89,509 research outputs found

    Classical, semiclassical, and quantum investigations of the 4-sphere scattering system

    Full text link
    A genuinely three-dimensional system, viz. the hyperbolic 4-sphere scattering system, is investigated with classical, semiclassical, and quantum mechanical methods at various center-to-center separations of the spheres. The efficiency and scaling properties of the computations are discussed by comparisons to the two-dimensional 3-disk system. While in systems with few degrees of freedom modern quantum calculations are, in general, numerically more efficient than semiclassical methods, this situation can be reversed with increasing dimension of the problem. For the 4-sphere system with large separations between the spheres, we demonstrate the superiority of semiclassical versus quantum calculations, i.e., semiclassical resonances can easily be obtained even in energy regions which are unattainable with the currently available quantum techniques. The 4-sphere system with touching spheres is a challenging problem for both quantum and semiclassical techniques. Here, semiclassical resonances are obtained via harmonic inversion of a cross-correlated periodic orbit signal.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Deep Learning Topological Invariants of Band Insulators

    Full text link
    In this work we design and train deep neural networks to predict topological invariants for one-dimensional four-band insulators in AIII class whose topological invariant is the winding number, and two-dimensional two-band insulators in A class whose topological invariant is the Chern number. Given Hamiltonians in the momentum space as the input, neural networks can predict topological invariants for both classes with accuracy close to or higher than 90%, even for Hamiltonians whose invariants are beyond the training data set. Despite the complexity of the neural network, we find that the output of certain intermediate hidden layers resembles either the winding angle for models in AIII class or the solid angle (Berry curvature) for models in A class, indicating that neural networks essentially capture the mathematical formula of topological invariants. Our work demonstrates the ability of neural networks to predict topological invariants for complicated models with local Hamiltonians as the only input, and offers an example that even a deep neural network is understandable.Comment: 8 pages, 5 figure

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure

    Double Occupancy Errors in Quantum Computing Operations: Corrections to Adiabaticity

    Get PDF
    We study the corrections to adiabatic dynamics of two coupled quantum dot spin-qubits, each dot singly occupied with an electron, in the context of a quantum computing operation. Tunneling causes double occupancy at the conclusion of an operation and constitutes a processing error. We model the gate operation with an effective two-level system, where non-adiabatic transitions correspond to double occupancy. The model is integrable and possesses three independent parameters. We confirm the accuracy of Dykhne's formula, a nonperturbative estimate of transitions, and discuss physically intuitive conditions for its validity. Our semiclassical results are in excellent agreement with numerical simulations of the exact time evolution. A similar approach applies to two-level systems in different contexts

    Topological and Dynamical Complexity of Random Neural Networks

    Full text link
    Random neural networks are dynamical descriptions of randomly interconnected neural units. These show a phase transition to chaos as a disorder parameter is increased. The microscopic mechanisms underlying this phase transition are unknown, and similarly to spin-glasses, shall be fundamentally related to the behavior of the system. In this Letter we investigate the explosion of complexity arising near that phase transition. We show that the mean number of equilibria undergoes a sharp transition from one equilibrium to a very large number scaling exponentially with the dimension on the system. Near criticality, we compute the exponential rate of divergence, called topological complexity. Strikingly, we show that it behaves exactly as the maximal Lyapunov exponent, a classical measure of dynamical complexity. This relationship unravels a microscopic mechanism leading to chaos which we further demonstrate on a simpler class of disordered systems, suggesting a deep and underexplored link between topological and dynamical complexity

    Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration

    Full text link
    The search for symmetry as an unusual yet profoundly appealing phenomenon, and the origin of regular, repeating configuration patterns have long been a central focus of complexity science and physics. To better grasp and understand symmetry of configurations in decentralized toroidal architectures, we employ group-theoretic methods, which allow us to identify and enumerate these inputs, and argue about irreversible system behaviors with undesired effects on many computational problems. The concept of so-called configuration shift-symmetry is applied to two-dimensional cellular automata as an ideal model of computation. Regardless of the transition function, the results show the universal insolvability of crucial distributed tasks, such as leader election, pattern recognition, hashing, and encryption. By using compact enumeration formulas and bounding the number of shift-symmetric configurations for a given lattice size, we efficiently calculate the probability of a configuration being shift-symmetric for a uniform or density-uniform distribution. Further, we devise an algorithm detecting the presence of shift-symmetry in a configuration. Given the resource constraints, the enumeration and probability formulas can directly help to lower the minimal expected error and provide recommendations for system's size and initialization. Besides cellular automata, the shift-symmetry analysis can be used to study the non-linear behavior in various synchronous rule-based systems that include inference engines, Boolean networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice

    Reduction of continuous symmetries of chaotic flows by the method of slices

    Full text link
    We study continuous symmetry reduction of dynamical systems by the method of slices (method of moving frames) and show that a `slice' defined by minimizing the distance to a single generic `template' intersects the group orbit of every point in the full state space. Global symmetry reduction by a single slice is, however, not natural for a chaotic / turbulent flow; it is better to cover the reduced state space by a set of slices, one for each dynamically prominent unstable pattern. Judiciously chosen, such tessellation eliminates the singular traversals of the inflection hyperplane that comes along with each slice, an artifact of using the template's local group linearization globally. We compute the jump in the reduced state space induced by crossing the inflection hyperplane. As an illustration of the method, we reduce the SO(2) symmetry of the complex Lorenz equations.Comment: to appear in "Comm. Nonlinear Sci. and Numer. Simulat. (2011)" 12 pages, 8 figure
    • …
    corecore