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Abstract

This thesis studies some issues on applying region-of-interest in visualization. In

visualization, a critical consideration is on how to handle very large data-set with limited

resources, specifically computational resources and display window size. Region-of-

interest (ROI) technique can be employed as a potential solution to serve the following

two purposes: 1) It allocates more computational resources to the interesting region.

2) It assists the viewer by filtering out less interesting information. In this thesis, we

study the above issues in the context of two applications: remote volume visualization

with limited computational resources at the client side, and vector map visualization in

small display window. For the first application, a technical issue is on how to apply ROI

on volume visualization efficiently. This is important in scenarios where the viewer has

access to low computational resources. Another issue is on how to apply ROI effectively.

We give several methods to adjust the transfer function to highlight objects in the ROI.

For the second application, consideration should be given on how to present the local and

global geographic information simultaneously in the limited display window. We give

a map generalization method that first adopts fisheye view to exaggerate information

in ROI followed by a line smoothing process to eliminate the clutter caused by the

distortion. The smoothing process is essentially an iteration of localized smoothing

processes that maintain the topological consistency.
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Summary

Region-of-interest (ROI) technique can be employed in visualization to serve two

purposes: 1) It allocates more computational resources to the interesting region. 2) It

assists the viewer by filtering out less interesting information. This technique offers a

compromise between efficiency and accuracy, thus improving the responsiveness during

real-time visualization or decision making process. Typically, ROI technique divides

the investigated data into two regions: an emphasized region of high-interest, and the

remaining suppressed region. It is not necessary to have only two regions. To achieve

a smooth transition from high to low level of interest, one could incorporate foveation,

or a fisheye view transformation. In this thesis, we study ROI with foveation or fisheye

view, in the context of two applications: remote volume visualization with limited

computational resources at the client side, and vector map visualization in small display

window.

In the first part of the thesis, we focus on foveated volume. A technical issue is on

how to render a foveated volume efficiently. This is important especially in the remote

visualization setting where a low computing device is connected to a server storing the

volume data. We give an algorithm that renders a foveated volume directly in the

wavelet domain. The number of wavelet coefficients representing the foveated volume

is significantly smaller than the number of voxels. Another issue is on how to visualize

a foveated volume effectively. We give several methods to adjust the transfer function

to highlight objects in the ROI.

In the second part, we study visualization of vector-based map in a small window.

Due to the limited size of display window, consideration should be given to the presen-

iv



tation of the geographic information that contains both the focus and the context of

the surrounding region. We give a method that adopts fisheye view transformation to

magnify information in ROI, and a smoothing process to eliminate the clutter caused by

the distortion. The smoothing process is essentially an iteration of localized smoothing

processes that meet the topological constraints.
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Chapter 1

Introduction

1.1 Background

The term “visualization” has been defined differently in various domains of science.

According to the 1989 Oxford English Dictionary, visualization is defined as “the for-

mation of mental visual images, the act or process of interpreting in visual terms or of

putting into visual form.”

The strength of visualization lies in the fact that huge amounts of intricate data

can be interpreted as refined information for humans. As described by a common say-

ing: “An image is worth than a thousand words”, visual representation of data is more

meaningful to human than other formats e.g. text or audio. Visualization helps to equip

people with the ability to see the “unseen” [67], thus providing new insights into infor-

mation. Visualization can be classified into three categories: scientific, information and

data visualization. Scientific visualization studies the visual representation techniques

of scientific data from physical reality or process. In contrast to scientific visualization,

information visualization processes abstract data which are usually not mapped into

physical world. Data visualization is a more general term that handles data beyond

science and also includes data analysis techniques. The power of visualization has made

it widely applied in many domain of applications as follows.
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• Medical imaging and visualization. For applications in medical field, visual-

ization is utilized as the tool to investigate internal organs of subjects. Anatomical

information is acquired by various imaging technologies such as CT (Computer

Tomography ), MRI (Magnetic Resonance Imaging) or PET (Positron Emission

Tomography). To present the information, there are two conventional visualiza-

tion techniques: volume rendering and iso-surface extracting. The distinction

between these two is that the former one can process the whole data, both in-

ner structures and surfaces. Additionally, nonphotorealistic rendering techniques

have been studied in medical visualization. Based on pen-and-ink illustration, the

methods aim to enhance features (e.g. silhouette, boundary) of medical data.

• Geographic visualization. Geographic visualization models ground features

including natural features (e.g. mountains, valleys and rivers, etc.) and man-made

features (e.g. buildings, roads and rails, etc.) with geometric symbols. Generally,

geographic information is represented by two approaches: layer-based and feature-

based. Layer-based approach models spatial data by a set of layers containing

independent information, such as water-, mountain-, transportation- system etc.

The layers can be combined to form a map with different themes. Feature-based

approach is also called entity-based. A feature is used to describe spatial attribute

of geographic entities, such as river, road, boundary, etc. For visualization, each

feature is explicitly represented by their corresponding geometric symbols, e.g.

point, line, polygon, etc.

• Computational fluid dynamics and visualization. In the field of computa-

tional fluid dynamics, visualization is the process to reveal dynamic characteristics

of flows such as liquids or gases. The visualization approaches can be classified as

direct-, texture-, geometric-, feature-based approaches. Direct-based approach is

quite straightforward to depict flows by drawing techniques, such as arrow plots.

Texture-based approach attempts to give a dense representation of flows by map-

ping textures in the vector field. Geometric-based approach is applied after the

2



integration of flow data. Geometric objects are used to render the integrated flows

in order to study their long-term behavior. Feature-based approach is performed

before visualization to extract features from flow data. Efficient visualization can

be achieved based on the extracted flow features.

• Time-dependent visualization. Visualization of time-dependent data is ap-

plied to analyze non-static process in scientific applications. Visualizing by anima-

tion is a simple approach which gives snapshots of time-varying data at sequential

time step. This approach may not handle very large data-sets. Feature tracking

is an efficient approach to extract and track region-of-interest during the process

of time.

• Abstract information visualization. Visualization of abstract information

mainly deals with developing visual representation of unscientific data, for e.g. file

documents, relationships in databases. Conventionally, such data is displayed by

various graph drawing approaches, such as plots, charts or histograms. However

these techniques are unable to handle large and high-dimensional data. Some so-

phisticated techniques have been proposed to cater the limitations [46]. According

to the display mode, they are classified into five classes: standard 2D/3D displays

which are conventional approaches; geometric transformation displays apply geo-

metric projection on the visualized data; icon-based displays visualize data values

as feature icons; dense pixel displays treat data values in each dimension as color

pixels which are clustered for visualization; stacked displays particularly handle

data which are represented in a hierarchical way.

• Virtual reality and visualization. Virtual reality aims to provide human

with a computer generated experience of realistic or imaginary world. Through

a set of combined computer technologies, a virtual environment is generated to

interact with human. Besides the accessorial devices, visualization is an important

technology that presents virtual reality to human. Currently, the general visual-
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izing approaches applied in virtual reality system are computer-assisted design,

computer graphics and animations.

• Remote visualization. Due to the popularity of the Internet and mobile ser-

vices, there is a growing interest and demand of visualizing data stored in a remote

server. It is applied when the data are difficult to process in local resources or

collaborations among a group are required. Generally, there are two strategies of

remote visualization: render-local which transmits raw data to viewers to process

and visualize; render-remote which only transmits processed results to viewers.

In remote visualization, real-time data transfer is a challenging issue. To meet

this requirement, one possible solution is to use progressive transmission and re-

finement. Besides the transmission bandwidth, the low computing power of the

client is also a concern for processing large volume data. For example, to process a

data-set with 512×512×512 voxels, is infeasible for most general purpose desktop

PCs.

1.2 Research directions

1.2.1 Research scope

This thesis intends to study selected issues in visualization with ROI where the viewer

has limited resources. The resources can be in the form of computing power, or even

the size of the display window. The role of ROI is to allocate more resources to the

interesting region.

In remote volume visualization, a promising technique streams the volume starting

with regions providing higher level of interests. This results in a foveated volume which

has highest resolution at the point of focus. In order to display the up-to-date data, a

straightforward method would continuously reconstruct the volume from the received

raw data, and then render it. This is computational intensive and not suitable for a

client with limited computing resources. Hence, a goal of the first part of this thesis in
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Chapter 2 is to design an algorithm that can render a foveated volume directly from the

received wavelet coefficients. From another perspective, it is not clear on how to display

a volume with multiple levels of resolution. Should the voxels occluding the ROI be

rendered in lower details, totally removed, or treated to be translucent? Another goal

of the work is to give a few ways to visualize a foveated volume.

In the second part of the thesis, we treat display window size as a resource and

study how to exploit the small window using ROI. This is particularly relevant in the

application of map browsing with mobile device which typically has small window. A

natural solution is to apply a fisheye transformation to magnify information in ROI

and suppress the rest. However, the distortion caused by the operation may result in

information clutter. Hence, our goal is to provide a map generalization method that

can present the focus plus context map presentation without information clutter in a

small display.

1.2.2 Main contributions

Remote volume visualization

• In this work, we adopted the notion of wavelet foveation [16] to obtain a compact

wavelet-based representation of a multiple levels-of-detail volume. We gave an

efficient algorithm that renders a foveated volume directly in the wavelet domain.

We exploited the arrangement of the relevant wavelet coefficients to achieve fast

rendering. The running time only depends on the number of relevant wavelet

coefficients. Specifically, the running time is O(n2 + m), where n is the width of

the volume data, and m is the number of relevant wavelet coefficients. This is

an improvement compared to the straightforward rendering in the spatial domain

that requires O(n3) running time.

• We gave several methods to adjust the transfer function to highlight objects in the

fovea. By this way, the viewer’s attention is directed to the fovea. This is achieved
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by multiplying the original opacity with a space-variant weighting function. Hence

the opacity of a voxel depends both on its location and intensity.

• A side-result in this thesis is a method that rotates a foveated image/volume effi-

ciently in the wavelet domain. This method is an extension of a component in the

foveated volume rendering that handles non-orthogonal viewing direction. An effi-

cient rotation directly in the wavelet domain could be useful in other applications,

for example computer vision with foveated images.

Vector map visualization

We proposed a map generalization method with the following three steps: 1) Ac-

cording to current navigation task, non-related map objects are filtered and excluded

from the visualization process. 2) Fisheye view transformation is applied to magnify

information in ROI while suppressing the surrounding region. 3) The lines are smoothed

to eliminate information clutter caused by the geometric distortion in the second step.

In step 3, we treated the smoothing as an optimization problem which minimizes

the curvature and distortion, while preserving the area of individual subregion. We

gave a heuristic method to find a solution. Our heuristic method iteratively solves a

sub-problem: Given two curves which intersect at most once in a circular domain, find

two Bézier curves such that the partitioned areas are preserved.

1.3 Thesis organization

The thesis is organized as follows. Chapter 2 addresses ROI techniques used in remote

volume visualization. It first introduces the background of volume visualization and

related work. Next it describes the proposed fast volume rendering algorithm based on

foveation. Additionally, it discusses two ways for foveated volume visualization. Finally,

it gives some potential applications of the algorithm in remote visualization.

Chapter 3 gives the side-result of our proposed method in Chapter 2. It studies the

rotation of a foveated image/volume in the wavelet domain. It is applied in Chapter 2

6



to handle rendering with non-orthogonal viewing directions.

Chapter 4 illustrates ROI techniques used in geographic vector map visualization on

small display window. It first gives literature reviews. Following this, it presents the

algorithm and experimental results.

Chapter 5 gives the conclusions of the thesis.
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Chapter 2

Volume visualization using

region-of-interest

2.1 Introduction and related work

Volume visualization is an efficient technique to analyze and reveal important interior

information in many scientific applications. For example, in medicine, medical volume

data obtained by CT (computed tomography) and MRI (magnetic resonance imaging)

scanners act as a valid reference to examine the inner structures of patients’ organs

[32]. In geo-science, volume visualization is used as a method to analyze information

retrieved by seismic instruments to investigate the composition of the earth [30]. Volume

visualization also finds its application in computational fluid dynamics to simulate fluid

movement in 3D space [23].

The complete process of volume visualization may consist of many steps [44]. Fun-

damentally, there are four steps commonly used.

The first step is data acquisition. This step involves activities to collect data through

either measurement devices such as CT and MRI scanners or computer simulation.

When the raw data are generated, the next step is to transform them before any visu-

alization algorithm can apply on them. The objective of this step is to put the data
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into some appropriate format for easy manipulation. The following step is to map the

processed data onto geometric or display primitives. This step may vary distinctly by

different algorithms. The final step is to store, manipulate or display the primitives.

2.1.1 Volume visualization techniques

Generally, volume visualization techniques are classified into two categories: surface

rendering (SF) and direct volume rendering (DVR).

Surface rendering method is also known as iso-surface extracting. It generates the

constant-value contour surfaces in volume data by extracting data values with geometric

primitives, such as polygon meshes or surface patches. In order to visualize the whole

data, animation is required on the sequence of iso-surfaces given different thresholds.

Existing methods of surface rendering include contour connecting [24], opaque cubes

[37], marching cubes [57], dividing cubes [17] and marching tetrahedral [93]. Typically,

SF methods are faster than DVR methods as the former only traverse once over the

volume data to create surfaces. However a restriction of the methods is that they are

only effective when the iso-surfaces of underlying data are smooth and simple. They

may not handle data with irregular structure, such as liquid or gas.

In contrast, DVR methods directly map volume data onto display primitives with-

out the assistance of any geometric structure. By these methods, all the information

contained in the data is rendered thus a more comprehensive representation is obtained

than SF methods. Obviously, it is the reason that they are slower than SF methods.

Common DVR methods include ray casting [54], splatting [113], shear-warp factoriza-

tion [49], etc.

Optical models

We now give a detailed description of direct volume rendering, since we adopt it

in our rendering algorithm. In direct volume rendering, a model is required to for-

mulate the process of light absorption and emittance through the volume data. As a

complete formulation of the interaction between light and modeled volume particles is
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non-practical, many simplified models are designed to achieve a good approximation.

One of the first optical models was developed by Blinn [9]. Blinn’s model was designed

to study the optical properties of the clouds of ice particles that build up the rings of

the Saturn. In his method, the interaction (reflection and transmission) between light

and the particles was modeled by single reflection approximation. Alternative models

were given by several researchers [42, 66, 84, 22]. Max gave a detailed review of the

different optical models [65].

The optical model adopted in this thesis is Max’s emission-absorption optical model

[65]. Under this model, the light traversing a volume density is both emitted and

absorbed. The approximation for the volume rendering integral equation is given as

follow [65]:

I(t1, t2) =

∫ t2

t1

V (t)e
−

R t

t1
α(s)ds

dt (2.1)

where I is the resulting intensity for the light along viewing rays to the viewer, t1 and

t2 are the start and end points on the viewing ray, V (t) is the intensity value at location

t, and α(s) is the opacity at s.

In the discrete case, each sample in the volume is called a voxel. E.q. 2.1 can be

reduced to a finite sum over the accumulated opacity with the assumption that the

intensity function and opacity function for a certain segment i are constants as vi and

αi. This gives:

I =

n
∑

k=1

vkαk

k−1
∏

i=0

(1 − αi) (2.2)

Direct Volume Rendering Algorithms

Volume rendering involves the process to generate the projection of 3D volume

data-set and display the rendering results on a 2D image plane for viewers. The process
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includes the following three steps:

• Mapping optical properties (color, opacity) concerning the interaction with the

light to the volume data element. The data element in volume is named as voxel.

Each voxel is assigned the color and opacity based on its intensity, gradient mag-

nitude or gradient direction, etc. Usually such process is realized by designing

elaborative transfer functions. Finding an appropriate transfer function is quite

tricky as it may depend on a large amount of experimental trials.

• Integrating the overall contribution from each voxel along the light that casts

into one pixel in the 2D image plane. When the light traverses the volume, it is

absorbed and emitted by the voxels that it steps cross. The accumulated rendering

over the volume is the integral of both the color and opacity composition along

the light. In most volume rendering algorithms, the voxels are distributed in the

structure of a 3D grid space. Re-sampling is required when the light does not

pass exactly through the grid node. The common re-sampling approaches include

nearest-neighbor, tri-linear interpolation and tri-cubic interpolation.

• Projecting the rendering results onto 2D image plane according to different viewing

directions. There are two kinds of projection modes: parallel projection and

perspective projection. By parallel projection, all the virtual rays that simulate

the light casting into the volume are parallel to each other. In the mode of

perspective projection, the virtual rays are casted from a point which is at a finite

distance from the volume.

The existing direct volume rendering algorithms can be classified into the following

four categories: image-order based, object-order based, the hybrid of image- and object-

based and domain based. This classification is based on the data traversing order and

how the data are processed during volume rendering.

Image-order based technique is also called backward mapping. In this method, the

virtual rays are casted from the viewer through pixels in the image plane across into

11



the volume. Integration of the color and opacity is performed when the rays intersect

with the volume voxels. Ray-casting is a representative algorithm in this class [53, 103,

55, 54, 42]. Besides the common color and opacity blending, there are several other

rendering effects. It may be the X-ray rendering that simply sums up the data values

along the rays or maximum intensity projection that only selects the maximum data

value for each ray. Ray-casting is rather straight-forward and can produce high quality

images, however it is quite time-consuming when the number of volume voxels is large.

To improve the performance of ray casting, some approaches were proposed such as

skipping regions which are not contributing to the rendering (e.g. transparent regions)

[114], early ray termination that terminates the ray when the accumulated opacity has

reached a given thresholded value [54].

Object-order based technique is forward mapping in contrast to image-order tech-

nique. The volume data samples are projected onto the image plane. In such a way,

there is only one-time computation for all the voxels contributing to a set of pixels con-

sisting of a region in the image plane. A good example of object-order based techniques

is splatting [113, 112]. Splatting can achieve faster rendering speed than ray-casting as

it only processes relevant voxels contributing to the image. As a price, it may produce

lower quality rendering. Optimization strategies for splatting were developed by utiliz-

ing object- and image- space coherence that exclude non-interesting regions or regions

occluded by others [41, 71, 51].

By combining the advantages of the two approaches mentioned above, hybrid tech-

nique was proposed to achieve good rendering quality as well as fast rendering speed.

Shear-warp factorization [49] is one of such methods and among the fastest software-

based methods so far. The main idea of this method is that volume data are transformed

into a sheared object space with all the rays paralleling to the principal coordinate axis.

With this transformation, the advantage is that it avoids the expensive tri-linear in-

terpolation by bi-linear interpolation. The projection through the sheared volume is

distorted and can be corrected by a 2D warping for the final results. The drawback of
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this method is that it may require additional memory storage to create volume stacks

for the three viewing coordinate axises.

For domain-based method, the spatial volume data are represented by some al-

ternative domains, such as frequency, compression and wavelet domain, and rendered

directly from these domains. The motivation for switching to render in other domains

is to achieve faster rendering speed and lower computational complexity.

Frequency domain-based rendering was first proposed by Dunne et al. [21] and

further extended by Malzbender [63] and Totsuka et al. [101]. This approach is based

on the Fourier projection-slice theorem [43] that the rendered image perpendicular to

the viewing direction can be generated by extracting a 2D slice from the 3D Fourier-

transformed data and transforming back to the spatial domain. The advantage is that

it achieves much low computational complexity as it avoids the conventional rendering

integral along the viewing direction. However there is a drawback for this approach: it

is not possible to change the transfer functions interactively after the volume data are

transformed into the frequency domain.

Compression domain-based rendering provides volume rendering in the compressed

domain and there is no need to decompress all the data for the rendering. Thus the

storage and computation requirement are reduced. An example of this class is the

work by Ning and Hesselink [76]. Their work used vector quantization to give a lossly

compressed representation of volume data. The rendering is performed directly based

on a relatively small codebook. Yeo and Liu [115] gave a method based on discrete

cosine transform (DCT). The volume data are divided into blocks and compressed by

3D DCT. In the process of rendering, only relevant blocks are decompressed. A more

recent work was presented by Fout et al. [29] that performed rendering from compressed

volume data by deferred filtering. The compressed data were first decompressed into

slices and filtered for rendering.

Wavelet analysis is an important technique widely used in image compression and

signal processing for its time-frequency localization feature. It is also applied in volume
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rendering for the purpose of compression, progressive transmission and multi-resolution

rendering, etc. The idea of wavelet-based volume rendering was first introduced by Mu-

raki [74] who applied 3D wavelet transformation to approximate volume data. Wester-

mann presented volume rendering based on wavelet compression [111]. Gross et al. gave

a method of wavelet splatting that performed rendering directly on wavelet coefficients

of volume data [33].

In order to handle non-orthogonal viewing directions, shear-warp factorization [49]

is an efficient approach. Under this transformation, the volume is sheared such that

each slice of it is perpendicular to the viewing direction. Thus it is identical to apply

the orthogonal projection on the sheared volume.

However this approach can not be directly applied in wavelet-based volume render-

ing. This is because the factorization can not be performed in the wavelet domain due

to the inherent disadvantages of discrete wavelet transform. One of the disadvantages

is “shift sensitive”, i.e. a small shift in 1-dimensional signal generates unpredictable

changes in its discrete wavelet transform coefficients. This is caused by the down sam-

pling operations in the transform. To overcome the “shift sensitive”, undecimated DWT

was devised by Mallat [62] that removed the down sampling operations. But this solu-

tion was relatively expensive as it introduced high transform redundancy.

The shift insensitive complex wavelets [27] could be employed to handle the trans-

lation. However, it is not clear how they can be applied to handle slightly more compli-

cated image operations like rotation and shearing. Also note that in general, even if the

original data have many zero coefficients, the operated images could have few or none

zero coefficients. Therefore, it is impossible to have both fast and exact algorithm.

2.1.2 ROI techniques in volume rendering

There are many work in the direction of region-of-interest based visualization. Furnas

[31] introduced the concept of fisheye view by presenting information with a magnifying

glass effect. As a result, the important information is displayed in much detail while
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the context is demagnified further away. Following Furnas’s work, several strategies

have been developed [61, 82, 86]. With these techniques, a fast rendering rate can be

achieved by allocating different priority among the spatial domain of the data-set.

Several research work have studied on the multi-levels ROI rendering of volume

data-sets. Levoy et al. [56] gave a real-time volume rendering system that rendered

volumes in two different levels of resolution. These two rendered images were then

blended to obtain the final rendered image. Piccand et al. [81] described a method to

perform X-ray projection in the wavelet domain, such that the ROI was projected in

full resolution, while other voxels were projected in reduced resolution. Along a viewing

ray that entered the ROI, voxels lying before or after the ROI were omitted in the

projection. The main technique employed by Piccand et al. was wavelet splatting [50],

which pre-computed a 2D projected footprint for each sub-band.

From another perspective, an interactive visualization session can be more effective

if the objects in the ROI are highlighted and information outside the ROI is filtered or

reduced. Hence, even if the whole data-set is available, or there are sufficient computing

resources, applying ROI in visualization can still be useful. This leads to the issue of

how to effectively visualize a volume with a point of focus. Zhou et al. [117] proposed

to use distance as a factor to adjust objects’ opacity. Viola et al. [105] presented a

technique that suppressed less important information in volume rendering by cutting

away objects occluding the interesting objects.

2.1.3 Wavelet-based foveation

This thesis adopts foveation as a variation of ROI techniques for volume data visualiza-

tion. Foveation is the biological process of human visual system (HVS) to non-uniformly

sample the world that the resolution is highest at the fovea but falls off as the distance

from the fovea increases [91]. This is due to the space-variant nature of human visual

perception. Such mechanism provides an effective way of navigating the visual field by

compressing the information without sacrificing visual quality.
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In the foveation method, the ROI is indicated as the focus of viewer’s gaze point.

The implementation of foveation can be achieved by two common approaches: log-

polar transform [110, 98] and wavelet foveation [16]. Based on log-polar transformation,

foveation is obtained by first applying a log-polar transformation on the visual field,

then a convolution in the log-polar space and transformation back into Cartesian space.

Wavelet-based foveation gives an alternative way that efficiently approximates the non-

uniform sampling process in wavelet domain. As this method is experimentally proved

to be fast and accurate [16], it is quite suitable to be applied in the context of remotely

visualizing large data-sets.

The special property of foveation has been utilized in many application fields. In

some computer vision systems, foveated imaging was applied for active vision [90, 96] in

order to provide high resolution on target objects in a wide viewing angle. This achieved

much cost reduction and performance improvement in applications like video surveil-

lance or tracking tasks. Foveated visions were widely employed in image transmission

[16], video processing [52, 5, 25], flight simulation [28, 99], 3D model visualization [4],

volume rendering [56], etc. The main purpose was that by mimicking HVS, a good

trade-off was obtained between the visual quality and some performance measures, such

as compression rate, transmission cost. From another perspective, foveation can also be

viewed as a way to distribute computing resources across space. For example, our early

work [116] gave a fast volume rendering algorithm that rendered volumes in multiple

levels of resolution.

The mathematical formulation of the “ideal” foveation process has been discussed

[16]. We give a brief overview here.

The foveated transformation f : Rd → R is controlled by two components: a scaling

function s : Rd → R and a weight function w : Rd → R≥0.

(Tf)(x) =

∫ ∞

−∞

f(t)
1

w(x)
s

(

t − x

w(x)

)

dt (2.3)
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The scaling function s controls the compression ratio and is normalized as
∫ ∞

−∞
s(x)dx =

1. The weight function w is determined by three parameters as w(x) = α|x − γ| + β.

α is called rate as it gives the decaying speed of the resolution. γ is called fovea as it

gives the location of the highest resolution. β is called foveal resolution as it gives the

resolution at γ. Thus w controls the distortion from the fovea to the peripheral. If the

two functions s and w are replaced by a kernel function k(x, t) of T , E.q. 2.3 can be

written as an integral operator

(Tf)(x) =

∫ ∞

−∞

f(t)k(x, t)dt (2.4)

This foveation operator can be efficiently approximated under wavelet transforma-

tion as the transformed kernel is dominated by its diagonal terms. The main idea is

that in E.q. 2.4, if the original function f is represented by uniformly sampled N points,

the computation of the foveated function Tf can be treated as a matrix multiplication.

The running time for the arithmetic operations is O(N2). When representing the ker-

nel in wavelet domain, most terms in the transformed kernel become small. A sparse

matrix is obtained by suppressing these small terms. Operating on the sparse matrix

with wavelet transform, the running time is reduced to O(N). Thus a fast algorithm

for foveation is possible. The detailed mathematical illustration is given in the work by

Chang [15].

2.1.4 Potential applications

• Remote visualization

A potential application of our algorithm is in remote volume visualization. A

viewer at the client-side indicates the fovea, and the selected coefficients are sent

across (alternatively, we can let another viewer at the server-side indicates the

fovea). In the client-side, the viewer applies our algorithm to render the obtained
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foveated volume. The server continues to send coefficients across, achieving the

effect that the fovea rate is increasing. For the viewer, what he/she sees is the

rendering result that is getting more and more accurate. Note that if direct

rendering method is used here, then the inverse wavelet transformation has to be

applied for every new coefficient arriving at the client-side. Our algorithm works

efficiently in the wavelet domain and hence overcomes this problem.

• Time-varying volume data visualization

Another application is in the visualization of time-varying volume data. If the

time-varying volume data are already represented in a foveated form, it is possible

to apply our idea to achieve fast rendering. For example, in a system of video

sensor networks, video sensors are spatially distributed to capture and reconstruct

a dynamic 3D view of the scene. The coverage of the sensors could be wide and

thus impossible to perform a full-resolution real-time scene rendering. As the

distribution of the sensors in the 3D space resembles the structure of foveated

volume, with higher density around a fovea, our algorithm is a possible solution

to maximize the efficiency of the system.

2.2 Proposed method

As mentioned in Chapter 1, we are interested in rendering the foveated volume directly

from its received wavelet coefficients. We want to render the volume using the volume

rendering E.q. 2.2.

Now our goal is to find an algorithm that can directly render the foveated volume

from the relevant coefficients. We employ the notion of foveation to achieve different

levels-of-resolution for volume rendering.

A foveated image can be viewed as a non-uniform sampled image, where the density

of samples is the highest at the fovea, but falls off as the distance from the fovea

increases. Figure 2.1 shows an example of a foveated image. Compared with Figure 2.1
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(a) Uniform resolution image. (b) Foveated image.

Figure 2.1: Foveation.

(a) which is a full resolution image, the foveated image in Figure 2.1 (b) has a space

variant resolution.

Similarly, a foveated volume can be viewed as a blending of multiple regions, each

with a different level of resolution. By exploiting the relevant wavelet coefficients, a

fast volume rendering can be achieved. The running time is O(n2 + m), where n is the

width of the rendered image, and m is the number of wavelet coefficients retained for

the foveated volume.

The proposed algorithm consists of two phases. The first phase is a fast reconstruc-

tion of the super-voxels from the wavelet coefficients, and the second phase renders the

super-voxels by carefully tracking rays with different thickness in the super-voxels.

Previously known fast rendering algorithms do not fully exploit the information re-

duction in the sense that, voxels that appear before or after the ROI are either omitted

or rendered in high resolution. Our algorithm achieves speedup by tracking the “thick-

ness” of the rays during rendering. There is no expensive preprocessing on the wavelet

coefficients. Hence, it is possible to interactively modify different viewing parameters

such as the transfer functions.
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Figure 2.2: Wavelet foveation. (a) x0 = (10, 4), r0 = 3 in wavelet domain. (b) x0 =
(10, 4), r0 = 3 in spatial domain.

2.2.1 Representation of foveated volume

We use a simplified approximation which is called 0-1 mask [15] for the foveation process

to get a foveated volume. This process depends on two parameters, the fovea x0 which

is a point in the 3D space, and rate r0, a non-negative number. Given a volume V ,

foveation applies space-variant smoothing function on V . At locations nearer to the

fovea, the width of the smoothing function is smaller. The rate r0 determines how fast

the width of the smoothing function grows.

Here describes the foveation process using a 16 × 16 pixels image. A similar idea

can be applied on volume. Figure 2.2 (a) shows the retained coefficients for a foveated

image. Coefficients in the shaded squares of Figure 2.2 (a) are retained. If the image

is represented using Haar wavelet, then the foveated image is as shown in Figure 2.2

(b) where pixels in each box have the same value. Note that the widths of the shaded

squares are the same except for those that touch the boundary. The location of each

square with respect to the co-ordinate of the sub-band depends on the fovea location

x0. The common width of the squares depends on the rate r0. For convenience, we

simply refer the width as rate. A better approximation can be achieved by using circles

instead of squares, applying a weighting function on the coefficients, and having circles

with slightly different size in different sub-bands [16].

20



Co-ordinate system. Our volume data-set V is stored in a n × n × n array. The

indices of the array (starting from 0 to n − 1) also serve as the locations of the voxels

in the 3D space.

Same as in images, a wavelet coefficient of the three dimensional V is labeled by

its sub-band and location. Unlike images, in three dimensions, there are seven high

frequency sub-bands at each level. We use the convention that sub-bands with the

coarsest resolution are defined to be at the 0-th level. Thus, performing forward wavelet

transformation on the i-th level sub-band LLLi gives a (i− 1)-th level sub-band LLLi−1,

and seven other high frequency sub-bands. We also assume each sub-band is stored in

a 3D array and use its index to serve as the location of the wavelet coefficient. Hence,

the spatial location (x, y, z) corresponds to (x/4, y/4, z/4) in the sub-band LLLlog2 n−2.

We call a coefficient in a low frequency sub-band LLLℓ a super-voxel at level ℓ. Each

super-voxel can be viewed as a cube in the spatial domain. A ℓ-th level coefficient at

the location (x, y, z) (with respect to the co-ordinate in the sub-band) corresponds to a

cube of width n/2ℓ at (n/2ℓx, n/2ℓy, n/2ℓz) in the spatial domain.

Wavelet foveation and super-voxels. For convenience, we simply call the approx-

imation of the “ideal” foveated volume the foveated volume. Recall that the approxi-

mation is done by selectively retaining some coefficients, and is parameterized by the

location of fovea x0, and the rate r0. We denote the foveated volume data as Vf(x0, r0).

Let C(ℓ,x0, r0) be the set of wavelet coefficients in the ℓ-th level high frequency

sub-bands, and is contained in the cubes whose two opposite corners (with respect to

the co-ordinate in the respective sub-band) are at

(n/2ℓ)x0 − r′, (n/2ℓ)x0 + r′ (2.5)
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where

r′ =













r0

2 − 1

r0

2 − 1

r0

2 − 1













and (r0 >= 2).

The C(ℓ,x0, r0) is in fact the ℓ-th level of wavelet coefficients retained for the foveated

volume Vf(x0, r0). Let C(x0, r0) = C(0,x0, r0) ∪ C(1,x0, r0), . . . , C(log2 n − 1,x0, r0) ∪

{w0} where w0 is the only coefficient in LLL0. Hence, from C(x0, r0), we can obtain

Vf(x0, r0) using inverse wavelet transformation.

Consider the coefficients in the sub-band LLLℓ, and are within the cube with the two

corners given by E.q. (2.5). Each coefficient is a super-voxel, and let us denote these

coefficients as R(ℓ,x0, r0). The foveated volume Vf(x0, r0) can be obtained by merging

the super-voxels in R(0,x0, r0), R(1,x0, r0), . . . , R(log2 n−1,x0, r0). Note that the total

number of super-voxels is same as the number of wavelet coefficients in C(x0, r0).

2.2.2 Algorithm on rendering of foveated volume

Given the rate r0, location of fovea x0, the wavelet coefficients C(x0, r0) of the foveated

volume, and the viewing parameters including the viewing direction θ and the transfer

functions, we want to compute the rendered image of Vf(x0, r0).

A straightforward algorithm solves the problem by first reconstructing the foveated

volume Vf(x0, r0) from C(x0, r0) using inverse wavelet transformation, and next applying

direct rendering on Vf(x0, r0). This method is costly since representing Vf(x0, r0) in the

spatial domain already requires Ω(n3) storage space. We give an algorithm that avoids

reconstructing Vf(x0, r0).

Our algorithm consists of two phases, reconstruction phase and rendering phase. In

the first phase, given m wavelet coefficients of the foveated volume, the super-voxels

R(ℓ,x0, r0) is reconstructed. The reconstruction can be done in O(m) time. In the

second phase, the displayed image is rendered from the super-voxels. The rendering

time is O(m+n2). These two phases can be combined to further reduce memory usage.
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Rendering. Let us first describe the second phase which is more interesting. We

will explain the rendering using a 2D example. We want to trace rays in a foveated

image along the x-axis as shown in Figure 2.2 (b), giving a 1D signal as output. In

Figure 2.2 (b), a lower resolution sample is depicted as a bigger square, which we call

it a super-pixel (the analogous of super-voxel). Consider a set of rays tracing through

a big super-pixel. If the intensities of the rays are the same before hitting the square,

then they are also the same upon leaving the square. Thus, from computational aspect,

all these rays can be emulated altogether in one step. Since they are the same, we group

these rays into a thick ray, where the thickness is the width of the region it covers.

A key observation is that we can always split a thick ray, but not mix two rays.

Consider the situation where a thick ray leaves a square and enters into two smaller

squares. In this situation, the ray has to be split into two thinner rays. On the other

hand, consider the situation where two adjacent thin rays, leave their respective squares

and enter into a common bigger square. In this situation, the two rays may be different

in intensity, when entering into the bigger square. Hence, no computation can be shared.

The darker arrows in Figure 2.3 (a) show how the rays trace half-way through a

foveated image. Due to the structure of foveation, we only need to split the rays.

Problem arises in the second half of the foveated image if the rays continue to trace

toward the right. Since rays can not be mixed, in the second half, they have to remain

thin. This is not optimal since, intuitively, some computation could be shared in the

second half. To overcome that, we trace the rays along x-axis in two directions, forward

and backward as shown in Figure 2.3 (b). The final rendered 1D signal is the composition

of these two sets of rays. We do not set the line where the two sets of rays meet as a

straight line, otherwise it may cut across a whole square.

For arbitrary viewing directions, we first apply shear-warp [49] on the super-voxels,

and perform geometric correction on the rendered image. To illustrate this process

clearly, we give the detailed explanation with an example on rotation of a foveated

image in Chapter 3. Similar idea can be easily extended on foveated volume.
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Reconstructing super-voxels. Given the wavelet coefficients C(x0, r0) of the

foveated volume (the shaded squares in Figure 2.2 (a)), we want to reconstruct the

super-voxels. A full inverse wavelet transform will be costly. Fortunately, due to the

special arrangement of those coefficients, the reconstruction can be restricted within a

cube of width (r0 + s), where s is the wavelet support size. Thus the running time is

in the same order as the number of selected coefficients. To further speedup, we can

restrict reconstruction in the width of r0, however, there will be a minor lost in accuracy.

There are two methods to reconstruct the super-voxels.

1. Before rendering, reconstruct the super-voxels from the wavelet coefficients. This

can be done efficiently, with running time in the same order of the number of

retained coefficients, and an additional memory space of the same order is required.

A main advantage is that the reconstruction process and the rendering process are

separated. Hence, a different reconstruction algorithm can be employed without

changing the rendering algorithm. For example, we could represent the volume

in any wavelet. As long as the super-voxels can be reconstructed efficiently, the

rendering can proceed.

2. The super-voxel is reconstructed as required during rendering. In this method, less

additional storage is required. However, since the reconstruction and rendering

are to be performed together, the algorithm is more complicated. Hence, it is

difficult to incorporated changes in the reconstruction.

In our implementation, we use the second method. However, for simplicity in explaining

the rendering algorithm, we assume that the super-voxels have already being recon-

structed.

Total running time. The reconstruction phase takes O(m) time where m is the

number of wavelet coefficients. Also recall that the number of super-voxels is also in

O(m). For rendering, observe that the computation required is directly proportional to
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Figure 2.3: Thick rays rendering.

the number of rays, which is the number of super-voxels. Hence, the running time will

be O(m + n2) where m is the total number of wavelet coefficients required, and n is the

width of the rendered image.

Combining reconstruction and rendering. If the volume is represented using

Haar wavelet, it is possible to combine the reconstruction phase and rendering phase,

so that the super-voxels are computed as and when required and not explicitly stored.

In this way, additional memory space required can be reduced. In our implementation,

we combine these two phases.

Using wavelets with a larger support. As mentioned in Section 2.2.2, the

rendering algorithm essentially works on the reconstructed super-voxels R(ℓ,x0, r0) for

0 ≤ ℓ < log2 n, and the reconstruction process can be separated from the rendering.

Hence, it is possible to represent the volume using wavelets with larger support, for

example Daubechies 7/9 biorthogonal wavelets. What is required is an efficient recon-

struction algorithm that obtains the super-voxels from the wavelet coefficients. Due to

25



the special structure in foveated volumes, we do not need to perform the full inverse

wavelet transformation to obtain the super-voxels. The reconstruction can be restricted

within a cube of width r0, and thus achieving running time in the same order as the

number of selected coefficients. In contrast to the full inverse wavelet transformation,

this fast reconstruction gives an approximation of the super-voxels. Nevertheless, the

approximation is accurate.

Rotation approximation in the wavelet domain. For arbitrary viewing

directions, we first apply shear-warp factorization [49] on the super-voxels, followed by

geometric correction on the rendered image. The detailed explanation on this process

is given in Chapter 3. For easy illustration, an example on rotating a foveated image is

discussed. Similar idea can be applied on foveated volumes.

2.2.3 Visualizing foveated volume

A foveated volume implicitly indicates that the interesting features are near the fovea.

Hence, for effective visualization, it is desirable to give priority to the fovea, and to

have a mean to direct the viewer’s attention to the fovea. This can be achieved by

multiplying the original opacity with a space-variant weighting function. Specifically,

the opacity at location (x, y, z) is Tα(V (x, y, z))Dx0
(x, y, z) where V (x, y, z) is the voxel

intensity, Tα(·) is the opacity transfer function, x0 = (x0, y0, z0) is the fovea, and Dx0
(·)

is the weighting function. Hence, the opacity of a voxel depends on both its location,

and its intensity. We experiment with two weighting functions.

• The weighting function chops off all the voxels before the fovea along the viewing

direction. If the viewing direction is along the x-axis, the function is:

Dx0
(x, y, z) =











1 if x > x0,

0 otherwise

• The weighting function varies across the 3D space. It is higher near the fovea, and
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its reciprocal increases linearly as the distance from the fovea increases. Specifi-

cally,

Dx0
(x, y, z) = (1 + a‖x0 − (x, y, z)‖2)

−1

where ‖ · ‖2 is the usual 2-norm and a is a constant that can be interactively

adjusted by the viewer. When a is small, the variation across the space is lesser.

2.2.4 Post-processing by low pass filtering

The staircase artifacts (that is, the “blockish” effect) in the rendered image are due

to the notion of thick ray in sharing computation. A way to reduce the artifacts is

by post-processing. We can view the output of the rendering as a collection of non-

uniformly spaced samples of thick rays, and the rendered image is the interpolation

of these samples. The staircase artifacts appear when the sampling function is a step

function. Alternatively we can use a smoother sampling function to reduce the artifacts.

This can be done by performing a space-variant smoothing process on the original

rendered image, where the width of the smoothing function is larger for thicker rays.

Figure 2.4 depicts the smoothing process on the rendered image. The 3D blocks

represent the super-voxels in the foveated volume. The smoothing is performed by

applying low pass filters on the pixels of the rendered image. As the rendered image has

a variable-resolution nature, the size of low pass filters may not be the same on different

level of resolutions. For example, the low pass filter F1 is larger than F2 when they

are employed for the pixels represented by cross signs in Figure 2.4 (i). Considerations

must be taken when the frontals of super-voxels with different size do not meet on the

same plane, for example, the upper graph in Figure 2.4 (ii). In this case, the low pass

filters should be revised as shown in Figure 2.4 (ii), i.e., filter F1 will not take samples

from super-pixel B and vice versa for filter F2.
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Figure 2.4: The post-processing by space-variant smoothing.

2.3 Implementation and experiments

In this Section, we give experimental analysis on our proposed algorithm. We inspect the

performance of the algorithm by measuring the amount of wavelet coefficients required

during foveated volume rendering and presenting visual effect with different foveation

parameters. We also compare the algorithm with some existing volume rendering library.

Finally, we describe some potential applications by applying our algorithm.

2.3.1 Experimental data-sets

To evaluate the visual effect of our proposed algorithm, we applied our method on the CT

scan of the visible man’s torso with 512x512x426 voxels. To evaluate the performance

of our algorithm, we tested our method on three data-sets: a MRI scan of a head with

128x128x84 voxels, a CT scan of an engine with 256x256x110 voxels, a CT scan of a

human head with 256x256x225 voxels. These are described as “brain”, “engine” and

“head” in Table 2.1.

2.3.2 Experimental results

All experiments were conducted on a 3GHz Pentium IV PC with 1GB DDR RAM.
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Figure 2.5: Rendering of a full resolution volume having 512x512x426 voxels with view-
ing angle θ = 30 degree.

Rendering results. Figure 2.5 shows the rendering on the full resolution volume as

the ground truth. The rendering results of foveated volumes are given in Figure 2.6 and

Figure 2.7, all at a viewing angle of 30 degree.

Figure 2.6 (a), Figure 2.6 (c) and Figure 2.6 (e) show the rendering with fovea

parameters x0 = (155, 353, 300) and rate r0=100, 50 and 25. The fovea is marked as a

red dot. The number of coefficients retained for the foveated volume with rate 100, 50

and 25 is approximately 23.7x106, 5.6x106 and 0.9x106 respectively. This amounts to a

reduction to 21.3%, 5% and 1% of the original volume. Note there are staircase artifacts

around the peripheral. The artifacts are reduced after a space-variant smoothing is

applied as shown in Figure 2.6 (b), Figure 2.6 (d) and Figure 2.6 (f).

Figure 2.7 (a), Figure 2.7 (c) and Figure 2.7 (e) show rendering results on the same

data-set as Figure 2.6 (a), Figure 2.6 (c) and Figure 2.6 (e), except that the fovea is

moved to another location.

Comparing Figure 2.5 and Figure 2.6, it is noted that no information is lost at the

fovea while a large amount of coefficients are omitted for rendering foveated volumes.

Figure 2.8 shows the rendering results of applying weighting function mentioned in
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Section 2.2.3. After applying the second weighting function on Figure 2.6 (c), we have

Figure 2.8 (a). Compared with the one without weighting function, the peripheral region

appears darker. This is because the weighting function further suppresses information

far from the fovea. Figure 2.8 (c) employs a larger weighting parameter a than Figure

2.8 (a). By this adjustment, the information about peripheral region is much more

suppressed. Figure 2.8 (e) gives result when the rate r0 = 25. To reduce staircase

artifacts, Figure 2.8 (b), Figure 2.8 (d) and Figure 2.8 (f) apply smoothing on Figure

2.8 (a), Figure 2.8 (c) and Figure 2.8 (e).

Figure 2.9 (a) and Figure 2.9 (b) show the chopping off effect- the first weighting

function mentioned in Section 2.2.3. The full resolution volume for Figure 2.9 (a) and

Figure 2.9 (b) is 256x256x225 voxels and the rate r0 is 40. Note that each of these images

is not simply an image of a plane slicing through the volume. This can be observed in

Figure 2.9 (b), where the surface of the ear is vaguely visible.

Computational Performance. Figure 2.10 gives rendering time for different viewing

parameters and data width.

Figure 2.10 (a) shows that the rendering time increases as the fovea rate r0 increases.

It is because as r0 increases, more wavelet coefficients are selected for rendering. For

the same r0, the time for rendering with viewing angle at 45 degree is larger than that

at 0 degree since there are more data to be processed in the shear-warp operation. The

reason is also true for Figure 2.10 (b) which shows that more computational time is

required for larger angles. The worst case performance occurred at 45 degree. Here the

rate is 40. The original volume for Figure 2.10 (a) and Figure 2.10 (b) has 512x512x426

voxels.

Figure 2.10 (c) shows that the rendering time increases as the data width increases.

When n is large, the time is proportional to n2 as m is small. When the width increases

from n = 1024 to 4096, although the data size increases by a factor of 43 = 64, the

rendering time only increases by approximately a factor of 6.86 when the viewing angle

θ is 45 degree.
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Table 2.1: Comparison of frame rates on different data-sets. The viewing direction is
along x-axis for direct volume rendering. Note that VolPack requires large preprocessing
time. Due to the memory limit of our machine, we only compare these three methods
on these small size data-sets. In Figure 2.10 (c), we give the performance analysis of
our algorithm on larger data-sets.

Data-set Direct volume rendering VolPack Our alg.
(Frame rate) (Frame rate/MV/MO/CV) (Frame rate)

brain 32.3 106.4/0.91 43.5
0.03/0.16

engine 6.4 45.9/4.66 42.6
0.19/0.69

head 3.2 16.0/9.09 25.6
0.33/1.67

2.3.3 Comparison with other methods

We compared our proposed algorithm with the VolPack volume rendering library [1],

and a straightforward direct volume rendering. Table 2.1 gives the frame rate (in Hz)

and rendering time (in seconds) on the test data-sets by different rendering methods.

Note that the large 512x512x426 voxels volume is not tested on VolPack since VolPack

is unable to process the large volume under our machine configuration.

In direct volume rendering, the rendering equation 2.2 is applied to the full resolution

volume using the straightforward for-loops, with the viewing direction along the x-axis.

There are three rendering algorithms provided by VolPack. The fastest algorithm

relies on a special data structure containing run-length encoded, classified volume data.

Preprocessing is required to obtain this data structure. Hence, it is suitable for rendering

the same volume without changing classification. MV, MO and CV represent the three

preprocessing steps, which are:

• Make volume (MV): Create an unclassified volume from the raw volume data.

This unclassified volume includes precomputed information for shading and clas-

sification;

• Make octree (MO): Create a min-max octree from the unclassified volume;
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• Classify volume (CV): Create a classified volume including an opacity with each

voxel along with shading information.

VolPack provides accurate classification. Even if we just consider MO which deals with

the octree and the structure of resolution, the preprocessing time is still non-negligible.

If the volume is already represented by its wavelet coefficients, no preprocessing

is required for our algorithm. Hence, if the viewer wishes to interactively change the

transfer functions for the intensity and opacity, our algorithm is still able to give real

time feedback for large data-set. The foveation parameters we use in Table 2.1 are

r0=25, θ = 45 degree.

2.4 Remarks

In this work, we presented an algorithm that renders a foveated volume efficiently in

the wavelet domain. The required running time for rendering the foveated volume is

O(n2 +m) where n is the width of the rendered image, and m is the number of retained

wavelet coefficients. We implemented the algorithm and analyzed its performance. The

experimental study also confirmed the efficiency of the algorithm, even for very large n.

Excluding the forward wavelet transformation, no expensive preprocessing is required

on the original volume. Compared to the rendering of the full resolution volume, our

method produces the image with the same quality at the fovea but lower resolution

further way. The method provides a good tradeoff between rendering resolution and

frame rate. It is suitable to be applied in scenarios where the rendering platform has

low computing resources and/or real time feedback is required.

2.4.1 Combining reconstruction and rendering

Note that in our implementation, we combined the two phases of reconstruction and

rendering. An advantage is that it achieves further speed-up. However, there are some

disadvantages. The implementation would not be easy, especially when shear-warping
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is involved. Furthermore, it also removes some flexibilities. For instance, it is not clear

how to extend it to wavelet with larger support when both phases are combined. In

addition, in applications where the volume has to be rendered many times with the same

coefficients but different viewing parameters, the reconstruction will be unnecessary

repeatedly performed if the reconstruction and rendering phases are closely coupled.

2.4.2 Future work

The current research work can be extended in the following two directions:

1. Time varying foveated volume visualization. The efficiency of our proposed

method lies in the fact that the computational overhead is proportional to the

number of relevant wavelet coefficients. However the problem becomes complex if

the data are time dependent as the wavelet coefficients will change correspondingly.

It is prohibitive to apply wavelet transform on volume data in the time domain.

Further work will focus on how to correlate the wavelet coefficients of time series

data thus reducing the rendering time.

2. Foveated volume visualization with multiple foveas. The extension to

multiple foveas is not trivial. The challenging issue is that the special structure

for thick rays rendering in Figure 2.3 will be complicated. When the multiple

foveas exist, consideration should be given on how to carefully track the super-

voxels partitioned by them.
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(a) Fovea rate r0 = 100. (b) Smoothed version of (a).

(c) Fovea rate r0 = 50. (d) Smoothed version of (c).

(e) Fovea rate r0 = 25. (f) Smoothed version of (e).

Figure 2.6: This set of images demonstrates the effect of fovea rate and location on the
foveated volume. Each image in the right column is the smoothed version of the image
at its left. The fovea is marked as a red dot in each image.
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(a) Fovea rate r0 = 100. (b) Smoothed version of (a).

(c) Fovea rate r0 = 50. (d) Smoothed version of (c).

(e) Fovea rate r0 = 25. (f) Smoothed version of (e).

Figure 2.7: This set of images demonstrates the same effect as Figure 2.6 except a
different fovea location. The fovea is marked as a red dot in each image.
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(a) Fovea rate r0 = 50. (b) Smoothed version of (a).

(c) Fovea rate r0 = 50 with a larger a. (d) Smoothed version of (c).

(e) Fovea rate r0 = 25. (f) Smoothed version of (e).

Figure 2.8: This set of images illustrates the effect of the second weighting function in
visualizing foveated volume.
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(a) (b)

Figure 2.9: This set of images illustrates the effect of the first weighting function in
visualizing foveated volume. (a) The effect by chopping off the region before the fovea
with viewing angle at 0 degree. (b) Same effect as (a) with viewing angle at 30 degree.
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Figure 2.10: Rendering time. (a) Rendering time versus the rate r0. (b) Rendering time
versus viewing angle. (c) Rendering time versus data width. More time is required for
a viewing angle at 45 degree.
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Chapter 3

Rotation of foveated

image/volume in the wavelet

domain

3.1 Introduction

This Chapter gives a side-result of the foveated volume rendering. The method to handle

rendering in non-orthogonal direction could be extended to a more general result: How

to rotate a foveated image/volume directly in the wavelet domain?

3.2 Proposed method

We give an approximation to obtain the wavelet coefficients of rotated foveated im-

age/volume. The running time is proportional to the number of retained coefficients of

the foveated image/volume. We propose two algorithms. The first algorithm is faster

by a constant factor but the second algorithm is more accurate.

Figure 3.1 gives a foveated image represented in wavelet and spatial domain respec-

tively. The foveated image is obtained by the 0-1 mask operation mentioned in Section
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(a) (b)

Figure 3.1: (a) the mask when the fovea is at the center; (b) foveated image whose mask
has radius of 30 pixels and locates at center.

2.2.1. Figure 3.1 (a) shows the locations of the retained coefficients when the fovea is

in the center and Figure 3.1 (b) shows the foveated image.

The problem. Consider a foveated image I1 and its rotated version I2. The input of

our problem is W1, the wavelet coefficients of I1, and the output is W2, an approximation

of the wavelet coefficients of I2.

A direct method requires three steps: (i) reconstructing the foveated image I1 from

W1, i.e. applying IDWT on W1, (ii) rotating the image I1 to obtain I2 and (iii) applying

DWT on I2 to get W2.

Assuming that the image size is n × n pixels, each of the above steps requires a

running time in the order of Θ(n2), which is considerable when the image is large.

This is especially so when higher order of interpolation is used during rotation. Recall

that W1 can be represented by small number of coefficients. Let m be the number of

coefficients retained during the foveation. In Figure 3.1, m is the number of 1’s in the

mask. We want to design an algorithm that depends only on m.

Our algorithms are based on the observation that for a foveated image, the radius of

the circles in the mask are the same across every level. Furthermore, the centers of the
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circles all correspond to the same location, which is the fovea, in the spatial domain.

Consequently, we can focus the operation on the area around the fovea and significantly

reduce the running time.

The two algorithms are illustrated in Figure 3.3. Below are the detailed descriptions.

Algorithm 1. Consider the sub-bands in the wavelet transform. We call the i-th level

LH, HL and HH high frequency sub-band hi (see Figure 3.2 (a)), and li the LL sub-band

of the i-th level. Thus l3 can be reconstructed from l1, h1 and h2. For a foveated image,

its non-zero coefficients are concentrated in the arrangement of circles of radius r shown

in Figure 3.1 (a). We write hi,r as the coefficients retained in the sub-bands hi. Thus,

hi,r contains coefficients in 3 circles of radius r, where each circle corresponds to the

LH, HL and HH sub-band.

Figure 3.3 shows the steps of Algorithm 1 when the number of levels is 3. It is

easy to generalize to any number of levels. In this figure, mask(r0) is an operation

that applies a mask of radius r0 in the sub-band. For example, after l3 is applied a

mask(2r), coefficients at a distance greater than 2r from the fovea will be removed (or

equivalently, set to zeros). The operation “rotate” is the usual image rotation. We are

not concerned with the interpolation method used during rotation. In our experiment,

we employ bicubic interpolation.

At level 1, the inputs of Algorithm 1 are l1 and h1 of the foveated image. We apply

IDWT on l1 and h1 to get l2. Since the energy of l2 is concentrated in the circle of

radius 2r, to achieve speed-up, a circular mask of radius 2r is applied to obtain l2,2r.

Next, l2,2r is rotated to produce a rotated K2, followed by DWT to give the sub-bands

L1 and H1. Similarly, the energy of each of these sub-bands is concentrated in a circle of

radius r. Hence, we apply a mask of radius r on H1 to produce H1,r. At level 2, similar

process is repeated, except that the input is l2,r. Note that masking is performed a few

times in the above steps. Although masking reduces accuracy, it is necessary to make

sure that the data size is small. After all, the values of the discarded coefficients are

small. This recursive process is carried out until reaching the final level.
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Figure 3.2: Wavelet transforms of: (a) original foveated image; (b) foveated image
rotated by Algorithm 1; (c) foveated image rotated by Algorithm 2.

Note that each of DWT, mask(), and rotations can be done in Θ(r2) time and there

are only N levels. Thus the total time required is Θ(Nr2), which is Θ(m).

Algorithm 2. Algorithm 2 is a modified version of Algorithm 1. The main observation

is the following. Let Ki,r be the coefficients obtained by masking Ki with the circle of

radius r. Ideally, Ki,r should be the same as Li. However, this is not the case due to the

combined effects of rotation and wavelet transformation. Li is more accurate because it

is computed in the higher level. Therefore, if we retain Li−1, Hi−1 which are calculated

from Ki, in the final output, the LL sub-band at level i will be the imprecise Ki.

In Algorithm 2, we introduce a step after Li is obtained. We first compute the error

Ei = Li−Ki,r. Next, DWT is applied on Ei. The wavelet transform of Ei is then added

to L1, H1, H2, . . ., Hi−1. To ensure Θ(m) computation, we approximate the DWT by

restricting the coefficients in each sub-band to be in the circle of radius r.
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Figure 3.3: Algorithm 1 to rotate foveated image directly in wavelet domain (dotted
lines are additional steps in Algorithm 2).

3.3 Experimental results

To measure the performance of the algorithm to approximate rotation in the wavelet

domain, we implement our proposed algorithms to compare with traditional methods

using several different images: “Lena” (512x512), “Mandrill” (512x512), “Cameraman”

(256x256), “Peppers” (256x256) and “Barbara” (256x256). The performance of accu-

racy achieved is measured by Normalized Mean Square Error (NMSE). The wavelet

filter used is the biorthogonal 7/11.

Figure 3.4 shows the rotated image by different methods when the degree of rotation

is 45, and the radius of the mask is 15. To clearly show the differences between images,

we present their zoom-in versions whose focuses are around the fovea. We denote J1

the image obtained by directly rotating the foveated image I1 in the spatial domain,

which is shown in Figure 3.4 (a). We denote J2 the image obtained by a straightforward

algorithm: applying DWT on J1, mask on the wavelet coefficients and IDWT on the

wavelet coefficients in the mask. The zoom-in of J2 is shown in Figure 3.4 (b). We
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(a) (b)

(c) (d)

Figure 3.4: Rotated images: (a) J1 obtained by rotating the foveated image Figure 3.1
(b); (b) J2 obtained by applying DWT on J1 and IDWT on the coefficients in the mask;
(c) A1 obtained by Algorithm 1; (d) A2 obtained by Algorithm 2.
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denote A1 and A2 the images obtained by our proposed Algorithm 1 and Algorithm 2,

respectively. The zoom-in of A1 and A2 are shown in Figure 3.4 (c) and Figure 3.4 (d).

It is obvious that the image A2 is more accurate than the image A1 comparable to J1.

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Degree

N
M

S
E

A1−J1
A2−J1
J2−J1

10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Radius

N
M

S
E

A1−J1
A2−J1
J2−J1

(a) (b)

Figure 3.5: Performance ratios: (a) NMSE as the rotating degree increases; (b) NMSE
as the mask’s radius increases.

To compare the differences among A1, A2, J1 and J2, we use Normalized Mean

Square Error (NMSE), which is the mean square error normalized by the energy of J1.

Figure 3.5 (a) shows the NMSE as the rotation degree increases and Figure 3.5 (b) shows

the NMSE as the radius of the mask increases. Because of the rotation and wavelet

transform, there may exist spike values on the boundaries of rotated images, which lead

to inaccurate NMSE values. Therefore, we ignore the image boundary by comparing

only the region within the inscribed circle of the image boundaries. The displayed

NMSE values are the average results of 5 different images which we mentioned above.

We can see that the NMSE increases as the rotation degree increases, and decreases

as the radius of the mask increases. It is because the larger the rotating degree is,

the larger the number of non-zero coefficients are created in wavelet domain. It means

that while the radius is unchanged, the number of non-zero coefficients being discarded

(by our algorithms) increases and consequently NMSE increases. Similarly, when the

radius increases, more number of coefficients are retained and we obtain more accurate
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results. The NMSE difference shown in Figure 3.5 also confirms what we have visually

concluded from Figure 3.4 about the accuracy of the proposed algorithms. Note that

the graph of (J2 − J1) indicates the best approximation one can achieve.

3.4 Remarks

Although wavelet transforms have been studied for more than a decade, there are few

researches on direct and efficient manipulation in the wavelet domain. In this chapter,

we propose two algorithms that directly rotate foveated images in the wavelet-based

compressed domain. The running time of our algorithms depends only on the number of

retained coefficients, and this is considerably faster than the straightforward algorithm.

While the proposed approximation algorithms are more efficient, experimental result

shows that the approximation is also accurate. Here is a possible deployment of our

algorithms: Suppose a method can efficiently extract features of foveated images directly

from its wavelet coefficients, and we want to extend it to rotated images. This extension

can be done by first applying our algorithm, followed by the original efficient extraction

method. In the future, it would be interesting to explore similar techniques for other

operations.

46



Chapter 4

Vector map visualization using

region-of-interest

4.1 Introduction and related work

A Geographic Information Systems (GIS) is a collection of software tools that is respon-

sible for gathering, organizing, analysing, manipulating and presenting geospatial data

and related information. The role of GIS has greatly affected all aspects of human activ-

ities, such as agriculture, forestry, military, transportation and urban planning etc. The

power of GIS lies in the fact that by the integration with database capabilities it creates

a link between visual representation of geographic features and their existences in the

database. This connection provides much convenient for answering complex queries is-

sued by GIS users and helps GIS being a valuable tool in the process of decision-making

operations.

In geographic visualization, there are two fundamental formats to represent spatial

objects: vector- and raster- based. Vector-based format stores spatial objects by their

coordinates and the connection among these coordinates. It is most appropriate for

modeling linear features, such as roads, and rivers. The advantage of this data type is

that it will not be distorted when it is viewed at different scales. Raster-based format
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stores spatial objects by an image. It is suitable for some spatial operations, such as

map overlays or area calculations. The data format in this thesis is vector-based as it

can achieve better scalability than raster-based format. If the vector map is stored at

the largest scale, i.e. the highest resolution, it can be used repeatedly by multiple users

with different desired scales through map generalization.

With the development of mobile devices, there emerged some applications targeted

on these devices, such as Location-Based Services and Global Positioning Services. Al-

though the mobility of these applications provides much convenience in personal nav-

igation, there are a few disadvantages in the practice. Generally, these devices have

restricted computing resources and limited display windows thus making it difficult to

process and provide visualization of large data-set.

In this Chapter, we consider visualization of vector-based map in a small display

window. It is more effective to provide multiple scales of geographical information to the

viewer, with finer scale at the point of interest. With a small display window, a natural

solution is to merge the variable scaled geographical information into a single image.

Hence, the viewer is able to focus on the interesting region, while having a good grasp of

the surrounding context. This is essentially visualizing the map through a fisheye lens.

However, the fisheye lens induces undesirable geometric distortion in the peripherial,

which renders the information meaningless. Our solution is to apply map generalization

that removes excessive information around the peripheral and a smoothing process to

correct the distortion.

4.1.1 Variable-scale display techniques on vector map

Browsing map based on variable-scale display techniques can be classified into three

categories [35]:

1. The map at different scales is obtained by zooming plus panning operation. This is

the basic function for most GIS. Similar idea is applied to display large graphs by

a single view [7]. When the zooming is performed, there are several different ways
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to retrieve data: the data are displayed in a larger or smaller area; based on the

former choice, the data are enriched with more details for zooming in. Although

this method is simple to realize, the disadvantage is that the viewer may have

difficulties to mentally connect information from maps at different scales.

2. The map is displayed in multiple windows by overview plus detail visualizations

[39]. For example, an overview window shows the overall map while some detail

windows give map view at different scales. Viewers can have a simultaneous view

of these multiple windows and switch among them. However there may exist

overlap among the windows thus some objects may be occluded.

3. The variable-scale representation of the GIS data is displayed in the same map.

Usually the regions near the location of viewers are shown in a larger scale and

those far away are shown in a decreased scale. It is also known as focus plus

context techniques [45] where the focus is the point of interest of viewers and the

context supplies the whole picture. By this means, the information from different

scopes is fitted together as a single event for viewers. Besides presenting large

amount of information, it also provides much convenience for viewers to grasp

both local and global information.

The research in this thesis is in the direction of the third approach mentioned above.

4.1.2 Variable-scale display techniques on logical data

Variable-scale techniques are not restricted to display vector map. They are also applied

in many applications on visualizing logical data. Usually these techniques are called

focus plus context approaches in the literature. Here we give a review on 5 typical

techniques.

Fisheye View

Fisheye view was first introduced by Furnas [31]. A view like the shooting from a

fisheye camera lens is created based on degree-of-interest function that calculates the
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Figure 4.1: Fisheye view of a calendar in the work by Furnas [31] (Reproduced with
permission of the author).

relevant scale of each object in the display space. The objects close to the focus are

magnified while the rest are shrinked. Figure 4.1 gives an example of visualizing a

calendar by fisheye view in Furnas’s work.

According to the definition of the distance between an object and the focus, fisheye

view can be divided into two classes: graphical fisheye view [87] and logical fisheye view

[47]. On graphical fisheye view, the distance is measured by the Euclidean distance and

for the latter one the distance is measured by some logical relationship among objects.

Logical fisheye view is more rational to represent the structure of data however the

layout may be changed drastically when the focus is adjusted.

Perspective Wall

Perspective wall [61] was designed to visualize data with linearly structure such as

chronological list of documents. This visualization technique maps 2D layout of data

onto a 3D structure consisting of three walls. The focus view is presented in a frontal wall

while the context view is displayed on the two side walls with decreasing magnification

factor. Upon changing the focus, the walls are scrolled correspondingly. Figure 4.2 gives

the perspective wall representation of a computer file that is listed by edit date and file

type.
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Figure 4.2: Perspective wall representation of a file in computer system in the work by
Mackinlay et al. [61] (Reproduced with permission of the author).

Bifocal Display

Bifocal display [94] has the similar idea as perspective wall that “folds” an infor-

mation space to hold more data simultaneously. There are two steps to obtain bifocal

display. The information space is wrapped around two uprights and projected on the

screen space. The focus view between the two uprights is kept the same as the original

while the other sides of the uprights are compressed. The views can be changed by

scrolling the uprights. Figure 4.3 shows the procedure of bifocal display in the related

work.

Table Lens

Table lens [82] is a visualization technique to explore very large tabular data. The

data items located in the focus are magnified for a normal view while the rest are

squeezed into rows of pixels. The information hidden in these pixels can be revealed by

selecting and stretching. By this way, it provides much wider scope than conventional

table representation. Figure 4.4 gives the display of a table in the work by Rao et al.

Hyperbolic Representation

Hyperbolic representation technique is applied to visualize large graph structure
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Figure 4.3: Procedure of bifocal display in the work by Spence et al. [61] (Provided by
the author).

data, such as trees. It works by first mapping data onto a hyperbolic plane and dis-

playing the plane in a circular space. Thus one data node in the focus can be referred

by its context in all directions in the space. The change of focus is controlled through

the transformation of the data on the hyperbolic plane. Figure 4.5 gives a hyperbolic

display of some Web site information represented as a graph in the work by Munzner

[73].

Remarks

In summary, focus plus context techniques present information both for current

attention (focus) and navigation in the environment (context). To achieve this simulta-

neously in a display screen, distortion is inevitable to suppress data out of focus. This
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Figure 4.4: Display of large table in the work by Rao et al. [82] (Reproduced with
permission of the author).

may not be appropriate to be applied in the situation that accuracy of representation

is required. Besides, there will be information clutter caused by the distortion in the

display thus making it difficult for readability.

4.1.3 Map generalization techniques

The visual readability of the variable-scale displayed map can be improved by gener-

alization techniques. Map generalization is an important procedure in the process of

map representation. According to the definition by Tyner [102], it refers to the adjust-

ment of details through selection, simplification and symbolization in order to adapt to

the scale of the map. When the map is displayed at a smaller scale, the layout of the

objects in the map will become cramped and undistinguishable. Map generalization is

designed to solve this problem. The main purpose is to maintain the clarity and read-

ability of the map. It is achieved by a series of spatial or semantic transformations on

the map objects. These transformations are generally named as generalization opera-

tors. The study of generalization operators has aroused much interest in the literature

[72, 68, 19, 78, 6, 83]. However there is no consensus on the definition and classification

of generalization operators.

The following gives an overview of the thirteen transformations commonly used in
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Figure 4.5: Hyperbolic representation of a large graph in the work by Munzner [73]
( c©1997 IEEE. Reproduced with permission of the author).

map generalization. However the first operation was not included in McMaster and

Shea’s typology as they regarded it as only a preprocessing step. The other twelve

operations can be classified as spatial transformations for the first ten and attribute

transformations for the rest. The difference is that the former changes the shape of map

objects while the latter changes the topological features.

Selection Selection is the most basic operation of map generalization [100]. It is re-

sponsible for the choice of map objects to be displayed at a particular scale. The objects

that are less important or too small to display are discarded. The judgment for such

selection may be largely affected by the purpose of the map. For maps emphasizing

on geographic features, the selection is based on the geometric properties of the fea-

tures. For maps emphasizing on thematic features, the consideration is given less on

the physical shapes of the map objects but more on their attributes.

Spatial transformations

• Simplification: Simplification is also a process of choosing map objects, similar to

selection. However, its goal is different. It makes a decision to find an optimal
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representation of map objects, for example displaying a polyline with minimum

points under certain tolerance error. The simplified map objects usually keep the

most salient features. The Douglas-Peucker line simplification algorithm [20] is

a representative approach that has been widely employed. The algorithm is an

iterative procedure. For each step a point is kept if the distance between it and

the line formed by the two end points is larger than a given threshold. This point

will divide the original polyline into two pieces and the first step will continue

until no points are kept.

• Smoothing: Smoothing is the operation to relocate the vertices of map objects,

usually the linear objects, to replace sharp connections with rounded ones. The

objective is to improve the legibility of the map as the rounded features provide

aesthetically pleasing visual effect. The layout of the map is also simplified since

the smoothing has captured the major tendencies of map objects. The difference

with simplification operation is that the number of vertices remains the same after

smoothing.

• Displacement: Displacement is the technique to rearrange adjacent objects when

they are too close for each other due to the decrease of map scale [60]. The

relocation of the conflicting objects is performed by applying displacement vectors

on their vertices. To find an appropriate position for the vertices is not easy

and quite time-consuming. Considerations should be taken that the displacement

should not introduce new conflict to surrounding objects. It can be also viewed

as a post-processing for some other generalization techniques.

• Refinement: Refinement is the operation to present map objects by representative

features. This operation is to solve the problem when there are too many or

small features to show clearly. By changing the manner of less important features

close to more important ones, the map is depicted concisely. In some sense, this

operation has the same function with selection. However this operation cares more
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about maintaining the connectivity of the overall representation.

• Exaggeration: Exaggeration is the technique to enlarge the size and shape of

particular map objects that otherwise may be too small or narrow to display. It is

also helpful to expressly reveal the relationship among map objects, for example

the intersection between linear objects. By this transformation, the density will

increase at the region holding exaggerated objects thus some other operations,

such as selection, may be aroused to improve readability of the map.

• Enhancement: Enhancement has the same objective as exaggeration however it

deals with the symbolized map objects. Symbols are employed to differentiate map

objects with same geometric shape but different meanings, such as the importance

of the ranking of highways. To maintain the clarity of different map objects when

displayed in a reduced scale, details are added to highlight the features of these

objects.

• Aggregation: Aggregation is the operation to represent a group of adjacent map

objects by a singe object thus reducing the number of total objects when the map

scale is reduced. The objects in the group may have different features and are

joined to form an object with higher-order feature.

• Merging: Merging is the operation similar to aggregation. The difference is that

aggregation usually handles point objects while merging handles linear objects.

• Amalgamation: Amalgamation is the operation that combines aggregation and

merging. It usually handles two dimensional objects, or areas. This technique is

classified into two operations: fusion that connects objects sharing a same bound-

ary and merge that connects objects which are separated. Topological features

may be changed caused by amalgamation, for example the changing from point

to area, area to line, etc.

• Collapse: Collapse is the operation to convert map objects into the lower-dimensional
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representations, such as area to line and line to point. This is because when the

map is displayed in a smaller scale some objects may shrink accordingly.

Attribute transformations

• Symbolization: Symbolization is the operation to represent classified map objects

by graphic symbols to achieve better communication purpose of the map. De-

pending on the type of map objects, symbols can adopt various visual forms such

as shape, color, etc. The symbols may also change their formats when the map

scale changes. For example, the boundary of a city may be represented from a

polygon to a point when the map scale decreases.

• Classification: Classification is the operation to cluster map objects that share

similar features. By this operation, the complexity of a map can be largely re-

lieved. This operation is similar to aggregation, merging and amalgamation. The

difference is that this operation emphasizes more on semantic levels.

4.1.4 Line smoothing techniques

The map generalization approach used in the thesis is smoothing. The main purpose

of line smoothing in map generalization is to improve the readability and the aesthetic

appearance of the map. It brings better perceptibility to present line features in rounded

format than the connection through sharp corners. Thus it is treated as a cosmetic

operation to “iron out” the wrinkles of the linear features.

Line smoothing issues have been extensively studied in the literature work. Some

well-known algorithms may include point averaging, tolerancing and curve fitting [69].

Point averaging method computes the new location of each point from the average of

its neighboring points. The influence of the neighboring points can be adjusted by some

weighting function, such as Gaussian function [2]. Tolerancing method smooths lines by

rolling a circle of diameter ǫ along the line [79]. The indentations that are not covered

or touched by the circle are eliminated and replaced by a line. Curve fitting method
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approximates lines by the convolution with some mathematical functions. Although this

method is more complex than the previous ones, it provides much flexibility to control

the shape of the target curves. Representative functions are Splines [88, 89] and Bézier

curves.

In the context of map generalization, the employment of line generalization tech-

niques is usually connected with some controllable factors, such as topological con-

straints. As the map can be treated as a collection of polygonal contours, the processing

of each object has to respect the consistency of its environment. There are a few work

catered for this requirement. Mustafa et al. [75] gave an algorithm for map simplifi-

cation with the constraint of non-intersection. They modeled a given map by a set of

piecewise connected chains. To prevent intersection among these chains during simpli-

fication, they built Voronoi regions for each chain. The observation is that if all the

chains are simplified within their respective Voronoi regions, they will not intersect with

other chains. Thus the Voronoi regions are the guaranteed districts for the constraints.

The similar idea can be traced to the work on mesh approximation by simplification

envelopes [18] and line simplification by safe set [64].

To handle the combination of various generalization constraints, Berg et al. [8]

gave an algorithm on map simplification. The main contribution is that they enforced

the constraints by maintaining the relationship between the curve under simplification

and the rest in the map. If the relationship is consistent, the constraints are satisfied.

However they have not given implementation on real map data. There are some other

work based on optimization techniques proposed to provide an overall solution [10, 38].

The main approaches include force models such as springs [10] and snakes [14, 12, 13, 95],

simulated annealing [107], beams [3] and Least Squares Adjustment [36, 92].

There is a common drawback for most line smoothing techniques that the smoothed

contours may shrink in the long run. Some methods are proposed to correct this problem

by intentionally compensating the region under shrinkage. Lowe [58] gave an algorithm

based on standard Gaussian smoothing. The improvement is that the shrinkage caused

58



by the smoothing is calculated and counteracted by inflating the curve to the same

amount. Similar work were given by Vollmer et al. [106], Kuprat et al. [48] and

Hahmann et al. [34]. The main idea is to relocate the vertices of the smoothed curves

to correct the area shrinkage. However these work can only handle single curve or

closed curve. Another methods directly embedded area preserving in the process of

curve deformation, such as adding low-pass filter effect on Gaussian smoothing [97, 77] ,

mean curvature flow [40, 26] and Euclidean geometric heat flow [85]. The drawbacks are

the operation is slow due to the locality property for the first one and the requirement

of a complex PDE solver for the latter two.

4.1.5 Constraint-based map generalization

Map generalization is not an isolated event for each map object, some measurements

should be taken to insure the overall correctness after generalization [108]. Generally,

these measurements or constraints are defined as a set of designed specifications that

controls the process to obtain the solution of map generalization [109]. According to

some research work [80, 109], the generalization constraints are divided into four cate-

gories as follows:

• Graphical constraints: This class of constraints controls the perceptibility for view-

ers through setting graphic limits. It decides both the individual and proximity

properties, for example the setting of the minimum size of map objects and the

minimum distance among map objects.

• Topological constraints: This class of constraints controls the preservation of the

topological relationship among map objects, such as intersection and connectivity.

It is also responsible for the topological consistency of individual objects, for

example the prevention of self-intersection of polygonal lines during generalization.

• Structural constraints: There are two components included in this class of con-

straints which are spatial structural constraints and semantic structural con-
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straints. The former emphasizes on the preservation of geometrical properties

of map objects, such as their shapes and the alignments. The latter emphasizes

on the logical aspects, for example, the generalization of the coastline should not

make the city into the sea.

• Gestalt constraints: This class of constraints is related to the visual aspects of the

generalization. It aims to achieve the aesthetic impression of the overall distribu-

tion of the map objects such as the visual balance of the map. In contrast to the

other constraints, gestalt constraints are largely dependent on the perceptibility of

human viewer, thus making it difficult to formulize into a sequence of operations.

It is also recommended that this evaluation should be performed in the final step.

4.2 Proposed method

4.2.1 Motivation

With the advances of satellite imaging technology, the large amount of high resolution

geospatial data-sets becomes available. For example, the total size of the TIGER data-

set [104], provided from the US Census Burean that gives the geographic description

of the whole US by the vector-based representation, is about 40GB in uncompressed

format and 3.5GB in the zipped form that consists of more than 3000 archive files. In

contrast to this data explosion, the size of the display devices is becoming smaller due to

the growing popularity of personal computing facilities such as portable computers and

mobile phones. This leads to a challenge: how to render large data-set in a relatively

small display. This is known as the “maximize the usage of screen real estate problem”

in visualization.

On the other hand, the map with more information may disturb viewer to grasp the

most relevant knowledge. For example, in driving navigation, the sinuosities along the

route, although reflecting the actual roads condition, may cause information clutter to

the viewer.
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To address the problem due to the small window size, variable-scale display is a

natural approach [35]. This is motivated by the fact that in such applications, it is

required to provide both a detailed information denoting the users’ location and a

context information giving the guiding direction. This is especially important in the

applications of personal navigation like Location Based Services as the successfulness of

way-finding is largely dependent on the references.

As for the second problem on information cluttering, simplification techniques, in-

cluding distortion and abstraction, are designed to improve the readability of the map

[59, 70]. For most work in this field, the main objective is to remove less important

details while salient features are retained. One drawback of such simplification is that

it usually lacks aesthetic consideration as sharp turns may appear. Thus it is expected

that the map is represented by a set of succinct and smooth curves with topological

fidelity.

4.2.2 A general approach

We take the following steps to generalize a map and render it in a small display window.

• Step 1: Objects outside of the ROI that have no relationship with objects in the

ROI are discarded.

• Step 2: A fisheye lens transformation is applied on the retained objects from

previous step.

• Step 3: The fisheye transformed map is smoothed.

In this thesis, instead of working on various objects representation, we explore polyg-

onal line or polyline, which represents road or coastline. Other objects like labels, county

boundaries, buildings, etc are not considered.

The focus of our work is on step 3. Given a collection of polylines L, we intend

to find smoothed lines that achieve optimality while satisfying topographic constraints.

The optimality lies in two aspects: to smooth the lines, and to reduce the derivation
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from the original. Formally, the optimization process is measured by a score function

subjected to certain constraint as follows:

min : E =
∑

l⊂L

(Es(l) + Ed(l)) (4.1)

where Es(l) is the sum of curvature along a polyline l and Ed(l) is the derivation of

smoothed l from its original.

The curvature of a smooth curve can be defined as the inverse of the radius of the

inscribed circle at each point along the curve. For the definition of curvature on polyline

by the connection of discrete data points, one possible way to estimate the curvature of

a point is to compute the inverse of the radius of the circle passing through the point

and its two neighbours. As shown in Figure 4.6 (a), the curvature of a point Pi in the

polyline can be given as k(Pi) = 1/r where r is the radius of the circle that passes

through 3 consecutive points Pi−1, Pi and Pi+1. In the implementation, we simply use

the length of the polyline to represent the sum of the curvature along the polyline as

intuitively the length can reflect the bending extent of the polyline.

The other item Ed(l) can be measured using Hausdorff distance. However, due to

the large number of points involved in the computation, we approximate Ed(l) by the

area exchanged between two polylines. For example, in Figure 4.6 (b), the derivation

between the polyline and the smooth curve represented by dotted line is measured by

the area difference under these two.

The topological constraint is:

• C: the areas enclosed by polylines are preserved.

Note that C implies that no intersection or self-intersection among the polylines are

created or removed.

In the following, we first give a brief description of step 1 and step 2. In Section 4.3,

we give a detailed description of step 3.
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Figure 4.6: (a): Curvature of a point in a polyline. (b):Derivation between a polyline
and the smooth curve.

4.2.3 Objects filtering and fisheye transformation (Step 1 and 2)

Filtering non-related objects

In this step, the map objects having relationship with ROI are retained and the rest

are discarded. In the implementation, we denote the ROI as a circular region. If an

object has overlapped with the ROI, we consider it relevant to current navigation task.

For example, in Figure 4.13 (a) we give an example of a route map marked with a ROI.

Fisheye view mapping function

There are two main variations of fisheye view mapping: Cartesian and Polar trans-

formation. Cartesian transformation is applied in rectangular coordinates while Polar

transformation is applied in polar coordinates. The difference is that the former trans-

forms data independently on X and Y directions while the latter transforms data in the

radial direction originating from the focus.

We employ normalized polar fisheye transformation as the distortion technique. Un-

der this variation, a point p(x, y) in rectangular coordinates is represented by its normal

coordinates (rnorm, θ) with the focus pf (xf , yf ) as the origin where rnorm = ||p − pf ||

and θ = atan(
y−yf

x−xf
). The relationship between a point’s polar coordinates (rnorm, θ) and

its fisheye coordinates (rfeye, θ) is given according to the following distortion function:
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rfeye = rmax ∗ G(z, d); (4.2)

where G(z, d) = (d+1)∗z
d∗z+1 and z = rnorm

rmax
. d is the distortion factor that controls the

intensity of the distortion and can be controlled through input from viewer. rmax is the

maximum bounding value of radius rnorm along the direction of θ. θ remains constant

during the transformation.

4.3 Line smoothing (Step 3)

4.3.1 Main idea

Finding the global optimal solution of E.q. 4.1 seems to be difficult. Instead, we gave a

heuristic that iteratively performed local smoothing. Each “local smoothing” essentially

finds two Bézier curves that satisfy the constraint C.

The set of polylines is smoothed one by one. For each polyline, it is randomly

divided into sub-polylines. The sub-polylines are divided in a way that the smoothing

problem on the set of polylines can be reduced to a sequence of simplified instances. To

ensure that there is a smooth transition from a sub-polyline to the next one, during the

smoothing of a sub-polyline, we include an additional constraints on the tangent of the

starting and ending points of the sub-polylines.

A complication appears to process open curves. Note that there is no “enclosed

area” under an open curve, and it is not clear on how to impose the area preserving

constraint on it. This will be discussed in Section 4.3.4.

4.3.2 Algorithm flow

The overall flow of the algorithm is as follow:

1. Pick a non-smoothed polyline l from the collection L.
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(a) Randomly pick a point pc from l. Noted that the pc is either the node of the

l or the intersection point resided in the l. Find a circle with pc as the center

that the set of sub-polylines S from L covered by the boundary of the circle

should all pass through pc. The radius of the circle is obtained to the largest

extent. The relationship between S and the circle belongs to the following

two cases:

• Case 1: The center of the circle pc is the node point of the polyline.

There is only one sub-polyline in S.

• Case 2: The center of the circle pc is the intersection point of polylines.

There are more than one sub-polylines in S that pass through the center

pc. In our current implementation, we only consider two sub-polylines.

It can be easily extended to more sub-polylines passing through the in-

tersection point.

These two cases are illustrated in Figure 4.7. Figure 4.8 gives a snapshot of

the moving circle along two polylines. The radius of the black moving circle

is obtained at the largest extent.

(b) Case 2(a) Case 1

Figure 4.7: The relationship between the line segments and the circle. The center of
the circle is marked by a triangle symbol.

(b) For each sub-polyline si ⊂ S, perform a sub-problem to find the smoothed

curve.
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(a) (b)

Figure 4.8: The snapshot of the moving circle along two polylines. The yellow dots
represent the intersection points of the two polylines. The red triangle represents the
center of the moving circle.

2. Process next polyline which is not smoothed.

4.3.3 Local smoothing in the sub-problem

The sub-problem is to find the smoothed curve(s) which minimize E.q. 4.1 under

the constraint C for the two cases given above. We employ area-preserving Bézier curve

fitting for the smoothing process. Generally, a Bézier curve can be determined by a

number of control points. It is very convenient to adjust the shape of the curve by

moving these control points. The advantage is that we can easily regulate the area

under the curve.

Figure 4.7 (a) shows the smoothing process for case 1. The process consists of the

following three steps.

1. Locating the control points.

We use four control points P1(Ax, Ay), P2(Bx, By), P3(Cx, Cy), P4(Dx,Dy) to

determine a Bézier curve. Parametrically, the Bézier curve is represented as follow:
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x(u) = Ax(1 − u)3 + 3Bx(1 − u)2u + 3Cx(1 − u)u2 + Dxu3

y(u) = Ay(1 − u)3 + 3By(1 − u)2u + 3Cy(1 − u)u2 + Dyu
3

u ⊂ [0, 1]

(4.3)

The coefficients in the equation represent the coordinates of the control points.

Points P1 and P4 are the two end points of the Bézier curve and are obtained

as the intersection points between the polyline and the circle. Points P2 and P3

are the two intermediate points. The adjustment of these two points will affect

the overall shape of the obtained Bézier curve. These two points are obtained

by extending the line segment from the polyline that intercepts the circle until

getting another intersection with the circle. These extended line segments are

marked as red and blue in Figure 4.7 (a). The intersection points are represented

as a square with solid line and dashed line separately. Noted that the dashed-line

square is obtained from the extension. For the solid-line squares, they are fixed

as control points and decide the tangent vector at the two ends. The other two

control points are chosen from the red and blue lines by some sampling interval.

2. Obtaining Bézier curve under constraints.

The obtained Bézier curve through fitting on the control points located in the

first step should not cross over the circle and the new partition made on the area

of the circle should be the same as that divided by the original line segments.

The first requirement has insured that no imported intersection points occur and

the second one is for the area preserving constraint. In our implementation, we

consider it acceptable if a enclosed area is not altered substantially. Thus we set

a threshold γ as the limitation for the percentage of area difference between a

smoothed polyline and its original.
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3. Finding the optimal solution.

There may be more than one Bézier curve obtained in step 2. These curves are

the candidates for choosing the optimal solution judged by E.q. 4.1. Considering

the relatively small parameter space, we use exhaustive search to find the optimal

Bézier curve.

(b) Case 2

III

Figure 4.9: The smoothing on Case 2. It is referred to as Case (b) in Figure 4.7.

For smoothing on case 2 that there are two sub-polylines in the safe region, we give

the following algorithm.

There are two steps for the algorithm. We first process one sub-polyline with the

whole circle as the boundary. The problem can be reduced to case 1. As shown in Figure

4.9, the blue dotted line represents the Bézier curve fitting for the dotted polyline in

Case 2. The following step is to process the two parts of the other sub-polyline. The

smoothing of each part can also be reduced to case 1. To handle multiple polylines, the
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center needs to be fixed after the first step.

4.3.4 Area-preserving on open curves

To handle the area-preserving constraint on open curves, we adopt the idea of “diff-

area model” in the work by Bose et al. [11]. This model gives a solution to simplify a

polygonal path with the objective that the area above (or below) the path changed by

the approximation is preserved. However their work is constrained to handle x-monotone

polygonal path. Here we give a simple overview of the model.

Problem definition. Suppose P and Q are two x-monotone polygonal paths where

Q is the approximating one of P . Let ΩA(Q) be the area above P and below Q, and

ΩB(Q) be the vice versa.

Diff-area model. To measure the quality of the approximation by Q, diff-area model

suggests that the cost function is |ΩA(Q) − ΩB(Q)| which is the area exchange above

(or below) P and Q. This model implies that the area is “exchangeable”, that is, area

loss at one location can be redeemed from another location.

In our algorithm, each polyline has been divided into a set of sub-polylines such

that the smoothing problem is easy to handle for each sub-polyline. This division has

also created the flexibility to apply diff-area model in each sub-polyline. As each sub-

polyline is smoothed in a circle locally found, applying diff-area model is identical to

preserve area of the circle partitioned by the sub-polyline. The overall area-preserving

constraint is satisfied while the local smoothing process is performed iteratively.

4.4 Implementation and experiments

We implemented our algorithm on a synthetic data-set and a real map data-set.

Figure 4.10 (a) gives the full view of the synthetic data-set with 9 polylines in ROI

are highlighted. The ROI is simply denoted by a black circle. All the polylines outside

the ROI or the black circle are regarded as non-related to current navigation interest
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and filtered. The retained 9 polylines are depicted by different colors in Figure 4.10 (b).

For the purpose of easy illustration, we mark each route by a sequence number at one

end of the route.

Figure 4.11 gives the experimental results of our algorithm with different parameters.

Figure 4.11 (a) and Figure 4.11 (b) give the fisheye transformation with different focus

of interest. The distortion factor d is 3 and the focus is marked as a red dot. Figure

4.11 (c) and Figure 4.11 (d) give the smoothing results on Figure 4.11 (a) and Figure

4.11 (b). The threshold γ for measuring the area difference is set as 0.01. Figure 4.11

(e) and Figure 4.11 (f) have the same parameters as Figure 4.11 (c) and Figure 4.11 (d)

except that γ is set as 0.3.

Note that the routes after smoothing have much less sinuosities comparing to their

original counterparts. Meanwhile, the area enclosed by the routes are not changed

drastically. Although our algorithm performs smoothing locally, the global smoothness

for the routes are achieved. Taking polyline 8 in Figure 4.11 (e) as an example, the

8 segments partitioned by the 7 intersection points not only stay smooth separately

but also keep continuous on the conjunction points. Increasing γ may achieves better

smoothing effect while the enclosed area is altered significantly.

Figure 4.12 gives the overall score function E for polyline 1 in Figure 4.11 (c). As

we consider the area difference negligible, this curve reflects the curvature variation at

each iteration. It shows that the solution provided by our algorithm always improves

the optimality of the route.

The real map data-set is extracted from a simple representation of the major roads

in the state of Connecticut, US. It depicts the highway network in the state at 1:250,000

scale. Figure 4.13 gives the results on our algorithm.

4.5 Remarks

In this work, we design a map generalization algorithm that handles visualization of

vector-based map on devices with small display window. The algorithm firstly filters out
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non-related information for current navigation task. The following steps are applying

fisheye lens to exaggerate objects in the ROI and smoothing the lines to remove clutter

caused by the distortion. Our main focus is on the line smoothing part. We presented

an algorithm that formulates the smoothing process as an optimization problem which

minimizes the overall curvature while preserving the enclosed area by the lines. We

gave a heuristic method to find the optimal solution by dividing the problem into the

combination of a set of sub-problems. For each sub-problem, our objective is to find

at most two Bézier curves given at most two polygonal lines which intersect at most

once in a circular region, meanwhile the partitioned area of the region by the two

lines are preserved. Experimental study demonstrates that our algorithm achieves the

approximation of global optimality for the generalized map.

There are three aspects to extend current work.

1. In each sub-problem, we determine the Bézier fitting for each polygonal segment

by a small number of parameters. Thus the whole polyline could be represented

by a compact format. This could be used in remote visualization by transmitting

only the compact format of a map thus improving the efficiency. However, as the

sub-problems are independent for each other, consideration should be given on

how to reconstruct the correct final presentation upon receiving the transmitted

parameters.

2. Currently, we only consider the geometric features of a vector-based map. General-

ization may become complex when the other features are considered, for example,

the labeling of map objects. The positioning of the label will be a challenging

issue when the corresponding object is relocated.

3. The efficiency of the algorithm can be improved if the process of choosing segments

to smooth is controlled. There are a few crucial points on each polyline that

dominant the major bending energy. The detection of these points is critical to

accelerate the smoothing iteration.
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Figure 4.10: The synthetic data with 9 polylines in ROI. The 9 polylines are depicted
as red color while the rest are in blue. The ROI is denoted as the black circle.
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Figure 4.11: Fisheye view transformation plus line smoothing on 9 polylines. Distortion
factor d = 3. Area difference threshold γ = 0.01 for (c) and (d). γ = 0.3 for (e) and
(f).
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Figure 4.13: The route map data-set is extracted from a simple representation of the
major roads in the state of Connecticut, US. It depicts the highway network in the state
at 1:250,000 scale. The black circle in (a) indicates the ROI with 4 routes depicted as
red color. Fisheye view distortion factor d = 3 for (c). Area difference threshold γ =
0.01 for (d).
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Chapter 5

Conclusions

The thesis discusses some issues on visualization with limited resources at the viewer’s

side. In this work we consider two forms of the resources: the computing power and the

size of display window. We adopt region of interest (ROI) techniques as the potential

solution to maximize the resources usage. ROI approach has two advantages: 1) it

intentionally allocates more resources to the interesting region; 2) it leads the viewer’s

attention to the interesting region. In order to improve the information readability,

smooth transition is advocated to alleviate the discontinuity between object from high

to low level of interest. We study the variations of ROI techniques in the context of two

applications: remote volume visualization and vector-map visualization.

The first part of the thesis studies the remote visualization of volume data where the

client has access to low computing resources. We adopt foveation approach in which

volume data are represented by multiple levels of resolution with the highest in the

ROI. One technical issue of this approach is on how to efficiently render the foveated

volume. We give an algorithm that renders the foveated volume directly in the wavelet

domain. The rendering time only depends on the relevant wavelet coefficients of the

foveated volume. Another issue is on how to effectively visualize a foveated volume as

the overall resolution is reduced. We give methods to highlight objects in ROI thus the

overall quality is not affected drastically in ROI.
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The second part of the thesis studies the visualization of vector-based map in small

display window. To cater for the requirement of presenting large data in the limited

space, we design a map generalization algorithm that shows relevant navigation informa-

tion in a variable-scale fashion. We adopt fisheye transformation to display the objects

in the ROI in a larger scale. This operation may inevitably cause information clutter at

the peripheral due to the distortion. To solve this problem, we present a line smoothing

algorithm. The smoothing process is an iteration of localized smoothing procedure that

satisfies topological constraints.
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Appendix

List of publications:

1. Hang Yu and Ee-Chien Chang, Distributed Multivariate Regression Based on In-

fluential Observations, 9th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2003, page 679-684.

2. Hang Yu, Vu Thanh Nguyen and Ee-Chien Chang, Rotation of foveated image in

the wavelet domain, IEEE International Conference on Image Processing, 2004.

3. Hang Yu, Ee-Chien Chang, Zhiyong Huang and Zhijian Zheng, Fast Rendering of

Foveated Volumes in Wavelet-based Representation, 13th Pacific Conference on

Computer Graphics and Applications, 2005. (published in The Visual Computer

(TVC)).
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