1,021 research outputs found

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    A Survey of Network Optimization Techniques for Traffic Engineering

    Get PDF
    TCP/IP represents the reference standard for the implementation of interoperable communication networks. Nevertheless, the layering principle at the basis of interoperability severely limits the performance of data communication networks, thus requiring proper configuration and management in order to provide effective management of traffic flows. This paper presents a brief survey related to network optimization using Traffic Engineering algorithms, aiming at providing additional insight to the different alternatives available in the scientific literature

    Traffic matrix estimation on a large IP backbone: a comparison on real data

    Get PDF
    This paper considers the problem of estimating the point-to-point traffic matrix in an operational IP backbone. Contrary to previous studies, that have used a partial traffic matrix or demands estimated from aggregated Netflow traces, we use a unique data set of complete traffic matrices from a global IP network measured over five-minute intervals. This allows us to do an accurate data analysis on the time-scale of typical link-load measurements and enables us to make a balanced evaluation of different traffic matrix estimation techniques. We describe the data collection infrastructure, present spatial and temporal demand distributions, investigate the stability of fan-out factors, and analyze the mean-variance relationships between demands. We perform a critical evaluation of existing and novel methods for traffic matrix estimation, including recursive fanout estimation, worst-case bounds, regularized estimation techniques, and methods that rely on mean-variance relationships. We discuss the weaknesses and strengths of the various methods, and highlight differences in the results for the European and American subnetworks

    Robust Energy Management for Green and Survivable IP Networks

    Get PDF
    Despite the growing necessity to make Internet greener, it is worth pointing out that energy-aware strategies to minimize network energy consumption must not undermine the normal network operation. In particular, two very important issues that may limit the application of green networking techniques concern, respectively, network survivability, i.e. the network capability to react to device failures, and robustness to traffic variations. We propose novel modelling techniques to minimize the daily energy consumption of IP networks, while explicitly guaranteeing, in addition to typical QoS requirements, both network survivability and robustness to traffic variations. The impact of such limitations on final network consumption is exhaustively investigated. Daily traffic variations are modelled by dividing a single day into multiple time intervals (multi-period problem), and network consumption is reduced by putting to sleep idle line cards and chassis. To preserve network resiliency we consider two different protection schemes, i.e. dedicated and shared protection, according to which a backup path is assigned to each demand and a certain amount of spare capacity has to be available on each link. Robustness to traffic variations is provided by means of a specific modelling framework that allows to tune the conservatism degree of the solutions and to take into account load variations of different magnitude. Furthermore, we impose some inter-period constraints necessary to guarantee network stability and preserve the device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out with realistic networks operated with flow-based routing protocols (i.e. MPLS) show that significant savings, up to 30%, can be achieved also when both survivability and robustness are fully guaranteed

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    Auto-bandwidth control in dynamically reconfigured hybrid-SDN MPLS networks

    Get PDF
    The proposition of this work is based on the steady evolution of bandwidth demanding technology, which currently and more so in future, requires operators to use expensive infrastructure capability smartly to maximise its use in a very competitive environment. In this thesis, a traffic engineering control loop is proposed that dynamically adjusts the bandwidth and route of flows of Multi-Protocol Label Switching (MPLS) tunnels in response to changes in traffic demand. Available bandwidth is shifted to where the demand is, and where the demand requirement has dropped, unused allocated bandwidth is returned to the network. An MPLS network enhanced with Software-defined Networking (SDN) features is implemented. The technology known as hybrid SDN combines the programmability features of SDN with the robust MPLS label switched path features along with traffic engineering enhancements introduced by routing protocols such as Border Gateway Patrol-Traffic Engineering (BGP-TE) and Open Shortest Path First-Traffic Engineering (OSPF-TE). The implemented mixed-integer linear programming formulation using the minimisation of maximum link utilisation and minimum link cost objective functions, combined with the programmability of the hybrid SDN network allows for source to destination demand fluctuations. A key driver to this research is the programmability of the MPLS network, enhanced by the contributions that the SDN controller technology introduced. The centralised view of the network provides the network state information needed to drive the mathematical modelling of the network. The path computation element further enables control of the label switched path's bandwidths, which is adjusted based on current demand and optimisation method used. The hose model is used to specify a range of traffic conditions. The most important benefit of the hose model is the flexibility that is allowed in how the traffic matrix can change if the aggregate traffic demand does not exceed the hose maximum bandwidth specification. To this end, reserved hose bandwidth can now be released to the core network to service demands from other sites

    Survivable MPLS Over Optical Transport Networks: Cost and Resource Usage Analysis

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks (OTN) in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the offered traffic granularity and the physical network structure on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. On the other hand, sparse networks of low connectivity parameter use more wavelengths for optical path routing and increase the configuration cost, as compared with dense networks. We demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with different cost variations, and were obtained for networks targeted to a nationwide coverage
    • …
    corecore