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ABSTRACT
This paper considers the problem of estimating the point-
to-point traffic matrix in an operational IP backbone. Con-
trary to previous studies, that have used a partial traf-
fic matrix or demands estimated from aggregated Netflow
traces, we use a unique data set of complete traffic matri-
ces from a global IP network measured over five-minute in-
tervals. This allows us to do an accurate data analysis on
the time-scale of typical link-load measurements and enables
us to make a balanced evaluation of different traffic matrix
estimation techniques. We describe the data collection in-
frastructure, present spatial and temporal demand distribu-
tions, investigate the stability of fan-out factors, and analyze
the mean-variance relationships between demands. We per-
form a critical evaluation of existing and novel methods for
traffic matrix estimation, including recursive fanout estima-
tion, worst-case bounds, regularized estimation techniques,
and methods that rely on mean-variance relationships. We
discuss the weaknesses and strengths of the various meth-
ods, and highlight differences in the results for the European
and American subnetworks.

Categories and Subject Descriptors
C.2.3 [Computer Communications Networks]: Network
Operations—Network Management, Network Monitoring

General Terms
Measurement, Performance
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Traffic matrix estimation, Optimization, SNMP, MPLS
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1. INTRODUCTION
Many of the decisions that IP network operators make

depend on how the traffic flows in their network. A traf-

fic matrix describes the amount of data traffic transmitted
between every pair of ingress and egress points in a net-
work. When used together with routing information, the
traffic matrix gives the network operator valuable informa-
tion about the current network state and is instrumental in
traffic engineering, network management and provisioning
(see, e.g., [1, 2, 3, 4]).

Despite the importance of knowing the traffic matrix, the
support in routers for measuring traffic matrices is poor and
operators are often forced to estimate the traffic matrix from
other available data, typically link load measurements and
routing configurations. In its simplest form, the estima-
tion problem then reduces to finding a non-negative vec-
tor s that satisfies Rs = t, where R is a matrix reflecting
the routing, t is a vector of measured link loads and s is
a vectorized version of the (unknown) traffic matrix. The
link loads are readily obtained using the Simple Network
Management Protocol (SNMP). This approach leads to an
under-constrained problem since the number of links in a
network is typically much smaller than the number of node
pairs. Some sort of side information or assumptions must
then be added to make the estimation problem well-posed.

To evaluate how well different approaches to traffic ma-
trix estimation will work in an operational IP network, and
how reasonable various assumptions are, one needs access
to a measured traffic matrix on the time-scale of standard
link-load measurements. Previous studies have used Net-
Flow data to measure the traffic matrix in 5-minute incre-
ments on a single router [5] or one-hour traffic matrices on a
partial network [6]. However, since NetFlow data is unable
to capture traffic variability within flows, this is not very
accurate for validating estimation methods that use a time-
series of link-load measurements. Our study provides new
results in the sense that it uses a complete network traffic
matrix, based on direct measurements at 5-minute intervals.
The data set is collected from Global Crossing’s global back-
bone and consists of routing configuration and the number of
bytes transfered in MPLS-tunnels during 5-minute intervals
over a 24-hour period.

To make the analysis more transparent, we extract traf-
fic matrices and routing information for the American and
European subnetworks. We present temporal and spatial de-
mand distributions and analyze some statistical properties
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of the demands. In particular, we find that there is a surpris-
ingly strong relationship between the mean and variance of
demands, and that fanout factors tend to be relatively more
stable over time compared to the demand themselves. We
then evaluate a selection of existing methods for traffic ma-
trix estimation, including gravity models, regularized meth-
ods (such as Bayesian and maximum entropy approaches),
and methods that exploit mean-variance relationships. In
addition, we investigate the use of worst-case bounds and
estimation of fanout factors based on a time-series of link
load measurements. We find that the regularized methods
work very well provided that we choose the regularization
parameter, i.e., the tradeoff between prior information and
link measurement, appropriately. Somewhat surprisingly,
we fail to achieve good results using methods that exploit
mean-variance relationship. We argue that the failure stems
from the problem of accurately estimating the covariance
matrix of link loads, and present a study on synthetic data
to support our claim.

One can note that many classes of traffic matrices occur
in the literature (see [7] for a thorough classification). In
this paper, we only study the performance of the estima-
tion methods on PoP-to-PoP traffic matrices. This choice
is solely based on properties of the data we have obtained,
and we make no statement on which class of traffic matrices
is more important than the other.

The remaining parts of this paper are organized as follows.
In Section 2, we present related work in this area. Section 3
introduces the problem and notation. The estimation meth-
ods that we evaluate are introduced in Section 4, while data
collection, data analysis and benchmarking of the methods
is presented in Section 5. Finally, some concluding remarks
are collected in Section 6.

2. RELATED WORK
The origin-destination estimation problem for telephone

traffic is a well-studied problem in the telecom world. For
instance, already in 1937, Kruithof [8] suggested a method
for estimation of point-to-point traffic demands in a tele-
phone network based on a prior traffic matrix and measure-
ments of incoming and outgoing traffic. However, it appears
that it was not until 1996 that the problem was addressed
specifically for IP networks. In order to handle the diffi-
culties of an under-constrained problem, Vardi [9] assumes
a Poisson model for the traffic demands and covariances of
the link loads is used as additional constraints. The traffic
demands are estimated by Maximum Likelihood estimation.
Related to Vardi’s approach is Cao et al. [5] that propose
to use a more general scaling law between means and vari-
ances of demands. The Poisson model is also used by Tebaldi
and West [10], but rather than using ML estimation, they
use a Bayesian approach. Since posterior distributions are
hard to calculate, the authors use a Markov Chain Monte
Carlo simulation to simulate the posterior distribution. The
Bayesian approach is refined by Vaton et al. [11], who pro-
pose an iterative method to improve the prior distribution
of the traffic matrix elements. The estimated traffic matrix
from one measurement of link loads is used in the next esti-
mation using new measurements of link loads. The process
is repeated until no significant change is made in the esti-
mated traffic matrix. An evaluation of the methods in [10,
9] together with a linear programming model is performed
by Medina et al. [12]. A novel approach based on choice

models is also suggested in the article. The choice model
tries to estimate the probability of an origin node to send
a packet to a destination node in the network. Similar to
the choice model is the gravity model introduced by Zhang
et al. [6]. In its simplest form the gravity model assumes a
proportionality relation between the traffic entering the net-
work at node i and destined to node j and the total amount
of traffic entering at node i and the total amount of traffic
leaving the network at node j. The authors of the paper
use additional information about the structure and config-
uration of the network such as peering agreements and cus-
tomer agreements to improve performance of the method.
An information-theoretic approach is used by Zhang et al.

in [13] to estimate the traffic demands. Here, the Kullback-
Leibler distance is used to minimize the mutual information
between source and destination. In all papers mentioned
above, the routing is considered to be constant. In a pa-
per by Nucci et al. [14] the routing is changed and shifting
of link load is used to infer the traffic demands. Feldmann
et al. [15] uses a somewhat different approach to calcu-
late the traffic demands. Instead of estimating from link
counts they collect flow measurements from routers using
Cisco’s NetFlow tool and derive point-to-multipoint traffic
demands using routing information from inter- and intra-
domain routing protocols.

3. PRELIMINARIES

3.1 Notation and Problem Statement
We consider a network with N nodes and L directed links.

Such a network has P = N(N−1) pair of distinct nodes that
may communicate with each other. The aggregate communi-
cation rate (in bits/second) between any pair (n, m) of nodes
is called the point-to-point demand between the nodes, and
we will use snm to denote the rate of the aggregate data traf-
fic that enters the network at node n and exits the network
at node m. The matrix S = [snm] is called the traffic matrix.
It is usually more convenient to represent the traffic matrix
in vector form. We then enumerate all P source-destination
pairs, and let sp denote the point-to-point demand of node
pair p.

For simplicity, we will assume that each point-to-point de-
mand is routed on a single path. The paths are represented
by a routing matrix R ∈ R

L×P whose entries rlp are defined
as

rlp =

(

1 if the demand of node pair p is routed across link l

0 otherwise

(1)

Note that the routing matrix may easily be transformed to
reflect a situation where traffic demands are routed on more
than one path from source to destination by allowing frac-
tional values in the routing matrix. Let tl denote the ag-
gregate data rate on link l, t = [tl] ∈ R

L be the vector of
link rates, and s ∈ R

P be the vector of demands for all
source-destination pairs. Then, s and t are related via

Rs = t (2)

The traffic matrix estimation problem is simply the one of
estimating the non-negative vector s based on knowledge of
R and t.



The challenge in this problem comes from the fact that
this system of equations tends to be highly underdetermined:
there are typically many more source-destination pairs than
links in a network, and (2) has many more unknowns than
equations.

It is important to note that in an IP network setting, not
all links are interior links connecting the core routers in the
network: some of the links are access and peering links that
supply data to and receive data from the edge nodes. To
make this more explicit, we introduce the notation e(n) for
the link over which demand enters at node n, and x(m) for
the link over which demand exits at node m. For ease of
notation, we assume that each edge node is either an access
or a peering point (if this is not the case we can always
introduce artificial nodes in our network representation so
that this holds). Under these assumptions, te(n) is the total
traffic entering the network at node n and tx(m) is the total
traffic exiting the network at node m. Finally, we let A be
the set of nodes acting as access points, and P the set of
nodes acting as peering points.

3.2 Alternative formulations of traffic
estimation problems

3.2.1 The traffic matrix as a demand distribution
Since demands are non-negative, it is natural to normalize

s with the total network traffic

stot =
X

i

X

j

sij =
X

n

te(n)

and view s̃ = s/stot as a probability distribution. We may
then interpret s̃p as the probability that a random packet
in the network is sent between node pair p. Introducing
t̃ = t/stot, we can re-write (2) as

(

Rs̃ = t̃

1T s̃ = 1, s̃ � 0
(3)

The traffic estimation problem then becomes the one of es-
timating a vector s̃ that satisfies (3) based on knowledge of
R and t̃ (cf. [8, 16]).

3.2.2 Fanout formulations
Another alternative is to normalize the demands by the

total aggregate traffic entering the source node, i.e., to write

snm = αnm

X

m

snm = αnmte(n)

X

m

αnm = 1 (4)

Rather than estimating snm, one can now focus on estimat-
ing the fanouts αnm = snm/te(n). Also the fanouts can be
interpreted as probability distributions: αnm is the proba-
bility that a random packet entering the network at node n
will exit the network at node m (cf. [12, 17]).

4. METHODS FOR TRAFFIC MATRIX
ESTIMATION

4.1 Gravity Models
A simple method for estimating the traffic matrix is to

use a so-called gravity model. Although these models have
a long history in the social sciences [18] and in telephony
networks [19], the first application to demand estimation in
IP networks appears to be [20]. In our notation, the basic

version of the gravity model predicts the demand between
node n and node m as

s(p)
nm = Cte(n)tx(m) (5)

where C is a normalization constant that makes the sum
of estimated demands equal to the measured total network
traffic. With the choice C = 1/

P

m
tx(m), the gravity model

reduces to

s(p)
nm =

tx(m)
P

m
tx(m)

te(n)

and a comparison with (4) reveals that this is equivalent to
the fanout model

αnm =
tx(m)

P

m
tx(m)

i.e., that the amount of data that node n sends to node
m is proportional to the fraction of the total network traf-
fic that exits at node m. Such a model makes sense if the
user populations served by different nodes are relatively uni-
form. However, as pointed out in [6], traffic transit between
peering networks behaves very differently. This has led to
the generalized gravity model, where traffic between peers
is forced to be zero, i.e.,

s(p)
nm =

(

0 if n ∈ P and m ∈ P

Cte(n)tx(m) otherwise

Once again, C is a normalization constant that makes, for
example, the estimated total traffic equal to the measured
total network traffic. In this study, however, we focus on
the simple gravity model and leave the generalized gravity
model without further reference. It should be noted that the
gravity model does not use any information about the traffic
on links interior to the network, and that the estimates are
typically not consistent with the link load measurements (in
fact, the model may not even produce consistent estimates
of the total traffic exiting each node). Thus, gravity models
are often not used in isolation, but in combination with some
statistical approach that accounts for measured link loads.
Such methods will be described next.

4.2 Statistical Approaches

4.2.1 Kruithof’s Projection Method
One of the oldest methods for estimating traffic matrices

is the iterative method due to Kruithof [8]. The original
formulation considers the problem of estimating point-to-
point traffic in a telephony network based on a known prior
traffic matrix and measurements of total incoming and to-
tal outgoing traffic to each node in the network. Thus,
Kruithof’s method can, for example, be used to adjust the
gravity model estimate to be consistent with measurement
of total incoming and outgoing traffic at edge nodes.

Kruithof’s method was first analyzed by Krupp [16], who
showed that that the approach can be interpreted from an
information theoretic point-of-view: it minimizes the Kullback-

Leibler distance from the prior traffic matrix
h

s
(p)
ij

i

(inter-

preted as a demand distribution). Krupp also extended
Kruithof’s basic method to general linear constraints,

minimize D(s‖s(p))
subject to Rs = t, s � 0



and showed that the extended iterative method convergences
to the unique optimal solution. It is interesting to note that
Kruithof’s method appears to be the first iterative scaling
method in statistics, and that these methods are closely re-
lated to the celebrated EM-algorithm [21].

Recently [13], Zhang et al. have suggested to use the
related criterion

minimize ‖Rs − t‖2
2 + σ−2D(s‖s(p))

subject to s � 0
(6)

for estimating traffic matrices for backbone IP traffic. The
practical advantage of this formulation, which we will refer
to as the Entropy approach, is that the optimization problem
admits a solution even if the system of linear constraints is
inconsistent. We will comment on possible choices of prior
matrices at the end of this section.

4.2.2 Estimation under Poissonian and Generalized
Linear Modeling Assumptions

Vardi [9] suggested to use a Poissonian model for the traf-
fic, i.e., to assume that

sp ∼ Poisson(λp)

and showed that the mean and covariance matrix of the link
loads are given by

E {t} = Rλ Cov {t} = R diag(λ)RT

A key observation is that the Poissonian model provides an
explicit link between the mean and covariance matrix of the
traffic. Based on a time-series of link load measurements,
we compute the sample mean and covariance,

t̂ =
1

K

K
X

k=1

t[k] Σ̂ =
1

K

K
X

k=1

(t[k] − t̂)(t[k] − t̂)T

and then match the measured moments with the theoretical,
i.e., solve

Rλ = t̂ R diag(λ) RT = Σ̂

for the vector λ of mean traffic rates. By accounting for
the model of the covariance matrix we get L(L + 1)/2 ad-
ditional relations, and Vardi proves that the combined in-
formation makes the vector λ statistically identifiable. In
practice, however, there will typically be no vector λ that
attains equality in the moment matching conditions (this
may for example be due to lack of data, outliers, or violated
modeling assumptions). Vardi suggests to use the EM al-
gorithm to minimize the Kullback-Leibler distance between
the observed sample moments and their theoretical values.
However, as pointed out in [22], when the observed values
are not guaranteed to be non-negative, it is more reasonable
to use a least squares fit. To this end, we find the estimate
λ by solving the non-negative least-squares problem

minimize ‖Rλ − t̂‖2
2 + σ−2‖Rdiag(λ)R − Σ̂‖2

2

subject to λ � 0

The parameter σ−2 ∈ [0, 1] reflects our faith in the Poisso-
nian modeling assumption (compare [9, Section 4]): if σ−2

tends to zero, then we base our estimate solely on the first
moments, while σ−2 = 1 is natural if we believe in the Pois-
son assumption.

Cao et al. [5] have extended the Vardi’s approach by
considering a generalized linear modeling assumption

sp ∼ N
`

λp, φλc
p

´

and assumes that all source-destination flows are indepen-
dent. The additional scaling parameters φ and c give some-
what more freedom than the strict Poissonian assumption.
However, even for fixed scaling constants φ and c, the es-
timation procedure is more complex (the associated opti-
mization problem is non-convex), and Cao et al. propose
a pseudo-EM method for estimation under fixed value of c.
An interesting aspect of the paper by Cao et al. is that
they also try to account for time-variations in the OD flows
in order to use more measurements than the 12 link count
vectors logged during a busy hour.

4.2.3 Regularized and Bayesian Methods
A related class of methods can be motivated from Bayesian

statistics [10]. For example, by modeling our prior knowl-
edge of the traffic matrix as

s ∼ N (s(p), σ2I)

and assuming that the traffic measurements are subject to
white noise with unit variance, i.e.

t = Rs + v

with E{v} = 0, Cov{v} = I, the maximum a posteriori
(MAP) estimate is found by solving

minimize ‖Rs − t‖2
2 + σ−2‖s − s(p)‖2

2 (7)

Once again, the optimal estimate can be computed by mini-
mizing a weighted distance of the errors between theoretical
and observed means and the distance between the estimated
demands and a prior “guesstimate”. The variance σ2 in the
prior model is typically used as a tuning parameter to weigh
the relative importance that we should put on the two crite-
ria. The formulation (7) has been used in, for example, [6],
where the prior is computed using a gravity model.

4.2.4 Fanout Estimation
Although fanout estimation does not simplify the esti-

mation problem if we only use a single snapshot of the link
loads, it can be useful when we have a time-series of link load
measurements. As discussed in Section 3.2.2, the fanout for-
mulation of (2) is the one of finding a non-negative vector
α[k] such as

RS[k]α[k] = t[k],
X

m

αnm[k] = 1, n = 1, . . . , N

where S[k] is a diagonal scaling matrix such that s[k] =
S[k]α[k].

Given a time series of link load measurements, we may
assume that the fanouts are constant (i.e., that all link load
fluctuations are due to changes in the total traffic generated
by each node) and try to find α � 0 satisfying

RS[k]α = t[k], k = 1, . . . , K,
X

m

αnm = 1, n = 1, . . . , N

Even if the routing matrix itself does not have full rank,
the above system of equations will quickly become overde-
termined, and there is a unique vector α that minimizes the



errors (in a given norm) between the observed link counts
and the ones predicted by the constant-fanout model. These
can be found by solving the optimization problem

minimize
PK

k=1 ‖RS[k]α − t[k]‖2
2

subject to
PN

n=1 αnm = 1, m = 1, . . . , N

which is simply an equality-constrained quadratic program-
ming problem.

4.3 Deterministic Approaches

4.3.1 Worst-case bounds on demands
In addition to statistical estimates, it is also interesting

to find upper and lower bounds on the demands. Making
no underlying statistical assumptions on the demands, we
note that a single measurement t[k] of the link loads could
be generated by the set of possible communication rates,

S = {s � 0 | Rs = t[k]}

Thus, an upper bound on demand p can be computed by
solving the linear programming problem

maximize sp

subject to Rs = t[k], s � 0

The associated lower bound is found by minimizing sp sub-
ject to the constraints. Obviously, this approach is only
interesting when it finds an upper bound smaller than the
trivial maxl∈L(p) tl[k] and a lower bound greater than zero.
Also note that the method is computationally expensive, as
it requires solving two linear programs for each point-to-
point demand.

5. BENCHMARKING THE METHODS ON
REAL DATA

A major contribution of this paper is to study the traffic
in the backbone of a commercial Internet operator, and to
benchmark the existing traffic matrix estimation methods
on this data. A complete traffic matrix is measured using
the operator’s MPLS-enabled network.

Previous work also validated estimation methods on real
data, but they instead used NetFlow data to measure the
traffic matrix on single router or on a partial network. [6]
validates the tomogravity method with NetFlow measure-
ments of 2/3 of a tier-1 IP backbone, using hourly traffic
matrices. In [5] NetFlow data from a single router is used to
create traffic matrices in 5 minute increments, for validating
time-varying network tomography.

NetFlow exports flow information from the routers to a
collector system. The exported information contains the
start and end time of every flow, and the number of bytes
transmitted during that interval. The collector calculates
the average rate during the lifetime of the flow, and adds
that to the traffic matrix. For validating time-varying to-
mography, this is not a very accurate methodology. The
variability within a flow is lost because of the NetFlow ag-
gregation. This might affect the variance-mean relationship
this method is based on.

Our study provides new results in the sense that it uses a
full network traffic matrix, based on the direct measurements

(rather than analysis of NetFlow traces) of all demands at
5 minute intervals.

In the remaining parts of this section, we describe how a
complete traffic matrix is measured using Global Crossing’s
MPLS-enabled network, investigate some basic properties of
the demands, and evaluate the existing methods for traffic
matrix estimation on the data.

5.1 Data Collection and Evaluation Data Set

5.1.1 Network
Global Crossing is using MPLS for Traffic Engineering on

its global IP backbone. A mesh of Label Switched Paths
(LSPs, a.k.a. “tunnels”) has been established between all
the core routers in the network. Every LSP has a band-
width value associated with it, and the core router originat-
ing the LSP (head-end) will use a constraint based routing
algorithm (CSPF) to find the shortest path that has the re-
quired bandwidth available. RSVP is then used to setup
the actual path across the network. This architecture is
described in detail in [23].

By measuring the utilization of every LSP in 5 minute
intervals using SNMP, we can create a full and accurate
traffic matrix of the network. This is an additional, but
important, benefit of running an MPLS-enabled network.

5.1.2 Data Collection
To collect SNMP data from the network, a geographically

distributed system of “pollers” has been set up. Each poller
retrieves SNMP information from a dedicated set of routers
in its area, and also functions as a backup for neighboring
pollers. SNMP uses the unreliable UDP protocol for com-
munications between the routers and monitoring systems,
and hence there is the risk of losing data during transmis-
sion. A distributed system with the pollers located close to
the routers being monitored increases the reliability in the
case of network performance issues or outages, and keeps
the load per poller manageable.

The link and LSP utilizations are collected every 5 min-
utes, at fixed timestamps (e.g. 9:00:00, 9:05:00, 9:10:00,
etc.). There will be some variation in the exact polling
time, as it is impossible to query every router and interface
at exactly the same time. The exact response time of the
routers is recorded, and the corresponding utilization rate
data is adjusted for the length of the real measurement in-
terval (e.g. 5 minutes and 3 seconds). The impact of this on
the measurements is only minimal, and it provides uniform
time series of link and LSP utilization data.

The pollers transfer their data to a central database at
fixed intervals, using a reliable transport protocol (TCP).

5.1.3 Routing Matrix
The routing matrix in the form described by equations

(1) and (2) is created using a simulation of the network.
Although the routing of the LSPs in the network could be
retrieved from the routers, it proves to be more practical to
simulate the constraint based routing protocol (CSPF) as
used by the routers, using the same constraints data (i.e.
LSP bandwidth values).

We use the tool MATE from Cariden [24] to perform this
routing simulation, and export this information in a text file.
The data is then converted to a routing matrix according to
equation (1).



Although the routing in the network is often in a state of
flux because of link and/or equipment outages, this is not
of much relevance to our study. These routing changes only
have a minor effect on the point-to-point demands (i.e., the
traffic matrix).

5.1.4 Evaluation Data Set
In order to perform a scientific evaluation of the estima-

tion methods, we need the measurements of routing, traffic
matrix elements and link loads to be consistent. By consis-
tent we mean measurements which satisfies equation (2).

By using equation (2) we are able to compute the link
loads needed as input to the estimation methods, from the
measured point-to-point demands and the simulated rout-
ing matrix. The above mentioned procedure enable us to
evaluate the accuracy of the methods on real data without
the errors incurred by errors in the measurement of the link
loads.

From Global Crossing’s network, we have extracted rout-
ing information and traffic matrices for the European and
American subnetworks. The reason for this is that we wanted
to study networks of manageable size that still accommodate
large traffic demands. It also allows us to study if there are
any significant differences in the demand patterns on the
two continents. To create these separate traffic and rout-
ing matrices, we simply exclude all links and demands that
do not have both source and destination inside the specific
region.

Further, core routers located in the same city were aggre-
gated to form a point of presence (PoP), and we study the
PoP-to-PoP traffic matrix. Many PoPs contain routers who
only transit traffic. We have in this study included links be-
tween these transit routers since we focus on estimation in
real networks where transit routers are present. Because not
necessarily all the original demands between two PoPs were
following the same path, we decided to route the aggregated
demand according to the routing of the largest original de-
mand. In practice though, most parallel demands already
followed the same path.

Using this approach, the European network has 12 PoPs
(thus 132 point-to-point demands) and 72 links, while the
American network has 25 PoPs (600 demands) and 284 links.

Since the precise details of the traffic are considered pro-
prietary, we scale all plots by the maximum value of the total
traffic during the measurement period. It might, however,
be interesting to know that the largest traffic demands are
on the order of 1200 Mbps.

5.2 Preliminary Data Analysis

5.2.1 Busy hours and demand distributions
Figure 1 shows how the normalized total traffic in the two

subnetworks vary with time. The solid and dashed lines rep-
resent the European and American networks, respectively.
There is a clear diurnal cycle, and both subnetworks have a
pronounced busy periods. The busy periods overlap partly
around 18:00 GMT, and the time period shaded in Figure 1.
We will focus our data analysis to this interval.

Figure 2 shows the cumulative demand distribution for the
subnetworks. The figure shows that the top 20 percent of
demands account for approximately 80 percent of the traffic
in both networks.

A similar insight can be obtained from the spatial traffic
distributions illustrated in Figure 3, where we see that a
limited subset of nodes account for the majority of network
traffic.
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Figure 1: Total network traffic over time. The solid
line represents the European network, while the
dashed line represents the American subnetwork.
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Figure 2: Cumulative demand distributions for the
European network (solid) and the American subnet-
work (dashed).
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Figure 3: Spatial distribution of traffic in the two
subnetworks.

5.2.2 On the stability of fanout factors
As we have seen in Section 3, there are several possible

formulations of the traffic estimation problem: we may es-
timate the demands directly, focus on the relative demands
(viewing the traffic matrix as a demand distribution) or the
fanout factors. While the total network traffic changes with
the number of active users, one may conjecture that fanouts



would be stable as long as the average user behavior does
not change. In this section, we investigate whether fanouts
are more stable over time than demands themselves. If this
is the case, fanout estimation may be easier than demand
estimation since we do not have to rely on data logged only
during the stationary busy hour. Furthermore, if fanouts are
stable, it is a worthwhile idea to develop models for fanout
factors based on node characteristics (cf. [17]).

Figure 4 shows how the demands from the four largest
PoPs in the American network fluctuate over the 24-hour
measurement period, while Figure 5 shows the associated
fanouts. We can see that the fanouts are much more stable
than the demand themselves during this measurement pe-
riod. The same qualitative relationship holds for all large de-
mands in the network; for the smaller demands, however, the
fanouts sometimes fluctuate more than the demands them-
selves.
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Figure 4: The four largest outgoing demands from
the four largest PoPs in the American network.
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Figure 5: The associated fanouts for the four largest
outgoing demands from the four largest PoPs in the
American network.

5.2.3 On the Poissonian Modeling Assumption
The assumption that demands are Poissonian, or that

they follow a generalized scaling law, provides an explicit
link between mean and covariances of link load measure-
ments. Such a link allows us, at least in theory, to statis-
tically identify the demands based on a time series of link
load measurements. It is therefore interesting to investigate

how well our data satisfies the generalized scaling law [5]

Var {sp} = φλc
p

In particular, if the traffic is Poissonian, then φ = c = 1.
Figure 6 shows the relationship between the 5-minute av-
erages of mean and variance for the demands in our sub-
networks during busy hour. The plots show a remarkably
strong relation between mean and variance and that the
generalized scaling law is able to capture the mean-variance
relationship for the demands in both subnetworks. The pa-
rameters φ = 0.82, c = 1.6 gives the best fit for the European
demands, and φ = 2.44, c = 1.5 results in the best fit for the
American network.
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Figure 6: Relation between mean and variance for
the demands in the European (left) and American
(right) subnetworks.

Similar mean-variance relationships have been established
for web-traffic in [25] and for IP traffic demands in [5, 12].
Our observations are consistent with the measurements on
a single LAN router in [5] (which suggest that c = 2 is
more reasonable than the Poissonian assumption c = 1),
but differs from the measurements on the Sprint backbone
reported in [12] (which finds that c varies uniformly over
the interval [0.5, 4.0]). This difference could be explained
from the fact that [12] calculates the 1-second mean-variance
relationship per demand over 400 intervals of 100 seconds
each. The variation of the per demand mean over these 400
intervals (a little more than 11 hours) is not going to be very
large. In our analysis, we use the 5-minute mean-variance
numbers from all demands during a single interval, like the
busy hour for which we want to estimate the traffic matrix.
This way we fit the data over an average demand range
of 6 magnitudes or more, based on the same measurement
intervals that will be used for the estimation procedures.

5.2.4 On the Gravity model assumption
Finally, we investigate to what extent the gravity model

provides a good estimate of the demands. We focus our anal-
ysis on the simple gravity model although the generalized
gravity model potentially yield more accurate results since
the latter model requires information we do not have access
to. Figure 7 shows the actual traffic matrix elements against
the gravity model estimates. While the gravity model is rea-
sonably accurate for the European network, it significantly
underestimates the large demands in the American network.
With our knowledge about the spatial distribution of de-
mands shown in Figure 3 we could have foreseen this result.
Contrary to the gravity model assumption that all PoPs
send the same fraction of their total traffic to each destina-
tion, PoPs tend to have a few dominating destinations that
differ from PoP to PoP.



Actual demands

E
st

im
at

ed
 d

em
an

ds

Gravity model Europe

Actual demands

E
st

im
at

ed
 d

em
an

ds

Gravity model Europe

Figure 7: Real demands vs. gravity model estimates
for European (left) and American (right) subnet-
works.

5.3 Evaluation of Traffic Matrix Estimation
Methods

In this section, we evaluate the methods for traffic matrix
estimation described in Section 4. Since fanout estimation
and the Vardi approach both use a time-series of measure-
ments rather than a snapshot, they are analyzed separately
from the other methods.

5.3.1 Performance Metrics
To evaluate the methods, we must first determine an ap-

propriate performance measure. Although many aspects
could potentially be included in the evaluation, we focus on
the potential impact of performance errors on traffic engi-
neering tasks such as load balancing or failure analysis. For
these applications, it is most important to have accurate
estimation of the largest demands since the small demands
have little influence on the link utilizations in the backbone.
We will thus focus our performance analysis on how well the
methods are able to estimate the large demands. In order to
quantify performance of the estimation and compare results
from different estimation methods we introduce the mean
relative error (MRE):

MRE =
1

NT

X

i:si>sT

˛

˛

˛

˛

ŝi − si

si

˛

˛

˛

˛

(8)

Here, si denotes the true traffic matrix element and ŝi de-
notes the corresponding estimate. The sum is taken over
the elements in s larger than sT and NT is the number of
elements in s larger than the threshold. In our analysis,
we have chosen the threshold so that the demands under
consideration carry approximately 90% of the total traffic.
This corresponds to including the 29 largest demands in the
European subnetwork, and the 155 largest demands in the
American network.

5.3.2 Evaluation of Worst-Case Bounds
To get a feel for how difficult it is to estimate different

demands, it is useful to compute worst-case bounds for the
demands using the approach described in Section 4.3.1. The
resulting bounds for are shown in Figure 8.

Although most bounds are non-trivial, they tend to be
relatively loose and only very few bounds can be measured
exactly. Still, as shown in Figure 9 the average of the upper
and lower bound for each flow gives a relatively accurate
estimate of the demands. We can observe that many of the
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Figure 8: Worst-case bounds on demands in Euro-
pean (left) and American (right) subnetworks.

largest demands in the European subnetwork have relatively
large worst-case bounds, indicating potentially large uncer-
tainty in the estimates.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Actual demands (normalized)

B
ou

nd
s 

on
 e

st
im

at
es

WCB prior Europe

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Actual demands (normalized)

B
ou

nd
s 

on
 e

st
im

at
es

WCB prior USA

Figure 9: Priors obtained from worst-case bounds.

5.3.3 Evaluation of Fanout Estimation
Figure 10 shows the results of the fanout-based estimation

scheme on the American subnetwork. Since the approach
uses a time-series of link load measurements, we have the
average demands over the time window on the x-axis against
the estimated average demand on the y-axis. Although the
system of equations becomes overdetermined already for a
window length of 3, the actual performance only improves
marginally as we include more data.
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Figure 10: Average demands over time window vs.
estimates for the fanout estimation procedure using
actual data from American subnetwork.

To quantify the error we plot the MRE as a function of the
window length as shown in Figure 11. The figure shows that
the error decreases for short time-series of measurements,
but levels out for larger window sizes.
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Figure 11: MRE as a function of window length.

Europe America
σ−2 = 0.01 0.47 0.98
σ−2 = 1 302 1183

Table 1: MRE for the Vardi approach, K = 50

5.3.4 Evaluation of the Vardi approach
In the analysis of the Vardi approach, we apply the method

on the busy period of respective network (i.e., the shaded
interval in Figure 1). The busy period is 250 minutes, or
50 samples long, and we use the sample mean of the traffic
demands over the busy period as the reference value in the
MRE calculations.

Table 1 shows MRE for σ−2 = 0.01 and σ−2 = 1. The
value σ−2 = 1, which corresponds to strong faith in the Pois-
son assumption, gives unacceptable performance; some esti-
mates are several orders of magnitude larger than the true
demands while other elements are set to zero despite that
the corresponding demand is non-zero. Smaller values of σ
give better performance, but are still not very convincing.
We believe there are two reasons for the poor performance.
First, although there is a strong mean-variance relationship,
the analysis in Section 5.2.3 has shown that the demands are
not Poissonian. Second, the convergence of the covariance
matrix estimation is slow and one needs a large set of sam-
ples to have an accurate estimate. To support this argument,
we calculate the mean of the elements of the traffic matrix
over the busy period and generate a time-series of synthetic
traffic matrices with Poisson distributed elements with the
calculated mean. Figure 12 shows MRE as a function of
window size for synthetically generated traffic matrices. The
solid line shows the error for the European network and the
dashed line the error for the American network. To have
errors in the estimation less than 20% we need a window
size of 100 for the American network. Hence, even when the
Poisson assumption is valid, a large window size is needed in
order to achieve an acceptable level of the estimation error.

5.3.5 Comparison of Bayesian and Entropy models
In this section, we evaluate the methods that use a single

snapshot measurement from the network. We use the simple
gravity model as prior. As before, the threshold value of the
MRE method is adjusted so that approximately 90% of the
total traffic in the network is included in the study.

Relying on regularization, the results of both the Bayesian
(7) and the Entropy (6) approach depend on the choice of
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Figure 12: MRE as a function of window size for a
synthetic traffic matrix, σ−2 = 1

regularization parameter. For a small values of σ we make
little use of the measurement and focus on finding a solution
that is close to the prior. For very large values of σ, on the
other hand, we put a strong emphasis on the measurements,
and only use prior to select the most plausible solutions of
the demand estimates that satisfy Rs = t. This is clearly
shown in Figure 13, where we have computed the MRE val-
ues for both methods as function of the regularization pa-
rameter. The leftmost values should be compared with the
MRE of the gravity prior, which is 0.26 in European and
0.8 in the American subnetwork. As the plots show, we get
the best results for large values of the regularization param-
eter. We can also see that there is no single best method;
the Bayesian performs better in Europe while the Entropy
approach works better in the American subnetwork.
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Figure 13: Mean relative error (MRE) as a function
of the regularization parameter for the European
network (left) and the American network (right).

To gain intuition about the performance of the estimation
we have plotted the actual traffic matrix elements against
the estimated for the American network. Figure 14 shows
the plot for Bayesian (left) and Entropy (right) estimation.
The regularization parameter was set to 1000 producing the
best possible estimation for both Bayesian and Entropy es-
timation. The plots show that the estimation manage to
capture the traffic demands for the whole spectrum of traf-
fic demands.

Finally, we have demonstrated that using the mean of the
upper and lower worst-case bound for each demand resulted
in an estimate which is significantly better than the gravity
model, and is thus natural to use this as an alternative prior
in the regularized approaches. Figure 15 shows the MRE
for the Bayesian approach as function of regularization pa-
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Figure 14: Real vs. estimated traffic demands for
the American subnetwork using the Bayesian ap-
proach (left) and Entropy estimation (right).

rameter for the gravity and worst-case bound prior on the
European (left) subnetwork and the American (right) sub-
network. We can see that the worst-case bound prior gives
significantly better results for small values of the regulariza-
tion constant (i.e. when we put large emphasis on the prior).
For large values of the regularization parameter, however,
the performance of the two priors is practically equal.
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Figure 15: Mean relative error (MRE) as a function
of the regularization parameter for the European
(left) network and the American (right) network us-
ing gravity and worst-case bound priors.

5.3.6 Combining Tomography with Direct Measure-
ments

As a final exercise, we investigate the usefulness of com-
bining traffic matrix estimation based on link-loads with di-
rect measurements of specific demands. To get correspon-
dence with the rest of this paper, we focus on the problem
of adding measurements that allow us to decrease the MRE
of the Entropy method.

Figure 16 shows how the MRE for the Entropy approach
decreases with the number of measured demands for the Eu-
ropean subnetwork. We can see that it is sufficient to mea-
sure six demands in order for the MRE to drop from the
initial 11% to below 1%. For the American network, on the
other hand, we need to measure 17 demands for the MRE
to decrease from the initial 23% to below 10%. These re-
sults are generated by finding, by exhaustive search in each
step, the demand that when measured gives the largest de-
crease in MRE. They indicate that significant performance
improvements can be achieved by measuring only a handful
demands.
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Figure 16: The MRE versus number of demands
that we measure exactly in the European network.

Europe America

Worst-case bound prior 0.10 0.39
Simple gravity prior 0.26 0.78
Entropy w. gravity prior 0.11 0.22
Bayes w. gravity prior 0.08 0.25
Bayes w. WCB prior 0.07 0.23
Fanout 0.22 0.40
Vardi 0.47 0.98

Table 2: Performance comparison of the various
methods. The table shows the best MRE values
that we have been able to achieve for the various
methods on the two subnetworks.

In practice, however, one would also need an approach for
choosing the best demand. Comparing Figures 16 and 1, one
is easily led to believe that they are nothing but each others’
inverses, and it would be sufficient to measure the largest de-
mands. In passing, we note that most estimation methods
are very accurate in ranking the size of demands, so iden-
tifying the largest demands and measuring them is indeed
a viable practical approach. However, the MRE measures
the relative error, and in our data set, it is not the largest
demands that have the largest relative estimation errors. In
Europe, one would need to measure the 19 largest demands
to have a MRE less than 1%, and in the American network,
one would need to measure 74 demands to force the MRE
below 10%.

5.3.7 Evaluation in summary
To allow an easy performance comparison of the meth-

ods, Table 2 summarizes the best MRE values that we have
been able to achieve for the different approaches. The table
demonstrates that the Bayesian and Entropy methods gave
the best performance, followed by the fanout and Vardi ap-
proaches. The worst-case bounds provide a better prior than
the simple gravity model on our dataset, and both methods
provide better MRE values than the Vardi approach. Note,
however, that the fanout and Vardi approaches use, and are
evaluated on, a sequence of link load measurements.

Since our experiences of other aspects of the methods,
such as ease-of-use and computational complexity, are not
easily summarized in a single numbers, we have omitted a
direct comparison and refer to the discussions above.



6. CONCLUSION AND FUTURE WORK
This paper has presented an evaluation of traffic matrix

estimation techniques on data from a large IP backbone. In
contrast to previous studies that used partial traffic matri-
ces or demands estimated from aggregated NetFlow traces,
we have used a unique data set of complete traffic matrices
measured over five-minute intervals. The data set has al-
lowed us to do accurate data analysis on the time-scale of
standard link-load measurements and enabled us to evalu-
ate both methods that use a time-series of link-loads and
methods that rely on snapshot measurements.

We have shown that the demands in our data set have a
remarkably strong mean-variance relationship, yet we have
been unable to achieve good estimation performance using
methods that try to exploit this fact. We have argued that
this failure is due the problem of accurate estimation of co-
variance matrices and presented a study on synthetic data
to support this claim.

Based on our observation that fanout factors tend to be
much more stable over time than the demands themselves,
we have proposed a novel method for estimating fanouts
based on a time-series of link load measurements. We have
also proposed to estimate worst-case bounds on the demands.
Although these bounds are not always very tight, they turned
out to be useful for constructing a prior for use in other esti-
mation schemes. We have illustrated that the gravity model
fails to construct a good prior in one of our subnetworks
due to violations of underlying assumptions in the traffic
patterns. The regularized methods, such as Bayesian and
Entropy approaches, were found to be simple and provide
the best results, if the regularization parameter was chosen
appropriately. Finally, we noted that by measuring only a
handful of demands directly, it was possible to obtain sig-
nificant decreases in the MRE of the Entropy approach.

This study has focused on analyzing key properties of the
demand data set and evaluating the performance of traffic
matrix estimation techniques in terms of their estimation
error. Although we have covered most methods from the
literature, we have not implemented and evaluated the ap-
proach by Cao et al. [5]. Clearly, a more complete evalua-
tion should include also this method. It would also be useful
to complement the evaluation by a more rigorous theoretical
analysis to bring a better understanding of our observations.
Our study also leaves many important issues unexplored.
For example, our data set does not contain measurement
errors or component failures and we have not evaluated the
effect of such events on the estimation. Furthermore, we
have not considered how sensitive traffic engineering tasks
are to estimation errors in different demands, and how such
information could be incorporated in the estimation proce-
dures. Another interesting topic for future work would be
to understand the nature of the worst-case bounds, and see
if they could be exploited in other ways.
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