242 research outputs found

    APPRAISAL OF TAKAGI–SUGENO TYPE NEURO-FUZZY NETWORK SYSTEM WITH A MODIFIED DIFFERENTIAL EVOLUTION METHOD TO PREDICT NONLINEAR WHEEL DYNAMICS CAUSED BY ROAD IRREGULARITIES

    Get PDF
    Wheel dynamics play a substantial role in traversing and controlling the vehicle, braking, ride comfort, steering, and maneuvering. The transient wheel dynamics are difficult to be ascertained in tire–obstacle contact condition. To this end, a single-wheel testing rig was utilized in a soil bin facility for provision of a controlled experimental medium. Differently manufactured obstacles (triangular and Gaussian shaped geometries) were employed at different obstacle heights, wheel loads, tire slippages and forward speeds to measure the forces induced at vertical and horizontal directions at tire–obstacle contact interface. A new Takagi–Sugeno type neuro-fuzzy network system with a modified Differential Evolution (DE) method was used to model wheel dynamics caused by road irregularities. DE is a robust optimization technique for complex and stochastic algorithms with ever expanding applications in real-world problems. It was revealed that the new proposed model can be served as a functional alternative to classical modeling tools for the prediction of nonlinear wheel dynamics

    Vehicle yaw motion control using takagi-sugeno modeling and quadratic boundedness via dynamic output feedback

    Get PDF
    International audienceThis paper presents the design and the simulation test of a Takagi-Sugeno (TS) fuzzy output feedback for yaw motion control. An integrated steering and differential braking controller based on invariant sets, quadratic boundedness theory and a common Lyapunov function has been developed. The TS fuzzy model is able to handle elegantly the nonlinear behavior the vehicle lateral dynamics. The computation of the control law has been achieved using Linear and Bilinear Matrix Inequalities (LMI-BMI) methods. Simulation test shows the controlled car is able to achieve the ISO3888-2 transient maneuver. Some design parameters can be adjusted to handle the tradeoff between safety constraints and comfort specifications

    Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer

    Get PDF
    A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle (beta) observer. In the design strategy of the fuzzy observer, the vehicle dynamics is represented by Takagi-Sugeno-like fuzzy models. Initially, local equivalent vehicle models are built using the linear approximations of vehicle dynamics for low and high lateral acceleration operating regimes, respectively. The optimal beta observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall control system by using fuzzy rules. These fuzzy rules represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism for the fuzzy membership functions has been incorporated to improve the accuracy and performance of the system. The effectiveness of this design approach has been demonstrated in simulations and in a real-time experimental settin

    High-speed autonomous navigation system for heavy vehicles

    Get PDF
    This paper presents techniques for GPS based autonomous navigation of heavy vehicles at high speed. The control system has two main functions: vehicle position estimation and generation of the steering commands for the vehicle to follow a given path autonomously. Position estimation is based on fusion of measurements from a carrier-phase differential GPS system and odometric sensors using fuzzy logic. A Takagi-Sugeno fuzzy controller is used for steering commands generation, to cope with different road geometry and vehicle velocity. The presented system has been implemented in a 13 tons truck, and fully tested in very demanding conditions, i.e. high velocity and large curvature variations in paved and unpaved roads

    Dynamic Optimization Self-adaptive AI Controller for a Four-wheel Independent Drive Electric Rover

    Get PDF
    In this paper, a dynamic optimization self-adaptive controller for a four-wheel independent drive electric rover has been investigated to enhance the dynamic stability. The proposed self-adaptive AI controller is based on dynamic Fuzzy Logic (FL) control mechanism. The dynamic self-adaptive properties have been integrated into the proposed FL controller through a dynamically tuned Particle Swarm Optimization (PSO) mechanism. Nevertheless, the dynamic FL controller and the dynamic PSO mechanism has been synchronized together for every sampling instance k to obtain the optimum performance of the electric rover. In this electric rover, all the four wheels have a fixed orientation and each wheel powered by a 250-Watt Brushless Direct Current (BLDC) motor through separate gear ratio mechanisms to obtain the desired torque and angular velocity. Therefore, the steering mechanism was achieved in this rover through the proposed AI controller, which was based on the differential speed mechanism. However, this paper presents the control methodology and obtained test results related to straight road tests under different slippery road conditions. The rover test results show that on different slippery road conditions the proposed PSO based FL controller has maintained the wheel slip ratio of all the four wheels which was less than 0.35 approximately. Here, the translational speed has been limited to 40 km/hr approximately within its recorded top speed of 90 km/hr while maintaining the desired fix orientation

    Evolving cloud-based system for the recognition of drivers' actions

    Get PDF
    This paper presents an evolving cloud-based algorithm for the recognition of drivers' actions. The general idea is to detect different manoeuvres by processing the standard signals that are usually measured in a car, such as the speed, the revolutions, the angle of the steering wheel, the position of the pedals, and others, without additional intelligent sensors. The primary goal of this investigation is to propose a concept that can be used to recognise various driver actions. All experiments are performed on a realistic car simulator. The data acquired from the simulator are pre-processed and then used in the evolving cloud-based algorithm to detect the basic elementary actions, which are then combined in a prescribed sequence to create tasks. Finally, the sequences of different tasks form the most complex action, which is called a manoeuvre. As shown in this paper, the evolving cloud-based algorithm can be very efficiently used to recognise the complex driver's action from raw signals obtained by typical car sensors. (C) 2017 Elsevier Ltd. All rights reserved.This work has been supported by the Program Chair of Excellence of Universidad Carlos III de Madrid and Bank of Santander and the Spanish Ministry of Economy, Industry and Competitiveness, projects TRA2015-63708-R and TRA2016-78886-C3-1-R

    Comparative Study of Takagi-Sugeno-Kang and Madani Algorithms in Type-1 and Interval Type-2 Fuzzy Control for Self-Balancing Wheelchairs

    Get PDF
    This study examines the effectiveness of four different fuzzy logic controllers in self-balancing wheelchairs. The controllers under consideration are Type-1 Takagi-Sugeno-Kang (TSK) FLC, Interval Type-2 TSK FLC, Type-1 Mamdani FLC, and Interval Type-2 Mamdani FLC. A MATLAB-based simulation environment serves for the evaluation, focusing on key performance indicators like percentage overshoot, rise time, settling time, and displacement. Two testing methodologies were designed to simulate both ideal conditions and real-world hardware limitations. The simulations reveal distinct advantages for each controller type. For example, Type-1 TSK excels in minimizing overshoot but requires higher force. Interval Type-2 TSK shows the quickest settling times but needs the most force. Type-1 Mamdani has the fastest rise time with the lowest force requirement but experiences a higher percentage of overshoot. Interval Type-2 Mamdani offers balanced performance across all metrics. When a 2.7 N control input cap is imposed, Type-2 controllers prove notably more efficient in minimizing overshoot. These results offer valuable insights for future design and real-world application of self-balancing wheelchairs. Further studies are recommended for the empirical testing and refinement of these controllers, especially since the initial findings were limited to four-wheeled self-balancing robotic wheelchairs

    Neuro-Fuzzy Combination for Reactive Mobile Robot Navigation: A Survey

    Get PDF
    Autonomous navigation of mobile robots is a fruitful research area because of the diversity of methods adopted by artificial intelligence. Recently, several works have generally surveyed the methods adopted to solve the path-planning problem of mobile robots. But in this paper, we focus on methods that combine neuro-fuzzy techniques to solve the reactive navigation problem of mobile robots in a previously unknown environment. Based on information sensed locally by an onboard system, these methods aim to design controllers capable of leading a robot to a target and avoiding obstacles encountered in a workspace. Thus, this study explores the neuro-fuzzy methods that have shown their effectiveness in reactive mobile robot navigation to analyze their architectures and discuss the algorithms and metaheuristics adopted in the learning phase
    corecore