2,945 research outputs found

    Optical spectroscopy of thin film semiconductor structures

    Get PDF
    This thesis consists of a study of several thin film semiconductor structures of practical technological use either presently or in the near future. The first system studied is an ultra thin film single crystal gallium arsenide layer. The absorption spectra of these layers are measured and transitions at both the F- point and L-point of the Brillouin Zone are observed, the latter are not normally measurable in thicker layers. The observed shift in the F-point absorption edge is attributed to contributions from the Franz-Keldysh Effect and the Moss-Burstein Effect. The temperature dependence of the L-point energy gap is measured and compared with previous data. The next system investigated is an n-type porous silicon layer coated with p-type polyaniline. Both photoluminescence and electroluminescence spectra and the electrical characteristics have been measured for this system. The interface between the two layers is found to be a rectifying junction consistent with a potential barrier formed at the interface. In forward bias, it is possible to generate electroluminescence in the visible and near infra red regions. The final structure studied is a thin film cadmium sulphide-cadmium telluride solar cell structure. The cells are found to have a low efficiency of around 1% as grown, but a process of treatment with cadmium chloride and annealing in air improves this by a factor of approximately ten. Photoluminescence measurements on the back surface of the cadmium telluride revealed three major emission bands at 1.59 eV, 1.55 eV and 1.45 eV. By varying temperature and incident laser power, attempts at assigning the bands to specific impurity centres in the cadmium telluride is made Using a novel bevelling etch technique to prepare samples, depth dependent measurement of the photoluminescence is possible. This reveals that the major changes associated with the improvement in efficiencies occurs at the interface between the CdS and the CdTe

    Broadband luminescence in defect-engineered electrochemically produced porous Si/ZnO nanostructures

    Get PDF
    The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si, that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Si lead to exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting devices

    Spatial Distribution Of Oxygen In Luminescent Porous Silicon Films

    Get PDF
    Transmission electron microscopy associated with electron energy loss spectroscopy imaging was used to determine structural spatial variations and compositional variation in heavily doped (0.006 Ω cm) and lightly doped (0.4 Ω cm) luminescent porous silicon films.64151986198

    Carbon Ion Implanted Silicon for Schottky Light-Emitting Diodes

    Get PDF
    Research in the field of Photonics is in part, directed at the application of light-emitting materials based on silicon platforms. In this work silicon wafers are modified by carbon ion implantation to incorporate silicon carbide, a known light-emitting material. Ion beam synthesis treatments are applied with implant energy of 20 keV, and ion fluences of 3, 5 and 10 × 1016 ions/cm2 at both ambient temperature and high temperature (400 °C). The samples are annealed at 1000 °C, after implantation. The carbon ion implanted silicon is characterized using Raman and Fourier transform infrared spectroscopic techniques, grazing-incidence X-ray diffraction, transmission electron microscopy and electron energy loss spectroscopy. The materials are observed to have a multilayer structure, where the ambient temperature implanted materials have an amorphous silicon layer, and an amorphous silicon layer with carbon-rich, nanoscale inclusions. The high temperature implanted materials have the same layers, with an additional polycrystalline Si layer at the interface between the implanted layer and the target substrate and the amorphous Si layer with SiC inclusions is reduced in thickness compared to the ambient temperature samples. The carbon-rich inclusions are confirmed to be SiC, with no evidence of carbon clusters in the materials observed using Raman spectroscopy. The carbon ion-implanted material is used to fabricate Schottky diodes having a semitransparent gold contact at the implanted surface, and an aluminum contact on the opposite side. The diodes are tested using current-voltage measurements between -12 and +15 V. No reverse breakdown is observed for any of the diodes. The turn-on voltages for the ambient temperature implanted samples are 2.6±0.1 V, 2.8±0.6 V and 3.9±0.1 V for the 3, 5 and 10 × 1016 ions/cm2 samples, respectively. For the high temperature implanted samples, the turn-on voltages are 3.2±0.1 V, 2.7±0.1 V, and 2.9±0.4 V for the implanted samples with same fluences. The diode curves are modeled using the Shockley equation, and estimates are made of the ideality factor of the diodes. These are 188±16, 224.5±5.8, and 185.4±9.2 for the ambient temperature samples, and 163.6±6.3, 124.3±5.3, and 333±12 for the high temperature samples. The high ideality factor is associated with the native oxide layer on the silicon substrate and with the non-uniform, defect-rich implanted region of the carbon ion implanted silicon. Red-orange visible light emission from the diodes is observed with voltage greater than the turn-on voltage applied across the diodes. The luminescence for the ambient temperature samples is attributed to porous silicon, and amorphous silicon. The high temperature implanted samples show luminescence associated with porous silicon, nanocrystalline silicon carbide, and defects in silicon related to ion implantation. The luminescent intensity observed for the ambient temperature samples is higher than for the high temperature samples. The dominant luminescence feature in the carbon ion-implanted silicon material is porous silicon, which is described by quantum confinement of excitons in silicon

    Nanocrystalline Porous Silicon

    Get PDF

    Fluorescent Silicon Clusters and Nanoparticles

    Full text link
    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon such as excitation, energy relaxation, radiative and non-radiative decay pathways and surface passivation. Experimental methods for the production of silicon clusters are presented. The geometric and electronic properties are reviewed and the implications for the ability to emit fluorescence are discussed. Free and pure silicon clusters produced in molecular beams appear to have properties that are unfavourable for light emission. However, when passivated or embedded in a suitable host, they may emit fluorescence. The current available data show that both quantum confinement and localised transitions, often at the surface, are responsible for fluorescence. By building silicon clusters atom by atom, and by embedding them in shells atom by atom, new insights into the microscopic origins of fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor Klaus D. Sattler, CRC Press, August 201

    Polycrystalline Diamond Coating on Orthopedic Implants: Realization and Role of Surface Topology and Chemistry in Adsorption of Proteins and Cell Proliferation

    Get PDF
    Polycrystalline diamond has the potential to improve the osseointegration of orthopedic implants compared to conventional materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants, such as those used for hip arthroplasty, is the limitation of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time, we demonstrate diamond growth on titanium acetabular shells using the surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (∼400 °C) on three types of acetabular shells with different surface structures and porosities. We achieved the growth of diamond on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in the attachment and proliferation of mammalian cells, we investigated the adsorption of extracellular matrix proteins and monitored the metabolic activity of fibroblasts, osteoblasts, and bone-marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin and type I collagen with the diamond surfaces was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that the proliferation of osteogenic cells was better on hydrogen-terminated UNCD than on the oxygen-terminated counterpart. These findings correlated with the behavior of collagen on diamond substrates observed by FLIM. Hydrogen-terminated UNCD provided better adhesion and proliferation of osteogenic cells, compared to titanium, while the growth of fibroblasts was poorest on hydrogen-terminated NCD and MSCs behaved similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopedic implants to further improve bone fixation and osseointegration.publishedVersio
    corecore