equations used to 

solve the orientation parameters are more appropriate for points instead of high-level 

features since they are constructed based on the corresponding points. High level feature 

based automatic relative orientation is still a subject of intensive research to overcome 

these limitations (Heipke, 1997; Jones and Oakley, 2000; David et a]., 2003). 

2.3 Most Related Work Review 

Our proposed approach is presented in detail in chapter 3 and 4, but in order to 

better position it within the current state-of-the-art we will present a brief overview of 

road extraction and shape matching approaches in photogrammetry and CV in the 

following subsections. 

2.3.1 Road Extraction 

Road extraction is commonly regarded as a difficult problem. Firstly, images 

have a wide range of scales, which leads to a variety of road representations such as two 

parallel lines in large-scale images or only a single line otherwise. Secondly, roads do 



not possess specific global shape. No signature shape can be specified as in template 

matching methods. 

A great deal of effort has been devoted to devise efficient and robust 

algorithms for it (Gruen et al., 1995b; Gruen et al., 1997; Baltsavias et al., 2001). With 

respect to the level of automation, the methods are conventionally categorized into semi- 

automation (SA) and full-azitomation (FA). Examples of substantial works are shown in 

Table 2.1 (Doucette, 2002). 

Table 2.1: Summary of approaches for automated road extraction 

Extraction Models Automation 
Level Exemplary References 

Road tracking S A Litton, - - 1993; 
Gruen et al., 1995a; 

Template Matching S A Vosselman and Knecht, 1995; 
Park and A King, ~. 200 1 ; 
Trinder and Li, 1995; 

Snake-based models S A Fischler and HelIer, 1998; 
Peteri et al., 2003a; 

GIs database update 
Zhang and Baltsavias, 2000; 

A~our is  et al.. 2001b 

Baumgartner et a]., 1999; 
Rigorous models FA Oddo et al., 2000; 

Agouris et al., 200 1 a; 

The implementations of methods in SA all require the real-time interaction of a 

human operator, for example, inputs of the road direction, width, initial seeds. It should 

be noted that the snake model introduced from Kass et al. (1987) is distinct from 

conventional methods (e.g., road tracking) and more recently developed. Similarly, as a 

deformable object deforms, the snake attaching itself to an edge location provides the 

final edge delineation until its energy reaches the minimum. 



To contrast, full automation (FA) algorithms strive for little or no human 

operator interaction with automating the initialization. Existing cartography information 

facilities in GIs database algorithm for FA road extraction. Rigorous FA road extraction 

research even contributes to fulfilling self-sufficiency in seed finding and /or delineation. 

2.3.2 Shape Matching 

Shape matching is an important issue in visual information systems, computer 

vision, pattern recognition, and robotics. As such, there are various ways to approach the 

problem in computational geometry. Computational geometry is the subarea of algorithm 

design that deals with the design and analysis of algorithms for geometric problems 

involving operations on objects like points, lines, polygons, and polyhedra. Table 2.2 

offers a good tabulation of some representative examples Veltkamp and Hagedoorn 

(1 999). 



Table 2.2: Examples of shape matching approaches 

Approaches Matching strategy Exemplary 
References 

As a tree search procedure, the 
matching algorithm generates all 

- - 

Tree pruning maximum matchings satisfying a Umeyama, 1993 
condition called delta - 
boundedness 

Generalized Hough Find the correspondence with a 
transform given criterion 

Zaharan, 1997 
- 

Statistics Mathematical theory of shapes Small, 1996 
- -- 

Determine a body-centered 
Deformable coordinate frame for each objects Sclaroff and Pentland, 
templates and then attempt to match up the 1995 

feature points 

Use the Fourier transform to 
Fourier descriptors 

characterize the shape 
Loncaric, 1998 

Wavelet transform Haar basis functions Jacobs et al., 1995 

The shape context at a reference 
point captures the distribution of 

Shape context the remaining points relate to it. Belongie et al., 2002 
Corresponding points will have 
similar shape context 

However, the orientation parameters are required to be available prior to 

solving the correspondence problems. In addition, the majority of the existing literature 

only deals with the images having the same objects. It should be recalled that we are 

interested in overlapping images with unknown rotation difference. Thus, we are facing a 

challenge when matching the extracted edges based on the shape information, i.e., the 

proposed solution should be invariant to rotation and simultaneously detect the 

overlapping area. 



2.4 Our Proposed Approach 

As we discussed previously, high-level features carry more information (e.g., 

shapes, intensity) than point features for subsequent processes such as object recognition, 

while points are more appropriate for the solution for orientation parameters. This thesis 

proposes a robust method that takes advantage of both point and high level features (i.e., 

roads) to support the mosaicking of image sequences. We concentrate on roads primarily 

because roads in remotely sensed scenes are widely regarded as the most recognizable 

objects for humans, purely based on their shape and its variations. In our proposed 

method, we utilize the snake model to extract roads. Although the human interaction may 

place a time constraint on algorithm execution, semi-automation is reliable with the 

initialization as the constraints. In addition, the snake model delineates the edges with 

sets of points, which are appropriate for resolving relative orientation parameters. We 

proceed by making use of points of interest along road edges to perform feature matching 

and therefore bear no restrictions of shape matching (i.e., invariance to rotation 

variations). By combining feature- and point-based matching we aim at the development 

of a robust yet fast matching approach. Finally, with the detected orientation parameters, 

all images other than the first one (referred to as the anchor) in the sequence are 

transformed into the anchor space and generate the mosaic of the set of sequence. We 

determine rapidly the overlapping area of the image pairs by using linear features and 

reduce drastically the search space for our matching process. Furthermore, we avoid 

matching on a point-to-point basis, minimizing the potential for costly blunders that may 

require post-process manual editing, and would therefore minimize the potential use of 

our approach. 



Chapter 3 

ROAD EXTRACTION WITH SNAKES 

In Chapter 3 and 4, we detail our proposed approach for mosaicking image 

sequence. The approach proceeds by determining the orientation parameters of image 

pairs based on the extracted roads (i.e., control features), followed by transforming 

images other than the first image (referred as anchor) into the anchor space with detected 

orientation parameters, described in Figure 3.1. 

Image Pairs 

I * 
Feature Extraction with Snake 

Feature Matching I 
C 

Orientation Determination 

Last image pair? 

Figure 3.1: Mosaicking image sequence 

In this section, we focus on extracting control features for matching. Different 

selected features require differcnt mathematical models for automatic extraction and 



matching (Zitova and Flusser, 2003). Hence, it is a critical issue to choose the most 

suitable features for performing such a task. Two major factors are considered in terms of 

feature selection: the availability of features in the related taken scenes and the distortion 

of the two involved images. In aerial photogrammetry, point features such as road 

intersections, corners, even the positions with high gray variance, typically are the 

preferred control features in terms of their stable geometry and traditional use as control 

points (Heipke, 1997). However, they convey little information other than the positions. 

In addition, within this thesis, we concentrate on aerial imagery covering rural areas with 

minimal numbers of salient point features (and sporadic distribution of these points) but 

with linear features (i.e., roads) that cross the images. Furthermore, roads are static during 

the image-capturing process. We assume two images are taken from different viewpoints 

given the movement of the UAVs between successive exposures. There is only a spatial 

difference between the two images, i.e., the roads are the same in the common coverage 

of the two images with translation and rotation misregistration. With respect to these 

aspects, we select roads as the control features to determine the orientation difference. 

3.1 General Formulation of Snakes 

An extensive body of research has dealt with extracting roads from digital 

imagery (Doucette, 2002). The snake model, as a distinguished method from 

conventions, has caught attention and been developed recently, for example, (Agouris et 

al., 2001b) advanced the differential model based on it to automatically detect the 

changes in GIs  database with aerial imagery. Peteri et al. (2003b) makes use of snakes 

combined with a multiresolution analysis (MRA) for minimizing the problem of 

geometric noise to extract road networks. 



Snakes, sometimes referred to as active or deforrllable contour models, are 

common tools to extract object boundaries from imagery in computer vision. They were 

introduced by the work of Kass et al. (1987) and have since been the subject of 

substantial research. The snake model combines radiometric (gray level) and geometric 

(shape description) information to extract features. In the snake model, a linear feature is 

extracted as a sequence of nodes and links among them. Within this thesis, snakes are 

applied as a means to extract road edges from aerial images for image mosaicking. Two 

essential advantages exist. As we know, aerial images include extensive information. It is 

extraordinarily difficult to extract a specific feature automatically from such rich 

information. In snakes, information from other mechanisms such as interaction with a 

user, interaction with some higher-level image understanding process can be used to limit 

the search area so as to decrease the uncertainty. The other advantage is that points, as the 

extraction results, are appropriate to use for solving the orientation parameters. 

Simultaneously, challenges exist in the further step to map the extraction results in order 

to solve relatively accurate orientation parameters, which will be detailed in the followed 

section. 

The snake model is defined by an energy function, combining weighted 

internal and external forces as 

E,,,,,,,, = a . ECOl,l + P .  Em,.,. + Y . Ed,, (1) 

Where a, Pand yare relative weights describing the importance of each energy 

term. Commonly their selection is performed empirically. 

Internal forces 



Internal forces consist of the first two energy terns, i.e., EcOnf and E,,,,.,. They 

emanate from the geometry of the contour. Suppose vi = (xi, yi) is a point on the contour. 

Econf expresses the first order continuity constraint defined as 

Econ, = d- 1 V i  - V i - ,  I 

Where d is the average distance defined as Equation 3, which forces the snake 

nodes to be evenly spaced, avoiding grouping at certain areas, while at the same time 

minimizing the distance between them. 

point s-l 

d = vj+, - v, 1 / (points-1) 

Another internal force E,,,, in Equation 1 denotes the second-order continuity 

constraint that represents the curvature of the snake contour, and allows us to manipulate 

its flexibility and appearance, i.e., 

Externalforce 

The third energy term Eedge in Equation 1 is referred to as the external force. It 

describes the relation of the contour to the radiometric content of the image. In general, it 

forces points to move towards image edges, defined as: 

E,,, = - V W ,  ( 5 )  

With few seed points selected in an image manually or from higher-level 

image understanding process, the points along the contour move to new locations to 

progressively optimize the energy functions, i.e., minimizing its energy, guided by the 

discussed external forces and influenced by the internal forces. This is an iterative 

process. Various techniques have been proposed to compute the minimum of the snake 



energy function. In (Kass et al., 1987) the Euler-lagrange equation is used to analyze and 

solve numerically the snake equations. (Amini et al., 1990) proposed an algorithm for the 

optimization using dynamic programming. We use an alternative faster approach i.e., 

greedy algorithm, suggested by (Williams and Shah, 1992) in this thesis. 

3.2 Mapping Issues of the Extracted Point Sets 

Using the above described snake model and optimization process, roads are 

extracted in successive images, and are represented by polygonal lines, defined by points 

(snake nodes) and segments connecting these points. In automating image orientation, 

matching plays a basic role. Also referred to as the correspondence problem, matching 

can be defined as the establishment of correspondences among two or more data sets 

(identifying the same feature in them). In our applications (sequences of aerial imagery), 

the two data sets that we analyze (i.e., extracted road segments and corresponding point 

sets) have the following particular characteristics with respect to the matching problem: 

Differences in coverage and coordinate system 

Under typical aerial survey/monitoring missions (refer to Appendix A), two 

adjacent images are acquired from successive exposure positions as the sensor flies over 

an area including one or more linear features. Thus, the images have certain sidelap and 

endlap without covering the same zone of the ground. Correspondingly, the extracted 

points along the road edge cover different parts of a road edge. As in Figure 3.2, I 1  and I2 

represents the two acquired images on the successive exposure position Al  and A*. 



Figure 3.2: Coverage of successive Images 

Simultaneously, as the UAVs fly along the linear features, the image 

coordinate systems of image I] and I2 are not the same, with translation and rotation 

differences. Figure 3.3 shows the translation D and rotation K between system o~xlyl  and 

02x2~2, where y l '  is the translated axis yl by D. 

Figure 3.3: Translation and rotation difference of image I I  and I2 

Noise 

In aerial photogrammetry, noise within the context of road extraction primarily 

refers to the adverse effects of shadows and visual obstructions (e.g. canopy, large 



buildings) adjacent to road segments. As these obstructions tend to be three-dimensional 

in nature (e.g. a tall tree or bridge), their effects on each image may be slightly misplaced 

due to differences in the viewing angle as the UAV moves along its path. The snake 

model may be affected by noise (if noise has substantial spatial extent), following for 

example locally the outline of a canopy shadow instead of the road in question (e.g. 

Figure 3.4). Such noise effects manifest themselves as spurious concave or convex 

extremities at the noise locations, deviating slightly by the desired noise-free result 

(Figure 3.5). Furthermore, noise may cause snake nodes to be distributed differently in 

two conjugate scenes. This is demonstrated in Figure 3.5, where the reader can easily see 

how points extracted with or without noise effects do not have a one-to-one 

correspondence. 
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Figure 3.4: Tree shadows effects to the snake models 
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Figure 3.5: Concave and Convex caused by noise 

Consequently, two sets of road nodes extracted with the snake model are not 

one-to-one mapped. And there is no guarantee that a solution exists, is unique, and /or is 

stable with respect to small variations (e.g., noise) in the input data, leading to an ill- 

posed problem. Additional knowledge is commonly required to find a solution for an ill- 

posed problem (Heipke, 1997), such as initial values of the unknown parameters. In this 

thesis, we develop a new approach for mapping based on both the extracted points and 

road shapes to overcome this problem, without the stringent prerequisites of additional 

information. 



Chapter 4 

ORIENTATION DETERMINATION AND MOSAICKING 

As we mentioned in Chapter 3, the snake model is a powerful tool to extract 

linear features from digital imagery. Using snakes, roads are extracted from aerial 

imagery and are represented by polygonal lines, defined by points (snake nodes) and 

segments connecting them. By matching these polygonal lines we can establish 

correspondences among overlapping imagery, and thus recover orientation and mosaic 

image sequences, which will be described specifically in this chapter (please refer to 

Figure 3.1). 

Matching snake-derived polygonal representations of linear features from 

overlapping imagery is a rather unique matching problem. As mentioned previously in 

this thesis, there exists substantial work in the photogrammetric and CV communities on 

point matching (Alt et al., 1988; Heffernan and Schirra, 1994; Belongie et al., 2002), 

region matching (Flusser and Suk, 1994; Bhatacharya and Sinha, 1997), and even linear 

matching in applications where matched images differ only in simple translation 

(Fonseca and Manjunath, 1996; Althof et a]., 1997). Our approach contributes to this 

literature by addressing the matching of polygonal descriptions (extracted road outlines) 

where due to noise and algorithmic effects we do not have a direct one-to-one 

correspondence among snake nodes in overlapping imagery. Furthermore, we address 

translation andlor large rotation diffcrences among overlapping image pairs. In order to 



meet these particularities we introduce a method that departs from direct point matching 

which is regarded as a time-consuming and error-prone process. Through this matching 

process we can determine the orientation parameters relating multiple overlapping 

images, information that can be used to transform them into a common reference frame, 

and generate their mosaic. 

4.1 Feature Matching in Image Pairs 

Let L and R respectively denote the left and right images in a stereo pair. The 

sets of points that describe an extracted edge in each image are represented by 

Li(xL,,y,,)(i=1,2 ,..., n,) for the L image and Ri(xRt,yR )(i=1,2 ,..., nR)for the R image, 

where n, and n,are the overall numbers of extracted points for each image. It is easily 

understood that the number of points may differ between the left and right image, as their 

content varies (besides their common overlapping area). Furthermore, the object 

extraction process itself may result in differences in the number and placement of points 

(nodes) used to describe the same object under variations of the viewing conditions. 

Thus, in general, n, is not equal ton,, and we do not have a direct, one-to-one point 

correspondence. 

Our approach for feature matching is briefly outlined in Figure 4.1. It is 

implemented in image pairs: image i is compared to image i+l, and image i+l is in turn 

compared to image i+2, and this process is repeated until all image pairs are compared. 

Snakes are used to extract roads on each image (i.e., left and right images in an image 

pair). With the on-the-fly input curvature threshold by users, we detect critical points 

(CRPs, i.e., snake nodes having larger curvature than the threshold) in the right image. 

Then a polygonal template is constructed, customized by users with a subset of detected 



CRPs. We proceed in our approach by identifying the similarity between the customized 

template and extracted road polyline from the left image. The outcome is a point-to-point 

matching between the two data sets (i.e., Li and Ri). 

Point Set Ri 
(Left Image L) (Right image R) 

threshold defined by users 

I 

+ CRP numbers determined by users 

V Comparison V 

I 

Figure 4.1: Shape matching 

4.1.1 Critical Point Detection 

When humans recognize an object as one that they have seen before, objects 

are decomposed to primitives called geons (David, 1982) combined with their spatial 

relationships in an object-centered frame. Similarity comparison is based on these geons 

and their relationships (David, 1982; Biederman, 1987; Hummel and Biedennan, 1992). 

Similarly, when comparing two scenes, humans mentally deconstruct each scene to its 

characteristic elements (features within it) and then the elements are decomposed to more 

subtle properties (i.e., convex parts) to identify correspondences among them. In our 

case, snakes yield object outlines from the distribution of radiometric content in each 



image separately. In order to support the subsequent comparison of these extracted linear 

objects, we first need an algorithm to analyze their geometric properties. 

Our objective is to identify notable geometric characteristics of these lines (e.g. 

breakpoints, transitions tolfrom concave or convex components), and thus reduce the 

representation of a line to its characteristic information. These characteristics then 

provide the information that will be compared to match these two lines. Thus, 

determining characteristic or critical points is an essential step for our matching 

algorithm. 

From linear algebra, we know that the angle 9 between two vectors as shown 

in Figure 4.2 can be calculated with the following formula: 

Where and Peare  the vectors starting from point P and ending at point 0 

and Q respectively. JPOJ and JPQJ are the norms of those vectors. The range of q~ is 

between 0" and 180". 

Figure 4.2: Angle between two vectors 

After extraction, road edges are represented with polygonal lines defined by 

extracted points and segments connecting these points. In Figure 4.3, we used stars to 

show the extracted points, and dotted lines to show the connecting segments. Let 9, 



- - 
denote the angle between vectors c-,c and e,+,c , where Pi-, and Pi+, are the adjacent 

prior point and next point to the current point Pi respectively. The local curvature Qi for 

each point Pi is defined in our approach as the complementary angle of qj: 

0; = 180" -pi 

Figure 4.3: Local curvature 8, for point 

Accordingly, the smaller the vector angle, the larger 6; .  The local curvature 9; 

of point represents the abruptness at this point the variation in road direction. In Figure 

4.4 we see that point 4 is a point of high curvature, as its corresponding angle Oi is 

rather large. Accordingly, we mark point Pi as a point of local maximum curvature and 

thus consider it to be a critical point. When making such assignments we can use a 

predefined threshold to evaluate sharpness (i.e. if an angle is higher than this threshold 

the corresponding node is considered to be a critical point). By increasing this threshold 

value, we force critical point selection to identify only a few nodes where road outlines 

display very abrupt changes in orientation, thus selecting a limited number of highly 



distinguishable points. By setting a lower threshold we can have more points detected as 

critical points, but among them there will exist some points of relatively low orientation 

variation. To a certain extent this process may be viewed as the equivalent of a 

multiresolutional decomposition of the outline, with fewer (more) points used to describe 

the outline when high (respectively low) threshold values are selected. Threshold 

selection may be performed empirically according to the degree of curvatures of roads. 

Automating threshold selection is a different research topic that is beyond the scope of 

this thesis. 

The above presented process has a shortcoming as it fails to mark locations 

where a road rather slowly changes its curvature from a concave to a convex curve (or 

vice versa). This is demonstrated in Figure 4.4, where point set Si (i = I ,2.. -12) shows the 

detected critical points. The variation of local curvature after point S2 is smaller than a 

specific threshold set for local maxima. Only point S2 (pointed by the solid arrow) is 

detected as a critical point using local curvature as the sole criterion. The information of 

curvature change from convex to concave, which is an important geometric characteristic 

to support shape matching, is lost. Even though decreasing the threshold value can detect 

more points (e.g., S,, S4, S5, Sg, S I ~ ) ,  there are more chances to select critical points that 

locate at the almost unbent section (e.g., S3, Sq, S5) and thus increase the computation 

burden in later matching. 
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Figure 4.4: Poorly approximating with local maximum curvature 

In order to overcome this problem we enhanced our curvature analysis by 

introducing a global maximum curvature criterion. It is defined as the complementary 

angle, as di shown in Figure 4.5, of vectors generated by current point Pi, its adjacent 

prior critical point (CPj) and the next snake node (Pi+,). However, if the points before 

current point Pi have smaller curvature than the threshold, the concave characteristic 

shown on point Pi is more likely to be lost. Thus, in our approach, the first snake node is 

always considered as the first CP. 



Figure 4.5: Global curvature for point Pi 

Using the above described processes, critical points are determined using local 

and global maxima curvature criteria. The process starts by using the local criterion. As 

if a critical point is detected, the global maxima curvature criterion is executed and 

checks the rest of the points. The detected critical points form a polyline that represents 

"essential" curvature of the linear features. For the example shown in Figure 4.4, the 

points denoted by dotted arrows are detected with global maxima curvature. Thus, the 

polyline established by point S2, S7 and Slo retains the critical information lost otherwise. 

To further study the performance of our critical point detection method, we 

compare it with Douglas-Peucker (DP) algorithm (Douglas and Peucker, 1973), the most 

popular method and even the standard by which all others are judged in cartography to 

reduce the number of vertices in a digital polyline (Ebisch, 2002). McMaster ranks DP 

algorithm as "mathematically superior" (McMaster, 1986). With a study of three 

simplification algorithms, based on Marino's work (Marino, 1979) on critical points as a 

psychological measure of curve similarity, White reported that the Douglas-Peucker 



method was best at choosing critical points and representing perceptually the original 

lines. Other than angle tolerances used in our addressed approach, the DP algorithm is 

based on a distance tolerance. It defines a general direction of the line by the link 

between its start and end points. The intermediate points are tested to find the one with 

the greatest vertical distance between it and the link. If this distance is less than the 

tolerance, a straight line suffices to represent the whole line. Otherwise, split the link at 

this point and recursively approximate the two pieces. 

I 
Critical points detected by DP method 

:": Critical points detected by our proposed me 

Figure 4.6: Detected critical points 

Figure 4.6 shows the detection results respectively by DP algorithm and our 

method for the same point set. Due to different mechanism and tolerances, the identified 

critical points are not exactly coincident (e.g. the second point). However, our method 

detects the same crucial critical points as DP algorithm. As such, the polyline connecting 

critical points detected by our method describes the similar characteristics from DP 

algorithm, shown in Figure 4.7. 



c Approximation with DP algorithm 

h Approximation with our method 

Figure 4.7: Approximating the line with detected critical points 

4.1.2 Polygonic Template Construction 

Through the detection of critical points a road is represented by a reduced set 

of nodes (critical points). One can intuitively consider comparing the two polylines 

connecting critical point sets from the involved images to find the correspondence 

between two road segments. However, as discussed in Chapter 3, there is no one-to-one 

correspondence in the extracted points due to image noise, viewing variations, and the 

nature of the snake algorithm. Some points may be detected as critical points in the right 

image (e.g., noise), while in the left image the points located on the corresponding places 

may not be the critical points, or vice versa. Under such circumstances, pursuing point-to- 

point matching of polylines would fail. In order to overcome this problem we make use 

of a polygonic template by connecting all extracted points within a pre-defined range 

(e.g. determined by certain critical points) from the right image. Thus a polygonic line 

connecting all the snake nodes within the range represents the dominant shape properties. 

By comparing the template from the right image with all the extracted points in the left 

image, the similarity between the corresponding road segments is assessed. 



Users specify how many critical points are used to determine the range for 

snake nodes to construct the template. The intervention by users at this step is significant. 

It helps to define a range with little or even no noise and thus minimizes the noise effects. 

Nevertheless, using more critical points results in higher accuracies at the cost of higher 

computational requirements (and corresponding execution time). 

4.1.3 Similarity Matching 

Given the list of extracted points on the left image and the template generated 

from the right image, the objective of the feature matching is to find correspondences 

between these two collections of points, and thus match the corresponding road segments. 

This is performed by using a mathematical model to transform features from one image 

to the other and a similarity measure to form and evaluate the matches. Specifically, the 

mathematical model transforms the constructed template from the right image to the left 

one. The similarity measure detects the most similar part of the road on the left image 

with the transformed template. As we discussed previously, the involved images have 

rigid motion (i.e., translation and rotation) caused by differences in their acquisition 

conditions, e.g., exposure points, and direction variations of the UAVs at different 

instances. In order to preserve shapes and angles in the transformation for mosaicking, a 

linear conformal transformation (Equation 8) is used to transform the template to the left 

image. Thus, straight lines remain straight, and parallel lines are still parallel 

(Mathworks, 2000). Figure 4.8 shows the transformation between the two images given 

in Equation (8): 



[; I = [COS 0 - sin u xT 
sin 0 c o s u  YT 

I 
left image L 

Figure 4.8: Geometric relationship of the image pair 

Where XT, YT are the translation values along X and Y axes respectively; o is 

the relative rotation of the image pair. 

Let subset M ( x , , ~  ,y , p  5 i 5 q) denote the extracted points that constitute the 

template, where p and q are the sequence order numbers of M in the point set Ri. We 

convolve the template along the corresponding road edge on the left image. All road 

sections which have the same number of points on image L are considered to be the 

potential conjugates with the template. For each pair thus established, the distance D 

between them is calculated as the similarity measure. The smallest D indicates the match 

to the template. There are many combinations of road sections with the same point 

number. To reduce the burden of computation, the overlapping of photograph 

requirement is considered for the start of the convolution. Since the two images must 



overlap on their border according to the aerial photogrammetry requirements, we start to 

convolve M from the border of the left image and end where the number of available 

extracted points is less than the dimension of subset M. 

As shown in Figure 4.9, we move the template (M) as a unit to the left image 

with the relative translation between the last points M, (e.g. the last point of the template) 

and L so that M, overlap with L . Then M is rotated as a whole so that the direction of 
' I L  'IL 

the vector MpM9 is coincident to L Lk where k = n,.-(q-p+l). The similarity measure 
" L  

DkllL between the template and the current matching candidate is calculated with the 

Euclidean distances of all involved points according to their sequence: 

Then M moves to the next matching candidate starting at LnL-, and computes 

another similarity measure D(k-I)(,lL-l) . As such the template is compared with all the 

matching candidates and has their correspondent similarity measures Di 

( q  - p + 1 5 i 5 kn,). The smallest Di indicates the best matching. 
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Figure 4.9: Detect the conjugate of the template on left image 

After the conjugate of the template is detected, we proceed to match the road in 

order to acquire maximum point matching pairs for orientation determination in terms of 

the point order numbers in the sets. The points L, (x, ,yLm ) in image L are regarded as 

the conjugate of points R, (x,,, , y,,, ) in image R if the order number of L, relative to the 

conjugate of M in point set Li is the same as the order number of R, relative to the 

template M in point set Ri. Thus, we detect the correspondence of the two point sets, i.e., 

the point matching, from the matching of the linear feature shape. 

4.2 Orientation Parameter Determination and Mosaicking 

Through this process, we determine a large number of conjugate points in each 

image pair. There are three unknown orientation parameters, i.e., translation coordinates 

Xr, YT and rotation angle o shown in Figure 4.8. At least two conjugate points are 

needed to solve three unknowns. With more than two matched points in our approach, the 

optimal parameters are solved by a least squares adjustment in view of the redundancy 



(Anderson et al., 1999). Linear conformal transformation is used to map the conjugate 

points in the adjustment process. 

The acquired orientation parameters represent the relative status of the each 

image pair. The left image is regarded as the reference image. The right image is 

transformed with orientation parameters to the coordinate system of the left image by 

linear conformal transformation. It is recalled that we do not consider the radiometric 

transformation for mosaicking images in this thesis. Yet there exist radiometric 

differences in the mosaicked image. Thus it is not suitable to mosaic another image to the 

generated mosaic based on our presented method. To mosaic a sequence of images with 

our method, we design a strategy to overcome such a radiometric problem. Suppose there 

are five images in the image sequence. We construct the image pairs from the beginning 

to the end shown in Figure 4.10: 

I Image sequence I 

3nd image pair 1 4'' image pair I 
Figure 4.10: Image pairs in the image sequence 

In every image pair, the orientation parameters are calculated with the left 

image as the reference image. We refer to the parameters for each pair as IOPs (Image 

Orientation Parameters). The first image is regarded as anchor for the whole image 

sequence. For images that are not the reference images of involved pairs, we transform 



them into their own reference image space first, then into their previous image pair. For 

reference images, they are transformed into their previous image pair directly. As such, 

we transform images other than the first image into the anchor space from their current 

image pair with IOPs. For example, the 4Ih image, the reference image in 4"' pair, is 

transformed to the 4th image pair directly with the 4Ih IOPs, then to the 3'd image pair, 2nd 

image pair, until the 1" image pair (i.e., the anchor space) 

Obviously, there are residuals generated by the matching accuracy, the least 

square calculation for the orientation parameters, etc. In our strategy for image sequence 

mosaicking, we use orientation parameters of each image pair to mosaic, thus 

propagating residuals from each image pair. As the number of image pairs increases, the 

residuals would become larger and may exceed the requirements of accuracy in certain 

applications. Thus when we mosaic large number of images in the sequence, we have to 

blend their radiometry to generate visually seamless image. Then the mosaic is used as 

one image to mosaic with the rest of the images by our proposed method. Since the 

radiometric transformation is out of the scope of this thesis, we focus on mosaicking 

sequence having few numbers of images. The next section will discuss this for practical 

use with experiments. 



Chapter 5 

EXPERIMENTAL STUDY 

In this section, we demonstrate the performance of our algorithm introduced in 

chapters 3 and 4 to mosaic an aerial image sequence. The experiments have been 

implemented under the MATLAB (6.5 version) software environment. We simulated the 

acquisition of image sequences in digital aerial surveillance by selecting three partially 

overlapping sub-images from a larger aerial image (termed original image here) with a 

ground pixel resolution of Im. The rotations and translations in this imagery are similar 

to the variations one would expect from a UAV flying over an area and collecting 

images. Thus our image datasets resemble UAV-type imagery, as the focus of this thesis 

is on mosaicking UAV image sequences. In Figure 5.1, we show our test images, as they 

partially overlap to represent the variation of exposure positions, while at the same time 

rotate about the vertical axis to demonstrate their acquisition at different camera poses. 

Image pairs are formed by considering two adjacent images at a time, resulting in two 

image pairs for our experiments. Pair1 comprises images1 and 2; while Pair2 comprises 

images2 and 3. Figure 5.2 illustrates the relative pose of image pairs in space prior to 

registration. 

To support the analysis of our mosaicking, we manually identified six 'control 

points' on the original image (CPs, represented with crosses in Figure 5.1). CPs are 

evenly distributed. Each image in the sequence has its own unique control point (OCP), 



i.e., a control point that is located outside the overlapping area of the image pair. The 

linear conformal transformation we used for mosaicking preserves object shapes (i.e., 

geometries including distances and angles) on imagery. In addition, we have ensured that 

other potential error sources (e.g. human errors while digitizing points on the screen, 

erroneous interpolations) have been kept at a minimum, to avoid potential contamination 

of our results. As such, we consider their effects on our mosaicking solution to be 

negligible. Thus, the changes of feature shapes and positions on images are due to errors 

from transformation parameters used to generate the mosaic. 



image 1 image2 image3 I 
Figure 5.1: Generating image sequence with control points 

Image pair1 Image pair2 
(image1 and image2) 
--1 

I I 

rotation -rot at ion 

Figure 5.2: Geometric difference of images in the sequence 

5.1 Experiment Implementation 



For our experiment, the following processing steps were performed: 

The active deformable model (i.e., snake) has been applied on imagery to 

extract road segments on each image independently. Points and polylines 

connecting these points, are shown in Figure 5.3, and represent the 

extracted road segment. 

Figure 5.3: Road extraction on image1 

On the right image of each pair, template construction was implemented, 

considering the geometric content of the road segment on that image. In 

view of the extent of road curvature, we selected a smaller threshold for the 

second pair. Figure 5.4 shows the parameters input by users and the 

templates constructed for each image pair using this input information. 



Temp late for image p air1 Temp late for image p air2 

Threshold for the curvature: 15 degree Threshold for the curvature: 10 degree 
Number of used Critical points: all Number of used Critical points: all 

Figure 5.4: Constructed templates 

Using the proposed similarity-matching algorithm, we detect the 

corresponding road segments for each image pair. Accordingly, extracted 

conjugate points are constructed. By observing these conjugate points, one 

can see that some of them do not correspond. However, such discrepancy is 

restricted under the shape of the road in the proposed approach so that its 

effect to mosaicking is relatively small. As the later result demonstrated, 

mosaicking imagery can be successfully accomplished under such 

discrepancies. The orientation parameters are solved using these 

correspondences in a least squares adjustment. 



Image pairl 

Image pair2 

Figure 5.5: Conjugate road segment in image pairs 

Images were mosaicked in the following order: image3 was transformed to 

the space of image2 with the acquired orientation parameters of image 

paid. Then, transformed image3 and original image2 were transformed 

into the space of image1 with the orientation parameters of image pairl. 

Image1 was then mosaicked with the transformed image2 and image3. 

Figure 5.6 shows the mosaicked result. 



Figure 5.6: Mosaicked image sequence 

5.2 Precision Study 

By observing the mosaicked image, one can visually see the performance of 

our proposed algorithm. In order to further quantitatively study the result, we proceed on 

two accuracy aspects typically considered in geospatial applications: feature positions 

and feature shapes. We note here that the three sub-images in Figure 5.1 have rotation 

variations: image 2 reflects a clockwise rotation from image 1, while image3 reflects a 

counterclockwise rotation from image 2. In order to better investigate the effects of 

rotation variations we created another set of overlapping imagery (see Figure 5.7) with a 

different type of rotation between images 2 and 3. We examine accuracy aspects in those 

two situations, shown in Figure 5.1 and Figure 5.7. 



Figure 5.7: Second set of images 

In aerial photogrammetry, points used to orient image pairs (named relative 

orientation points) are typically required to be located near the von Gruber locations in 

order to reach desirable accuracy. The objective of this practice is to select points that 

cover to the greatest possible extent the overlapping area (Figure 5.8). By matching 

points in these locations we optimize the potential accuracy of the orientation process, 

resulting in robust solutions. In our approach, we determine orientations by matching 

points on the edge of extracted linear features. It is easily understood that the location and 

topology of these points may deviate substantially from the von Gruber pattern, as one 

does not have control over the location and distribution of features in an image sequence. 

This is reflected in our test image selection: in pair 1 the common road segment is 

spanning only a small strip along the middle of the images, and is thus expected to 

produce less robust solutions. Conversely, in pair 2 the common part of the road segment 

spans a larger part of the overlapping area, and is expected to lead to more precise 

orientation. 



Figure 5.8: Von Gruber locations in an image pair 

5.2.1 Position Accuracy Analysis 

Positioning accuracy is one of the major considerations in geospatial 

applications. In the case of mosaicking, it is expressed by comparing the transformed 

location of a point to the position it should occupy. This is typically evaluated by using 

control points of known coordinates. In our case we used the CPs identified in Figure 5.1 

to analyze the accuracy of our mosaic. Using the procedure presented in this thesis, 

images were mosaicked and we compared the transformed location of a CP in a 

transformed image of a stereopair to the location of the same point in the untransformed 

image of the same stereopair. In an ideal transformation these two locations should 

match. In Figure 5.9 we offer a visualization of errors resulting from our mosaicking 

solution. 



Figure 5.9: Deviations in CP mosaicking 

We carried out position analysis in mosaicking with single image pairs (1-2 

and 2-3) and two image pairs (1-2-3) and the results are summarized in Table 5.1. The 

position difference is described in terms of root mean square error (RMSE). As expected, 

RMSE increased with the number of image pairs, indicating errors accumulate when 

mosaicking longer image sequences. It is not surprising to see that RMSE in image pair2 

is much smaller than that in image pairl for single image pair mosaicking. As we argued 

previously, the distribution of linear features significantly affects the mosaicking 

accuracy. As shown in Figure 5.1, the distribution of linear features for image pairl is 

relatively narrow and centers on the common area of the pair. However, the linear feature 

in image pair2 traverses almost from the lower left corner to the upper right comer in the 

common area of the pair. It covers much larger area than in imagel and image2 and 
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matches more closely the von Gruber locations, thus giving higher mosaicking accuracy 

for image pair2. 

Table 5.1: Position difference of common CPs 

In order to consider the rotation direction effects, we implement the same 

experiment in the situation shown in Figure 5.7. Results are shown in Table 5.2. We can 

see that position accuracy is not significantly affected by rotation direction. 

Table 5.2: Rotation direction study on position accuracy 

Single image pair 

Two image pairs 
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2 

3 

4 

3 

4 

5 
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4 
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5.2.2 Feature Shape Accuracy Analysis 

In geospatial applications, maintaining feature shape is another concern in 

evaluating algorithms. We perform the analysis with CP from reference image and OCPs 

in image pairs. As section 5.1.1, we consider single image pair and two image pair 

mosaicking. In each stage, OCP is transformed into the reference space. The errors of 

transformation parameters affect its new position, while the errors do not affect the CPs 

as they are digitized in the reference image. Demonstrated by figures in Table 5.3, by 

connecting CPs from the reference image and OCP from the to-be-mosaicked image we 

construct mosaicked lines and angles, which contain the mosaicking errors. Their true 

values can be regarded as measurements of corresponding lines and angles on the original 

image. RMSE are calculated from the difference to evaluate the precision of the result in 

each stage, as shown in Table 5.3. 



Table 5.3: Distance and angle difference between mosaicked and original images 

transformed image2 in transformed image3 in transformed image2 and 

image3 in imagel space 

According to the mosaicking steps, image3 has been transformed to image2 

space first and then transformed to image1 space. It is assumed that the transformation 

errors for image3 should be accumulated from image2 space to imagel space. 

Nevertheless, we notice that the Adistance RMSE value (1.7303pixels) of image3 in 

imagel space are smaller than that (2.0353pixels) in image2 space. The transformation 

errors have not been accumulated for the distance measurements. What if we consider the 

situation shown in Figure 5.7? Table 5.4 shows the analysis results. 



Table 5.4: Distance and angle difference for mosaicked second sets of images 

In Table 5.4, the RMS values of image3 in image1 space (2.7654pixels, 

0.73degree) are bigger than those in image2 space (1.4378pixels, 0.2635degree). The 

transformation errors have been accumulated in this situation. Consequently, we can 

conclude that we may reduce error accumulation by acquiring images in opposite 

direction of rotation variation (i.e., clockwise or anti-clockwise). 

For both situations shown in Table 5.3 and Table 5.4, errors are smaller in 

image pair 2 than those in image pair1 as the position errors due to the distribution 

difference of linear features. 



Chapter 6 

CONCLUSIONS 

This thesis presented a new approach to automatically mosaic image sequences 

with natural linear features. This comprises determining the orientation difference 

between images and transforming them with the acquired parameters into a mosaic. 

The methodology to determine the orientation parameters is a novel automated 

approach in the perspective of integrating points and linear feature geometry. By 

representing the roads with extracted points and polylines connecting them, a customized 

template can be constructed with detected critical points to characterize the shape of the 

roads. The customization enables users to reduce the blunders in detected critical points 

and therefore improves the matching reliability. The matching of two overlapping image 

pairs is implemented by measuring with Euclidean distance the geometric similarity 

between the template and the road shape on the to-be-matched imagery. The geometric 

constraint to matching minimizes the blunders, which are usually associated with point 

matching approach and take substantial effort to prune. Our approach takes advantage of 

point and geometry of linear features to result in a robust mosaicking of the image pairs. 

Furthermore, initial rotation variations are not required as prior information in our 

approach, which is critical in point matching in order to obtain convergence. 

In the mosaicking process, we present a framework to mosaic image sequences 

with the orientation parameters of each image pair. Using the first imagc as an anchor, 



the other images in the sequence are transformed to the first image space. By controlling 

the direction of orientation variations on purpose for successive images, the error 

propagation may be reduced. This allows us to mosaic several images at one time, 

improving the efficiency under a certain precision requirements. 

The future work includes extending our core ideas and major results to solve 

more complicated orientation difference between images. One potential need in 

geospatial applications is to mosaic aerial imagery and the existed orthophoto maps over 

the same zone for change detection or updating the data in GIs database. There are six 

orientation parameters to represent the spatial relationship between the two images 

(please refer to the Exterior Orientation in Appendix B). By introducing the effects of 

these orientation differences to the geometry of linear features on images, the similarity 

measurement can be extended to find the correspondence under the effects. Furthermore, 

research in the future can be directed toward the goal of higher level of automation by 

minimizing the interaction with users. 
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APPENDICES 



Appendix A. 

A Review of Relevant Basic Photogrammetric Principles 

As the definition by the American Society for Photogrammetry and Remote 

Sensing (ASPRS), photogrammetry is 'the art, science, and technology of obtaining 

reliable information about physical objects and the environment, through processes of 

recording, measuring and interpreting images and patterns of electromagnetic radiant 

energy and other phenomena' (Falkner and Morgan, 2002). Invented in 1851 by 

Laussedat, photogrammetry has advanced from analogue to analytical, and to current 

digital photogrammetry with the improvements of the computational power available on 

cheap machines and the availability of digital techniques. High-resolution digital cameras 

with CCD (Charge-Coupled Device) sensors are used to record an image as a matrix of 

pixels along with a computer data storage device to record a group of image data sets. 

Furthennore, a desktop computer, stereo viewing glasses and sophisticated softwares take 

the place of the large and expensive stereo-comparators and analytical machines in digital 

aerial photogrammetry. The use of digital imagery and numerical techniques allow us to 

automate more and more tasks, even if a large part of the automation is still at a research 

level. 

Principally photogrammetry is divided into terrestrial photogrammetry and 

aerial photogrammetry. Each serves the needs of users from distinct categories. 

Terrestrial photogrammetry typically satisfies the needs of architects, civil engineers (to 

supervise buildings, document their current state, deformation or damages), 

archaeologists, surgeons (plastic surgery), etc. Aerial photogrammetry is often used in 

mapping community with an emphasis on obtaining quantitative information from aerial 



photographs. The photographs of the interested area in aerial photogrammetry are 

acquired with a metric camera mounted in an aircraft flying over the area in an orderly 

sequence. A metric camera is one in which focal length and internal dimensions are 

exactly known or can be determined through calibration. The proposed method 

introduced later tries to solve the challenging issue within aerial photogrammetry area. 

Therefore, in this thesis, we focus our attention on aerial photogrammetry environment. 

In the following sections, we present an overview of basic photogrammetric 

principles, relevant to the discussion in this thesis. 

A.1. Image Formation 

Photogrammetric operations typically proceed in two distinct steps: imagery is 

oriented in order to determine its location and pose in a georeferenced coordinate system, 

and then analyzed in order to measure the location of objects in it. Orientation 

information allows us to transfer these image measurements into a survey coordinate 

system, thus populating geospatial database (e.g. maps, GIs layers). Photogrammetric 

applications typically assume that imagery was captured through a perspective projection 

(Figure A.1). In a perspective projection all rays connecting image points to their object 

space counterparts pass through a common point in the camera lens, the perspective 

center. The CCD (or films) serves as the reference focal plane and the image is captured 

behind the perspective center as shown in Fig.1. In terms of notation, the area between 

the perspective center and the CCD (or film) is called the image space. The area in front 

of the lens is the object space. The Geometrical axis of the lens system is the optical axis, 

which is perpendicular to the focal plane of the camera. The Principalpoint (PP) is the 

intersection of optical axis and focal plane. Generally when discussing the image space, it 



is convenient to use the positive position of the photograph in front of the perspective 

center instead of the photograph negative position (Moffitt and Mikhail, 1980). 

focal  lane 
principal point 
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optical axis &I/ 
Perspective center L A 
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Datum 

Figure A.1: Perspective projection 

A.2. The Overlapping of acquired photographs 

Aerial photographs are used to form stereoscopic view that enables us to make 

photographic maps, determine elevation of terrain points without ever setting foot in the 

field. Therefore, photos have to be taken as pairs, called stereo-pairs, with overlapping 

coverage of the scene photographed. Flight planning guarantees these requirements to be 

satisfied when taking the photographs. The basic elements in flight planning are the 

flying height above a datum, normalIy sea level, which determines the scale of 

photographs; the ground distance between successive exposures; and the ground spacing 

between the flight lines (Moffitt and Mikhail, 1980). Those elements are determined by 

the purpose of aerial photogrammetry, the survey block, etc. Endlap and sidelap are two 

significant features between photographs. Endlap, also called forward overlap, is the 

overlapping area between consecutive images along a flight strip. It creates the three- 



dimensional effect necessary for mapping. Normally the average endlap covers 60% of 

the previous photographs. The ground spacing between adjacent flight lines will 

contribute to the amount of overlapping areas of images obtained in adjacent flight lines. 

It is called sidelap, sometimes side overlap and seryes that there are no gaps in the three- 

dimensional coverage of a multiline project. Usually sidelap ranges between 20% and 

40% of the width of a photo, with a nominal average of 30%. The shadows in Figure A.2 

represent the endlap area on the adjacent photos taken along a flight line and the sidelap 

between flight strips. 
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sidelap { 

3- 
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flight direction 

Figure A.2: A regular block of aerial photos 

A.3. Plotting Principles in Aerial Photogrammetry 

In aerial photogrammetry, the widely applied techniques to taking 3D 

measurements off photographs are based on the geometry of perspective scenes and on 

the principles of stereovision. Stei.eoscopy is a term to describe the following 

phenomenon: When a viewer observes two photographs of the same scene taken from 

two different viewpoints, the viewer can visualize the depicted scene in three dimensions. 

This principle is demonstrated in Figure A.3, where SI  and S2 denote our left and right 

eyes. When both eyes gaze at point A, the lines joining the point A and the two eyes form 



an angle < p l  called parallactic angle. Similarly, the parallax angle for point B is (~2 .  Points 

A and B forms a1 and bl  in the left eye, a1 and b2 in the right eye. The viewer's brain 

interprets the difference between a lb l  and a2b2 as the difference in the two angels (q l ,  cpz) 

and forms a spatial construction of the scene. Point B is closer than point A. 

5ht eye 

Figure A.3: Stereoscopic view by human eyes 

If we locate a piece of glass in front of each eyes as PI  and P2 shows in Figure 

A.4. We record the images on the glass as al, bl  and a2, b2. Then move away the objects 

(A, B). By observing the images on the glass, our eyes can still intersect the spatial 

positions where the real objects A and B locate. 



Figure A.4: Man-made stereoscopic view 

In aerial photogrammetry, we apply the foregoing stereoscopic principles to 

measure the 3D information of ground objects off photographs. After acquiring 

photographs of the same objects from different viewpoints that act like our two eyes, the 

first essential work is to orientate images, which defines the status and location of images 

relative to the ground when they are taken. Afterwards, the stereo-space model is 

constructed as the real world by observing the overlapped images defined by the former 

step. Then measurements can be fulfilled for the ground objects through this model. 

A.4. Coordinate systems in photogrammetry 

Different coordinate systems are defined to facilitate describing the positions 

of objects on photographs and the real world. The next parts briefly introduce the 

definitions of common used coordinate systems in aerial photogrammetry: image 

coordinate system, image space coordinate system and ground coordiizate systenz. 

The image coordinate system (x, y) is defined by four fiducial marks. These 

marks are small permanent marks located in the middle of the sides of the focal plane 

opening or on its corners, or in both locations. They are exposed onto the negative when a 



photo is taken. Their positions relative to the camera body are calibrated. Thus, they 

define the image coordinate system with respect to the camera. The x and y axes are 

defined by the opposite fiducial marks, with the fiducial center taken as the origin, shown 

in Figure A.5. 

fiducial mark A 
the photograph 

fiducial m a r y  

Figure A.5: Image coordinate system 

Image Space Coordinate System (x, y, z) is similar to the image coordinate 

system except that it adds a third axis (z) as Figure A.6 shows. The origin of image 

coordinate system is located at the perspective center (L). The projection of the 

perspective point that is vertical to the photograph is called principle point. Normally the 

x-y axes are parallel to the axes in the image coordinate system, but sometimes they can 

be defined as needed. 



Figure A.6: Image space coordinate system 

As Figure A.7 shows, generally the ground coordinate system is defined as a 

three-dimensional, right-handed Cartesian coordinate system (X, Y, Z), which utilizes a 

map projection. The Z value is the elevation above the mean sea for a given vertical 

datum. 

Figure A.7: Ground coordinate system 

A.5. Image Orientation in Aerial Photogrammetry 

In order to stereoscopically view the overlapped images for measuring 3D 

knowledge off photographs, the photographs have to be recovered to the status as they 

are taken. The procedure is regarded as image orientation. The parameters acquired in the 



process are called image orientation paravlzeters that describe the relative positions of 

photographs and their locations at the time of exposure with regard to the ground 

coordinate system. Automating the image orientation process still remains to be tackled 

for the photogrammetry community although considerable progress has been made 

(Heipke, 1997). There are two different types of orientation: interior orientation and 

exterior orientation. The former recovers the relative relationship between the camera 

and acquired photographs as the eyes and the glass demonstrated before, while the latter 

reconstructs the relative relationship between the photographs and the ground coordinate 

system as the two pieces of glass and the ground. 

A.5.1. Interior Orientation 

In detail, interior orientation recovers the geometry of the bundle of rays 

inherent in each photograph as that which existed at the instant of exposure. Its 

parameters include the calibrated focal length (f), the image coordinates of the principal 

point (xo, yo) and the lens distortion parameters. In fact, these parameters are from the 

results of the camera calibration procedure carried out prior to image acquisition. 



Figure A.8: Before (left) and after (right) interior orientation 

With interior orientation corrected, the z-axis of image space coordinate 

system intersects the origin of image coordinate system shown as Figure A.8. The bundle 

of rays emerging from the lens will be identical to that which entered the camera at the 

instant of exposure. 

A.5.2. Exterior Orientation 

To acquire precise 3D information, stereoscopic measurements with two 

overlapped photographs are widely used as human beings observe 3D views with both 

eyes demonstrated before. Exterior orientation fixes the spatial location denoted by 

perspective center coordinates (XL, YL, ZL) in the ground coordinate system and the 

rotations (9, o, K) of each photograph to every ground coordinate axis. Two procedures 

consist exterior orientation procedure for stereo-pairs: relative orientation and absolzlte 

orientation. 



After the interior orientation has been accomplished, the rays from the 

corresponding image objects on the two overlapped photographs will not generally 

intersect one another when projected into the model space. The mismatch is called 

parallax. Relative orientation reconstructs the relative position of the two overlapped 

photographs at the time of photography and eliminates the parallax in the model space. It 

forms a three-dimension model precisely similar to the spot ground in an arbitrary space 

and at an arbitrary scale. Relative orientation can be accomplished either by moving two 

photographs or by holding one photograph fixed and only moving the second photograph. 

The second method is referred to dependent relative orientation and used in 

photogrammetric aerotriangulation that greatly reduces costly field surveys. With respect 

to this advantage, dependent relative orientation is applied in this thesis (we call it 

relative orientation in this thesis). Five orientation elements are solved as Figure A.9 

shown. These are three rotational (cp, o, K) and two translational elements (by, b,), which 

describe the relative orientation of the right image with respect to the left image and the 

spatial distance between the two perspective centers. 



image 

Figure A.9: Dependant relative orientation 

Absolute orientation relates the pair of relative oriented photographs, and 

hence the three-dimension model, to the ground coordinate system. Seven absolute 

orientation elements are solved to represent the position status of the model to the 

ground. They are the scale of the model, three translations of the model and three 

rotations of the model. After the relative orientation accomplished, the model coordinates 

of ground control points that have known coordinates in the ground coordinate system are 

measured or computed. These are then used to determine the seven absolute orientation 

parameters necessary to transform the model coordinates into the ground coordinate 

system. 

Finally, the other object points without ground coordinates can be solved by 

measuring their corresponding model points and then transforming the measured model 

coordinates into ground coordinates with the acquired orientation elements. 



Appendix B. 

The Development of Relative Orientation Techniques 

B.1. Analog Relative Orientation 

With interior orientation achieved, the prerequisite task is the relative 

orientation for obtaining correctly scaled three-dimensional information of the terrain by 

means of aerial photographs. Relative orientation restitutes the geometric relationship 

between an image pair at the instant of their exposure. Before a relative orientation is 

carried out, the rays originated from the conjugate image points normally do not intersect 

and exhibit disparities. Shown in Figure B.l, x-parallax (P,) is defined as the difference 

in ray direction parallel to the baseline (the connection between the left and right 

projection centers). The difference in ray direction orthogonal to the baseline is called y- 

parallax (Q). X-parallaxes can be removed at any point by manipulation of the height 

adjustment of the projection, because height and x-parallax are closely allied, while y- 

parallaxes have to be eliminated through relative orientation. 



Figure B.l: Parallax 

Relative orientation requires five degrees of freedom to be fixed in space by 

giving the position (b,, by) and attitude (cp, o , ~ )  of one photograph with respect to the 

other (the latter being fixed in space). Since the rays from the left and right projection 

centers must lie in a plane that contains the baseline (an epipolar plane) if they are to 

intersect, the removal of y-parallax is the criterion used for establishing correct relative 

orientation. As such, relative orientation will result in a stereomodel, a scaled down 

version of the real terrain, formed by intersecting conjugate rays. Once the stereomodel 

has been formed it has to be scaled and located in the ground coordinate system with the 

aid of known ground control points, which is part of the absolute orientation and is 

beyond the scope of this thesis. 

From about 1900 to 1960 in analog photogrammetry (Konecny, 1985), Analog 

stereoplotters were commonly used, which are a optical devices that permit viewing of 

image pairs and superimposed synthetic feature called .floating marks (Horn, 1989). 

Basically the two overlapped diapositives are put into the two projectors that have the 

same distance as that between the principle points. The lamps over the projectors are then 



turned on. By means of physically operating the analog devices as in a mechanical gear 

system, the two overlapping photographs are relocated to the relative status at the time of 

exposure. Conjugate rays intersect and the images from the two projectors will form the 

model similar to the terrain with arbitrary scale and location. 

Accurate interior orientation is first to be accomplished so that the ray bundles 

generated by the central projection of the photographs have the correct shape. To 

eliminate y-parallaxes, operations are manipulated on the setting devices of the 

projectors. Five conjugate points on the overlapping photographs, therefore five pairs of 

rays, are applied to determine the five degrees of freedom. Practically one more point are 

used for checking. These points are arranged in one or another specially designed pattern 

(Sailor, 1965; Moffitt and Mikhail, 1980). The reduction of vertical disparity at one point 

by means of an adjustment of a single parameter of the relative orientation disturbs the 

vertical disparity at the other points. Therefore, successive adjustments are applied to 

eliminate the y-parallaxes at each of five or six image points. Convergence is usually 

rapid if a good initial guess is available (Horn, 1989). However, such an analog 

procedure greatly depends on the skill of the operators, tedious repetitions of the 

projector manipulation and has limitations in function by the physical constraints of the 

analog mechanism. With the availability of modern digital computers with large storage 

capacity and the ability to compute at high speeds, analytical relative orientation 

gradually took the place of the analog approach. 

B.2. Analytical Relative Orientation 

Instead of obtaining relative orientation by analog devices that represent 

numerical quantities by means of physical variables, e.g., by translation; by rotation; as in 



a mechanical gear system, analytical relative orientation uses a mathematical model to 

describe the criterion used for accomplishing relative orientation and acquire the 

orientation parameters by satisfying the criterion for all the conjugate rays. One of the 

photogrammetric pioneers is the German Sebastian Finstewalder. He described the 

principles of modern double-image photogrammetry and the methodology of relative and 

absolute orientation. In addition, he introduced the necessity of redundant rays to recreate 

the proper geometry and used least squares theory to describe the relationship of the 

vectors between corresponding rays (Doyle, 1964). In 1924, Otto von Gruber derived the 

perspective equations and their differentials, which are fundamental of analytical 

photogrammetry. Uki Helava developed analytical stereoplotter in 1957, which used 

servocontrol instead of the optical or mechanical construction of previous instruments 

(Konecny, 1985). 

Although various mathematical models are developed, coplanarity condition is 

the most precise and widely used (Mahajan and Singh, 1972). With reference to Figure 

B.2, the rays Slal  from leA image and S2a2 from the right image are conjugate rays. The 

coplanarity condition states simply that the base line B between the left and right 

perspective centers (S 1 ,  S2 respectively) and the two conjugate rays should all be coplanar. 



Figure B.2: Coplanarity Condition 

This condition can be stated as follows: 

- A -  

B.(S ,a ,xS2a , )=0  (Jinetal.,2001) 

Let us denote the space image coordinate system for the left photograph with 

SI-X,Y ]ZI, which is coincident with the arbitrary reference coordinate system. S2-X2Y2Z2 

denotes the space image coordinate system of the right photograph and each axis is 

parallel to each corresponding axis in SI-XIYIZI .  XI ,  YI ,  Z I  and X I ,  yl respectively are 

the coordinates of a,  in SI-XIYIZI and the image coordinate system of the left 

photograph. X2, Y2, Z2 and x2, y2 are correspondingly the coordinates of a2 in S2-X2Y2Z2 

and the image coordinate system of the right photograph. Moreover, bx, by and bz are the 

coordinates of S2 in SI-XIYIZI.  The coplanarity condition, therefore, can be expressed 

with coordinates: 



In which 

R is the rotation transformation matrix of the image coordinate system with 

respect to the space image coordinate for the right photograph and is determined by cp, a, 

K. The scale of the model is determined by bx, which is not concerned in relative 

orientation. As such the unknowns are by, bz, cp, o, K. One set of conjugate points result 

in one equation. A minimum of five conjugate points is necessary to solve the five 

parameters by linearising with a Taylor expansion and differentiation with respect to the 

five orientation parameters. In practice, more than five points are more frequently applied 

to perform analytical relative orientation. The method of least squares is therefore used to 

adjust the redundant measurements. 
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