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We study the corrections to adiabatic dynamics of two coupled quantum dot spin qubits, each dot singly
occupied with an electron, in the context of a quantum computing operation. Tunneling causes double occu-
pancy at the conclusion of an operation and constitutes a processing error. We model the gate operation with
an effective two-level system, where nonadiabatic transitions correspond to double occupancy. The model is
integrable and possesses three independent parameters. We confirm the accuracy of Dykhne’s formula, a
nonperturbative estimate of transitions, and discuss physically intuitive conditions for its validity. Our semi-
classical results are in excellent agreement with numerical simulations of the exact time evolution. A similar
approach applies to two-level systems in different contexts.
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I. INTRODUCTION

Quantum information processing is an active and fascinat-
ing direction of research with participation from various
fields of physics and neighboring scientific disciplines.1 This
extraordinary interest has generated a fairly vast amount of
theoretical and experimental studies. Possible experimental
realizations of quantum information processing are presently
being investigated. Among the different approaches, those in
a solid-state setting are attractive, because they offer the po-
tential of scalability—the integration of a large number of
quantum gates into a quantum computer once the individual
gates and qubits are established. With that in mind, several
proposals for using electron and/or nuclear spins in solid-
state systems have been put forward in recent years.2–7 Spe-
cifically, in Ref. 2 it was proposed to use the spin of electrons
residing in semiconductor quantum dots as qubits.8–15 In this
paper we revisit the quantum dynamics of gate operations
between qubits of this type. Such two-qubit operations are
performed by varying the amplitude of electron tunneling
between the dots via external electric potentials. In a generic
scenario, the tunneling amplitude between the dots is zero
sor, more precisely, exponentially smalld before and after the
gate operation, while it is finite and appreciable during such
a process. Thus, the typical time dependence of the tunneling
amplitude is a pulse roughly characterized by its duration,
amplitude, and ramp timessee Fig. 1d. During such a pulse,
the tunneling amplitude is finite and essentially constant, and
both electrons can explore the total system of two quantum
dots. Therefore, their indistinguishable fermionic character is
of relevance.10,16,17 In particular, in such gate operations
entanglement-like quantum correlations arise which require a
description different from the usual entanglement between
distinguishable partiessAlice, Bob, …d in bipartite sor mul-
tipartited systems. In such a case the proper statistics of the
indistinguishable particles has to be taken into account.10,16,17

Another important aspect of having a finitesas opposed to
infinitely highd tunneling barrier between the dots is that it
necessarily leads tospartiallyd doubly occupied states in the
two-electron wave function, i.e., contributions to the wave

function where both electrons are on the same dotshaving
different spinsd occur with finite amplitude. Doubly occupied
states which arise as the result of a measurement after the
gate operation destroy the information in those qubits and
lead to errors in the information processing. Therefore, it is
desirable to reduce the probability of such errors, i.e., the
occurrence of doubly occupied states, in the resulting two-
electron state after the gate operation, while it is necessarily
finite during the operation.9,10 If the error probability can be
sufficiently reduced, error events can be tolerable and
handled with quantum error correction schemes. An effective
way of guaranteeing error suppression is to maintain nearly
adiabatic time evolution. Doubly occupied states then corre-
spond to corrections to adiabatic evolution, which are often
called “nonadiabatic transitions.” Numerical simulations10

have shown that the adiabatic region, in terms of the pulse
parameters such as ramp time and amplitude, is rather large.
On a heuristic level, this numerical result is plausible on the
basis of the classic papers on adiabatic quantum motion in
two-level systems by Landau,18 Zener,19 Stueckelberg,20 and
Rosen and Zener.21 For an overview see Ref. 22.

In this work we study the quantum dynamics of the two-
qubit gate operations described above and use Dykhne’s
semiclassical result to estimate the probability of nonadia-
batic transition.23 The applicability of Dykhne’s formula is
analyzed from the standpoint of the theory of semiclassical
approximations. These semiclassical estimates are found to
be in excellent agreement with numerical simulations of the
exact time evolution. Moreover, in a certain limit our model
is integrable, allowing us to explicitly calculate and interpret
the corrections to Dykhne’s formula.

This paper is organized as follows. Section II reviews the
derivation10 of an effective two-level model. In Sec. III, we
present our main result—the asymptotic estimate of double
occupancy, which in Sec. IV is compared with an integrable
model and a numerical integration of the Schrödinger equa-
tion. In the Appendix, we construct the scattering matrix for
the integrable model, which has three independent param-
eters.
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II. MAPPING TO AN EFFECTIVE TWO-LEVEL SYSTEM

For the purpose of studying double occupancy it is prac-
tical to examine the dynamics of the quantum gate operation
in a subspace spanned by singly and doubly occupied states.
Following Ref. 10 with only minor changes of notation, we
now detail how to reduce the description of a system of two
coupled quantum dot spin qubits to an effective two-level
Hamiltonian. The system is described by a Hamiltonian of
the formH=T+C, whereC denotes the Coulomb repulsion
between the electrons andT=oi=1,2hi is the single-particle
part with

hi =
1

2m
SpW i +

e

c
AW srWidD2

+ VsrWid. s1d

The single-particle Hamiltonianhi describes electron dynam-
ics confined to thexy plane in a perpendicular magnetic field

BW . The effective massm is a material dependent parameter.
The coupling of the dotsswhich includes tunnelingd is mod-
eled by a quartic potential

VsrWd = Vsx,yd =
mv0

2

2
S 1

4a2sx2 − a2d2 + y2D , s2d

which separates into two harmonic wells of frequencyv0
sone for each dotd in the limit a@a0, wherea is half the

distance between the dots anda0=Î" /mv0 is the effective
Bohr radius of a dot.

Following Burkardet al.8 we employ the Hund-Mulliken
method of molecular orbits to describe the low-lying spec-
trum of our system. This approach concentrates on the lowest
orbital states in each dot and is an extension of the Heitler-
London method.8 fIn the following, we assume for simplicity
that "v@UH i.e., ssingle particle orbital level spacingd @
squantum dot charging energyd, so that orbital excitations can
be safely neglected. Such a situation is reached for suffi-
ciently small quantum dots.12g The Hund-Mulliken approach
accounts for the fact that both electrons can, in the presence
of a finite tunneling amplitude, explore the entire system of
the two dots, and therefore adequately includes the possibil-
ity of doubly occupied states. In the usual symmetric gauge

AW =Bs−y,x,0d /2 the Fock-Darwin ground state of a single
dot with harmonic confinement centered aroundrW
=s±a,0 ,0d reads

w±asx,yd =Îmv

p"
expS−

mv

2"
fsx 7 ad2 + y2gD

3 expS7
i

2
y

a

lB
2D , s3d

wherelB=Î"c/eB is the magnetic length, and the frequency
v is given by v2=v0

2+svL /2d2 where vL=eB/mc is the
usual Larmor frequency. From these nonorthogonal single-
particle states we construct the orthonormalized statesuAl
and uBl with wave functions

krWuAl =
1

Î1 − 2Sg+ g2
sw+a − gw−ad, s4d

krWuBl =
1

Î1 − 2Sg+ g2
sw−a − gw+ad, s5d

with S being the overlap between the statess3d and g=s1
−Î1−S2d /S. For appropriate values of system parameters
such as the interdot distance and the external magnetic field,
the overlapS becomes exponentially small.8 In this limit an
electron in one of the statesuAl, uBl is predominantly local-
ized aroundrW=s±a,0 ,0d. In the following we consider this
case and use these states as basis states to define qubits, i.e.,
qubits are realized by the spin state of an electron in either
orbital uAl or orbital uBl.

An appropriate basis set for the six-dimensional two-
particle Hilbert space is givensusing standard notationd by
the three spin singlets,

uS1l =
1
Î2

scA↑
+ cB↓

+ − cA↓
+ cB↑

+ du0l, s6d

uS2l =
1
Î2

scA↑
+ cA↓

+ + cB↑
+ cB↓

+ du0l, s7d

uS3l =
1
Î2

scA↑
+ cA↓

+ − cB↑
+ cB↓

+ du0l, s8d

and the triplet multiplet,

uT−1l = cA↓
+ cB↓

+ u0l, s9d

uT0l =
1
Î2

scA↑
+ cB↓

+ + cA↓
+ cB↑

+ du0l, s10d

uT1l = cA↑
+ cB↑

+ u0l. s11d

As the Hamiltonian conserves spin, the three triplet states are
degenerate eigenstatesstypically we can ignore possible Zee-
man splittings8d and have the eigenvalue

«trip = 2«1 + V−, s12d

where we have defined

FIG. 1. A realistic profile of the tunneling pulses23d, labeled
with the characteristic durationsT<13td and ramp time scales. The
pulse shown has dimensionless strengthd= 1

2.

REQUISTet al. PHYSICAL REVIEW B 71, 115315s2005d

115315-2



«1 = kAuh1uAl = kBuh1uBl s13d

and the expectation value of Coulomb energy,

V− = kTauCuTal, V+ = kS1uCuS1l. s14d

An important further observation is that, as a consequence
of inversion symmetry along the axis connecting the dots,
the Hamiltonian does not have any nonzero matrix elements
between the singlet stateuS3l and other states. Hence,uS3l is,
independently of the system parameters, an eigenstate. The
eigenvalues of the triplet anduS3l, however, do depend on
system parameters. The Hamiltonian acting on the remaining
space spanned byuS1l and uS2l can be written as

H = 2«1 +
1

2
UH + V+ −

UH

2
S 1 tH

tH − 1
D , s15d

where

tH = −
4

UH
SkAuh1uBl +

1

2
kS2uCuS1lD s16d

and

UH = kS2uCuS2l − V+. s17d

The nontrivial part of Eq.s15d is a simple Hubbard Hamil-
tonian on two sites and can be identified as the Hamiltonian
of a pseudospin-12 object in a pseudomagnetic field having a
componentUH in the ẑ direction andUHtH in the x̂ direction
of pseudospin space.sNote that this pseudospin is not related
to the spin degree of freedom which constitutes the qubit.d
The basis states themselves are eigenstates only in the case
of vanishing tunneling amplitudetH whereuS1l is the ground
state anduS2l is a higher lying state due of the Coulomb
sHubbardd energy. In all other cases, the ground state has an
admixture of doubly occupied states contained inuS2l. The
energy gap between the triplet and the singlet ground state is

«trip − «gs= V− − V+ −
UH

2
+

UH

2
Î1 + tH

2 . s18d

A key challenge for state-of-the-art quantum information
processing is the construction of systems composed of two
coupled quantum dots which can be coupled to perform swap
operationsUSW, i.e., unitary two-qubit operations which in-
terchange the spin statessqubitsd of the electrons on the two
dots. By combining the “square root”USW

1/2 of such a swap
with other isolated-qubit manipulations one can construct a
quantumXOR gate. A quantumXOR gate, along with isolated-
qubit operations, has been shown to be sufficient for the
implementation of any quantum algorithm.24 Hence a practi-
cal and reliable realization of a swap gate would be an im-
portant step toward the fabrication of a solid-state quantum
computer. A swap operation in the present system is a unitary
transformation which turns a state having the qubits in dif-
ferent states, say,

cA↑
+ cB↓

+ u0l =
1
Î2

suT0l + uS1ld, s19d

into a state where the contents of the qubits are interchanged,

cA↓
+ cB↑

+ u0l =
1
Î2

suT0l − uS1ld. s20d

These two states are eigenstates in the caseV+=V− and tH
=0 for which the singlet-triplet splitting vanishes.

As discussed in Refs. 2, 8, and 10, swapping may be
achieved by the action of a gate that lowers the potential
barrier between the quantum dots. If the duration and ampli-
tude of a tunneling pulse are adjusted appropriately, the rela-
tive dynamical phase between the singlet and the triplet
states accumulates a shift ofp,

1

"
E

−`

`

dtf«tripstd − «gsstdg = p s21d

and the swapping operation between statess19d and s20d is
performed. However, during the operation the stateuS1l is
coupled to uS2l, and they evolve according to Eq.s15d.
Double occupancy errors are thus generically introduced.

The reduction of the dynamics to the time evolution of a
two-level system relies on the fact that the system has inver-
sion symmetry along thex̂ axis in real space connecting the
dots. This symmetry can be broken if odd powers of the
particle coordinatesxi are added to the Hamiltonians1d, for
example, the potential of a homogeneous electric field. The
breaking of inversion symmetry introduces additional matrix
elements betweenuS3l and the other two singlets leading to
an effective three-level Hamiltonian. However, as it was
shown in Ref. 10, this more inclusive Hamiltonian has quali-
tatively the same properties concerning nonadiabatic dynam-
ics as the two-level system on which we shall concentrate in
the following.

So far we have not considered a possible Zeeman cou-
pling to the electron spin. This would not change the situa-
tion essentially since all states involved in the swapping pro-
cesssuT0l, uS1l, uS2l, and possiblyuS3ld have the total spin
quantum numberSz=0.

III. ANALYSIS OF NONADIABATIC TRANSITIONS

In this section we use Dykhne’s formula for nonadiabatic
transitions to derive an asymptotic expression for the prob-
ability of final double occupancy, given physically motivated
properties of the two-qubit operation.

As described in the preceding section, the modulation of
the tunneling barrier during the swapping process induces a
coupling between the singly occupied qubit stateuS1l and the
doubly occupied stateuS2l. Their dynamics are governed by
the effective Hamiltonian

Heff = −
UH

2
S 1 tH

tH − 1
D s22d

in the uS1,2l basis. The terms omitted from Eq.s15d do not
contribute to transitions, because the identity operator in the
uS1,2l basis commutes with the remainder of the Hamiltonian.
The large energy offsetUH between singly and doubly occu-
pied states, primarily due to the Coulomb repulsion, is per-
turbed only by an exponentially small additive quantityspro-
portional to the overlap,Sd during the swapping operation
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and is hereafter assumed to be a constant. Our specification
of the pulsesFig. 1d

tHstd =
d

1 +
coshst/td

coshsT/2td

s23d

with dimensionless strengthd is considered to realistically
reflect the tunneling amplitude that would arise from a
modulation of the gate potential.10 The exponential depen-
dence of the ramping neart= ±T/2 has its origin in the ex-
ponential sensitivity of the coupling to the gate voltage and
in turn the exponential decay of the single-particle wave
functions s3d in the interdot region.25 The pulse mimics a
step of durationT and magnitudedUH /2, whose ramping on
and off has a characteristic timet. The perturbation of the
instantaneous eigenvalues by the pulse is shown in Fig. 2.

The Schrödinger equation is

i"
d

dt
ucstdl = Heffstducstdl. s24d

Our task is to find the component of double occupancy in the
final state,kS2ucs`dl, given that the prepared state is purely
singly occupied,ukS1ucs−`dlu=1.

Our model involves three dimensionless scales, assigned
for our purposes as follows:d, l;UHt /2", and h=T/t.
Presently, the case of interest is

l @ 1, h @ 1. s25d

The first of these conditions reflects the adiabaticity of the
problem. The second requires that the ramping on and ramp-
ing off of the pulse be temporally well-separated and distinct
events.

Let us pause and for this paragraph review the familiar
notions of transitions under the action of a time-dependent
perturbation. The pulse acts as a transient perturbation and
otherwise the Hamiltonians22d is diagonal. By force of the
adiabatic theorem, the probability of transition among eigen-
states vanishes in the limitt→`, where the ramping on and
off of the pulse is adiabatic. In the zeroth order of adiabatic

perturbation theory, there are no transitions, and the leading
behavior of the general solution is simply the dynamical
phase of each component eigenstate

ucstdl < expF i

"
E

−`

t

dt8«st8dGuj1stdlkj1s− `ducs− `dl

+ expF−
i

"
E

−`

t

dt8«st8dGuj2stdlkj2s− `ducs− `dl,

s26d

where uj1,2stdl are the instantaneous eigenstatesfgiven ex-
plicitly in Eq. s54dg of Hamiltonian s22d corresponding to
eigenvalues

7«std = 7
UH

2
Î1 + tH

2 , s27d

respectively. In general, the approximate solution could also
include a factor representing Berry phase. However, for a
real symmetric Hamiltonian such as Eq.s22d, Berry phase is
irrelevant, because the Hamiltonian has an inherent planarity.

In pseudospin one-half notation,Heff=HW std ·sW , the time evo-

lution of the pseudomagnetic fieldHW std is in a plane. If the
azimuthal axissnorth poled is chosen to lie within that plane,
the solid angle subtended by the pseudomagnetic field van-
ishes identically. Although Berry phase is out of consider-
ation, there are interesting circumstances where Berry phase
is relevant to transitions. It can correct the transition
amplitude26 and produce topological selection rules for spin
tunneling.27,28 Our problem is one of a class initiated by the
work of Landau, Zener, and Stueckelberg.18–20However, we
emphasize that for our modelfwith the pulse specified as Eq.
s23dg the linearization of Hamiltonian matrix elements near
the times where adiabaticity is most severely violated is not
applicable and leads to an incorrect result. As we will see the
shape of the pulse is important.

A. Application of Dykhne’s formula

Returning to our model, we observe that if the time inter-
val tP s−` ,`d is divided into two domainst,0 and t.0,
and in the limith;T/t@1, the pulses23d is approximated
by

tHstd < 5
d

1 + e−st/td−sT/2td , t , 0

d

1 + est/td−sT/2td , t . 0.6 s28d

In each domain the pulse behaves as a step, and the dynam-
ics are integrablessee Sec. IVd. We will focus first on the
interval t,0, where the probability of transition to a doubly
occupied stateP, may be estimated with Dykhne’s
formula23

FIG. 2. A profile of the instantaneous eigenvalues ±«std corre-
sponding tol=2 and the pulse shown in Fig. 1.
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P, = ukS2ucs0dlu2 , expF−
4

"
ImE

Rest1d

t1

dz«szdG , s29d

where the approximations28d is used implicitly for the in-
stantaneous eigenenergies7«std defined above by Eq.s27d.
The turning pointt= t1, given explicitly below, is acomplex
root of the function«std; in other words, it is an intersection
of the energy surfaces of the two instantaneouss“frozen”d
eigenstates. Our model is the patching together of two do-
mains of time, and transitions that occur duringt,0 and t
.0 interfere. The expression for the probability of transition
during the time evolution fromt=−` to t=` is

P = ukS2ucs`dlu2

, UexpF i

"
E

Ca

dz«szdG + expF i

"
E

Cb

dz«szdGU2

, UexpF i

"
ReE

Ca

dz«szdG
3expF−

2

"
ImE

Rest1d

t1

dz«szdG + expF i

"
ReE

Cb

dz«szdG
3expF−

2

"
ImE

Rest2d

t2

dz«szdGU2

s30d

=4 sin2S 1

"
ReE

t1

t2

dz«szdDP,, s31d

where the contoursCa,b are shown in Fig. 3, and according to
the sign of the integration variable, sgnsRezd, one or the
other of the approximationss28d is used. The turning points
t= t1,2 appearing in the limits of integration of Eq.s30d are
chosen as the two roots of«std that are closest to and above
the real time axisssee Fig. 3d,

t1,2= 7 ST

2
+ t lnsÎ1 + d2dD + itfp − arctansddg. s32d

They are nonreal because the Hamiltonians22d is nondegen-
erate for real times. Equations31d follows from Eq. s30d,
because the symmetry of the pulse implies Imst1d=Imst2d

and P,=P.. The oscillatory first factor of Eq.s31d is the
interference of the dynamical phase of each term of Eq.s30d.
The magnitude ofP is dominated by the second factorP,

whose exponent is given by the following integral:

− 4l ImE
lnsÎ1+d2d

lnsÎ1+d2d+ip−i arctansdd
dzF1 +S d

1 + ezD2G1/2

= − 2pls1 +Î1 + d2 − dd. s33d

Substituting this result in Eq.s29d we have

P, , e−2pls1+Î1+d2−dd. s34d

From Eq.s31d, we have our main result, an asymptotic esti-
mate for the probability of final double occupancy,

P , 4 sin2S 1

"
ReE

t1

t2

dz«szdDe−2pls1+Î1+d2−dd, s35d

which is shown as a function ofd in Fig. 4. The probability
P is characteristically nonperturbative in the adiabatic limit
t→` with UH fixed, or equivalentlyl→`. Hence, the di-
mensionless quantity associated with the exponential sup-
pression isl and has been called the “adiabaticity param-
eter.” For h;T/t@1, the approximations28d allows us to
estimate the argument of the prefactor of Eq.s35d to expo-
nential accuracy,

1

"
ReE

t1

t2

dz«szd = Î1 + d2lh − 2lhlnsÎ1 + d2 + 1d

− Î1 + d2 lnf2s1 + d2dg + d lnsÎ1 + d2 + dd

+ sÎ1 + d2 − 1dlnsddj + Ose−h/2d. s36d

The oscillation with respect to the duration of the pulseT is
reminiscent of a similar factor in the Rosen-Zener model.
The phenomenon of pulsed perturbations that return the full
amplitude/occupation to the initial state has been studied in
the context of atom-laser interactions.29–32 In Figs. 4–6, we
compare our semiclassical estimates35d with results from
numerical simulations of the exact quantum mechanical time

FIG. 3. The analytic structure of the function«std shown only in
a segment of the upper half plane. The contourCa is associated with
transitions that occur due to the ramping on of the pulse, while
contourCb is associated with the ramping off. By Cauchy’s theo-
rem, an integral on the contourCa is equal to the integral on the

contourC̃a. Bold lines represent branch cuts, dots represent branch
points, and poles are denoted with a3.

FIG. 4. The probability for nonadiabatic transitions forl=2 and
h=50 as a function ofd. We compare our semiclassical estimate
according to expressions35d with results from numerical simula-
tions of the exact quantum mechanical time evolution as done in
Ref. 35. The results are in excellent agreement.
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evolution, following Ref. 10. Both results are in excellent
agreement and differ only at very smalld, i.e., for weak
pulses. Of course, the nonadiabatic transition probability
vanishes in this limit, whereas the semiclassical approxima-
tion breaks downssee Sec. III Cd. This regime is beyond the
exponential accuracy of Dykhne’s formula. The integrability
of our model allows us to make precise statements about the
form and magnitude of the corrections to Dykhne’s formula
ssee Sec. IVd. For example, in the limitl@1 anddl!1 we
have from the expansions63d thatP,,s2pdld2 e−4pl, while
in the same limit the result of Dykhne’s formulas35d gives
only the exponential factore−4pl without information about
the prefactor. This explains a trend among Figs. 4–6, namely,
the increasing range, in terms ofd, of validity of Dykhne’s
formula with increasingl. The value for the adiabaticity
parameterl=2, represented in Fig. 4, corresponds to a ramp
time t=4" /UH, which was identified in Ref. 10 as a practical
lower bound to ensure sufficient adiabatic behavior in a gate
operation between two quantum dot spin qubits. It is inter-
esting that Dykhne’s formula remains accurate for smaller
values ofl in particularl=1 as seen in Fig. 6. The reason is
that the resultss35d ands61d have an incidental factor of 2p
in the exponent, giving in practical terms the requirement for
exponential suppression 2pl@1.

The expressionss34d ands35d, along with Figs. 4–6, com-
prise our main results. For the remainder of this section, we
will address the justification and limitations of these results.

B. Origin of Dykhne’s formula

Dykhne derived a concise expression for nonadiabatic
transitions from a local analysis of the Schrödinger equation
in the vicinity of the turning point.23 Dykhne’s formula can
be viewed as a semiclassical approximation, and an elegant
interpretation and proof was given by Hwang and Pechukas33

ssee also Ref. 34d. We will briefly discuss the key elements
and scope of the proof. Their method was to study the solu-
tion of the Schrödinger equation in the complex plane of the
independent variable, time. According to the adiabatic theo-
rem, the projection of the solution onto any eigenstate other
than the initial eigenstate approaches zero in the adiabatic
limit. One might suppose that weak statement is all the adia-
batic theorem can tell us about transitions; however, it does

not exhaust its capacities. The reason lies in the following: a
basis of eigenstatesuj1,2stdl, when extended into the complex
time plane, is multivalued. In particular, as a basis state is
analytically continued across a branch cut of the function
«std, its long-time asymptotics are discontinuously changed.
In accord with our above two-level problem, we uniquely
specify the basis by its asymptotics,

uj1,2stdl → uS1,2l as t → ± `. s37d

The multivalued nature is not manifest on the real time axis,
because owing to the nondegeneracy of the spectrum7«std,
the branch points are nonreal. We can choose a single-valued

basisuj̃1,2stdl, which makes reference touj1,2stdl but has fixed
asymptotics, by defining rules for continuing the basis states
across branch cuts. Equivalently, this new basis is said to be
defined over a Riemann surface with sheetsscopies of the
complex time planed corresponding to each of the two
branches of the functionf«std2g1/2. sThe Riemann surfaceR1

for the eigenstate basisuj̃1,2stdl has four sheets, while the
Riemann surfaceR2 for the function f«std2g1/2 has two
sheets. Of the four sheets ofR1, two correspond to one
branch off«std2g1/2 and the other two correspond to the other
branch off«std2g1/2. Therefore, the phasesa1,2 and b1,2 of
Eq. s38d, though constant on each sheet, can assume different
values on different sheets ofR1.d Crossing a branch cut
means passing to the other sheet of the Riemann surface. We
assign the following relations among the eigenstates:

uj̃1,2stdl = eia1,2uj1,2stdl, t P sheet 1 off«std2g1/2,

uj̃1,2stdl = eib1,2uj2,1stdl, t P sheet 2 off«std2g1/2, s38d

wherea1,2 and b1,2 are phase definitions that are chosen to

maintain continuity of the basisuj̃1,2l across the branch cut.

Given ukj̃1s−`d ucs−`dlu=1, the conclusion of the adiabatic
theorem may be restated on a Riemann surface as

ukj̃1stducstdlu → 1 ∀ t as t → `, s39d

where t is the characteristic time scale for variation of
Heffstd. The only exception to Eq.s39d is for times within

FIG. 6. The probability for nonadiabatic transitions forl=1 and
h=50 as a function ofd.

FIG. 5. The probability for nonadiabatic transitions forl=4 and
h=50 as a function ofd.
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Ostl−2/3d of a turning point, for there the semiclassical cri-
terion s45d is invalid. As remarked above, the zeroth-order
approximations26d of the solution ast→` is the dynamical
phase. The zeroth-order approximation may be extended into
the complex plane by evaluating the dynamical phase on a
contourC. Continuing with the above example, a state that is
purely singly occupied att=−` is for complex time given by

ucstdl < expH−
i

"
E

C
dzf− «szdgJuj̃1stdl, s40d

whereC is a contour fromz=−` to z= t. The amplitude of
transition is readily obtained as the projection of the solution
onto the doubly occupied stateuS2l, as t→` on the second
Riemann sheetssee Fig. 7d of f«std2g1/2, i.e.,

kS2ukcs`dl = e−ia1kj̃1s`ducs`dl

< e−ia1 expH−
i

"
E

C
dzf− «szdgJ , s41d

where the contourC crosses the branch cut emanating from
the branch point that is closest to the real axis. Dykhne’s
formula is simply the square modulus of this amplitude.

In the adiabatic regime, in contrast to the perturbative
regime, the leading contribution to transitions comes from
the zeroth-order term of perturbation theory instead of the
first-order term. By retaining only the zeroth-order term, it
appears that we have neglected completely the couplingtH
between states. However, the coupling enters implicitly in
the multivalued functionf«std2g1/2 and influences the location
of the turning points—the complex roots of«std. Transition
amplitudes are obtained by carefully considering the differ-
ent branches of this function. In the following section, we
consider the validity of keeping only the zeroth-order term.

C. Validity and accuracy of Dykhne’s formula

The theory of semiclassical approximations, especially
WKB analysis, provides a foundation from which to evaluate
the validity of Dykhne’s formula. The calculation of nona-
diabatic transitions is closely related to the semiclassical
approximation33 because the semiclassical limit"→0 can be
mathematically equivalent to the adiabatic limitt→`. An
essential element of the proof by Hwang and Pechukas is the

existence of a complex time contour thats1d connects the
two sheets of the Riemann surface ands2d on which the
zeroth-order approximation of adiabatic perturbation theory
is the correct leading behavior of the solution in the adiabatic
limit. These are sufficient conditions for Dykhne’s formula to
give the correct asymptotic form of the transition probability
in the adiabatic limitl→`. Having established the existence
of such a contour, one can calculate a more precise value for
the prefactor of Dykhne’s formula by applying time-
dependent perturbation theory along the contour. We expect
Dykhne’s formula to break down when the contour ceases to
exist. At the limit of its range of validity, the higher-order
terms become comparable to the zeroth- order term. Intro-
ducing the unitary transformationU that diagonalizes the
Hamiltonian, i.e.,U†HU=«s3, we can write the Schrödinger
equation in the basis of instantaneous eigenstates,

i"
d

dt
ujstdl = f«stds3 + "âstdgujstdl s42d

with the off-diagonal perturbationâstd=−U†i]tU. A domi-
nancy balance among the terms gives the condition for the
accuracy of the zeroth-order approximation,

u«stdu
"

@ uâstdu s43d

or in scaled timex= t /t,

u«sxdut
"

@ uâsxdu. s44d

For our model of the dynamics,l~t is the largest scale and
uâu,1. The condition Eq.s44d must be maintained at all
points on the contour. Applying Eq.s44d on the real axis,
whereu«sxdu,UH, gives the adiabaticity conditionl@1. Ad-
ditionally, in order to connect two Riemann sheets, the con-
tour must pass between two turning pointsssee Fig. 3d,
whereu«sxdu,dUH, giving the conditiondl@1.

Beginning instead from an intuitive approach, we can
evaluate the adiabaticity of the dynamics along a given con-
tour. To test whether a given contour is adequate, we can
exploit the analogy between quasiadiabatic dynamics and
semiclassical scattering. Recall the semiclassical criterion

DsLd
L

,
dL

dt
! 1. s45d

The analog of the de Broglie wavelengthlsxd=2p" /psxd in
scattering problems is the periodLstd;2p" /«std. In other
words, the conditions45d says that the change of period over
the course of one period is small. We now require that the
semiclassical criterion be obeyedeverywherealong an ad-
missible contour, i.e., one that connects the two Riemann
sheets. To find an admissible contour, we must appeal to the
analytic structure of the eigenenergy«std; see Fig. 3. For
clarity we will focus on the time intervalt,0 and operate
under the approximations28d. The singularities of«std are
branch points att=−sT/2d−t lns−1±idd and poles att=
−sT/2d−t lns−1d. If we agree to define a branch cut connect-

FIG. 7. An example of a Riemann surface with two sheets, a
branch point att= t0 and a contourC corresponding to a transition.
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ing the nearest and next nearest branch points to the real time
axis,

t1 = −
T

2
− t lnÎ1 + d2 + itfp − arctansddg,

t3 = −
T

2
− t lnÎ1 + d2 + itfp + arctansddg,

respectively, then an admissible contour is one that crosses
this branch cut exactly once. For the semiclassical criterion
to be obeyed, the admissible contour cannot pass too close to
a branch point. In essence, ifd is too small, the contour is
pinched between the branch pointst1 and t3. Evaluating the
maximum ofdL /dt on a contourC that crosses the branch
cut betweent= t1 and t= t3 we arrive at the conditiond
@l−1. Together with the adiabatic limitl@1, we have the
following conditions on the interdependence of the physical
parameters:

l ,
UHt

"
@ 1, s46d

dl ,
dUHt

"
@ 1. s47d

Each of these dimensionless quantities is a product of a char-
acteristic energy and time scale. If these conditions are not
satisfied, there does not exist a contour on which the motion
is adiabatic. The integrabilitysSec. IVd of our model allows
us to investigate the intermediate regimel@1 anddl!1,
where Dykhne’s formula cannot be justified with the analysis
of Hwang and Pechukas.

IV. IDENTIFICATION WITH AN INTEGRABLE MODEL

The result obtained by Dykhne’s formula in Sec. III A is
now shown to be equivalent to the exact result for an inte-
grable model in the appropriate limit.

Under the approximationss28d for the time intervalst
,0 andt.0, the Hamiltonian

Heff = −
UH

2
S 1 tH

tH − 1
D s48d

is approximated by

Heff <HH,, t , 0

H., t . 0,
J s49d

with

H, = −
UH

2 1 1
d

1 + e−st/td−sT/2td

d

1 + e−st/td−sT/2td − 1 2 , s50d

H. = −
UH

2 1 1
d

1 + est/td−sT/2td

d

1 + est/td−sT/2td − 1 2 . s51d

The HamiltoniansH, andH. can be obtained as a special
case of

Hexact=1 b a + c tanh
x

2

a + c tanh
x

2
− b 2 s52d

by identifying ±c=a=−dl /2, b=−l and rescaling timex
= t /t±T/2t, respectively. The Schrödinger equation

i]xucsxdl = Hexactucsxdl s53d

is exactly solvable35 ssee the Appendixd.
In analogy with one-dimensional scattering, the transition

amplitude from a singly occupied stateuS1l to a doubly oc-
cupied stateuS2l may be viewed as an off-diagonal element
of the scattering matrixS that connects the coefficients of the
asymptotic final states to the asymptotic initial states. The
asymptotic states are the limit ast→ ±` of the instantaneous
eigenstatesuj1,2stdl of Heff corresponding to eigenvalues
7«std, respectively,

uj1stdl =
1

Î2«
S− Î« − l

Î« + l
D ,

uj2stdl =
1

Î2«
SÎ« + l

Î« − l
D . s54d

The leading behavior of the long-time asymptotics of a gen-
eral solution has the form

ucstdl =5a1 expH−
i

"
Et

dt8f− «st8dgJuj1stdl + a2 expF−
i

"
Et

dt8«st8dGuj2stdl as t → − `

b1 expH−
i

"
Et

dt8f− «st8dgJuj1stdl + b2 expF−
i

"
Et

dt8«st8dGuj2stdl as t → `, 6 s55d
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and the scattering matrix relates the coefficients,

Sb1

b2
D = SSa1

a2
D . s56d

Referring to the statement of our problem in Sec. III, the
amplitude of final double occupancy is the elementS21 of the
scattering matrix, which we parametrize as

S = S S11 S12

− S12
* S11

* D . s57d

The scattering matricesS, and S. associated with the
HamiltoniansH, and H. may be obtained by substitution
from the exact scattering matrixW sderived in the Appendixd
associated with the HamiltonianHexact. By the symmetry of
the pulse, we haveS.=S,

† . Patching together the two do-
mains of time evolutions49d, we find the scattering matrix

S = S,
† expS i

"
s3ReE

t1

t2

dt«stdDS,, s58d

where the integral of the exponent has been estimated in Eq.
s36d and the elements ofS, are obtained fromW,

sS,d11 =Î 2m

m + l

Gsi2ldGsi2md
Gsim + il + idldGsim + il − idld

,

s59d

sS,d12 =Î 2m

m − l

Gsi2ldGs− i2md
Gs− im + il + idldGs− im + il − idld

,

s60d

wherem=lÎ1+d2. Dykhne’s formulas34d for P, is recov-
ered as exactly the leading term ofusS,d21u2 in the limit
l ,dl@1,

P, = usS,d21u2

=
sinhfplsÎ1 + d2 − 1 +ddgsinhf− plsÎ1 + d2 − 1 −ddg

sinhs2pldsinhs2plÎ1 + d2d
s61d

,e−2pls1+Î1+d2−dds1 − e−2plsd+1−Î1+d2d + ¯ d. s62d

The nonperturbative corrections are typically very small. For
l=2 andd=1/2, therelative contribution of the second term
of Eq. s62d is less than 1%. This accounts for the excellent
agreement in Figs. 4–6, between the probability of double
occupancy as given by the semiclassical results35d based on
Dykhne’s formula and the result of a numerical integration of
the Schrödinger equation. We can interpret the subleading
term in the parentheses of Eq.s62d as the contribution from
the contourC of Fig. 8, which crosses the branch cut three
times. The sign of the correction is negative and arises from
the factor e−ia1 associated with matching the basiss38d
across the branch cut. Similarly, it may be possible to obtain
further subdominant corrections to Dykhne’s formula by
summing over all inequivalent complex paths that give dis-
tinct positive values for ImeCdt«std.36 For many physical

problems this type of nonperturbative correction is domi-
nated by perturbative corrections along the contour—those
mentioned in Sec. III C. The striking absence of perturbative
corrections in the limitl ,dl@1, is a unique artifact of the
integrability of our model.

With a knowledge of the exact result, we can also inves-
tigate the intermediate regimel@1 anddl!1, where the
analysis of Hwang and PechukassSec. III Bd cannot be used
to prove Dykhne’s formula. In this limit, the transition prob-
ability s61d becomes

P, , s2pdld2e−4pl. s63d

Although Dykhne’s formula does not apply in this limit be-
caused−1 and notl is the largest scale, it nevertheless gives
the correct controlling factore−4pl of Eq. s63d, except ford
that are exponentially small with respect tol. This exponen-
tial factor is resilient and remains the controlling factor for a
range of parameters beyond the naive expectation based on
the arguments of Sec. III C.

V. CONCLUSIONS

The dynamics of two coupled quantum dot spin qubits
can be mapped to an effective two-level system, where nona-
diabatic transitions correspond to double occupancy. We
have estimated the probability of final double occupancy
with Dykhne’s formula. In the adiabatic regime, the perva-
sive feature of transitions is their exponential suppression by
a dimensionless adiabaticity parameterl. Our main result
s35d was expressed in terms of the dimensionless quantities
l, d, and h. An integral constraints21d on the swapping
operation gives one relation among the three dimensionless
parameters. The problem is uniquely defined by specifying
any two, and in a solid-state setting, conservative estimates
arel<2 andd<1/2. The probability of double occupancy
P<10−10 is sufficiently rare that the operation of a quantum
gate will not be obstructed by this type of error. It is note-
worthy that the probability of double occupancys35d has
nodes for

kp = ReE
t1

t2

dt«std < Î1 + d2lh, k P Z . s64d

However, this property is not immediately relevant to the
suppression of transitions, because the oscillatory factor
sin2sÎ1+d2lhd of Eq. s35d vanishes algebraically and for it

FIG. 8. The contourC gives a subdominant correction to
Dykhne’s formula.
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to provide an improvement upon the exponentially small fac-
tor from Dykhne’s formula, the argument would have to be
tuned exponentially close tokp. Thus, naively the errors
associated with inaccuracies in satisfying the integral swap-
ping constraints21d will be much greater than double occu-
pancy errors. Other important sources of error are dephasing
and decoherence of the qubit states.

We have reviewed a physically motivated derivation of
Dykhne’s formula.33 The theory of semiclassical approxima-
tions underlies Dykhne’s formula and its validity is appropri-
ately judged within that framework. The semiclassical esti-
mates obtained from this approach are in excellent
agreement with numerical simulations of the full quantum-
mechanical time evolution. The corrections to Dykhne’s for-
mula are of two types: perturbative and nonperturbative. The
former appears to vanish for integrable models, and we have
interpreted a nonperturbative correction as the contribution
of a contour in the complex time plane.36
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APPENDIX: INTEGRABLE DYNAMICS

The following Hamiltonian,35 which possesses three inde-
pendent parameters,

Hexactsxd =1 b a + c tanh
x

2

a + c tanh
x

2
− b 2 sA1d

has integrable dynamics in the sense that the Schrödinger
equation

fi]x − Hexactsxdgucsxdl = 0 with ucsxdl = Sc1sxd
c2sxd

D sA2d

has a solution in terms of special functions. Our aim is to
construct the scattering matrixW associated with the dy-
namical problem. For clarity of presentation, we will con-
sider the Hamiltonian

H8sxd =1a + c tanh
x

2
b

b − Sa + c tanh
x

2
D 2 , sA3d

which differs fromHexact by a constant unitary transforma-
tion V,

V†HexactV = H8 with V =
1
Î2

S1 1

1 − 1
D . sA4d

Introducing the mixing anglef defined as

tanf =
b

a + c tanh
x

2

, sA5d

the instantaneous eigenstatesux1,2sxdl corresponding to in-
stantaneous eigenvalues

±«sxd = ±Îb2 + Sa + c tanh
x

2
D2

, sA6d

respectively, are parametrized as

ux1stdl =
1

Î2«1Î« + Sa + c tanh
x

2
D

Î« − Sa + c tanh
x

2
D 2 =1cos

f

2

sin
f

2
2 ,

sA7d

ux2stdl =
1

Î2«1−Î« − Sa + c tanh
x

2
D

Î« + Sa + c tanh
x

2
D 2 =1− sin

f

2

cos
f

2
2 .

sA8d

The two-state Schrödinger equation may be converted to a
second-order differential equation for the componentsc1,2
=c1,2sxd,

]x
2c1,2+ Q1,2sxdc1,2= 0, sA9d

where

Q1,2sxd = b2 + Sa + c tanh
x

2
D2

± i
1

2
c sech2

x

2
. sA10d

Changing the dependent and independent variables as
c1,2sxd=z±insz−1dimw1,2szd and z= 1

2f1+tanhsx/2dg, trans-
forms Eq.sA9d into the standard form of the Gauss hyper-
geometric equation, for example, forw1sxd

zs1 − zd]z
2w1 + fk − zsi + j − 1dg]zw1 − i jw1 = 0,

sA11d

where the arguments and exponents are defined as follows:

i = im + in − i2c,

j = im + in + i2c + 1,

k = i2n + 1,

n = «s− `d = Îb2 + sa − cd2,

m = «s`d = Îb2 + sa + cd2.

The two linearly independent solutionsu1szd andv1szd of the
differential equation forw1szd are
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u1si, j ,k;zd = zinsz− 1dim
2F1si, j ,k;zd, sA12d

v1sl,m,n;zd = z1−ku1si − k + 1,j − k + 1,2 −k;zd

= z−insz− 1dim
2F1si − k + 1,j − k + 1,2 −k;zd,

sA13d

where2F1si , j ,k;zd is the Gauss hypergeometric function.37

The amplitude of transition may be viewed as the off-
diagonal element of the scattering matrixW that connects
the asymptotic final and initial states fort→ ±` fsee Eq.
s56dg. The scattering matrix is parametrized as

W = S W11 W12

− W12
* W11

* D , sA14d

because it has the propertiesW† W=1 and detsWd=1. From
the asymptotics ofu1, u2, v1, andv2 in the limits z→0 and
z→1, we find

W11 =Îb2 + fm − sa + cdg2

b2 + fn − sa − cdg2

3
Gs1 − i2ndGs− i2md

Gf1 − ism + n − 2cdgGf− ism + n + 2cdg
,

sA15d

W12 =Îb2 + fm + sa + cdg2

b2 + fn − sa − cdg2

3
Gs1 − i2ndGsi2md

Gfism − n − 2cdgGf1 + ism − n + 2cdg
sA16d

and

uW11u2 =
sinhps2c + m + ndsinhps− 2c + m + nd

sinh 2pm sinh 2pn
,

sA17d

uW12u2 =
sinhps2c − m + ndsinhps2c + m − nd

sinh 2pm sinh2pn
.

sA18d
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