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 Autonomous navigation of mobile robots is a fruitful research area because 

of the diversity of methods adopted by artificial intelligence. Recently, 

several works have generally surveyed the methods adopted to solve the 

path-planning problem of mobile robots. But in this paper, we focus on 

methods that combine neuro-fuzzy techniques to solve the reactive 

navigation problem of mobile robots in a previously unknown environment. 

Based on information sensed locally by an onboard system, these methods 

aim to design controllers capable of leading a robot to a target and avoiding 

obstacles encountered in a workspace. Thus, this study explores the neuro-

fuzzy methods that have shown their effectiveness in reactive mobile robot 

navigation to analyze their architectures and discuss the algorithms and 

metaheuristics adopted in the learning phase. 
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1. INTRODUCTION 

Autonomous navigation is a crucial task in the field of mobile robotics. It consists in giving the 

robot the ability to move in workspaces to reach its target without human intervention. This task is divided 

into three phases (Figure 1): 

• Perception of the environment: the robot uses onboard sensors to detect objects (walls, moving objects, 

targets) in the environment. 

• Planning: using the information of the perception phase, the robot employs a control system (planner) to 

determine the suitable behavior. 

• Action: using a mechanical system, the robot performs the behavior decided by the planner. 

In the literature, we distinguish two categories of path planning methods, classical methods that aim 

to find an optimized path between the starting point and the target in a previously known environment (global 

planning or offline planning), and reactive methods that operate in unknown environments based on sensor 

information at each state of the robot (local planning or online planning) [1], [2]. The second type of planning 

performs reactive navigation. 

Several articles [2]–[7] have reviewed path planning methods to discuss their characteristics and 

compare their effectiveness in solving different scenarios of autonomous navigation of mobile robots. But 

our work focuses on neuro-fuzzy methods because they have shown their effectiveness in developing reactive 

navigation controllers and they present several architectures that require exploration to analyze and discuss 

them. These neuro-fuzzy architectures consist in combining two approaches: neural network and fuzzy logic. 

Thus, several researchers [8]–[35] have designed reactive navigation controllers based on the neuro-fuzzy 
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combination to take advantage of the strengths of these two approaches while avoiding their drawbacks. As a 

result, we discovered that several neuro-fuzzy architectures are used for robot navigation. In [10]–[12], the 

authors adopted a cascaded neuro-fuzzy architecture that contains two consecutive phases, a neural network 

as a preprocessor and a controller based on a fuzzy inference system. While in [14], the author adopted a 

hybrid neuro-fuzzy architecture based on type-2 fuzzy inference system. This architecture consists in 

designing an adaptive neural network to adjust the parameters of the premise and the consequent parts using 

the Least Mean Square (LMS) algorithm. Another hybrid architecture that has shown its effectiveness in 

control systems is adaptive-network-based fuzzy inference system (ANFIS). Proposed by Jang in 1993 [36], 

this approach implements fuzzy inference systems of the Takagi-Sugeno type [37] (or type-3 according to 

Jang [36]) in an adaptive network framework. To minimize the computation, it is based on hybrid learning, 

i.e., it uses the gradient descent method to adjust the premise parameters and Least Square Estimation (LSE) 

to determine the consequent parameters. In this way, the author of [18] implemented a reactive navigation 

controller based on the standard ANFIS. Whereas in [25]–[27] the authors developed reactive navigation 

controllers based on variants of the ANFIS architecture to avoid the computational complexity and local 

minima problems. Thus, the author of [25] used the Cuckoo Search (CS) metaheuristic, the author of [26] 

used the Invasive Weed Optimization (IWO) metaheuristic, and the author of [27] used the Teaching-

Learning-Based Optimization (TLBO) metaheuristic instead of gradient descent to adjust the parameters of 

the premise part. In other works [30]–[35], the authors designed ANFIS-based mobile robot navigation 

controllers by adding methods to avoid various problems such as deadlock escape [30], irregular obstacle 

avoidance [31], and fuzzy rule base reduction [33]–[35]. 

In this perspective, we aim to survey the neuro-fuzzy architectures designed for reactive mobile 

robot navigation. Accordingly, the rest of this paper is presented as follows. In section 2, we will explain the 

context and characteristics of the reactive navigation problem addressed in this work. In section 3, we will 

discuss the advantage and the process of using the neural network approach to solve the reactive navigation 

problem. In section 4, we will explain the architecture of a reactive navigation controller based on a fuzzy 

inference system and we will discuss the three types of fuzzy systems that exist in the literature. In section 5, 

we will explore the neuro-fuzzy combination architectures adopted for reactive navigation which are the 

cascaded neuro-fuzzy architecture, the hybrid adaptive neuro-fuzzy architecture based on type-2 fuzzy 

inference system, and the hybrid adaptive neuro-fuzzy architecture based on type-3 fuzzy inference system 

with its variants ANFIS, CS-ANFIS, IWO-ANFIS, and TLBO-ANFIS. The exploration of these architectures 

aims to explain their components and the algorithms used in the learning phase. Finally, in section 6, We will 

discuss the performance of these architectures as controllers for mobile robot navigation through a detailed 

analysis that considers parameters such as input/output of the control system, navigation in environments 

with dynamic obstacles and targets, navigation in concave obstacles, and results in simulation and real-time 

environments. 

 

 
Figure 1. Autonomous navigation phases 

 

2. REACTIVE NAVIGATION PROBLEM: CHARACTERISTICS AND WORKSPACE OF THE 

MOBILE ROBOT 

In the field of mobile robotics, navigation is considered a crucial task that allows the robot to move 

in workspaces. Indeed, several types of problems and contexts can be encountered depending on the 

characteristics of the robot and environment.  The case of the problem addressed in this work is as follows: 

In a two-dimensional workspace, a mobile robot with two differential wheels moves autonomously 

to reach a given target without having any prior information about the environment. This robot is equipped 

with an onboard system that allows it to measure the distances to the nearest obstacles. This system consists 

of sensors that measure the left obstacle distance (LOD), sensors that measure the right obstacle distance 

(ROD), and sensors that measure the front obstacle distance (FOD). Another sensor is also used to detect the 

target’s position, which determines the target’s angle (TA) between the direction of the robot’s motion and 

the direction linking the robot with the target. Using an odometer, the robot can determine at each state the 

left wheel velocity (LWV) and the right wheel velocity (RWV) (Figure 2). The direction of robot depends on 

the right wheel velocity and the left wheel velocity. thus, to deviate the robot to the left, the left wheel is 

slowed down and the right wheel is accelerated, and vice versa. Therefore, reactive navigation consists in 

performing a sequence of translations and rotations to reach the target while avoiding obstacles (Figure 3). 

To perform this task, the robot must have a controller that allows it to predict its behaviors according to the 
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sensor information. In other words, this controller receives inputs (LOD, ROD, FOD and TA) at each state 

and returns outputs (RWV and LWV) or steering angle (SA) that determine the robot’s behavior. 

 

 
Figure 2. Mobile robot configuration 

 

 
Figure 3. Scenario for reactive mobile robot 

navigation 

 

3. NEURAL NETWORK FOR REACTIVE NAVIGATION 

Neural network is a widely used technique for the implementation of mobile robot navigation 

applications. It can be adopted for environment perception, obstacle avoidance, and path planning to reach a 

target [38]. 

Several works [39]–[46] have used  neural approach to solve the reactive navigation problems. This 

choice is made because of several advantages such as the ability to learn from data, the remarkable 

generalization ability if the training phase is perfectly carried out, the ability to approximate non-linear 

functions and parallel data processing. 

Most neural controllers designed for mobile robot navigation use a feed-forward backpropagation 

multi-layer network (Figure 4) to model the relationship between the inputs (LOD, FOD, ROD, TA) and the 

output, which can be  the steering angle (SA) or the wheel velocity (LWV, RWV). The choice of the number 

of hidden layers and the number of neurons is done empirically to facilitate the training of neural network 

[10]. 

The learning phase of neural network is considered an important factor in the success of optimal and 

efficient navigation. This phase is based on generating a representative dataset (input, desired output), the 

choice of the error function (objective function) and the optimization method to adjust the parameters of 

neural network. The most commonly used error function in the literature is the mean square error function: 

𝐸 =
1

𝑁
 ∑ (𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙)2

𝑎𝑙𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

     (1) 

Where 𝜃𝑎𝑐𝑡𝑢𝑎𝑙  is the output of neural network, 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired output and N is the number of 

training patterns. 

The gradient descent is a method for minimizing the error function. At each iteration t, the network's 

parameters W are adjusted by computing the gradient of the MSE function and applying the following 

formula: 

𝑊(𝑡 + 1) = 𝑊(𝑡) −  𝛼 𝜕𝐸/𝜕𝑊      (2) 
However, studies [5], [10]–[12] show that combining  neural network with other artificial 

intelligence technique like fuzzy inference system can improve navigation performance and solve some 

problems such as the path instability due to unexplored regions of inputs [12] and the inability to process 

uncertain sensor information. 

 

 
Figure 4. Neural network architecture for reactive mobile robot navigation 



                ISSN: 2089-3272 

IJEEI, Vol. 11, No. 2, June 2023:  375 – 388 

378 

4. FUZZY LOGIC TECHNIQUE FOR MOBILE ROBOT NAVIGATION 

The principle of reactive robot navigation is very similar to human movement. It uses uncertain 

measurements to locate the target and the near obstacles. For this reason, human expertise is highly 

demanded to design a control system that allows the robot to move through a workspace efficiently and 

safely. As a result, several researchers in mobile robotics [47]–[55] have approached reactive navigation 

using fuzzy inference systems. These systems are based on fuzzy logic and fuzzy sets. Fuzzy logic is an 

extension of Boolean logic, introduced by Lotfi Zadeh [56]. Among the advantages of this approach is the 

formalization of human reasoning in the form of  natural language. 

Figure 5 shows the architecture of a fuzzy inference system for path planning in a reactive 

navigation task. In this architecture, the inputs represent the distances of sensed obstacles (LOD, ROD, and 

FOD) and the target angle (TA), while the output constitutes the robot’s motion that can be the left wheel 

velocity (LWV) and the right wheel velocity (RWV) or the steering angle (SA). 

This architecture consists of three phases: 

• Fuzzification phase: It is an operation that transforms a crisp value into a linguistic value. For this 

reason, membership functions are used to provide degrees of truth for each linguistic term, with a 

maximum value equal to 1 and a minimum value equal to 0. Several types of functions are used for 

fuzzification such as triangular, trapezoidal or Gaussian functions. 

• Inference phase: It consists in using a rule base of fuzzy IF-THEN rules that are expressed in natural 

language with linguistic variables defined in the fuzzification phase. Several inference techniques exist 

in the literature, the most used are Mamdani inference and Sugeno inference. 

•  Defuzzification phase: It is the last step in fuzzy inference system. It consists in computing a crisp 

value for the overall fuzzy output. Several methods exist, such as the weighted average method, the 

centroid method and the maximum membership principle. 

 

 
Figure 5. Fuzzy controller diagram for reactive mobile robot navigation 

 

To perform safe and efficient navigation, a mobile robot follows the three behaviors: target-seeking 

(TS), obstacle-avoidance (OA) and wall-following (WF). In the literature, several strategies exist for the 

coordination of these behaviors. However, most fuzzy inference systems designed for navigation problems 

use behavior-based fuzzy reasoning. That is, each IF-THEN rule contributes to the final output according to 

its firing strength computed during the rule evaluation phase. For example, in [11], the author designed a 

fuzzy controller based on the three behaviors already mentioned by taking as input variables the distances 

(LOD, FOD and ROD) with linguistic terms (NEAR, MEDIUM and FAR) and also the target angle (TA) 

with linguistic terms (NEGATIVE, ZERO and POSITIVE) and as output variables the wheel velocities 

(LWV and RWV) with linguistic terms (SLOW, MEDIUM and FAST). The rule base of this controller 

contains twenty-four rules. As an example, we present below three fuzzy rules that represent respectively the 

obstacle-avoidance, wall-following and target-seeking behaviors: 

• if LOD is FAR and FOD is NEAR and ROD is MEDIUM and TA is NEGATIVE then LWV 

is SLOW and RWV is FAST 

• if LOD is FAR and FOD is FAR and ROD is NEAR and TA is ZERO then LWV is MEDIUM 

and RWV is MEDIUM 

•  if LOD is FAR and FOD is FAR and ROD is FAR and TA is POSITIVE then LWV is FAST 

and RWV is SLOW 

 
Generally, Jang [36] classified the fuzzy inference systems proposed in the literature into three types 

according to the type of the adopted reasoning and the used fuzzy rules. Type-1 uses a monotonic 

membership function in the consequent part, and the overall output of the system is computed using the 
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weighted average of the crisp output of each rule induced by the rule’s firing strength and the output 

membership function, where the firing strength is the product or the minimum of premise part's membership 

degrees. Whereas, type-2 is characterized by a fuzzy output induced by the firing strength and the output 

membership function for each rule. The overall system output is computed by a technique as centroid of area 

after performing the aggregation of all the rules’ fuzzy outputs. But Type-3 uses Takagi-Sugeno IF-THEN 

rules [37], in which each IF-THEN rule's output is a linear combination of the system's input variables, and 

the overall output is the weighted average of rules' outputs. 

To conclude this section, fuzzy logic has a significant advantage in solving reactive navigation 

problem because it allows to deal with uncertain data and at the same time, it allows to express human 

expertise in the form of IF-THEN rules that resemble natural language. However, the difficulty is very clear 

in adjusting the parameters of membership functions as well as creating an optimal and efficient rule base. 

Therefore, the neuro-fuzzy combination is an effective solution to overcome this difficulty thanks to the self-

learning capacity of the neural approach. 

 

5. NEURO-FUZZY COMBINATION FOR MOBILE ROBOT NAVIGATION 

Neural networks and fuzzy logic are among the techniques used in the field of artificial intelligence. 

To benefit from the strengths of these two techniques and to reduce their weaknesses, several studies [8]–[35] 

have proposed control systems based on the combination of these two techniques. 

In this section, we explore neuro-fuzzy controllers designed during the last two decades for solving 

the reactive navigation problem of mobile robot, and also, we discuss the optimization algorithms and 

metaheuristics adopted in the learning phase.  

Indeed, we distinguish three major categories of neuro-fuzzy architectures (Figure 6) for mobile 

robot navigation applications: 

• A cascaded neuro-fuzzy architecture [10]–[12] in which the neural approach and the fuzzy approach 

cooperate and work separately, one is a pre-processor of the other. 

• An integrated and adaptive neuro-fuzzy architecture [9], [13]–[35] in which the components of a fuzzy 

inference system are represented in a neural network to design the fuzzy rule base and adjust the 

parameters of membership functions. For this second category, two architectures are proposed 

depending on the type of the adopted reasoning and the used fuzzy rules.  

First, we present a cascaded neuro-fuzzy architecture [10]–[12]. Next, we present an adaptive neuro-

fuzzy architecture based on a type-2 fuzzy inference system [14]. Then, we present an adaptive neuro-fuzzy 

architecture based on a type-3 fuzzy inference system [18], [25]–[27]. Also, we explain its different variants 

according to the optimization algorithms used in the learning phase. After that, we describe a use case of 

ANFIS architecture for reactive navigation. 

 

 
Figure 6. Neuro-fuzzy architectures for mobile robot navigation 

 

5.1. Cascaded neuro-fuzzy architecture for reactive navigation 

Several papers [10]–[12] have worked on this architecture to implement reactive navigation 

controllers. It consists of two distinct and cooperative stages (Figure 7). The first stage is a neural network 

that is a preprocessor of sensor information. It models the relationship between the inputs (LOD, ROD, FOD, 

Neuro-fuzzy Architecture

Integrated and adaptive neuro-fuzzy 
architecture 

Adaptive neuro-fuzzy architecture (type-2)

Adaptive neuro-fuzzy architecture (type-3)

Cascaded neuro-fuzzy architecture

ANFIS 

CS-ANFIS 

IWO-ANFIS 

TLBO-ANFIS 
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and TA) and the output that represents the initial steering angle (Initial-SA). While the second stage is a 

fuzzy inference system that is a controller of the robot's final behavior. It receives as input the initial steering 

angle (output of the first stage) and the initial sensor information to predict the right wheel velocity (RWV) 

and the left wheel velocity (LWV), which determine the final steering angle (SA) of the robot. 

In the first stage, the neural approach is chosen because it efficiently interprets the information 

sensed from the workspace thanks to its computational capacity [12]. in the second stage, the fuzzy system is 

chosen because of its ability to process uncertain information and to control the robot’s final action. 

The authors of [11], [12] adopted this architecture using for the first stage a feed-forward 

backpropagation multi-layer network. In [11], the training phase is performed using a set of training patterns 

representing typical scenarios. Whereas the training phase is based on discrete uniform sampling in [12]. 

Thus, the author performed quantization of the sensed values to provide discrete samples for neural training. 

For the second stage, the authors of [11], [12] adopted a fuzzy inference system using behavior-based fuzzy 

reasoning. So, fuzzy rules contribute to the realization of behaviors (target seeking, obstacle avoidance, and 

wall following) according to their firing strengths. 

 

 
Figure 7. Cascaded Neuro-Fuzzy Controller 

 

5.2. Adaptive neuro-fuzzy architecture (type-2) for reactive navigation 

 

 
Figure 8. Adaptive Neuro-Fuzzy Controller [14] 

 𝑑𝑙, left obstacle distance ; 𝑑𝑓, front obstacle distance ; 𝑑𝑟, right obstacle distance ; 𝜃𝑑, target’s angle ; 𝑟𝑠, 

robot’s speed ; 𝑎𝑙, left wheel acceleration ; 𝑎𝑟 , right wheel acceleration ; PB, positive big ; PS, positive 

small ; Z, zero ; NS, negative small; NB, negative big 
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Fuzzy inference systems-based controllers are regarded as an efficient solution for a reactive 

navigation task of  mobile robots because they can handle uncertain and imprecise information and they can 

exploit human knowledge and experience. But the transformation of human knowledge into a fuzzy rule base 

and the tuning of the parameters of membership functions are a delicate task because there are no systematic 

methods.  For this reason, some studies have integrated the components of a fuzzy inference system into a 

neural network to take advantage of its ability to learn from a sample of data. Thus, the author of [14] 

designed an adaptive neuro-fuzzy controller for mobile robot navigation that consists of a neural network 

representing the different components of type-2 fuzzy system (Figure 8). This controller receives as inputs 

the local information (LOD), (FOD), (ROD), (TA) and the robot’s speed to predict the left wheel acceleration 

(LWA) and the right wheel acceleration (RWA). these accelerations determine the robot’s movement to 

avoid the obstacles and reach the target. 

 

Table 1a and Table 1b show a description of layers and parameters of this architecture respectively. 

 

Table 1a. Description of neuro-fuzzy network layers 
Layer Description Phase 

1 It’s an input layer. It receives crisp sensor values.  

2 It computes the degrees of membership to the linguistic terms for each input variable. Fuzzification 

3 Each node represents the conjunction of a rule's premise part(Forty-eight rules) Inference 

4 It expresses the consequent part of each rule (fuzzy rule output). Inference 

5 It computes the crisp values of the overall outputs (left wheel acceleration and right wheel 
acceleration) using the defuzzification formula. 

Defuzzification 

 

Table 1b. Description of neuro-fuzzy network’s parameters and outputs 
Parameters and node outputs Designation Computation Method 

𝑚𝑖𝑗 Centers of input membership function  It is adjusted in the learning phase 

𝑝𝑖𝑗 Input membership degrees to the linguistic terms It is computed by applying the membership 

function on an input value 

𝑤𝑖𝑘 Weights related to centers of input membership 

function  

 

𝑞𝑘 The conjunction of Premise part of fuzzy rule k(firing 
strength of rule) 

It is determined by applying the minimum 
of the membership degrees to the linguistic 

terms constituting the premise part of a rule 

𝑛𝑙𝑠 Centers of output membership function  It is adjusted in the learning phase 

𝑣𝑘𝑙 Weights related to centers of output membership 

function  

 

 

Forty-eight rules are designed to define this fuzzy controller and three behaviors are addressed in the 

rule base: target seeking, obstacle avoidance and wall following. 

The defuzzification procedure maps the fuzzy output of the inference mechanism to the overall crisp 

output. As explained before, several methods can be used to convert a conclusion of the inference mechanism 

into a crisp output of the fuzzy controller. As long as the author of [14] used a type-2 fuzzy inference system, 

the center of gravity method is appropriate to compute the final output. Thus, the output values 𝑎𝑙 and 𝑎𝑟  are 

given by: 

𝑎𝑙 =
∑ 𝑣𝑘,1𝑞𝑘

48
𝑘=1

∑ 𝑞𝑘
48
𝑘=1

        (3) 

 

𝑎𝑟 =
∑ 𝑣𝑘,2𝑞𝑘

48
𝑘=1

∑ 𝑞𝑘
48
𝑘=1

        (4) 

 

To generate a smoothed path by this controller, a Least Mean Square (LMS) learning algorithm is 

developed. It consists in optimizing the error between the controller’s output and the desired output to adjust 

the parameters that represent the centers of membership functions of the input and output variables.  For this 

purpose, the robot is trained (off-line) in a relatively complicated environment that contains all possible 

situations.  

After adjusting the model’s parameters, each rule is presented as a weight vector. To optimize the 

fuzzy inference step, the author of [14]  proposed an algorithm that eliminates redundant rules. This 
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algorithm consists in defining the similarity between rules by computing the Euclidean difference between 

the weight vectors. Therefore, the number of rules becomes less than forty-eight based on a tolerance value. 

 

5.3. Adaptive neuro-fuzzy architecture (type-3) for reactive navigation 

This architecture is an adaptive network-based type-3 fuzzy inference system (ANFIS). In other 

words, it consists in implementing a type-3 fuzzy inference system in an adaptive network framework using a 

hybrid learning procedure [36]. It aims to exploit the advantage of fuzzy logic in representing human 

expertise using IF-THEN rules, and at the same time to map between input-output data pairs through neural 

network to adjust the parameters of membership function. Designed by Jang [36] in 1993, ANFIS adopts a 

Takagi-Sugeno [37] type fuzzy inference system. That is, the output of each IF-THEN rule is a linear 

combination of the input variables. For this reason, Jang [36] adopted a hybrid learning to adjust the 

parameters of the premise and consequent parts. This learning strategy consists of a forward pass and a 

backward pass. In the forward pass of the hybrid learning algorithm, the premise parameters are fixed, the 

outputs of the neurons are computed until the fourth layer, and the consequent parameters are then 

determined by the least-squares estimation (LSE) method. In the backward pass, the consequent parameters 

are fixed and the backpropagation of the committed error is done to adjust the premise parameters using the 

iterative gradient descent method. The subsection (5.4) describes a use case of the ANFIS architecture to 

design a reactive navigation controller for mobile robot. 

Several researchers have adopted this architecture to solve the reactive mobile robot navigation 

problem. In [18], the author proposed a reactive navigation controller based on a standard ANFIS, i.e., the 

adjustment of the adaptive network’s parameters is performed by the same learning algorithms (least squares 

estimation and gradient descent) as those used by Jang  [36]. But in [25]–[27] the authors proposed reactive 

navigation controllers based on variants of ANFIS which are CS-ANFIS, IWO-ANFIS, and TLBO-ANFIS. 

They adopted population-based metaheuristics to adjust the premise parameters. This choice is made to 

overcome the complexity problem and improve the accuracy of the model [25]. For this fact, the author of 

[25] used the Cuckoo search (CS) metaheuristic that was introduced by Yang and Deb in 2009 [57], the 

author of [26] used the Invasive weed Optimization (IWO) metaheuristic that was introduced by Mehrabian 

and Lucas in 2006 [58], and the author of [27] used the Teaching-Learning-based Optimization (TLBO) 

metaheuristic that was introduced by Rao and al. in 2011 [59]. 

These metaheuristics are optimization techniques that consist in generating a population of solutions 

in the search space. At each iteration, the metaheuristic uses two strategies, an exploration strategy that 

allows exploring the search space to find the best solutions for minimizing the objective function and an 

exploitation strategy that changes the values of the candidate solutions by using a formula according to the 

adopted metaheuristic. Thus, this principle overcomes the problem of complexity and local minima that can 

be encountered when solving some optimization problems. 

To summarize, Table 2 shows the learning methods adopted to adjust the premise and consequent 

parameters in each ANFIS variant used to design the mobile robot navigation controllers presented above. 

 

Table 2. Learning methods used in ANFIS variants for reactive navigation 

Navigation controller 
Learning method for premise 

parameters 

Learning method for consequent 

parameters 

Standard ANFIS [18] Gradient descent algorithm LSE 

CS-ANFIS [25] CS algorithm LSE 

IWO-ANFIS [26] IWO algorithm LSE 

TLBO-ANFIS [27] TLBO algorithm LSE 

 

 

5.4. Description of ANFIS architecture use case for reactive navigation 

Assume that a mobile robot navigates through a workspace that contains obstacles and a target to 

reach. This robot is equipped with a sensor system that detects the distances (LOD, FOD and ROD) and the 

position of the target to determine the target’s angle (TA). Thus, the ANFIS controller (Figure 9) receives 

four inputs (x, y, z, v) that respectively represent the measurements (LOD, FOD, ROD, TA) coming from the 

robot’s sensors to return as output a value that represents the steering angle (SA). This system is based on the 

Takagi-Sugeno fuzzy model [37]. So, each rule of the fuzzy system is expressed in the following form: 

Rule i:  If x is X and y is Y and z is Z and v is V Then fi = pi x + qi y + ri z + si v + ti 
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This controller consists of five layers, each of them is related to a phase of the fuzzy inference 

system. Table 3 describes the layers of this ANFIS controller. 

 

 
Figure 9. ANFIS based mobile robot navigation controller 

 

Table 3. Description of ANFIS layers 
Layer Description Node function 

1 It represents the fuzzification phase. Each node computes the membership 

degree 𝑢𝐴𝑖
 of input to the linguistic terms 𝐴𝑖. Several function shapes are 

used (triangular, trapezoidal, …), but the bell-shaped function is more 

general.  This function is related to the premise parameters (𝑎𝑖, 𝑏𝑖  , 𝑐𝑖).  

So, the nodes are adaptive (square shape). 
 

𝑂𝑖
1 = 𝑢𝐴𝑖

(𝑥) =
1

1 + [(
𝑥 − 𝑐𝑖

𝑎𝑖
)

2

]
𝑏𝑖

 

 

 
 

2 It represents the conjunction operator applied on the premise part. It 

expresses the firing strength 𝑤𝑖 of each rule.  Several T-norm operators 

are used for this fact. We can use the product operator. The nodes are not 

adaptive (circle shape). The number of nodes in this layer is the number 

of possible combinations of the linguistic terms defined in the previous 
layer (3*3*3*3 = 81 nodes) 

 

𝑂𝑖
2 = 𝑤𝑖 = 𝑢𝐴𝑖

× 𝑢𝐵𝑗
× 𝑢𝐶𝑘

 

3 it is a normalization layer. Each node consists in normalizing the firing 

strength of a fuzzy rule. The nodes are not adaptive (circle shape). 

 

𝑂𝑖
3 = �̅�𝑖 =

𝑤𝑖

∑ 𝑤𝑛
81
𝑛=1

 

4 Each node of this layer represents the consequent part of a fuzzy rule. It 

determines the rule contribution in the overall output. According to 
Takagi-Sugeno's fuzzy model, it is expressed as a linear function with the 

parameters 𝑝𝑖, 𝑞𝑖, 𝑟𝑖, 𝑠𝑖, 𝑡𝑖. So, the nodes of this layer are adaptive (square 

shape). 

 

𝑂𝑖
4 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖𝑧 + 𝑠𝑖𝑣 +  𝑡𝑖) 

5 This layer is represented by a single circular node. It consists in 

computing the overall output 𝑂𝑖
5 that represents the steering angle (SA) of 

the robot based on the defuzzification formula. 

𝑂𝑖
5 = ∑ 𝑤𝑖

𝑖

𝑓𝑖 =
∑ 𝑤𝑖𝑖 𝑓𝑖

∑ 𝑤𝑖𝑖
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6. DISCUSSION 

 

Table 4. Analysis of various mobile robot navigation controllers based on neuro-fuzzy architectures 
Paper Neuro-

fuzzy 

architecture 

Added 
Method 

year Input Output Dyna
mic 

target 

Dynamic 
obstacle 

Escape 
U-

shaped 

obstacl
es 

Simul
ation 

result 

Real-
time 

resul

t 

[10] Cascaded 

neuro-fuzzy 

 2006 LOD, FOD, 

ROD, TA 

LWV, 

RWV 

N N N Y Y 

[11]   2008 LOD, FOD, 

ROD, TA 

LWV, 

RWV 

N N N Y Y 

[12]   2011 LOD, FOD, 
ROD, TA 

LWV, 
RWV 

N N N Y N 

[13] Adaptive 

neuro-fuzzy 

(type-2) 

 2006 Distance, 

Angle 

SA, 

Acceleratio

n 

N Y N Y N 

[14]  State 

Memorizing 
Strategy 

2007 LOD, FOD, 

ROD, TA, 
Velocity 

LWA, 

RWA 

Y Y Y Y N 

[15]   2012 8 Distances Position N N N Y N 

[16]   2019 LOD, FOD, 
ROD, TA, 

Velocity, 
Target-

Distance 

SA, 
Injected-

Velocity 

N N N Y N 

[17] ANFIS  2003 Distance, 
Velocity 

SA N N N Y N 

[18]   2015 LOD, FOD, 

ROD, TA 

SA N Y N Y Y 

[19]   2016 LOD, FOD, 

ROD, TA 

SA N N N Y Y 

[20] Multi-
ANFIS 

 2014 LOD, FOD, 
ROD, TA 

LWV, 
RWV 

N N N Y Y 

[21]   2014 LOD, FOD, 

ROD, TA 

LWV, 

RWV 

N N N Y N 

[22]   2018 LOD, FOD, 

ROD 

LWV, 

RWV 

N Y N Y Y 

[23]   2019 LOD, FOD, 
ROD 

LWV, 
RWV 

N N N Y N 

[24]   2022 LOD, FOD, 

ROD, TA 

LWV, 

RWV 

N Y N Y N 

[25] CS-ANFIS  2015 LOD, FOD, 

ROD, TA 

SA N N N Y Y 

[26] IWO-
ANFIS 

 2015 LOD, FOD, 
ROD, TA, 

LWV, RWV 

SA N N N Y Y 

[27] TLBO-
ANFIS 

 2018  SA N N N Y N 

[28] AKH-NFIS  2021 LOD, FOD, 

ROD, TA 

LWV, 

RWV 

N N N Y N 

[29] ANFIS/PS

O 

 2022 LOD, FOD, 

ROD, TA 

SA N N N Y N 

[30] ANFIS + 
Method 

Virtual 
target 

strategy 

2017 LOD, FOD, 
ROD, TA 

Velocity 
difference 

N N Y Y N 

[31]  safe 
boundary 

algorithm 

2017 LOD, FOD, 
ROD, TA 

LWV, 
RWV 

N N N Y Y 

[32]  Q-Learning 2019 LOD, FOD, 
ROD, TA 

SA N N Y Y N 

[33]  GPS based-

method 

2020 LOD, FOD, 

ROD 

SA N N N Y N 

[34]  Utility-

function 

2021 LOD, FOD, 

ROD 

SA N N N Y N 

[35]  GPS based-
method 

2022 LOD, FOD, 
ROD 

SA N N N Y N 

 

In this paper, we focused on the neuro-fuzzy combinations used to develop reactive navigation 

controllers for mobile robot. Indeed, we explored  the cascaded neuro-fuzzy architecture [10]–[12], the 

adaptive neuro-fuzzy architecture based on type-2 fuzzy inference system [13]–[16], and the adaptive neuro-
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fuzzy architecture based on type-3 fuzzy inference system with the variants: ANFIS, CS-ANFIS, IWO-

ANFIS, and TLBO-ANFIS adopted respectively in [18], [25], [26], and [27]. 

The cascaded neuro-fuzzy architecture uses in the first stage a neural network as a preprocessor of 

sensor information. But in the second stage, uses a fuzzy inference system that controls the robot's movement 

based on three behaviors which are target seeking, obstacle avoidance, and wall following. This combination 

was successful in avoiding the instability of trajectories generated by controllers that were based only on the 

neural approach. However, the design of a fuzzy inference system is difficult due to the lack of a systematic 

method for generating fuzzy rules and adjusting the parameters of membership functions. 

The adaptive neuro-fuzzy architecture designed in [14] is based on type-2 fuzzy inference system. 

That is, fuzzy sets are involved in the premise and consequent parts of the fuzzy rules. This architecture 

automatically adjusts the parameters of membership functions and keeps the physical meaning of the 

variables and parameters of the fuzzy system during the processing. In addition, it can provide multiple 

outputs instead of only one in the case of ANFIS architecture, which improves the control capability. But the 

choice of the fuzzy sets in the consequent part of each rule is done using human expertise to eliminate 

irrelevant combinations, reduce the number of rules, and minimize the computation time. Despite this, it 

generates a base of forty-eight fuzzy rules in [14]. For this reason, the author developed another algorithm to 

reduce the number of rules based on the similarity computed using the Euclidean distance between the rule’s 

vectors. 

Another architecture explored in this paper is the adaptive network-based type-3 fuzzy inference 

system (ANFIS). It is based on a hybrid learning strategy, i.e., the premise parameters are adjusted using the 

gradient descent method, while the consequent parameters are determined using the Least Square Estimation 

(LSE) method. Thus, the author of [18] adopted this architecture by keeping the same learning algorithms 

(gradient descent and least squares estimation) used in the standard ANFIS. Whereas the authors of [25]–[27] 

adopted variants of the ANFIS architecture to develop a controller for reactive navigation. they replaced the 

gradient descent method with a metaheuristic in order to overcome the complexity problem and to improve 

the accuracy of the model. Indeed, the author of [25] adopted the cuckoo search (CS) metaheuristic, the 

author of [26] adopted the Invasive Weed Optimization (IWO) metaheuristic, and the author of [27] adopted 

the Teaching-Learning-based Optimization (TLBO) metaheuristic. 

According to the literature, we can conclude that the ANFIS architecture is widely adopted by 

researchers to design autonomous navigation controllers for several reasons, such as the automatic 

adjustment of the parameters of the fuzzy inference system and the use of Sugeno's fuzzy model which 

makes it possible to adopt a hybrid learning strategy. Nevertheless, the ANFIS architecture has some 

limitations. It provides a single overall output which limits the capacity of the control system, it generates a 

large base of fuzzy rules based on the fuzzy sets of inputs which increases the network complexity and 

computational cost, and it does not allow designing a navigation controller able to make the robot escape 

from U-shaped obstacles (concave environment), without adding other methods, because it falls into the 

infinite loop problem. For this purpose, several works have been proposed to reduce these limitations. For 

example, the authors of [20]–[24] adopted multi-ANFIS-based controllers to have two outputs which are the 

left and right wheel velocities, the author of [30] designed an ANFIS-based controller with a virtual target 

strategy to escape infinite loop in concave environments, the author of [31] designed an ANFIS-based 

controller with an integrated safe boundary algorithm to avoid irregular-shaped obstacles, and the authors of 

[33]–[35] designed mobile robot navigation controllers using ANFIS for obstacle-avoidance and methods for 

target-seeking to reduce the number of rules in fuzzy inference systems.  

To summarize, Table 4 presents a detailed analysis of mobile robot navigation controllers that are 

based on the neuro-fuzzy architectures studied in this paper. The performance of each controller is evaluated 

based on parameters such as input-output of the control system, navigation in environments with dynamic 

obstacles and targets, navigation in concave obstacles, and results in simulation and real-time environments. 

 

7. CONCLUSION  

Path planning methods for mobile robot navigation are classified in the literature into classical and 

reactive methods. Classical methods are widely used for navigation applications in previously known 

environments to find optimal paths to the target. Whereas, reactive methods have shown their effectiveness in 

unknown environments and the development of real-time navigation applications. In this study, we have 

focused on the neuro-fuzzy combination which is a reactive method with several architectures. Thus, we 

explored the cascaded neuro-fuzzy architecture, the adaptive neuro-fuzzy architecture (type-2) and the 

adaptive neuro-fuzzy architecture (type-3) with the variants: ANFIS, CS-ANFIS, IWO-ANFIS, and TLBO-

ANFIS. 

According to this survey, we affirm that the combination of the fuzzy and neural approaches has 

significantly improved the performance of mobile robot navigation controllers thanks to the self-learning 
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capability of the neural network and the ability to process uncertain information by the fuzzy inference 

system. Furthermore, the use of the ANFIS architecture with metaheuristics has shown its effectiveness in the 

design of control systems such as the mobile robot navigation controllers for the following reasons: 

• It allows generating the fuzzy rule base and automatically adjusting the parameters of membership 

functions. 

• It allows optimizing the computation time in the learning phase by using the hybrid learning strategy 

because of the linearity of the consequent part of the fuzzy rules. 

• It allows reducing convergence problems in the learning phase by using metaheuristics such as cuckoo 

search (CS), invasive weed optimization (IWO), and Teaching-Learning-Based Optimization (TLBO). 

• It is suitable for the development of real-time applications of the control system. 

Nevertheless, the performance of ANFIS-based mobile robot navigation controllers can be improved 

by integrating optimization methods for the rule base of the fuzzy inference system. According to the control 

system literature [60]–[63], we can minimize the fuzzy rule base either by eliminating rules according to a 

potentiality threshold (firing strength of rules) or by extracting significant fuzzy rules using data clustering 

algorithms. All this must be done while maintaining high controller accuracy. 
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