579 research outputs found

    Multidimensional Context Modeling Applied to Non-Functional Analysis of Software

    Get PDF
    Context awareness is a first-class attribute of today software systems. Indeed, many applications need to be aware of their context in order to adapt their structure and behavior for offering the best quality of service even in case the software and hardware resources are limited. Modeling the context, its evolution, and its influence on the services provided by (possibly resource constrained) applications are becoming primary activities throughout the whole software life cycle, although it is still difficult to capture the multidimensional nature of context. We propose a framework for modeling and reasoning on the context and its evolution along multiple dimensions. Our approach enables (1) the representation of dependencies among heterogeneous context attributes through a formally defined semantics for attribute composition and (2) the stochastic analysis of context evolution. As a result, context can be part of a model-based software development process, and multidimensional context analysis can be used for different purposes, such as non-functional analysis. We demonstrate how certain types of analysis, not feasible with context-agnostic approaches, are enabled in our framework by explicitly representing the interplay between context evolution and non-functional attributes. Such analyses allow the identification of critical aspects or design errors that may not emerge without jointly taking into account multiple context attributes. The framework is shown at work on a case study in the eHealth domain

    Multidimensional context modeling applied to non-functional analysis of software

    Get PDF
    Context awareness is a first-class attribute of today software systems. Indeed, many applications need to be aware of their context in order to adapt their structure and behavior for offering the best quality of service even in case the software and hardware resources are limited. Modeling the context, its evolution, and its influence on the services provided by (possibly resource constrained) applications are becoming primary activities throughout the whole software life cycle, although it is still difficult to capture the multidimensional nature of context. We propose a framework for modeling and reasoning on the context and its evolution along multiple dimensions. Our approach enables (1) the representation of dependencies among heterogeneous context attributes through a formally defined semantics for attribute composition and (2) the stochastic analysis of context evolution. As a result, context can be part of a model-based software development process, and multidimensional context analysis can be used for different purposes, such as non-functional analysis. We demonstrate how certain types of analysis, not feasible with context-agnostic approaches, are enabled in our framework by explicitly representing the interplay between context evolution and non-functional attributes. Such analyses allow the identification of critical aspects or design errors that may not emerge without jointly taking into account multiple context attributes. The framework is shown at work on a case study in the eHealth domain

    System Interaction Theory: Describing Interactions between Work Systems

    Get PDF
    Interactions between systems are a necessity, a source of opportunity, and a source of difficulty and complication in building, implementing, and maintaining IT-reliant systems in organizations. This paper presents system interaction theory (SINT), a theory for analysis that covers almost all intentional and unintentional interactions between work systems that may be sociotechnical or totally automated. SINT is a broadly applicable theory that encompasses interactions between the types of systems that are central to the IS discipline. To minimize redundancy, this paper summarizes SINT immediately after introducing the research goal and, thereby, provides a context for the many distinctions and references that follow. A discussion of SINT’s domain and scope explains why SINT views interacting entities as work systems rather than as tasks, components, or software modules. The literature review positions SINT in relation to topics under headings that range from general systems theory and computer science to human computer interaction and organization science. Topics in SINT include relevant characteristics of systems and system interactions, purposes and/or causes of system interactions, system interaction patterns, direct effects of system interactions, responses to direct effects, and outcomes related to system interactions. The paper discusses a variety of potential contributions to theory, practice, and research

    Contracts for Systems Design: Methodology and Application cases

    Get PDF
    Recently, contract based design has been proposed as an ”orthogonal” approach that can beapplied to all methodologies proposed so far to cope with the complexity of system design. Contract baseddesign provides a rigorous scaffolding for verification, analysis and abstraction/refinement. Companionreport RR-8759 proposes a unified treatment of the topic that can help in putting contract-based design in perspective.This paper complements RR-8759 by further discussing methodological aspects of system design withcontracts in perspective and presenting two application cases.The first application case illustrates the use of contracts in requirement engineering, an area of system designwhere formal methods were scarcely considered, yet are stringently needed. We focus in particular to thecritical design step by which sub-contracts are generated for suppliers from a set of different viewpoints(specified as contracts) on the global system. We also discuss important issues regarding certification inrequirement engineering, such as consistency, compatibility, and completeness of requirements.The second example is developed in the context of the Autosar methodology now widely advocated inthe automotive sector. We propose a contract framework to support schedulability analysis, a key step inAutosar methodology. Our aim differs from the many proposals for compositional schedulability analysisin that we aim at defining sub-contracts for suppliers, not just performing the analysis by parts—we knowfrom companion paper RR-8759 that sub-contracting to suppliers differs from a compositional analysis entirelyperformed by the OEM. We observe that the methodology advocated by Autosar is in contradiction withcontract based design in that some recommended design steps cannot be refinements. We show how tocircumvent this difficulty by precisely bounding the risk at system integration phase. Another feature ofthis application case is the combination of manual reasoning for local properties and use of the formalcontract algebra to lift a collection of local checks to a system wide analysis

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    A model driven approach to analysis and synthesis of sequence diagrams

    Get PDF
    Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Toward a formal theory for computing machines made out of whatever physics offers: extended version

    Full text link
    Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to systematically engineer computing systems that are based on unconventional physical effects, we need guidance from a formal theory that is different from the symbolic-algorithmic theory of today's computer science textbooks. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call "fluent computing". In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in any physical substrate. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.Comment: 76 pages. This is an extended version of a perspective article with the same title that will appear in Nature Communications soon after this manuscript goes public on arxi
    • …
    corecore