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ABSTRACT
This paper presents the design and the simulation test of a

Takagi-Sugeno (TS) fuzzy output feedback for yaw motion con-
trol. An integrated steering and differential braking controller
based on invariant sets, quadratic boundedness theory and a com-
mon Lyapunov function has been developed. The TS fuzzy
model is able to handle elegantly the nonlinear behavior the
vehicle lateral dynamics. The computation of the control law
has been achieved using Linear and Bilinear Matrix Inequalities
(LMI-BMI) methods. Simulation test shows the controlled car is
able to achieve the ISO3888-2 transient maneuver. Some design
parameters can be adjusted to handle the tradeoff between safety
constraints and comfort specifications.

NOMENCLATURE
m Vehicle total mass 1600 kg.
c f0 Front cornering stiffness 40000 N/rad.
cr0 Rear cornering stiffness 35000 N/rad.
J Vehicle yaw moment of inertia 2454 kg·m2.
l f Distance form CG to front axle 1.22m.
lr Distance from CG to rear axle 1.44m.
v Longitudinal velocity.
μ Road adhesion coefficient [0,1].

∗Address all correspondence to this author.

INTRODUCTION

There is no doubt that electronic stability control systems
(ESC) have largely contributed to accident and death reduction
during this last decade [18]. Vehicle loss of control is the main
accident situation which is particularly well addressed by ESC.
In fact, it has been proven to enhance vehicle directional stability
through yaw torque generated by applying suitable wheel brak-
ing. In addition to vehicle loss of control, ESC is potentially
highly effective in preventing run-off road crashes, rollover ac-
cident and multi-vehicle crashes. However, further reduction of
these types of accidents remains a major goal of car manufactur-
ers and suppliers since they represent a high percentage of the
overall accident rate and the number of deaths [18].

Starting with the original concept introduced by Bosch in
1995 [19] [20], different approaches have been developed for
ESC. Today’s systems act on the vehicle lateral dynamics mainly
through independent wheel braking. Beyond this solution, recent
studies have demonstrated that differential braking may have a
better effect on yaw dynamics than independent active wheel
braking [21]. Optimal strategies for braking forces allocation
have been explored in [22]. In parallel, vehicle handling has been
also investigated through active steering which allows to act as an
interface between the driver steering wheel and the tires [9], [12].
Even if the mechanical linkage between them is still a limiting
factor, solutions have been already implemented in series pro-
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duction. For example, a concept of advanced front steering [26]
allows to add a limited steering angle which is able to gener-
ate sufficient lateral forces for lateral disturbance rejection [14],
[23]. However, this type of solution is mainly reserved for driv-
ing situations characterized by a low sideslip angle [25], [12] and
real gain from active steering will come with steer-by-wire sys-
tems which will offer additional freedom-factors for controller
intervention [24].

In this paper, an integrated control strategy which combines
active steering and differential braking and uses a dynamic fuzzy
output feedback concept is proposed. Takagi-Sugeno fuzzy sys-
tems offer an elegant approach for modeling non linear systems
in a wide operating domain. In the literature, control of fuzzy
systems has been mainly addressed using parallel distributed
control (PDC) concept [6], [15], [5], [7]. State feedback con-
trollers have been first designed with different performance in-
dex. When the state is unmeasurable, a fuzzy state observer
could be incorporated into the controller design in order to form
an output feedback fuzzy control. The fuzzy observer generally
uses the same rules as that of the state feedback PDC rules [10].
Sufficient conditions for PDC static output feedback have been
also developed for nominal and uncertain fuzzy systems [8]. The
dynamic output feedback case has been considered in recent
work. The dynamic output feedback formulation considered in
this paper presents two main advantages: better flexibility to for-
mulate the stabilization conditions and ability to handle input or
state constraints and bounded disturbances. This controller uses
the property of quadratic boundedness and invariant set [4].

In fact, during control intervention, it is important to ensure
a good safety level. To achieve this, it has been chosen to build
an invariant set for the system state and to require that each tra-
jectory that starts inside the invariant set will not exceed it, hence
the trajectories will be bounded inside it.

The nonlinear vehicle dynamics [13] are first modeled using
a discrete tile 4 rules Takagi-Sugeno fuzzy model based on the
tire sideslip angles thresholds [15], [11]. In addition, the model is
developed in such a way to include the error dynamics of the yaw
rate reference model following. Afterwards, a dynamic control
fuzzy output feedback is synthesized [4], [8]. It handles both
input and state constraints using only measurements of the yaw
rate and the steering angle [16].

The next Section gives a description of the developed vehicle
lateral dynamics Takagi-Sugeno model of the vehicle. The fuzzy
output feedback synthesis, including the requirements concern-
ing the quadratic boundedness, the state constraints and control
limitation are then presented. Simulation results for maneuvers
which excite the nonlinear tire dynamics are provided. The con-
clusions wrap up the paper.

(a)

FIGURE 1. Vehicle model

VEHICLE LATERAL DYNAMICS T-S MODEL
As we are concerned with lateral control, a simple nonlinear

model of a vehicle is obtained by neglecting the roll and pitch
motions. This model includes the lateral translational motion
and the yaw motion (Figure 1). The two wheels of each axle are
lumped into one located at its center. This leads to the vehicle
bicycle model. The lateral forces between the each tire and the
road surface are added at each axle leading to two resulting forces
f f
(
α f

)
and fr (αr) at the front and rear wheels of the bicycle

model respectively. These forces which will be detailed below
are function of the front and rear tires sideslip angle, denoted α f

and αr respectively.

The lateral translation and rotational yaw motion equations
written in the vehicle fixed frame take the following form

[
mv

(
β̇ + r

)
Jṙ

]
=

[
1 1 0
l f −lr 1

]⎡⎣ f f
(
α f

)
fr (αr)

Tz

⎤⎦ (1)

where β is the vehicle side slip angle, r is the yaw rate and Tz is
the yaw moment input applied by differential wheel braking. m
is the vehicle mass while J is the vehicle moment of inertia. The
vehicle center of gravity is located at a distance l f from the front
axle and a distance lr from the rear axle.

Assuming that the angles remain small, the front and the rear
sideslip angles are given by:

α f = δ f −
(
β +

l f
v r
)

αr =−β + lr
v r

(2)
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Lateral tire forces model
Several types of models of the forces of tire-pavement inter-

action have been proposed in the literature [13]. They are usu-
ally derived from experimental data, as for the Pacejka model,
and have as parameters the adhesion, the speed v and the normal
force fni. The shape of the lateral force is often similar from one
model to another. A first linear domain for small sideslip angle
allows to define a slope factor cyi called the tire cornering stiff-
ness coefficient. When the sideslip angle increases, the tire enters
a nonlinear operating zone where the lateral force saturates. The
maximum value defines the limit of the vehicle maneuverability,
resulting in a loss of controllability that can cause an understeer-
ing phenomenon or an unusual oversteering which may surprise
the driver. In the sequel, the model HSRI1 will be used [17]. It
allows a simple lateral tire forces formulation which integrates
two of the cited parameters, the adhesion μ and the normal force
fni :

fyi = cyi f (λ ) tanαi (3)

where

λ =
μ fni

2cyi |tanαi|

and

f (λ ) =
{
(2−λ )λ si λ < 1

1 λ ≥ 1

Let note first that the HSRI model is characterized by the
following properties:

The slope at the origin is a function of the adhesion.
The maximum force value that can be mobilized is fni .
For maximum adhesion, the slope at the origin intersects the

saturation value for the tire sideslip angle value αsat =
fni
cyi

.

The goal now is to achieve a Takagi-Sugeno fuzzy model
which covers the entire operating domain (linear and nonlinear)
of the forces [1]. The developed process is naturally applicable
for any other type of tire forces model. Similarly, even if triangu-
lar membership functions are used, any other membership func-
tions could be used. The definition and the value of the above
parameters are described in the nomenclature.

Four rules Takagi-Sugeno vehicle fuzzy model
The nonlinear vehicle model is transformed into a four rules

Takagi-Sugeno (T-S) fuzzy model according to the values of the
front and rear cornering stiffnesses:

1Highway Safety Research Institute, United-States
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FIGURE 2. Tire lateral force given by the HSRI model and sector
based approximation.

if
∣∣α f

∣∣ is m1 and |αr| is n1 then

{
f f = c f1α f

fr = cr1αr

if
∣∣α f

∣∣ is m2 and |αr| is n1 then

{
f f = c f2α f

fr = cr1αr

if
∣∣α f

∣∣ is m1 and |αr| is n2 then

{
f f = c f1α f

fr = cr2αr

if
∣∣α f

∣∣ is m2 and |αr| is n2 then

{
f f = c f2α f

fr = cr2αr

The membership functions mi and ni (i = 1,2) are deter-
mined by the approximation method of nonlinear function by
linear sectors. Coefficients c fi and cri (i = 1,2) represent the tire
cornering stiffnesses associated to each sector. In fact they rep-
resent also the slope of the limits of the sectors which include
the tire forces (Fig. 2). For example, given two coefficients
c f1 and c f2 , chosen according to the expected road adhesion and
driving conditions, one can determine the membership functions
m1

(
α f

)
and m2

(
α f

)
using the following set of equations:

{(
c f1m1

(
α f

)
+ c f2m2

(
α f

))
α f = f f (α f )

m2 = 1−m1
(4)

which leads to:

m1 =
f f − c f2α f

(c f1 − c f2)α f
(5)

The evolution of the two functions m1 and m2 as functions of 

the sideslip angle are shown in Figure 3. They are obtained with 
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numerical values: c f1 = 1.1c f and c f2 = 0.7c f . It is important to
outline that this sector representation is an exact approximation
of the non linear system.

FIGURE 3. Membership functions m1 and m2 associated to the front
tire contact forces.

The membership functions n1 and n2 for the rear tire forces
are obtained by the same procedure. Finally, one can write:

{
f f =

[
(h1+ h3)c f1 +(h2+ h4)c f2

]
α f

fr = [(h1+ h2)cr1 +(h3+ h4)cr2 ]αr
(6)

with h1 =m1×n1, h2 =m2×n1, h3 =m1×n2 and h4 =m2×n2.

In order to have the front and the rear sideslip angle as state
vector components, let us define the state x̄ = [α f ,αr,δ f ]

T and
the control input u = [δ̇ f ,Tz]

T , the fuzzy system takes the form:

˙̄x =
4

∑
i=1

hi
(
α f ,αr

)
Āix̄+ B̄u (7)

where

Āi =

⎡⎣ a11i a12i a13

a21i a22i a23

0 0 0

⎤⎦ , B̄ =

⎡⎣ 1 − l f
Jv

0 lr
Jv

1 0

⎤⎦ (8)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11i =− v
l f+lr

− 1
v

(
1
m +

lrl f
Iz

)
c f i,

a12i =
v

l f +lr
− 1

v

(
1
m − l f lr

Iz

)
cri ,

a21i =− v
l f+lr

− 1
v

(
1
m − l2r

Iz

)
c f i,

a22i =
v

l f +lr
− 1

v

(
1
m + l2r

Iz

)
cri ,

a13 =
v

l f +lr
,

a23 =
v

l f +lr
.

Reference yaw rate tracking
Ideally, the vehicle should respond to driver’s steering angle

as a speed depended yaw rate reference steady state value with
almost constant settling time. Let T0 be the desired transfer func-
tion between δo and r. In order to ensure at nominal speed, the
same steady state value for the controlled and the conventional
car, the reference model is chosen as a first order transfer func-
tion with the same steady state gain as the conventional car. It is
of the form rd = Kd(v)

τs+1 δd . The speed dependent steady state gain
is Kd(v) and τ = 0.2 sec.

In order to ensure that the yaw rate reference value is
achieved in steady state, the integral z of the yaw rate tracking
error is added as state a variable:

ż = r− rd =
δ f +αr −α f

l f + lr
v− rd (9)

This variable is thus added to the previous third order model
while the desired yaw rate is considered as a disturbance. The
fuzzy model is finally discretized at a sample time of 0.005sec
using a Tustin’s method. The final fuzzy model is of the form:

x(t +1) = ∑4
i=1 hi

(
α f ,αr

)
Aix(t)+Bu(t)+Ew(t)

y(t) =Cx(t)+Dw(t)
(10)

where x = [α f ,αr,δ f ,z]T and y(t) = [r,z]T . The disturbance
w(t) = rd(t) ∈ εQ =

{
w ∈ R/wT Qw ≤ 1

}
is bounded. Matri-

ces Ai and B can be easily derived from equations (8) and (9).
This discrete time fuzzy system is characterized by common B,
E and C matrices for all the sub-models:

E =
[
0 0 0 −1

]T
C =

[ −v
l f +lr

v v
l f +lr

v
l f +lr

0

0 0 0 1

]

This property simplifies drastically the stability and performance
conditions as only simple summations are involved. The matrix
D is zero for the nominal system.
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DYNAMIC OUTPUT FEEDBACK FUZZY CONTROLLER
In the following, we seek a dynamic fuzzy controller of the

form:

xc(t+1) = ∑4
i=1 hi

(
α f ,αr

)
Ai

cxc(t)+Bcy(t)
u(t) =Ccxc(t)+Dcy(t)

(11)

where xc ∈ R5 is the controller state; {Ai
c,Bc,Cc,Dc} are matri-

ces to be designed.
This controller still uses the parallel distributed compensa-

tion (PDC) concept of the fuzzy system control. In this concept,
each control rule is distributively designed for the corresponding
rule of a T-S fuzzy model. Linear control theory can then be used
to design controllers for each of the consequent part of the fuzzy
system while ensuring the same properties for the fuzzy system.

As pointed out in [4], Dc is an important parameter for stabi-
lization, and the controller structure is able to handle constraints
on the input and the state. By combining (10) and (11), the aug-
mented closed-loop fuzzy model is given by

x̃(t+1) =
4

∑
i=1

hi
(
α f ,αr

)
Φix̃(t)+Γw(t). (12)

where x̃ =

[
x
xc

]
, Φi =

[
Ai+BDcC BCc

BcC Ai
c

]
and Γ =[

BDcD+E
BcD

]
.

Let Φz = ∑4
i=1 hi

(
α f ,αr

)
Φi, the closed loop system takes

the form: x̃(t + 1) = Φzx̃(t)+Γw(t). Finally the control input
u(t) is given by:

u(t) =
[
DcC Cc

]
x̃(t)+DcDw(t) (13)

Invariant set and output feedback PDC control
Assume that there exists a quadratic function V (x̃) = x̃T Px̃,

where P is a symmetric, positive definite matrix that satisfies the
condition [2], [3]:

V (x̃+1)≤V (x̃), ∀x̃, wsatisfying (12), wT Qw ≤ 1,V (x̃)≥ 1.
(14)

Consider the reachable set Λ defined by:

Λ� {x̃(T )| x̃, wsatisfying (12),
x̃(0) = 0, wT Qw ≤ 1, T ≥ 0}. (15)

The set εP is defined by:

εP = {x̃(t) ∈ R8|x̃(t)T Px̃(t)≤ 1}, (16)

is an invariant set for the system (12) with w ∈ R, wT Qw ≤ 1.
This means that every trajectory that starts inside εP remains in-
side it for t → ∞.

The existence of such a function V (x̃) means that the set εP
is an outer approximation of the reachable set Λ.

εP is also and outer approximation of the reachable set

Λ∗ � {x̃(T )| x̃, wsatisfying equation (12),
x̃(0) ∈ ε(P), wT Qw ≤ 1, T ≥ 0}. (17)

In this section the control law and the invariant set εP are syn-
thesized. This is achieved using BMI (Bilinear Matrix Inequali-
ties) optimization method such that the system without the distur-
bance is asymptotically stable and at the same time, the reachable
set for an initial state values inside the invariant set is contained
in this invariant set.

Invariant set - quadratic boundedness
According to the previous considerations, the closed loop

linear system x̃(t + 1) = Φzx̃(t) + Γw(t) is strictly quadrati-
cally bounded with a common Lyapunov matrix P > 0 for
all allowable w(t) ∈ εQ, for t > 0, if x̃(t)T Px̃(t) > 1 implies
(Φzx̃(t)+Γw(t))T P(Φzx̃(t)+Γw(t))< x̃T Px̃, for any w ∈ εQ.

The corresponding condition is obtained using the
S−procedure and invoking the Schur complement, using that the
satisfaction of w ∈ εQ and x̃T Px̃ ≥ 1 implies wT Qw ≤ x̃T Px̃.

The implication

wT Qw ≤ x̃T Px̃

=⇒ (Φzx̃(t)+Γw(t))T P(Φzx̃(t)+Γw(t))≤ x̃T Px̃

is equivalent to:

∃α > 0 :

⎡⎣ (1−α)P ∗ ∗
0 αQ ∗
Φz Γ P−1

⎤⎦≥ 0 (18)

Let define P =

[
P1 PT

2
P2 P3

]
and P−1 =

[
M1 MT

2
M2 M3

]
. Assuming that

P2 and M2 are full rank matrices, let us define T1 =

[
I M1

0 M2

]
and

T2 =

[
I P1

0 P2

]
. By pre- and post-multiplying the left-hand side of

(18) with diag{TT
1 , I,TT

2 } and diag{T1, I,T2}, respectively, and
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applying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D̂c = Dc

Ĉc = DcCM1 +CcM2

B̂c = P1BDc +PT
2 Bc

Âi
c = P1AiM1 +P1BDcCM1 +PT

2 BcCM1

+P1BCcM2+PT
2 Ai

cM2

(19)

one can obtain

4

∑
i=1

hi
(
α f ,αr

)
ϒi ≥ 0 (20)

where

ϒi =

⎡⎢⎢⎢⎢⎣
(1−α)P1 ∗ ∗ ∗ ∗
(1−α)I (1−α)M1 ∗ ∗ ∗

0 0 αQ ∗ ∗
Ai+BD̂cC AiM1+BĈc BD̂cD+E M1 ∗
P1Ai + B̂cC Âi

c B̂cD+P1E I P1

⎤⎥⎥⎥⎥⎦ (21)

Notice that the matrices M1, M2, P1 and P2 verify:

MT
2 P2 = I−M1P1 (22)

In addition, it is possible to handle constraints on the control sig-
nal and the state:

−ū ≤ u(t)≤ ū, −Ψ̄≤Ψx(t + 1)≤ Ψ̄, ∀t ≥ 0 (23)

where ū > 0, Ψ̄ := [Ψ̄1, . . . ,Ψ̄q]
T with Ψ̄ j > 0, j = 1, . . . ,q, Ψ ∈

Rq×4. Notice that the bounds are provided separately on each
state variables or as combination of state variables.

For a pre-specified scalar η ∈ (0,1], the quadratic bounded-
ness property ensures that if x̃(0) ∈ εηP, then x̃(t) ∈ εηP, ∀t ≥ 0,
thus ∀w(t) ∈ εQ

maxt≥0
∣∣u(t)2∣∣= maxt≥0

∣∣[DcC Cc
]
x̃(t)+DcDw(t)

∣∣2
≤ maxt≥0

∥∥∥∥∥[ [DcC Cc
]

DcD
][ηP 0

0 Q

]−1/2
∥∥∥∥∥

2

×
∥∥∥∥∥
[
ηP 0
0 Q

]1/2[
x̃(t)
w(t)

]∥∥∥∥∥
2

≤ 2max

∥∥∥∥∥[ [DcC Cc
]

DcD
][ηP 0

0 Q

]−1/2
∥∥∥∥∥

2

≤ ū2

(24)

By applying the Schur complement, the condition (24) is satis-
fied if

⎡⎣ ηP ∗ ∗
0 Q ∗√

2
[
DcC Cc

] √
2DcD ū2

⎤⎦≥ 0 (25)

By pre- and post-multiplying the left-hand side of the inequality
(25) with diag{TT

1 , I, I} and diag{T1, I, I}, respectively, and then
expanding T1, one can obtain inequality:

⎡⎢⎢⎣
ηP1 ∗ ∗ ∗
ηI ηM1 ∗ ∗
0 0 Q ∗√

2D̂cC
√

2Ĉc
√

2D̂cD ū2

⎤⎥⎥⎦≥ 0 (26)

A similar procedure can be applied for the constraints on the state
variables. One can achieve from the convex property conditions
(27):

∑r
i=1 hi

(
α f ,αr

)
ϒ̃i ≥ 0, t ≥ 0,

Ξkk ≤ Ψ̄2
k , k ∈ {1, . . . ,q} (27)

where Ξ is a symmetric matrix and

ϒ̃i =

⎡⎢⎢⎣
ηP1 ∗ ∗ ∗
ηI ηM1 ∗ ∗
0 0 Q ∗

ϒ̃i41 ϒ̃i42 ϒ̃i43 Ξ

⎤⎥⎥⎦ (28)

and

ϒ̃i41 =
√

2Ψ
(
Ai +BD̂cC

)
ϒ̃i42 =

√
2Ψ

(
AiM1+BĈc

)
ϒ̃i43 =

√
2Ψ

(
BD̂cE +D

)
Controller synthesis

Under the proposed modeling approach, the desired yaw
rate could be seen as an input disturbance under which the
closed-loop system should remain stable with bounded values
for the state vector components. More generally, the state vari-
ables should not exceed the bounds of a “safety zone”, namely∣∣α f

∣∣ ≤ αM
f , |αr| ≤ αM

r and
∣∣δ f

∣∣ ≤ δM
f . Thus, the state vector x

has to be confined to a hypercube L(ZM) defined by the above
bounds. Finally, the control input, the steering angle rate and the

yaw moment, have to be bounded
∣∣∣δ̇ f

∣∣∣≤ δ̇M
f and |Tz| ≤ TM

z .
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According to the equation (23), ū = [δ̇M
f ,TM

z ], while Ψ̄ =

[αM
f ,αM

r ,δM
f ]T and

ψ =
[
I3 0

]
(29)

The PDC output feedback controller was synthesized with
the following numerical values:

α = 0.02, η = 0.02, δ̇M
f = 100deg/s,

TM
z = 10KN αM

f = αM
r = 13deg δM

f = 6deg,

These design parameters could be adjusted to handle the
tradeoff between safety constraints and comfort specifications.

The achieved Q is 5, which ensures that the constraints are
verified for a disturbance of a magnitude less than 0.447rad/s at
the considered longitudinal speed of 20m/s. In fact, the maxi-
mum value is constrained by the road adhesion coefficient μ and
is given by [27]:

rdmax = 0.85μ
g
v

.

SIMULATION TESTS
In order to demonstrate the assistance ability to maintain the

dynamic vehicle stability in extreme conditions, several type of
maneuvers have been defined to test the ESC systems. Among
them, in this paper are used the double lane-change manoeuvre
defined in ISO 3888-2 standard and the “sine with dwell” tran-
sient maneuver considered by NHTSA (National Highway Traf-
fic Safety Administration). The ISO388-2 setup is depicted in
Figure 4-a with the installed cones and the track axis in dotted
line. The maneuver is carried out with and without the controller
at the same speed of 80km/h with the steering angle profile for
the uncontrolled car shown in Figure 4-b in dashed line. During
the maneuver, the throttle is released.

Full adhesion situation
While the road adhesion is at its nominal value, the driver

initiates the double lane-change maneuver by applying the steer-
ing angle shown in dashed line in Figure 4-b. Figures 4-b and 5-a
show that the controller shares the effort on the steering angle and
the yaw moment (solid lines). In this situation the driver applied
steering angle is too high (dashed line) while the the steering an-
gle of the controlled vehicle is limited to the admissible safety
value of few degrees while the yaw moment handles the main
effort. Figure 5-b shows that the controlled car yaw rate is closer

to the reference one (dash-dot line) than the yaw rate of the un-
controlled vehicle (dashed line). Figures 4-a highlights that the
controlled vehicle is able to perform the maneuver (solid line)
while the uncontrolled vehicle fails (dashed line). The contribu-
tion of each fuzzy sub-model to the vehicle dynamics are shown
in Figure 6. Finally, Figures 7-a and 7-b provide the developed
sideslip angles at the front and rear tires. The corresponding front
and rear forces are shown in Figure 8 where a vertical translating
factor is applied for the rear one for better visibility. It is clear
that the saturation zones are reached during the maneuver.
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FIGURE 4. ISO3888-2 maneuver at nominal adhesion: Tra-
jectory and steering angle for the uncontrolled and the con-
trolled vehicles

Reduced adhesion situation
The same maneuver is now conducted with a road adhesion

reduced to μ = 0.75. As can be seen form figures 9 and 10,
the controlled vehicle is still able to perform the maneuver but
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FIGURE 5. ISO3888-2 maneuver at nominal adhesion:
Steering angle rate and yaw rate and for the uncontrolled and
the controlled vehicles

with degraded performances. The behavior of the uncontrolled
vehicle is still unsatisfactory.

CONCLUSIONS AND FUTURE WORKS
In this paper the design and the test of an integrated steer-

ing and differential yaw moment control has been described.
The nonlinear behavior of the vehicle dynamics have been
coped through Takagi-Sugeno modeling while an output feed-
back fuzzy PDC controller allows the development of a con-
troller which ensures an ellipsoidal invariant set. This invariant
set presents two main advantages: a bounded overshoot of the
state variables with respect to potential disturbances. Simulation
tests have shown that the controlled vehicle is able to achieve
the ISO 3888-2 transient maneuver where the uncontrolled one
fails. The controlled vehicle exhibits also a good yaw movement
damping. The final paper will include further responses analysis
for J-turn and ”sine with dwell” maneuvers.
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FIGURE 6. ISO3888-2 maneuver at nominal adhesion: Co-
efficients hi reflecting the contribution of each sub-model for
the uncontrolled and the controlled vehicles
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