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Abstract 

Software design is a vital phase in a software development life cycle as it creates a blueprint 

for the implementation of the software. It is crucial that software designs are error-free since 

any unresolved design-errors could lead to costly implementation errors. In an approach to 

minimize these costly errors, the software community adopted the concept of modelling from 

various other engineering disciplines. Modelling provides a platform to create and share 

abstract or conceptual representations of the software system – leading to the birth of various 

modelling languages, among them Unified Modelling Language (UML) and Petri Nets. 

While Petri Nets strong mathematical capability allows various formal analyses to be 

performed on the models, UMLs user-friendly nature presented a more appealing platform 

for system designers. Using Multi Paradigm Modelling, this thesis presents an approach 

where system designers may have the best of both worlds; SD2PN, a model transformation 

that maps UML Sequence Diagrams into Petri Nets allows system designers to perform 

modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm 

Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to 

be adopted into Sequence Diagram as a method of putting-together different Sequence 

Diagrams based on a set of techniques and algorithms. Finally, the model transformation is 

enhanced to transform Sequence Diagrams with timing constraints into Timed Petri Nets to 

allow time-related analysis such as Quality of Service (QoS) and performance analysis. 
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CHAPTER 1 
INTRODUCTION 

Software engineering is a discipline that facilitates the development of computer software 

using various methods, tools and procedures. The primary goal of software engineering 

according to Sametinger [1] is the cost-effective production of high-quality software systems. 

In this respect, Sametinger outlines attributes such as reliability, robustness, user-friendliness, 

efficiency and maintainability as the yardstick by which to measure the quality of the software 

system. He further explains the phases involved in software engineering; management, 

specification, design, implementation, testing and maintenance. 

 The software design phase is vital in any software development life cycle as it 

translates the specifications given by various stakeholders of the system into a set of 

blueprints that the software implementation is based on. It is absolutely crucial for a software 

design to be free from errors as any unresolved errors in the software design leads to errors in 

implementation or bugs that could possibly waste countless precious resources such as time, 

man-hours spent programming, and development cost to fix. 
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A complex software design process is iterative and is done on different levels of 

abstraction. As such, it is very easy to accidentally overlook errors in the design. According to 

[2]most software errors occur during the design phase. These design errors, or bugs increases 

in number with the ever-expanding complexity of the software systems – not through 

carelessness of the designers, but due to the human brain having limited ability to manage 

complexity [3]. 

One of the efforts made by the software engineering community in order to reduce 

these design errors is to adopt the concept of modelling from other engineering disciplines. 

Modelling is the process of creating an abstract or conceptual representation of a design that 

can be presented in an easily understandable format based on specific modelling languages. A 

model is usually presented in either in graphical or mathematical format. In software 

engineering, models were never at the forefront of software design until recently, despite the 

complexity. With the emergence of modelling as a method of software design, the inevitable 

birth of various modelling languages occurred. 

 Languages such as Z [4],Alloy [5] and Petri Nets [6] offered a way to perform 

software design in the form of models, based on the various constructs offered in the 

respective languages. However, the main advantage of using these languages in software 

design is the ability to perform formal, mathematical analysis of the software design, reducing 

the possibility of costly design errors being carried into the implementation phase. The Zand 

Alloy languages are mainly textual (modelled using mathematical and logical statements) and 

are used to model static properties of a software system while Petri Nets is a graphical 

modelling language with a strong mathematical foundation that is capable of modelling 

diverse sets of behavioursincluding parallel, asynchronous, concurrent, hierarchical and 

stochastic as well as dynamic behaviours[6]. Although these formal modelling languages are 
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precise and allow for mathematical analysis of the software design such as liveness and 

deadlock detection as well as reachability, it requires a specific set of expertise to be able to 

create and to understand the models; and as such it is not well adopted by system designers’ 

since it is not generally their forte.  

 The evolvement of modelling language brought Unified Modelling Language (UML) 

[7] to the forefront. UML is a family of languages, which is widely accepted as the de facto 

standard forsoftware system modelling. UML models can be used to specify the structure of a 

system, its behaviour and the constraints thatthe system must adhere to. Models in UML are 

instances of metamodels1

 In an ideal environment, a software system designer could have the best of both 

worlds; the easy to use, widely accepted nature of UML coupled with a strong mathematical 

backbone such that in formal modelling languages, where various analyses may be performed 

on the designs. This opens the door for MultiParadigm Modelling. MultiParadigm Modelling 

. A metamodel includes system elements, theirrelationships and a set 

of rules to which every model must conform in order to be well defined. UML diagrams can 

be classified as either structural or behavioural diagrams. Each type of diagram is used to 

model a specific aspect of a software system. For example, a Class Diagram (a structural 

diagram) is used to model the different classes in the system, their attributes and operations, 

as well as how the classes relate to one another; where else a Sequence Diagram (a 

behavioural diagram) is used to model dynamic interactions in terms of messages passed 

between objects in the system. Although UML has conferred itself a preferred role in the 

software design community because of its graphical approach and user-friendly nature, the 

trade-off may has been the strong mathematical foundation in which formal analysis of the 

software design may be performed. 

                                                 
1Metamodels are themselves models, from whichmodels of systems are instantiated. 
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provides a platform for model interoperability where two or more models from different 

levels of formalisms or different languages could be used interchangeably. Multi Paradigm 

Modelling is based on the concept of Model Driven Development (MDD) [84]. Central to the 

concept of MDD is model transformation, where a number of Transformation Rules are used 

tospecify how various elements of one language are mapped into the elements of another 

language. The process of Model Transformation is carried out automatically via the software 

tools whichare commonly referred to as Model Transformation Frameworks [18–20].  

One example of Multi Paradigm Modelling is UML2Alloy [8], an MDD model 

transformation that transforms UML Class Diagrams into Alloy constraints using a specific 

set of transformation rules. This allows the system designer to design the models in the form 

of Class Diagrams using UMLs user-friendly interface, then transform the models into Alloy 

using the UML2Alloy tool to analyse the model, taking advantage of the robust analysis 

capabilities of Alloy. However, UML2Alloy only creates a platform for structural analysis to 

be performed on the software design since both Class Diagrams and Alloy are static 

languages that does not support dynamic behaviour modelling. 

 This became the motivation behind this thesis – to create a platform for analysis of 

dynamic models via model interoperability between two dynamic languages, namely UML 

Sequence Diagrams and Petri Nets. Sequence Diagrams are a UML version of Message 

Sequence Charts [13] and they are widely used in Software Engineering[14]. Sequence 

Diagrams can be used in modelling complex software systems as they provide a sequential 

listingof events and are also able to model parallelism and conflicts. Sequence Diagrams 

model the behaviour of the system through interaction or communication between the various 

objects of a software system and arranges them with reference to occurrence time. The quest 

for mapping Sequence Diagrams into a more formal language began with the choice of the 
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formal language. There are numerous formal languages such as Z, B, Alloy and Petri Nets. 

However choosing the right formal language depends not only on the standings or regards of 

the language in the modelling community, it mainly needs to reflect the analysis capability of 

the language. Languages such as Z, B and Alloy, even though are well-studied and are well-

capable to perform numerous analysis on various types of models; are more suited to 

modelling static items with added logical constraints. As such, the choice of Petri Nets as the 

formal language is straight-forward since it is also a very well-studied language with a strong 

mathematical backbone that is instead capable of modelling dynamic behaviour and 

interactions through causal events as well as parallelism and conflicts.  

There are three main components in a Petri Net; places, transitions and arcs. Places 

often depict the state of the system where else transitions often represent an action or a 

transaction that occurs. Arcs on the other hand, connect places and transitions in a directional 

manner. There are also strong theories and applications associated to Petri Nets such as 

analysis [9-16] and synthesis [17-26]. 

 The model transformation to transform Sequence Diagrams into Petri Nets (SD2PN) is 

created by mapping the Sequence Diagram metamodel into the Petri Net metamodel using a 

set of transformation rules. As such, every Sequence Diagram that conforms to the Sequence 

Diagram metamodel can be transformed into a Petri Net. These Petri Nets can then be 

analysed using widely available Petri Net tools such as CPNTools[27], PIPE [28] and various 

others[29-35]. In this thesis, it is also proven that each Petri Net generated by SD2PN belongs 

to a special, well-studied sub-class of Petri Nets called Free Choice Petri Nets[36]. Free 

Choice Petri Nets are unique in Petri Net circles where conflicts and concurrencies may occur, 

but not simultaneously. This structural boundary between Free Choice Petri Nets and general 

Petri Nets allows for computations to be performed far more efficiently in Free Choice Petri 
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Nets where analysis such as liveness and boundedness could be performed in polynomial time 

[37] instead of the possible exponential complexity in analysis of general Petri Nets. Other 

analyses problems that are based on live and bounded Free Choice Petri Nets are also feasible 

in polynomial time based on the studies in [36, 38, 39]. 

 Another common issue in MultiParadigm Modelling is concerning the accuracy of the 

model transformation. Model interoperability may not be achieved unless the entire semantics 

of the source model is preserved in the destination model – and that no emergent properties 

are incurred at the destination model. In SD2PN, the preservation of semantics that proves the 

correctness of the model transformation is presented via a common semantics domain. As 

there are strong theories that map both Sequence Diagrams [40] and Petri Nets [41] into 

Labelled Event Structures (LES)2

  In creating the model interoperability between Sequence Diagrams and Petri Nets, it 

was observed that an opportunity for sharing the theories and applications between the two 

languages emerged. Synthesis, or the notion of putting together various elements based on 

specific sets of constraints has been receiving considerable attention [8, 43-47] in the UML 

community as it allows software design to be performed using different sets of models that 

could be put together at a later point. Since it has been established that software design is a 

complex process that could result in numerous costly bugs, it is a good approach to have 

separate models for each modules in the system to reduce the complexity. However, manual 

synthesis of these models is error-prone, tedious and redundant. As such, by adopting the 

[42], it is chosen as the common semantic domain for 

proving the correctness of the SD2PN model transformation, and as such achieving model 

interoperability.   

                                                 
2 LES are models of processes that are capable to model causality, conflict and concurrency properties between 
events. 
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well-studied notions of synthesis in Petri Nets, a similar notion of synthesis is introduced in 

this thesis – based on the Multi-Paradigm Modelling framework. 

 Taking inspiration from the prominent synthesis methods in Petri Nets – namely the 

top-down [16] and bottom-up[23, 48] synthesis methods, two Sequence Diagram synthesis 

methods of the same name are introduced. In the top-down method, an algorithm that replaces 

a single message in a Sequence Diagram with an entire Sequence Diagram is presented, called 

message refinement. In addition, two examples of the bottom-up method features an algorithm 

called part decomposition that replaces a lifeline or an object in Sequence Diagram with a 

different Sequence Diagram in order to explain the internal structure of said object and a 

domain-specific synthesis algorithm to simulate a man-in-the-middletype attack in any 

relevant systems. 

 Finally, an extension of SD2PN to include timeliness properties is presented. By 

enhancing the Sequence Diagram metamodel, the occurrences of events in Sequence 

Diagrams are allowed to have a timing constraint attached to them. This permits time-related 

analysis such as Quality-of-Service (QoS) analysis or performance analysis [49] to be 

performed on the design model before they implemented. The model transformation generates 

a flavour of Petri Nets called Timed Petri Nets [50] and can be analysed using numerous tools 

including CPNTools and PIPE mentioned earlier. 

1.1 Problem Statement 

The ever-increasing complexity of the software development process has presented software 

designers with a significant challenge. This complexity is due to various factors including the 
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variety of application domains, the variety of software platforms and the variety of the 

methods and the tools that support the software development process. This complexity is 

further compounded by the non-functional requirements for a software system to satisfy a set 

of specific properties, such as fault-tolerance and security. Many approaches and methods 

have been proposed as a way of addressing and reconciling these issues, as discussed in a 

survey presented in [51]. Of particular significance in the generation of software system is the 

need to facilitate a smooth transition from one domain of the software design process to the 

next. This dichotomy between the domains manifests itself in the multiplicity of formalisms, 

languages and software tools that are required for each phase. One of the main concerns of 

software developers is how to bridge the gap between the different underlying domains and 

allow for a seamless transition between them [52].An example of this challenge and one of 

the two main focuses of this thesis is the transition from a model design domain to a model 

analysis domain. This is very often critical, especially as it regularly involves incompatible 

domains of discourse. 

 In a normal scenario, the software designer models the software system in UML. This 

design is then translated into a formal language such as Alloy [53], Z [4] or Petri Nets [6]. 

The existence of two types of models, created using two different sets of tools and using two 

different languages is what is described as heterogeneity. Heterogeneous models cannot 

communicate with each other under normal circumstances and requires a completely different 

skill-set to design. For example, a software designer who is well-versed in UML may not 

necessarily be familiar with the formal language models in Petri Nets, and vice-versa. 

Heterogeneity also leads to tedious repeated modelling each time a change has to be made.  
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Figure 1: A typical scenario in the software design phase 

 

Figure 1 above presents a likely example scenario where a model designer creates a design 

model using UML and passes it to the model analyst who interprets the design model and 

creates a corresponding analysis model. By performing a formal analysis on the model, the 

model analyst then generates an analysis report for the model designer to review. The model 

designer would then have to modify or create another design model. The whole process is 

repeated as long as there are errors found in the formal analysis. 

 A clear challenge presented in this scenario is to facilitate the transition between the 

design model and the analysis model automatically without having a model analyst to 

interpret the design model. This automated transition would not only eliminate the need for a 

model analyst, it will also create a more accurate formal representation for analysis since there 

would no longer be room for human misinterpretation of the design model. One possible way 

to achieve this automated transition between the design and analysis model is through MDD 

model transformation. This possible solution is explored in this thesis and makes up one of 

the two major contributions in this thesis.  
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 Another problem that system designers are faced with is the influx of models. This 

could be on the basis of multi-viewpoint modelling or due to object-oriented design. To better 

manage essential complexity, developers of large software systems often create multiple 

models that describe the systems from a variety of perspectives. For example, developers may 

create multiple UML static and behavioural models, some describing core business functions, 

while others represent the system from a security[54]or quality-of-service (QoS) perspective. 

Some designers on the other hand, opt to model each component of the software separately to 

better identify critical sections of the software and keep the models manageable in size. 

There are huge advantages to performing system design using multiple models, none 

more so than reducing the complexity of the designs where designers potentially deal with 

multiple instances of smaller, easier to design models instead of a single complex model for 

the entire system. Moreover for the multi-viewpoint models, each model could cater to the 

needs of a specific stakeholder as to gain better understanding of the software system through 

a specific point-of-view. On the other hand, for object-oriented design models, not only would 

it translate easily into object-oriented languages such as Java, but it also enables the system 

designers to identify errors and critical areas more easily and quickly. By using multiple 

models, error correction on the design level could be done easily – only the model that 

presents the error needs to be modified or maintained and all the other models would be 

unaffected.  

Despite the advantages of performing system design using multiple models, during 

development, it may be necessary to incorporateall the different models describing different 

views.The process of incorporating different models together is called synthesis. A 

synthesized model provides an integrated view of the system, thus allowing developers to 

identify and analyze emergent properties that arise as a result of the integration. For example, 
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to support the evaluation of system’s security features against an attack scenario, a model can 

be synthesized from two parts: one describing the attack scenario and the other the describing 

security features[54]. The composed model can be analyzed to determine how the security 

features withstand the attack. However, manual synthesis of non-trivial models can be 

tedious, error-prone, and redundant. The process is especially problematic when the models 

used for synthesis evolve; considerable effort is needed to manually synchronize such models. 

It has been established in [8, 43-47, 55-57] that automated support for model synthesis is 

needed for compositional development of models. 

The challenge presented by this scenario is to automatically synthesize UML models 

using various algorithms to present an integrated view of the system. Unfortunately, the 

Unified Modelling Language (UML) [7] does not provide support for model synthesis in its 

language framework. However, the notion of synthesis is already well-established in formal 

languages such as Petri Nets[6, 17, 58, 59]. By utilising the aforementioned MDD model 

transformation as the basis, this thesis presents an approach to perform synthesis in UML. 

This signifies the second major contribution of this thesis. Meanwhile, other contributions are 

outlined in the following section. 

1.2 Outline of Contributions 

The contributions of this thesis are as follows: 

• A new approach to bridging the gap between design and analysis of behavioural 

models via Model Driven Development (MDD). In particular: 
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o A model transformation called SD2PN that transforms UML Sequence 

Diagrams into Petri Nets (refer page 63). 

o Two metamodels are identified; one for Sequence Diagrams and the other for 

Petri Nets (refer pages 22 and 29). 

o A set of five transformation rules are defined to transforms fragments of 

Sequence Diagrams into blocks of Petri Nets (refer page 65). 

o A concept of placeholders is defined in Petri Nets as a temporary node that 

mimics the connection capabilities of a place(refer page 66). 

o Two local functions morph and substitute are defined to put together blocks of 

Petri Nets (refer pages 77 and 79). 

• The SD2PN model transformation is mathematically proven to only generate Free 

Choice Petri Nets, a well-studied subclass of Petri Nets that is highly suited for 

analysis due to its low complexity (refer page 82). 

• An approach for proving semantic equivalence between two domains is presented. 

More specifically: 

o A common semantic domain between Sequence Diagrams and Petri Nets is 

identified (refer page 59). 

o Using well established methods, both Sequence Diagrams and Petri Nets are 

mapped into the common semantic domain, which in this case is Labelled 

Event Structures (LES) (refer page 84). 

o The semantic preservation is established through comparison between the LES 

generated from the Sequence Diagrams and the LES created from the Petri 

Nets (refer page 84). 
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• An approach for analysis of Sequence Diagrams is presented using the SD2PN model 

transformation, based on the well-established mathematical analysis methods in Petri 

Nets (refer page 89). 

• A tool for automated transformation of Sequence Diagrams into Petri Nets (SD2PN 

Transformer) is presented. In particular: 

o A method for parsing XMI data from well-known UML tools into Java objects 

is identified (refer page 93). 

o A Java code to perform the SD2PN model transformation is created (refer 

page 166). 

• Synthesis methods for Sequence Diagrams are introduced based on Petri Net synthesis 

methods. More specifically: 

o A message refinement synthesis method that replaces a single message in a 

Sequence Diagram with a complete Sequence Diagram is presented (refer page 

118). 

o A part decomposition synthesis method is defined as an example of a bottom-

up synthesis method where the events attached to a certain lifeline are replaced 

with an entire Sequence Diagram (refer page 123). 

o A domain-specific, special case synthesis method used for introducing a man-

in-the-middle type attack on a Sequence Diagram is presented (refer page 

127). 

• A notion of time is introduced into SD2PN, allowing various time related analysis 

such as performance analysis to be performed (refer page 133). 

• A number of examples are presented in order to illustrate the feasibility of the studies 

presented in this thesis (refer pages100, 118 and 149). 
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1.3 List of Publications 

The following publications are a result of the research presented in this thesis: 

 

• Mohamed A. Ameedeen, Behzad Bordbar and Rachid Anane. Model interoperability 

via Model Driven Development. Journal of Computer and System Sciences. 2010.[60] 

• Mohamed A. Ameedeen, Behzad Bordbar and Rachid Anane. A Model Driven 

Approach to Analysis of Timeliness Properties. Fifth European Conference on Model-

Driven Architecture Foundations and Applications (ECMDA 2009). 2009: Enschede, 

The Netherlands.[61] 

• Mohamed Ariff Ameedeen and Behzad Bordbar. A Model Driven Approach to 

Represent Sequence Diagrams as Free Choice Petri Nets. 12th International IEEE 

Enterprise Distributed Object Computing Conference (EDOC). 2008: München, 

Germany.[62] 

1.4 Overview of this Thesis 

The remainder of this thesis is organized as follows. In Chapter 2, preliminary and foundation 

information regarding UML, in particular Sequence Diagrams, followed by Petri Nets, 

Labelled Event Structures, Model Driven Development are presented. 

 In Chapter 3, a methodology for Multi Paradigm Modelling is presented, where else in 

Chapter 4, the application of Multi Paradigm Modelling in an MDD model transformation 

from Sequence Diagrams to Petri Nets (SD2PN) is presented. Chapter 4 also presents a 
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method for the automated transformation of Sequence Diagrams in the form of XMI to Petri 

Nets in the form of XML using a Java based tool. In Chapter 5, SD2PN is utilized to perform 

analysis of Sequence Diagrams using the mathematical analysis techniques in Petri Nets. 

Chapter 6 on the other hand brings the well-established notion of synthesis in Petri Nets into 

Sequence Diagrams. In particular, three synthesis algorithms are specifically introduced for 

Sequence Diagrams.  

 Chapter 7 introduces the concept of time into SD2PN, allowing time related analysis 

i.e. performance analysis to be performed using SD2PN. Finally, Chapter 8 summarizes the 

thesis and discusses the future work that can be done to extend this research. 
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CHAPTER 2 
FOUNDATION 

This chapter presents preliminary information or foundation for the languages and the 

technology used throughout this thesis including UML, Petri Nets and Model Driven 

Development. 

2.1 Unified Modelling Language 

Unified Modelling Language (UML)[7] is a family of languages, which is widely accepted as 

the de facto standard for software modelling. In the year 2003, UML was adjudged to be used 

in almost 70 percent of object-oriented software developments [63] and it is widely believed 

that this figure has ever since been steadily increasing. According to [64], the reason for this 

success is the six main advantages of UML as presented in Table 1. 
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Table 1: Main advantages of UML (referenced from [64]) 

Advantage Description 

Strongly defined Every element used in UML has a strongly defined meaning 

provided in [7] and an explanation of how it could be used.  

Concise The notations used in UML are simple and straightforward, 

making the models clear, concise and simple. 

Comprehensive UML is built as a collection of languages that could describe 

various aspects of a system i.e. structure, behaviour, 

interactions, etc. 

Scalable UML is regarded to be strong enough to model large systems 

modelling projects. However, it is also adaptable to modelling 

smaller scaled systems without fuss. 

Built on lesson-learned UML is built based on the best practices in previous systems 

modelling methods. It is also constantly evolving for the 

better, taking note of other current system modelling methods 

as well. 

Open standard Since UML is built on an open standard with constant 

contributions from vendors and academics all over the world, 

it promotes interoperability and discourages a vendor 

monopoly. 

 

 One of the main goals of UML, as outlined in [63] is to provide an easy-to-use, 

expressive and visual languages that allows developers to design and share their models. In 

order to accomplish this goal, the UML standard [7] not only describes semantics of the 
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language, but also visual representation of the languages in the form of diagrams. UML 

diagrams are divided into two main classifications; structural diagrams and behavioural 

diagrams. Structural diagrams are commonly used to represent the architectural construct of 

the system by modelling the various structural and elemental properties. On the other hand, 

behavioural diagrams are used in modelling functional aspects of the system such as event 

flow and communication. Figure 2 presents the UML diagrams based on their classifications. 

 

 

Figure 2: Classification of UML diagrams 

 

Figure 2 classifies the six structural diagrams and seven behavioural diagrams, four of which 

is further classified as interaction diagrams. Table 2 lists and describes the different types of 

UML diagrams. 

 

Table 2: Types of UML diagrams 

Class Diagram 

(page 23 of [7]) 

A Class Diagram is a static diagram that depicts the 

structure of a system by representing the system in terms of 
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classes and the relationship between them. A typical class in 

the Class Diagram is visually represented as a box with 

three sections. The top section holds the name of the class, 

the middle section lists the attributes of the class and the 

bottom section holds the methods that are associated to the 

class. 

Component Diagram 

(page 143 of [7]) 

A Component Diagram is a diagram used to depict how 

various components in the system relates to one another. A 

component represents a modular part of the system and the 

relationship between the components, be it by connections 

or encapsulations are depicted in a Component Diagram. 

Object Diagram 

(page 23 of [7]) 

An Object Diagram is used to represent a complete or 

partial view of a system modelled at a specific time. Objects 

Diagrams features object instances and attributes derived 

from Class Diagrams and the relationship between these 

instances. Object Diagrams are also used to provide 

examples or test-cases for Class Diagrams. 

Composite Structure Diagram 

(page 161 of [7]) 

A Composite Structure Diagram is a type of static diagram 

that shows the internal structure of a classes and the 

collaboration between them. This diagram could be used to 

describe the parts (roles) of various instances, the ports 

(points) of connections between the classes, and connectors 

that are used to bind the entities together. 

Deployment Diagram A Deployment Diagram is used for modelling of the 
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(page 193 of [7]) physical deployment of artifacts. In UML, artifacts can be 

among others a model file, source file, a table or even a 

word document. 

Package Diagram 

(page 23 of [7]) 

A Package Diagram presents the dependencies between 

packages in a model. It is commonly used to depict the 

architecture of a system using layers and the 

communication between them. 

Activity Diagram 

(page 295 of [7]) 

Activity Diagram is used to present the workflow of 

activities in a system. It is capable of modelling iterations, 

choice as well as parallel behaviour. An Activity Diagram is 

often regarded as a form of flowchart. 

Use Case Diagram 

(page 585 of [7]) 

A Use Case Diagram is a form of behavioural diagram that 

represents the overview of functionality in the system. A 

Use Case Diagram consists of actors, use cases and the 

dependencies between the use cases. A Use Case Diagram 

is often used to capture the requirements of a system. 

State Machine Diagram 

(page 523 of [7]) 

The UML State Machine Diagram is a variation and 

extension of statecharts [65]. There are two types of state 

machines; behavioural state machines and protocol state 

machines. The behavioural state machines are used to 

specify behaviours of various model elements where else 

the protocol state machine is used to express usage 

protocols. 

Sequence Diagram Sequence Diagram is a type of interaction diagram that is 



21 
 

(page 457 of [7]) used to depict the communication between various object 

instances in the system. Sequence Diagrams are capable of 

modelling flow of events in a system as well as iterations, 

choice and parallelism. 

Communication Diagram 

(page 457 of [7]) 

A Communication Diagram is a type of interaction diagram 

that is simplified from Collaboration Diagram in the 

previous versions of UML. It is commonly regarded as a 

combination between Class Diagrams, Sequence Diagrams 

and Use Case Diagrams as it is capable to model both static 

structures and dynamic behaviours. 

Interaction Overview Diagram 

(page 457 of [7]) 

An Interaction Overview Diagram is used to model the 

control flow in a system (similar to Activity Diagram) using 

types of interaction diagrams (Sequence Diagrams, 

Communication Diagrams, Interaction Overview Diagrams 

and Timing Diagrams).  

Timing Diagram 

(page 457 of [7]) 

Timing Diagram is a type of interaction diagram that 

focuses on timing properties. The horizontal axis of the 

Timing Diagram represents time, increasing from left to 

right where else the vertical axis represents the object 

instances. 

 

Table 2 described the various types of UML diagrams. However, with reference to the 

highlighted element in Figure 2, the next section provides a more detailed view of a specific 

diagram type that will be used throughout this thesis; Sequence Diagrams. 
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2.1.1 Sequence Diagrams 

Sequence Diagram is a type of UML Interaction Diagram adapted from its predecessor, 

Message Sequence Charts (MSC) [66, 67]. Sequence Diagrams are two-dimensional charts 

where the vertical axis represents the time and the horizontal axis represents interaction. 

Sequence Diagrams are commonly used to depict the flow of information in a system through 

communication between objects.  

 

 

Figure 3: Sequence Diagram Metamodel 

 

Figure 3 presents the metamodel for UML Sequence Diagrams featuring components 

of Sequence Diagrams as used in this thesis. The main components of a Sequence Diagram 

are lifelines, messages and Combined Fragments that are defined by Interaction Operators. 

Lifelines are horizontal lines that represent objects or instances of a class in the system where 

else messages are horizontal arrows that begins and ends at a lifeline. These messages 

represent the communication between the objects that are represented by the respective 
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lifelines. Messages are commonly used as a signal or a call for procedure or function in the 

system. Figure 4 presents an example of a Sequence Diagram with two lifelines and four 

messages. All four messages in Figure 4 depict communication from Object A to Object B.  

 

Figure 4: Example of a Sequence Diagram 

 

Combined Fragments are high level additions introduced to Sequence Diagrams. A 

Combined Fragment is defined by the Interaction Operator that is attached to it, as well as the 

number of operands it has. In Figure 4, a Combined Fragment with the Interaction Operator 

alt is presented with two operands (number of sections in the Combined Fragment). 

Interaction Operators are used as mechanisms to provide structure in the communication 

between lifelines. For example, the Interaction Operator alt presented in Figure 4 refers to 

alternative (conflicting) behaviour where only messages in one of the two operands pictured 

would be executed. As such, if the message m2 is sent, then the message in the second 

operand, m3 would not. The same is also true for the opposite. There are eleven types of 

Interaction Operators outlined in [7], each structuring the messages in a different way. The 

first four of the Interaction Operators from [7] are used in this thesis, and therefore introduced 

in Table 3. 
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Table 3: Subset of Interaction Operators (referenced from [7])3

Interaction 

Operator 

 

Abbreviation Semantic Description 

Alternative alt The alternative Interaction Operand depicts a choice 

of behaviour where at most one of the operands in the 

Combined Fragment is chosen. The operands of the 

Combined Fragment could be assigned a guard or 

constraint that has to be evaluated to be true for it to 

be chosen. 

Option opt An option is semantically equivalent to alternative 

where a choice of behaviour occurs. The default for an 

option Interaction Operator is one operand, where the 

either the operand happens, or nothing happens. 

Break - In a Combined Fragment with the Interaction Operator 

break, a choice of behaviour is presented where an 

operand occurs, or the remainder of the interaction is 

ignored (i.e. termination of system). The operands 

could be attached to a guard to determine the chosen 

behaviour. However, a break Interaction Operator 

without a guard leads to a non-deterministic choice of 

behaviour. 

 

                                                 
3Interaction operators such as loop and neg are not a part of the metamodel used in this thesis due to the 
limitations in the result and is further discussed in Section 8.2. 
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Parallel par The parallel Interaction Operator designates that a 

parallel merge between all the operands of the 

Combined Fragment occurs. The order of messages 

within each operand of the Combined Fragment is 

preserved. However, the order of messages between 

operands can be interleaved in any variations. 

 

 The Sequence Diagram in Figure 4 also presents a concept of events. In a typical 

Sequence Diagram, events are not labelled, nor are they represented by a ‘point’ as they are in 

Figure 4. The representation in Figure 4 is deliberate, to familiarize the users with the concept 

of events used throughout this thesis. Events are attached to lifelines and denote the sending 

and receiving of messages. According to [68], there are two rules in the sequencing of events 

in a Sequence Diagrams; 

 

1. The events on each lifeline must be ordered from top to bottom. 

2. The event that denotes the sending of a message must occur before the event that denotes 

the receiving of the same message.  

 

The authors of [68] also went on to describe that as long as the two rules are followed, 

ordering the events in a Sequence Diagram is arbitrary. However with reference to the 

Sequence Diagram metamodel in Figure 3, each Interaction Fragment is has a General 

Ordering that hasbeforeorafter events in the form of Event Occurrences. This ordering 

framework is adapted for the purpose of this thesis. 
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2.2 Petri Nets 

Petri Net [6] is a formal modelling language that has a strong mathematical foundation and a 

graphical method of representation. Petri Nets are often used to model control flow in a 

system and is capable of modelling complex behavioural properties such as conflicts (choice) 

and concurrencies (parallelism). The main components of a Petri Net are places, transitions, 

arcs and tokens. 

 

 

Figure 5: Example of a Petri Net 

 

Figure 5 presents an example of a Petri Net with seven places and five transitions. 

Each place in a Petri Net may contain a number of tokens, referred to asmark. For example in 

Figure 5, the mark of s1 is ‘1’ where else for all other places, the mark is ‘0’. A place is only 
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allowed to be connected to a transition via eitherinput arcs or output arcs. An input arc is 

visually represented as an arrow with the arrow head pointing towards the place (or transition) 

where else an output arc is an arrow with the arrowhead pointed away from the place (or 

transition). For a transition to be enabled or ready to fire, each place that connects to it via an 

input arc needs to be marked with at least one token. However each token can only be used to 

fire one transition at a time as would be explained further using Figure 6 which presents an 

example of a firing sequence for the Petri Net in Figure 5 while highlighting the conflict, 

concurrency and causal relationships between the nodes. 

 

 

Figure 6: Example of a Petri Net Firing Sequence 
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Figure 6 (a) shows a marked place, s1 with output arcs connected to two transitions t1 

and t2. Both t1 and t2 becomes enabled since every place that is connected to them via input 

arcs are marked. This represents a conflict where although both t1 and t2 are enabled, only 

one of them may fire, based on the solitary token that is contained in the place s1. Figure 6 (b) 

shows a scenario where t1 fires. This removes the token from s1 and places it in s2 which is 

the only place connected via an output arc to t1. One observation that could be made here is 

that the previously enabled t2 is no longer enabled since s1 no longer contains tokens. Since 

t3 is the only transition enabled following the firing of t1 as depicted in Figure 6 (c), the firing 

sequence is continued, removing a token from s2 and placing it in s5. The firing of t3 may 

only ever occur following the firing of t1, thus creating a causal relationship between them. 

An alternative scenario where t2 fires instead of t1 is presented in Figure 6 (d). The firing of 

t2removes a token from s1 and places a token each in s3 and s4. This is described as a 

concurrency or parallel relationship where one token is split into two (or more depending on 

the number of concurrent nodes). The firing sequence then continues with t4 and t5 enabled 

concurrently and independent of each other, as depicted in Figure 6 (e). Another observation 

that could be made at this point is the absence of any causal relationship between t4 and t5 

and the order of firing between them is non-deterministic. 
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Figure 7: Petri Net Metamodel 

 

Figure 7presents the metamodel of Petri Net where Petri Net consists of at least one 

place, one transition and one marking. Each place or transition may have any number of input 

and output arcs and each place has a mark in the form of the integer number of tokens. 

Alternatively, Petri Nets can also be presented formally as follows: 

 

Definition 1:A Petri Net is a triple N = (S, T, F) where S is a finite set of places and T is a set 

of transitions where S∩ T = ∅. F is a relations on S∪ T where F∩ (S x S) = F∩ (T x T)  = ∅. 

A marking of N is a function m:S→{0,1,2,3, …}, where each place s∈ S is assigned the 

number of tokens. M0

This formalization can also be extended to the relationship between places and transitions. For 

every place s∈ S, 𝑠𝑠° represents the set of transitions that are connected to it via input arcs 

while 𝑠𝑠°represents the set of transitions that are connected to it via output arcs. Similarly for 

each transition t∈ T, 𝑡𝑡° represents the set of transitions that are connected to it via input arcs 

is used to show the initial marking, the number of tokens in each place 

at the beginning of execution. 
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while 𝑡𝑡°represents the set of transitions that are connected to it via output arcs. For example in 

Figure 5, s1 is an input place for t1. This can be presented using the notation s1 ∈  𝑡𝑡° 1. The 

relationship between s1, t1 and t2 can also be represented as 𝑠𝑠1°= {t1, t2}. 

2.2.1 Flavours of Petri Nets 

The mathematical nature of the Petri Net modelling language created a basis for a variety of 

flavours to be added to the core of the general Petri Net. There have been various extensions 

made to Petri Nets over the years including the introduction of two types of arcs; the reset arc 

[69] which resets the place after each termination, making the reachability of the net 

undecidable, and the inhibitor arc [6], that allows firing of the transitions only when there are 

no tokens in the input places of the transition. There have also been variations of the types of 

Petri Nets such as the Stochastic Petri Nets [70], Coloured Petri Net [71], Prioritized Petri 

Nets [72] and Dualistic Petri Nets [73].  

 One of the well-established variations of Petri Nets is the Timed Petri Net. Timed 

Petri Nets are extensions to the conventional Petri Nets by the inclusion of timing information 

such as the time associated to the firing of transitions. There are many different interpretations 

of Timed Petri Nets. However in this thesis, the Timed Petri Net with closed intervals as 

outlined in [50] are used. The timing information in the metamodel are inferred from the Petri 

Net tools where [28] shows the existence of two distinct types of transitions; immediate 

transitions and timed transitions, while[74] states that each time property is modelled via 

closed intervals. These intervals are defined via specific upper and lower bounds attached to a 

transition. For a transition to fire, firstly it must be enabled. Secondly, from the moment it 

gets enabled, a clock starts; the transition can fire when the value of the clock is within the 
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interval. The inclusion of time constraints in Petri Nets enhances their capability for 

modelling time-sensitive systems. Moreover, with the benefit of using existing Petri Net tools 

such as CPNTools [27] and PIPE [28], time related  analysis such as performance analysis 

could take place. Timed Petri Net, its applications and its analysis properties would be further 

discussed in Chapter 7 of this thesis. 

2.2.2 Free Choice Petri Nets 

Petri Nets are highly suited for modelling systems with rich, dynamic constructs due to its 

expressive power and strong mathematical foundation. However as described in [36], analysis 

algorithms for Petri Nets have a high complexity as a result of its rich modelling capabilities. 

One possible method to address this issue is to restrict the structural properties of the net, 

creating a subset of Petri Net called Free Choice Petri Net. 

 Free Choice Petri Net is a subclass of Petri Nets where conflicts and concurrency 

could occur, but not simultaneously. This subclass of Petri Net is predominantly used for 

effective and efficient analysis of a systems [75]. 

 

Definition 2:Baccelli [38] defines Free Choice Petri Nets, as whenever two transitions in the 

net share an input place, they must not have any other input places. This can also be written as 

when 𝑠𝑠°> 1, for every t∈𝑠𝑠°,  𝑡𝑡° = 1. 

 

Definition 2 declares that if a place in the Petri Net has more than one output transitions, then 

each of the transitions must have an input place of exactly one. This ensures that whenever a 

conflicting behaviour occurs, a concurrent behaviour does not occur simultaneously. 
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 There also exists a weaker definition of Free Choice Petri Net that is also referred to as 

extended Free Choice Petri Net, as presented in Definition 3. 

 

Definition 3: In a Free Choice Petri Net, if there is an arc from a place s to a transition t, then 

there must be an arc from any input place of t to any output place of s.  

 

However as established in [36], if a Petri Net satisfies the weaker condition in Definition 3, it 

also satisfies the condition in Definition 2. 

 The benefits of Free Choice Petri Nets mainly regards to the complexity of various 

analyses that could be performed on the nets. Esparza and Silva [37] presented an algorithm 

that allows liveness in bounded Free Choice Petri Nets to be computed in polynomial time as 

opposed to otherwise exponential complexity of computing liveness in Petri Nets. Rank 

Theorem [36] also provides a way to compute the liveness and boundedness of a Petri Net in 

polynomial time by utilising matrix algebra. There are various other studies that are done on 

Free Choice Petri Nets to reduce the complexity of analysis such as the Reachability Theorem 

[36], Shortest Sequence Thorem [36], soundness analysis [22], concurrency analysis [76] and 

the reduction and synthesis rules for Free Choice Petri Nets [36]. In short, Free Choice Petri 

Nets allow various complex analyses to be conducted in a much less complex manner 

(polynomial complexity as opposed to exponential complexity) compared to general Petri 

Nets. 

2.2.3 Analysis in Petri Nets 

There is a plethora of analysis properties in Petri Nets [6]; however a few well-known 

properties that are applicable to this research are presented below: 
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Liveness 

 

Liveness in Petri Nets is commonly associated with the complete absence of deadlock. A Petri 

Net N is considered live if every transition 𝑡𝑡 ∈ 𝑁𝑁 can be enabled through a firing sequence 

that begins with the transitions enabled at the initial marking M0. In this scenario, M0

A Petri Net is bounded when the number of tokens in every place of the Petri net does not 

exceed a certain number. Suppose a Petri Net 𝑁𝑁 = (𝑆𝑆,𝑇𝑇,𝐹𝐹) has an initial marking M

 is often 

referred to as a live marking. By definition, if any transition in N can be enabled through a 

firing sequence, then every marking M where 𝑀𝑀0
𝜎𝜎
→𝑀𝑀 is also a live marking.   

 

Boundedness 

 

0. The 

Petri Net is regarded as k-bounded if for all 𝑠𝑠 ∈ 𝑆𝑆, 𝑀𝑀(𝑠𝑠) ≤ 𝑘𝑘 where 𝑀𝑀0
𝜎𝜎
→𝑀𝑀. For example, if 

the number of tokens in each place in N does not exceed one (1) for every marking that results 

from M0

 

, the net N is said to be 1-bounded. 1-bounded Petri Nets are also referred to as safe 

nets.  
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Reachability 

 

Reachability in Petri Nets calculates if a certain state of marking is reachable from the initial 

marking through a sequence of events. A marking M in a Petri Net N is reachable from the 

initial marking M0

Reversability analysis can be described as complementary to the reachability analysis. 

Suppose a Petri Net N with the initial marking M

 if there exist a firing sequence 𝜎𝜎 such that 𝑀𝑀0
𝜎𝜎
→𝑀𝑀.  

 

Reversibility 

 

0

Persistence analysis in Petri Net refers to the firing of two or more enabled transitions under a 

single marking. Suppose a set of enabled transitions 𝑇𝑇𝑒𝑒  in a Petri Net N with under the 

marking M. If the Petri Net N is persistent, then the firing of any single transition 𝑡𝑡 ∈ 𝑇𝑇𝑒𝑒  

would not disable any other transitions in 𝑇𝑇𝑒𝑒 . This reflects concurrency or parallelism where 

every enabled transition remains enabled until it fires. A persistent net also belongs to a class 

of Petri Nets called Marked Graphs, a subset of Free Choice Petri Nets where conflicting 

behaviours could not occur. 

 

 and a set of markings 𝑀𝑀 ∈ ℳ. The Petri 

Net N is reversible if for every marking 𝑀𝑀 ∈ ℳ, there exist a firing sequence 𝜎𝜎 such that 

𝑀𝑀
𝜎𝜎
→𝑀𝑀0. 

 

Persistence 
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 These properties and more are analysed using three main analysis methods in Petri 

Nets: Reachability Tree, State Equation or Incidence Matrix and the Reduction method. The 

Reachability Tree approach involves the enumeration of all reachable markings in the Petri 

Net. However, this approach is limited to smaller sized Petri Nets due to the complexity of the 

state-space explosion orcalculating reachable states for each marking in the net. The equation 

and reduction methods on the other hand are more powerful and allow analysis to be 

performed on larger nets. The State Equation or Incidence Matrix method performs algebraic 

analysis on Petri Net behaviours that are expressed as matrices and equations. Meanwhile the 

Reduction method is used to reduce large scale Petri Nets into smaller nets while preserving 

the system properties to be analysed. However by using Petri Net tools, the complexity behind 

these methods are hidden from the users and as such are not explained. Mathematical 

explanation of the methods are found at [6]. 

2.2.4 Petri Net Tools 

One of the main attractions of Petri Nets is the plethora of widely available tools to design, 

share and analyse Petri Net models. The list of Petri Net tools are available in a 

comprehensive tool database that is updated regularly at [34]. In Table 4, a selection of Petri 

Net tools and their properties are presented.  
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Table 4: Petri Net Tools 

Petri Net Tool 

Modelling Type Analysis 
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AlPiNA [29] •   • • • • • • 

COSA BPM [77] • •  •    •  

CPNTools [27] • • • • • • • • • 

GreatSPN [30] • * • • • • • •  • 

Helena [78]    • •    • 

HPSim [79] • • •    •  • 

INA [80]   • • • • • • • 

JFern [31] • • • •   • • • 

LoLA [32]    • •   • • 

Maria [81] • •  • • •  • • 

NetLab [33] • * •   •    • 

PetriSim [82] •  • •     • 

PIPE [28] • • •  • • • • • 

TimeNet [83] • * • • • •  •  • 

Tina [35] • • •  • •  • • 

 

Table 4 presents a comparison between fifteen Petri Net tools based on nine evaluation 

criteria. The first group of criteria – modelling, judges if a Petri Net tool supports visual 

modelling of the Petri Nets and if it able to present an animation of the token-game (the flow 

of token in the Petri Net). Majority of the tools provide a platform for visually modelling the 

Petri Nets and a token-game animation. However, there are also tools (i.e. Helena, INA and 

LoLA) that only accept text-based modelling of the Petri Nets. 



37 
 

 The second group of criteria that is evaluated in Table 4 is the type of Petri Nets 

supported by the tool. Although there are various types of Petri Nets, only Timed Petri Nets 

and High Level Petri Nets (i.e. Coloured Petri Nets) have bearing towards this research 

project. As such, only the two types of Petri Nets are considered. Following the types of Petri 

Nets, the next group of criteria is to evaluate the types of analysis that could be performed by 

the Petri Net tools. Three types of analysis are evaluated; structural analysis (i.e. liveness 

analysis, boundedness analysis), behavioural analysis (i.e. reachability analysis) and 

performance analysis (i.e. throughput analysis, waiting time analysis). This is followed by the 

platform independence criteria which evaluates if a tool could function across all the major 

platforms (i.e. Windows, Linux, Apple, Sun, etc). Finally, the cost of obtaining the tool is 

considered where most of the tools could be obtained free of charge, including the three tools 

that are marked ‘*’ which are free of charge for academic purposes. 

 In this research project, two of the tools presented in Table 4 are used for modelling 

and analysis of Petri Nets; CPNTools and PIPE. Both CPNTools and PIPE are capable in 

modelling the Petri Net visually as well as animating the flow of tokens in the system. Both 

the tools could also be used to perform all the types of analysis evaluated in Table 4. Both 

CPNTools and PIPE can be used across various platforms and can be obtained free of charge. 

CPNTools is also highly capable in modelling Timed Petri Nets and High Level Petri nets. 

However, PIPE is not suitable in modelling High Level Petri Nets. Nonetheless this limitation 

is overshadowed by its other qualities as presented in Table 4. 
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2.3 Labelled Event Structures 

Event Structures [42] are models of computational process that allows a system to be 

modelled as a sequence of events. Event Structure models the behaviour of a system through 

the relationship between the various events in the system. There are three main types of 

relationship between events; causal relationship, conflicting relationship and concurrent 

relationship. 

 

Definition 4: An Event Structure is a triple, E = (Ev, →*, #) where Ev is a set of events and 

→* and  # representing binary relations causality and conflict such that →*, # ⊆Ev×Ev. 

Causality is a partial order while conflict is symmetric, irreflexive and propagates over 

causality. If two events e1, e2∈Ev are neither in causality or conflict, then they are concurrent, 

such that e1coe2 iff ¬ (e1→* e2∨e2→* e1 ∨e1 # e2). 

 

Definition 5: An Event Structure E = (Ev, →*, #) is discrete iff for every e, the local 

configuration of e, ↓e = {enen→* e} is finite. 

 

Immediate Causality refers to events such as e1, e2∈Ev that are causal and have no other 

events occurring between them. If e1→* e2 has an immediate causality relationship, then e1 is 

the immediate predecessor of e2 and e2 is the immediate successor of e1. Alternatively, this 

relation could also be written as e1→e2. 
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Definition 6: Let E= (Ev, →*, #) be a Discrete Event Structure and L an arbitrary set where 

l:Ev→L would be the labeling function that maps each event in E into an element in L. 

 

From here on, Labelled Discrete Event Structures will be referred to as Labelled Event 

Structures or LES. The next section presents the translation from Sequence Diagrams to LES 

followed by the unfolding of Petri Nets into LES. 

2.3.1 Translating UML Sequence Diagrams into Labelled Event Structures 

In this section, a translation of Sequence Diagrams into LES is presented based on the 

semantics in [40]. In order for a Sequence Diagram to be represented as an LES, a formalized 

notation for Sequence Diagram is required. The notations for a Sequence Diagram followed 

by the definition of two local functions scope and alt_occ are presented in Definitions 7, 8 and 

9 respectively. 

 

Definition 7: A Sequence Diagram can be represented as a tuple SD = (I, Loc, Locini, Mes, E, 

Path, XI

• I is the set of instance identifiers corresponding to the objects in the diagram 

) where: 

• Loc is the set of locations 

• Locini is the set of initial locations such that Locini

• Mes is the set of message labels 

⊆Loc 

• E is a set of edges where an edge (l1, m, l2)represents a message m sent from location 

l1to l

• {X

2 

i} where i ∈I is a family of I-indexed sets of constraint symbols 
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• Path is a given set of well-formed path terms for the diagram used to capture the 

relative positions of the locations within a diagram 

 

a:A

alt

l0

l1
l2

l3

l4  

Figure 8: Example of events in a Sequence Diagram 

 

Definition 8: Scope is a function given by scope: Loc→Path. Referring to Figure 8above, 

scope(l2) = alt(2)#1 and scope(l3) = alt(2)#2. This can be explained by showing that l2 and l3 

are inside an alt fragment with two segments, however l2 is in segment 1 and l3 is in segment 

2. Scope for l1 and l4 however signifies the start and end of a fragment and are shown as 

scope(l1) = alt(2) and scope(l4

Definition 9:Alt_occ is a local function given by alt_occ: loc(i) →ℕthat returns a possible 

number of alternative scenarios that can lead to a specific location.  Referring to 

) = alt(2).alt(2). 

 

Figure 8 

above, alt_occ(l4) = 2 because there are 2 possible scenarios that could lead to l4 from the 

initial location l0 which are scenarios S1 = {l0, l1, l2, l4} and S2 = {l0, l1, l3, l4

By using the local functionscope, messages that are not causal and have a relationship of 

either conflict or concurrent can be identified. This information would be essential in the 

creation of the LES. On the other hand, by using the local functionalt_occ, the number of 

}. 
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alternative scenarios that leads to a specific location in the diagram can be obtained, as to 

create the branches in the corresponding LES. 

Following the example in Figure 8above, a fragment of LES that corresponds to that 

particular Sequence Diagram can be created. Since l4 has an alt_occ of 2, then it has two 

events associated to it; e4 and e5. The rest of the locations have an alt_occ of one, and will be 

represented by e1, e2, and e3 respectively. Therefore, with 5 events Ev = {e1, e2, e3, e4, e5} 

and e2 # e3 as can be seen from the scope, a fragment of LES such that ↓e4 = {e1, e2, e4}, ↓e5 

= {e1, e3, e5 Figure 9} is the result, as shown in . 

 

e1

e2 e3

e4 e5

#

 

Figure 9: Labelled Event Structure corresponding to the Sequence Diagram in Figure 8 

 

An example of translating Sequence Diagrams into LES is presented in Appendix A. 

2.3.2 Unfolding Petri Nets into Labelled Event Structures 

In this section, a method that maps Petri Nets into LES is presented based on a branching 

process of Petri Nets called unfolding. This method, introduced by McMillan [41] creates a 

net where nodes in the net are labelled by the elements of the original net. This net represents 

the firing sequence or a reachable marking of the original net. This net is also sometimes 



42 
 

referred to as a Labelled Causal Net or a Labelled Occurrence Net and can be interpreted as a 

Labelled Event Structure. 

 

Definition 10: Referring to [41], suppose a Petri Net N = (S, T, F), then a Labelled 

Occurrence Net (unfolding of N) consist of a Petri Net N′ = (S′, T′, F′) and a labelling 

function L′ which maps P′ onto the set P and T′ onto the set T while satisfying the following 

conditions: 

• Well-foundedness: every subset of T′ must have a minimal element with respect to 

F′*. 

• No forward conflicts: if p∈P′, p∈t1
• and p∈t2

•, then t1 and t2

• No self-conflicts: if t

 must ne the same. 

1, t2, t3∈T′, t1F′* t3, t2 F′* t3 and •t1∩•t2≠∅, then t1 = t2

• No redundancy: if t

. 

1, t2∈T′, L′(t1) = L′(t2) and •t1 = •t2, then t1 = t2

 

The construction of unfolding starts with the generation of a place for each places in the initial 

set and adding transitions for every set concurrent places corresponding to the input set of the 

original transition.  From that transition, a place set corresponding to the output set of the 

original transition is generated and this process is done iteratively for the whole Petri Net. 

 For better understanding of how a Petri Net is unfolded into LES, an example of the 

process is presented in Appendix A. 

. 
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2.4 Model Driven Development 

Model Driven Development [84] aims to promote the role of modelling in software 

development. Models in the context of MDD are captured in machine-readable 

representations, using languages which are widely adopted by software industry [7]. Hence it 

is possible to communicate such models to various parties and reuse them. This results in 

lower software production cost and shorter development cycles. For the purpose of this thesis, 

MDD is used in the seamless transition of models between two languages; Sequence 

Diagrams and Petri Nets. As such, software system design can be conducted in Sequence 

Diagrams while the more formal notions of analysis could be performed in Petri Nets. 

The transitions of models as used in this thesis adopts the standards set by Model 

Driven Architecture (MDA) [85], a flavour of MDD which is initiated by the Object 

Management Group (OMG). MDA outlines the concept of model transformation which is 

central to the work presented in this thesis. Another standard that is central to the concept of 

model transformation is Meta Object Facility (MOF) [86],used for describing metamodels. 

Metamodels are themselves models, from which models of the system are instantiated. MOF 

can be compared to EBNF, which is used for defining programming languages grammars. As 

a result, MOF is a blueprint from which MOF Compliant metamodels are created. 

 

 

Figure 10: Model Driven Development Model Transformation 
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Figure 10depicts an sketch of MDD model transformation as outlined by MDA [85] 

and the metamodels that comply to MOF [86]. A number of transformationrules are used to 

define how various elements of one metamodel (source metamodel) are mapped into the 

elements of another metamodel (destination metamodel). The process of model 

transformation is carried out automatically via the software tools which are commonly 

referred to as model transformation frameworks [87-89]. A typical model transformation 

framework requires three inputs: source metamodel, destination metamodel and 

Transformation Rules. For any instance of the source metamodel, a transformation engine 

executes the rules to create an instance of the destination metamodel. 
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CHAPTER 3 
MULTI PARADIGM MODELLING 

This chapter discusses the methodology used behind this research, Multi Paradigm Modelling 

and how it could be used to solve the problem statement presented earlier in this thesis.  

3.1 Role of Modelling in System Development 

Modelling is becoming an essential component of system development. A model, according 

to Blaha and Rumbaugh [90], is defined as an abstraction of something, used for the purpose 

of understanding it before it is built. By applying this definition in the context of system 

development, a model can be defined as an abstraction of the system that is used to 

understand the works of the system before it is built. As such, modelling affords a system 

designer the luxury of visualizing the system before it is developed. 

 At present, modelling plays an important part in system design. Van Gigch [91] states 

that there are three domains involved in system design; reality, modelling and metamodelling. 
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Reality represents the notion of the system in real life where else modelling represents an 

abstraction of the reality by translating it into a verbal, graphical or mathematical notation. 

Metamodelling on the other hand represents an abstraction of modelling or the modelling of 

the modelling process. In short, the role of modelling in system design can be explained as the 

process of translating a real life view of the system into a verbal, graphical or mathematical 

notation, based on the metamodel. 

 As well as the different levels of abstraction, modelling may involve different levels of 

formalisms. Three levels of formalisms are identified in [92]; natural language, semi-formal 

notation and formal notation. Natural language models are highly expressive and flexible, as 

they contain descriptions and annotations that are easy to read. However, due to the lack of 

semantics, the models could be interpreted differently by each stakeholder. On the other hand, 

models with semi-formal notation use notational semantics to express the structure or 

behaviour of the system. An example of this type of model is Unified Modelling Language 

(UML) [7]. Finally, models with formal notations are known for their precise semantics with 

underlying mathematical structures. For example, modelling languages with formal notations 

are among others Z [4], Alloy [5] and Petri Nets[6]. This type of model is commonly used for 

extensive reasoning and model analysis due to its mathematical nature. 

 The role of modelling in system development is often confined to just model design. 

Although it is undeniable that designing a model is essential, the role of modelling need not 

end there. The system models could also be subjected to model analysis to evaluate the 

structural rigidity and the behavioural properties of the system, or model synthesis where two 

or more models with common elements could be put together in order to get a more holistic 

view of the system. The following sections present model design, model analysis and model 
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synthesis; discussing their definitions and their importance in the role of modelling for system 

development.  

3.1.1 Model Design 

Model design is the process of representing a view of the system in the form of models. For 

this purpose, system designers often opt for a semi-formal notational model as it provides the 

best balance between ease-of-use and precision. As a result, UML [7] has become the 

preferred language in model design. 

 There are various types of model in UML, divided mainly into structural diagrams and 

behavioural diagrams. Structural diagrams such as Class Diagrams and Object Diagrams 

represent the composition of the system, describing the various elements that make-up the 

system. Behavioural diagrams such as Activity Diagram and Sequence Diagram on the other 

hand describe the behaviour of the system under different circumstances as well as the 

interaction between elements in the system.  

 The different types of models, as well as the well established set of semantics for each 

model type in [7] allows system designers to accurately project their views of the system into 

models. The easily comprehendible nature of UML models also allows for straightforward 

communication between stakeholders of the system without extensive knowledge of any 

particular modelling or programming language. 

3.1.2 Model Analysis 

Model analysis could be regarded as a preliminary analysis of the system. Performing 

mathematical analysis on models of the system could provide crucial feedback on any 
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structural design flaws or unwanted behaviours in the system. This allows the system designer 

to rectify the design faults even before the system is built, essentially saving countless man-

hours and resources from having to re-build the systems. 

 The mathematical nature of the analysis process dictates the need for modelling 

languages with formal semantics such as Alloy and Petri Nets. Alloy is a declarative language 

that models a system based on first-order logic [93]. It is highly suited to perform structural 

analysis of a system. Petri Nets on the other hand is a state-based modelling language that is 

capable of performing various types of performance analysis. The commonality between 

Alloy and Petri Nets, as well as other formal modelling languages such as B and Z is the 

strong mathematical foundation behind the language that makes it suitable for precise 

computational analysis. 

 Using model analysis, crucial mistakes can be avoided in the system development 

process. Various types of analysis, such as liveness analysis, deadlock detection and 

boundedness analysis could all be performed to effectively void the system of unwanted 

behaviour. Examples of analysis in Petri Nets as well as their relevance to system 

development are explained in Section 2.2.3. The importance of model analysis is also 

highlighted in [94], among them are the computation of dependencies between states as well 

as a risk analysis. 

3.1.3 Model Synthesis 

Model synthesis or model composition is the process of allowing two or more models to be 

put together based on a set of common elements. This is necessary as modern complex system 

must be broken down in the design phase, where each module of the system is designed 

separately and independently of each other to reduce the overall complexity of the model. 
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There are also cases where models are built based on specific scenarios or from a 

particularperspective such as security or quality-of-service (QoS). Performing model 

synthesis between the different modules or integrating the various perspectives of a system 

could not only present an integrated view of the system; it also highlights the dependencies 

between the various modules and viewpoints. 

 Model synthesis could also be applied to more enterprise systems in the form of plug-

ins. There exists a concept called refinement in model synthesis where a set of behaviours 

could be plugged into an existing model without having to redesign the whole model. For 

example, in designing a secure system, a system designer could plug in various security 

protocols into the system design to find the best fit for needs of the system without having to 

create multiple models. 

 The notion of model synthesis is well-established in some modelling languages such 

as Petri Nets [12, 16, 17, 21-23, 26, 58, 59] where various techniques and algorithms exist for 

different types of synthesis. For example, refinement of a particular state in the Petri Net calls 

for a top-down[22] synthesis method using a place refinement or transition refinement 

algorithm [16]. On the other hand, synthesis of two Petri Nets from different perspectives can 

be performed using a bottom-up approach where the common elements between the Petri Nets 

are merged, causing the integration of the nets.  
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3.2 Bridging the Gap between Design, Analysis and Synthesis of 

Models 

As established in the previous section, the role of modelling in system development extends 

not only to the model design, but also to model analysis and model synthesis. However, the 

different requirements for the design, analysis and synthesis phases lead to the use of different 

modelling languages. This results in heterogeneity where model design is often performed in 

a semi-formal, easy to use language such as UML while model analysis and synthesis are 

conducted on a more mathematical formal language such as Petri Nets. The incompatible 

nature of the heterogeneous models compounded by the lack of interoperability between the 

toolsets of the languages present a serious challenge to system developers [8, 75, 95]; to 

provide a platform that allows interoperability between models with different levels of 

formalisms. One possible solution for this challenge is Multi Paradigm Modelling. 

3.2.1 Introduction of Multi Paradigm Modelling 

Multi Paradigm Modelling[96-103] is a platform that promotes interoperability between 

heterogeneous models. Applying Multi Paradigm Modelling in modelling and simulation [99-

102], Vangheluwe et al [103] described it as a field that addresses three directions of research; 

multi-formalism modelling, model abstraction and metamodelling.  
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3.2.1.1 Multi-Formalism Modelling 

Multi-formalism modelling provides an interoperability platform for models with differing 

levels of formalisms on the basis of model transformation. Model transformation is the 

process of translating one model into another using a set of predetermined rules.  

 Currently, model transformation plays a key role in Model Driven Development 

(MDD) [85]. According to a survey on model transformation [104], the intended application 

of model transformation include generating low-level models from higher level models, 

synchronizing models with different levels of formalisms and reverse engineering higher level 

models from low-level models. There are various frameworks available for model 

transformation, among others VIATRA (Visual Automated model Transformations)[105, 

106], Kent Model Transformation Language [107], ATL [108], Kermeta [109] and SiTra 

[110, 111]. A common way to express a model transformation is using QVT relational 

language [112]. QVT is a standard for model transformation defined by Object Management 

Group (OMG). 

 A few key features that are common to all model transformation as described in [104] 

include specification, such as the pre and post conditions for a model transformation, the set 

of transformation rules, the directionality of the transformation as well as the source and 

target relationship. In an MDD model transformation, a source metamodel and a target 

metamodel are also required, whereby each source and target model should conform to the 

respective metamodels. 
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3.2.1.2 Model Abstraction 

Model abstraction is the process of removing a certain low-level detail from the model while 

preserving the construct and general behaviour of the system. Similarly to multi-formalism 

modelling, model abstraction also uses model transformation. However, a significant 

difference between the two model transformations is that for model abstraction, the source 

and destination models are of the level of formalism. 

 Model abstraction is often used in removing various complicated low-level behaviours 

in the system, according the requirements of a specific perspective. For example, a complete 

model of the system filled with low-level behaviour might be too complicated for distribution 

to various stakeholders. However using model abstraction, the model could be simplified up 

to a certain level without losing its structural properties and vital behaviours. The same 

concept can also be used for optimization [101] of models. Using a base model that is filled 

with all the details, less detailed models can be automatically derived from it for various 

operation tasks such as control design and performance assessment.   

3.2.1.3 Metamodelling in Multi-Paradigm Modelling 

Metamodelling (as explained in Chapter 2) refers to the modelling of models. Metamodel or 

model of models is itself a model that defines other models. For example, suppose a modelling 

language ℒ has a metamodel 𝕄𝕄ℒ. As such, 𝕄𝕄ℒ is a model that describes the constructs of the 

language ℒ and every model that is written with the language ℒ must be an instance of the 

metamodel 𝕄𝕄ℒ. 

 Mosterman and Vangheluwe[101] describe the advantages of metamodelling as 

numerous. The metamodel of a modelling language can be regarded as a specification for the 

language which can either be used for documentation purposes or as a basis for model 
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analysis. Metamodelling also allows new languages to be born just by modifying or tweaking 

parts of existing metamodels. This allows customization of the modelling languages to serve a 

specific purpose. 

3.2.2 Review of Existing Work 

Multi Paradigm Modelling is an active area of research where many studies are being 

conducted. Among others, Vangheluwe et al [103] presents an approach where Multi 

Paradigm Modelling is applied to modelling and simulation [99-102] while Henkler and 

Hirsch [113] apply Multi Paradigm Modelling to reconfigurable mechatronic systems by 

allowing Mechatronic UML [114] to perform verification and code generation. However in 

this section, the focus of the existing work review is on bridging the gap between design and 

analysis, as well as design and synthesis. 

3.2.2.1 Design and Analysis 

Bridging the gap between the model design phase and the model analysis phase in system 

development is vital due to the varying levels of formalisms between the models involved. 

System design is often performed in UML while the model analysis is commonly performed 

in a more formal mathematical language.  

 One such work is UML2Alloy [8, 115] by an alumnus of University of Birmingham, 

Kyriakos Anastasakis. UML2Alloy is a tool that allows UML models to be analysed using 

Alloy. The implementation of UML2Alloy was created using an MDD model transformation 

that transformed UML Class Diagrams [7] augmented with OCL [116] constraints into Alloy 

models. The Alloy model is then analysed using Alloy Analyzer, a tool that allows model 

level analysis using first order logic. UML2Alloy was developed on the platform of Java 
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using SiTra [110] as the model transformation framework. Although Alloy is highly suited to 

model static models and constraints, it has its limitations when it comes to dynamic 

behavioural models. Although some dynamic properties could be modelled using pre and post 

conditions, Alloy does not have the mechanism to model complex behaviours such as 

parallelism.  

 Besides UML2Alloy, there have also been other model transformation approaches to 

bridging the gap between model design and analysis. Kim [117] presents a model 

transformation from both Class Diagrams and State Machines into Object-Z using MDA 

technology. However, to the best of my knowledge, this transformation has not yet been 

implemented. A similar approach is also adopted in [118] and [119]  where Class Diagrams 

and OCL Constraints are transformed into the formal language B [120]. In particular, [119] 

proposes a UML profile for B called UML-B and the automation of  the transformation with a 

tool called U2B. A major feature of this approach is that it makes use of B provers to check 

the conformance of the operations’ pre and post conditions to the invariants of the model. The 

main difficulty with provers, as underlined in [119], is that even semi-automatic provers 

assume a substantial amount of knowledge from the user. 

 Another school of thinking to solve the heterogeneity problem between design and 

analysis models is the integration of formal method techniques into UML [117-119, 121, 

122]. Using this method, a formal and mathematical semantics adopted from a formal 

language is integrated into UML to allow analysis to be performed without transforming the 

individual models. Examples of UML formalization include Evans et al[121], who propose 

the use of Z as the underlying semantics for Class Diagrams to deal with the static aspects of 

models and Küster-Filipe [40], who presents a mathematical semantics for Sequence 

Diagrams based on Labelled Event Structures. 
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Among the advantages of formalization include including the ability to analyse a 

model via techniques such as model checking and theorem proving in order to ensure correct 

specification. The introduction of logical and timing constraints into a model, in particular, 

facilitates the investigation of non-functional aspects of the system such as QoS and security. 

However it is worth noting that formalization comes at a cost – simplicity. The main reason 

UML is chosen as the language for model design is its simplicity and semi-formal semantics. 

Formalization creates a formal semantics for UML, making it harder to use and thus reducing 

its appeal. 

3.2.2.2 Design and Synthesis 

The disparity between design models and models that can be synthesized stems from the lack 

of synthesis capabilities in UML. Therefore, in order for synthesis to be carried out in UML 

models, the Multi Paradigm Modelling platform is invoked to either transform the UML 

models into a more synthesis-friendly language, or adopt the notion of synthesis form a 

different language into UML. 

 Liang et al. [43] describe a method for synthesis or integration of Sequence Diagrams 

based on formalization of the Sequence Diagram into typed graphs. This method however is 

designed for Sequence Diagrams that only consist of messages and lifelines without any 

complex constructs such as parallelisms and conflicts as evident in page 133 of [44]. Bowles 

and Bordbar [45] on the other hand present a method of synthesis by mapping a design 

consisting of multiple views modelled by Sequence Diagrams into a unique mathematical 

model which is used for analysis and detecting inconsistencies. This approach can also be 

viewed as an instance of multi-formalism modelling where the Sequence Diagrams are 

essentially transformed into a mathematical model before the synthesis is performed. Krüger 
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[47] also presents an approach for synthesis of Message Sequence Charts (MSC) [123] where 

a notational semantics for MSC is introduced. A notion of message refinement is also 

introduced in [47], where a message is syntactically replaced by a protocol for every 

occurrence in the MSC. However, this approach of refinement does not preserve the 

equivalence relations as stated in page 172 of [47]. A more primitive method of synthesis can 

also be performed in UML – manual synthesis. However as evident in [8], synthesis of non-

trivial models could be tedious and redundant. 

3.2.3 Using Multi Paradigm Modelling to Bridge the Gap between Design, 

Analysis and Synthesis of Models 

It has been previously established that Multi Paradigm Modelling is highly suited in bridging 

the gap between heterogeneous models. In this section, an introduction to my research is 

presented – how Multi Paradigm Modelling is used to bridge the gap between model designs 

in Sequence Diagrams, model analysis in Petri Nets, and adopting the notion of model 

synthesis from Petri Nets into Sequence Diagrams. On top of that, a brief introduction is also 

presented on how semantic preservation between the heterogeneous models can be established 

using Multi Paradigm Modelling. 

3.2.3.1 Model Design Language 

One of the primary goals of this research is to extend the capabilities of UML2Alloy in 

bridging the gap between model design and analysis into dynamic behavioural models. As 

such, UML Sequence Diagram is chosen as the language for designing the model due to its 

capabilities in modelling complex behavioural properties and interactions.  
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3.2.3.2 Model Design to Model Analysis 

Similar to UML2Alloy, a formal mathematical modelling language is chosen to perform 

model analysis. In this research, the formal language of choice is Petri Nets due to its 

capability to model dynamic behavioural models, its extensive capacity in model analysis as 

well as a strong research community.  

 Using Multi Paradigm Modelling as a platform, the Sequence Diagrams from the 

system design could be transformed into Petri Nets using a set of transformation rules. This 

creates model interoperability [60, 124, 125] between the Sequence Diagram models and Petri 

Net models. This interoperability presents the system designer a chance to perform model 

analysis before the system is built. 

 

 

Figure 11: Example of Model Design and Analysis via Multi Paradigm Modelling 

 

Figure 11 presents a scenario in Multi Paradigm Modelling between three levels of 

formalisms, where a system designer models a system in a semi-formal language, performs 

analysis on the model using a formal language and receives the feedback in natural language. 

An example of this application is when a system designer takes advantage of the easy-to-use, 

rich constructs of UML Sequence Diagrams to design the model. The interoperability 

platform provided by Multi Paradigm Modelling allows the models designed in Sequence 

Diagrams to then be analyzed in Petri Nets; a more formal, mathematical language. By using 

System Designer

Model Design in Semi-
Formal Language

Model Analysis 
in Formal 
Language

Feedback in Natural 
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the automated model transformation within Multi Paradigm Modelling, the system designer 

does not even need extensive knowledge of Petri Nets or Petri Net tools to perform the model 

analysis. Finally, the analysis result can be obtained in the form of reports from the Petri Net 

tools.  This scenario in this example clearly illustrates the advantages of using Multi Paradigm 

Modelling in model analysis.  

The model transformation from Sequence Diagram to Petri Nets is described in 

Chapter 4 while the use of Petri Nets foundations for analysis of Sequence Diagrams is 

presented in Chapter 5. 

3.2.3.3 Model Design to Model Synthesis 

The previous sections have established that Sequence Diagram is the language of choice for 

model design and Petri Nets the choice for model analysis. Using the same combination, the 

well-studied notion of synthesis in Petri Nets can also be adapted in Sequence Diagrams.  

 One way to perform synthesis for Sequence Diagram models would to take advantage 

of the model transformation platform provided by Multi Paradigm Modelling to transform the 

Sequence Diagrams into Petri Nets, perform the synthesis, and transform the Petri Nets back 

into Sequence Diagrams. However, bi-directionality in this model transformation is still a 

subject for future research, thus it is not currently possible. 

 Another method to perform synthesis in Sequence Diagrams is to adopt the well-

established notions of synthesis in Petri Nets into Sequence Diagrams. This can be done by 

studying the equivalence relation between the Sequence Diagrams and Petri Nets through the 

transformation rules and amend the algorithms accordingly. This is depicted in Figure 12 

where a synthesis technique from one paradigm is adapted for use in a different paradigm. 
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Figure 12: Example of Model Synthesis via Multi Paradigm Modelling 

 

The scenario in Figure 12illustrates that Multi Paradigm Modelling not only allows models to 

be transformed from one language to another; it also allows constructs and methods to be 

adapted from one paradigm to the other. A more complete description of Sequence Diagram 

synthesis using Petri Net foundations is presented in Chapter 6. 

3.2.3.4 Semantics Preservation in Multi Paradigm Modelling 

By now, it has been made clear that Multi Paradigm Modelling provides a platform for 

interoperability between heterogeneous models. However proving that the model 

transformation does not alter the semantics of the original model is a different area of research 

altogether.Interest in this area does exist, where in a case-study featuring the model 

transformation of two simple, self-defined languages[126], the authors presented a discussion 

of two techniques to proof the correctness of their model transformation; using triple-graph 

grammar and in-situ transformation. However as of yet, this approach has not been applied to 

a real-life model transformation between two complex languages. Sousa [127] on the other 

hand, introduced a real-life model transformation from a Domain Specific Language to 

automatically create Complex Control Systems Graphical User Interfaces and claimed that the 

Synthesis Technique

Synthesis Technique
Paradigm 1
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semantics are preserved; through manually comparing the paths between the source and 

destination languages. There has also been an approach in [128] where a method for proving 

correctness using a mathematical formalism called Constructive Type Theory (CTT) is 

introduced where every model, metamodel, model transformation are all presented uniformly 

in CTT. This approach is also extended in [129] by using Calculus of Inductive Constructions. 

Other approaches to present semantic equivalence in model transformation include [130], 

which is not dissimilar to the approaches in [128, 129]; as well as [131] which used an 

automatic state-space checkerto compare the states of the source and destination model; and 

[132] which presents semantic preservation through informal observation of test-case in each 

step of the model transformation. 

 The sketch of a proof of correctness for the model transformation in this thesis is 

presented in [62]where the semantic preservationof themodel transformation is proven using a 

common semantic domain. Suppose a model transformation from the source model to the 

destination model in two different paradigms. The correctness of this model transformation 

could be proven by the introduction of a third paradigm, provided both the source and 

destination models could be translated into the third paradigm. Figure 13 illustrates this 

scenario. 
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Figure 13: Using a Common Semantics Domain to Prove Correctness of Model Transformation 

 

In the case of this research, the correctness of the model transformation from Sequence 

Diagram to Petri Nets is proven using a common semantics in Labelled Event Structures 

(LES); a graph that could represent the semantics of both Sequence Diagrams and Petri Nets. 

By comparing the LES generated by fro both paradigms, the correctness of the model 

transformation can be established. A more complete view of this proof is presented in Chapter 

4.  
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CHAPTER 4 
SD2PN – SEQUENCE DIAGRAMS TO 

PETRI NETS 

Sequence Diagram, a member of the Unified Modelling Language (UML) family is an 

interaction based modelling language that describes a system as a flow of events between 

objects. Petri Net on the other hand is a formal, mathematical language that is typically used 

for various types of analysis. Petri Net is also highly capable of modelling the flow of events 

in a system. This commonality between the languages, compounded with the vastly different 

levels of formalism and abstraction between Sequence Diagrams and Petri Nets, makes them 

a candidate for implementing Multi Paradigm Modelling. The user friendly, low-formalism 

Sequence Diagram could provide a platform for designing the system as well as 

communicating the system design with other stakeholders, where else the mathematical nature 

of Petri Nets could be used for analysis and manipulating the more formal elements of the 

system. 

 In this chapter, an MDD model transformation, SD2PN [62] is introduced. SD2PN 

provides a framework for Sequence Diagrams to be transformed into Petri Nets, and serves as 
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a basis for the Multi Paradigm Modelling. This is followed by a proof that all Petri Nets 

generated by SD2PN are Free Choice Petri Nets, a very well-studied subclass of Petri Nets. 

This discovery and its significance are presented in Section 4.2. Finally, the correctness of the 

model transformation is established in Section 4.3. 

4.1 SD2PN – The Model Transformation 

SD2PN is a rule-based MDD model transformation that transforms any Sequence Diagrams 

that conforms to the metamodel in Chapter 2 into Petri Nets. The model transformation 

process is hereby described in three stages: 

 

Stage 1: Decomposition 

 The Sequence Diagram inputted into SD2PN is decomposed into multiple 

small fragments based on the Sequence Diagram metamodel. 

 

Stage 2: Transformation  

 Each Sequence Diagram fragment from Stage 1 is transformed into a Petri Net 

block based on a set of model transformation rules. 

 

Stage 3: Composition 

  The Petri Net blocks from Stage 2 are put together using two local functions; 

morph and substitute. 
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Each instance of the model transformation goes through the three stages in order to 

successfully transform Sequence Diagrams into Petri Nets. The three stages are explained in 

depth in Sections 4.1.1, 4.1.2 and 4.1.3. 

4.1.1 Decomposition 

The process of decomposition of a Sequence Diagram is carried out on the concrete syntax 

representation and involves identification of various model elements and their relationships. 

The metamodel of Figure 3in Chapter 2depicts model elements used in a Sequence Diagram.  

 The main model element chosen from the metamodel is message. Message refers to 

the events, or the flow of information between objects in the Sequence Diagrams. Each 

message consists of two MessageEnds, as its sending and receiving events. These 

MessageEnds are instances of EventOccurrence; where the causality of the events is 

determined by GeneralOrdering. In Sequence Diagrams, this causality ordering is identical to 

a top-down visual ordering. In this thesis, a message is considered to be a Sequence Diagram 

fragment. 

CombinedFragments are high level additions to Sequence Diagrams. They are 

instances of InteractionFragment that consists of InteractionOperators. CombinedFragments 

may include multiple InteractionFragments; which means it could consist of other 

CombinedFragments. As a consequence, CombinedFragments may have a hierarchical 

structure. This hierarchical structure is also sometimes referred to as nested 

CombinedFragments. The nesting of CombinedFragments may also occur between different 

InteractionOperatorKinds. There are four InteractionOperatorKind used in this thesis as 

depicted in Figure 3; alternative, option, break and parallel. Since each of the four 
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InteractionOperatorKind changes the flow of events in a different way, they each are 

designated as a fragment type. 

Overall, there are five types of Sequence Diagram fragments; message, alternative, 

option, break and parallel. Each Sequence Diagram inputted into SD2PN is decomposed 

based on these five fragment types. The decomposition however preserves the causality of the 

messages or the hierarchical structure of the CombinedFragments. In the next section, these 

fragments are transformed into an equivalent Petri Net block. 

4.1.2 Transformation 

This section describes Stage 2 of the model transformation where each Sequence Diagram 

fragment is transformed into a corresponding Petri Net block. This requires a set of five 

transformation rules to be introduced; one for each type of fragment.  

 Before the transformation rules are presented, a destination metamodel has to be 

introduced. The Petri Net metamodel depicted in Figure 7of Chapter 2 corresponds to the 

description of standard Petri Nets presented in Section 2.2. However for the purpose of this 

section of the thesis, a temporary, necessary extension of Petri Nets is introduced through two 

new concepts;placeholders and Petri Net blocks. As such the metamodel of Figure 7is 

extended for the use of SD2PN, as depicted inFigure 14. 
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Figure 14: Extended Petri Net Metamodel for SD2PN 

 

Definition 11:Placeholders are temporary nodes that mimic the structure of a place in Petri 

Nets and are depicted as dashed rectangles.  

 

Definition 12:Petri Net blocks are blocks of Petri Nets that have unique input and output 

places, which are referred to as precondition and postcondition respectively. A more formal 

definition of Petri Net blocks is as follows. 

 A Petri Net block is a four tuple B = (S, T, P, F) where S is a finite set of places, T is a 

finite set of transitions, and P is a finite set of placeholders. F⊆ ((S∪P) ×T) ∪ (T× (S∪P)) is 

a set of arcs. In(B), Out(B) ∈ S are unique places (precondition and postcondition 

respectively) such that In(B) has no incoming arcs and Out(B) has no outgoing arcs. They 

represent the start and end places in the Petri Net blocks respectively. As such, a Petri Net 

bock can also be textually represented as the sum of all its components. For example, the Petri 

Net block in Figure 15 can also be written as  

 

𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2}, {𝑡𝑡1, 𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1, 𝑠𝑠2), (𝑡𝑡2, 𝑠𝑠2)}). 

Petri Net

Place Transition

Marking

Mark

Arc

tokens: Integer
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For larger Petri Net blocks where the textual representation such as above may be 

cumbersome, it may also be written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where 

 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2} 

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} 

𝑃𝑃 = { } 

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1, 𝑠𝑠2), (𝑡𝑡2, 𝑠𝑠2)} 

 

Petri Net blocks also clearly extends the definition of conventional Petri Nets, since a Petri 

Net block where P = ∅ is a conventional Petri Net. 

 

 

Figure 15: Example of a Petri Net block 

 

Following the definitions ofplaceholders Petri Net blocks, the Sequence Diagram 

fragments can be transformed using a set of transformation rules. The description of each rule 

is presented in the following sections, including a graphical representation of the rule and a 

textual description as well as additional conditions. 

s1

s2

t1 t2
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4.1.2.1 Rule 1: Transforming Messages 

As previously established, a message represents the flow of information in the system 

between two objects. Page 491 of [133] describes a message as either a call for the execution 

of an operation or depicting sending and receiving of a signal. A message not only signifies 

the type of communication or signal, it also specifies the sender and receiver. For each 

message fragment in the Sequence Diagram, an equivalent Petri Net block is generated. 

 

 

Figure 16: SD2PN Model Transformation Rule for message fragments 

 

For each message fragment that exists in the Sequence Diagram, a Petri Net block is created. 

This Petri Net block consists of two places, s1 and s2. These places signify the precondition 

and postcondition of the Petri Net block respectively. The message, m in the Sequence 

Diagram fragment is transformed into a transition in the Petri Net block and labelled with the 

same name. The transition m is connected to the precondition and postcondition via incoming 

and outgoing arcs respectively. This result in a Petri Net block as depicted in Figure 16, or 

textually as 

 

m SD2PN
Rule 1
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𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2}, {𝑚𝑚}, { }, {(𝑠𝑠1,𝑚𝑚), (𝑚𝑚, 𝑠𝑠2)}) 

 

There is however an additional constraint to the transformation of messages in SD2PN. 

Suppose a messagem in the Sequence Diagram. Suppose that M is the set of all messagesin 

the Sequence Diagram, then for every m ∈ M where there are no EventOccurrences or events 

that occurs beforem(refer Section 2.1.1 for the description of before in EventOccurrences)4

Figure 16

; 

the resulting Petri Net block is modified to include a token in its precondition (i.e. the places1 

in ). 

4.1.2.2 Rule 2: Transforming Alternative CombinedFragments 

A CombinedFragment with the InteractionOperatorKind alternative specifies a different set 

of events that may occur based on the conditions in the fragment [7]. The alternative fragment 

serves typically as an ‘if... else...’ condition in modelling interactions or behaviour. For each 

alternativeCombinedFragment that exist in the Sequence Diagram, an equivalent Petri Net 

block is generated. 

 

                                                 
4 From this point, any messagem ∈ M where there are no EventOccurrences or events that occur beforem could 
also be referred to as first message for brevity. 
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Figure 17: SD2PN Model Transformation Rule for alternative fragments 

 

For each CombinedFragment with the InteractionOperatorKind alternative in the Sequence 

Diagram, a Petri Net block is created. The Petri Net block contains two places, s1 and s2 to 

model its precondition and postcondition. The Petri Net block also contains two placeholders, 

ph1 and ph2 as temporary places that will be replaced by the events in the operands alt 

fragment 1 and alt fragment 2 respectively. The behaviour of the alternative fragment is 

signified by two transitionst1 and t2 with incoming arcs from the precondition; thus only one 

of the two transitions may fire. The transitions t1 and t2 are connected to ph1 and ph2 

respectively. Two more transitions t3 and t4 are created to denote the end of the alternative 

fragments. The transition t3 receives and incoming arc from ph1,t4 receives an incoming arc 

from ph2 and both t3 and t4 are connected via an outgoing arc to the postcondition. This 

results in a Petri Net block as depicted in Figure 17 or written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where 

 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2} 

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4} 

𝑃𝑃 = {𝑝𝑝ℎ1,𝑝𝑝ℎ2} 

SD2PN
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s1

s2

t1alt
alt fragment 1

alt fragment 2

ph1 ph2
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𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ1), (𝑡𝑡2,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡3), (𝑝𝑝ℎ2, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)} 

 

The graphical rule and textual description above depicts a scenario of an alternative 

CombinedFragment with two operandsinside it. However, the flexibility of the rule allows for 

more than two operands inside the alternative. In such cases, each additional operandwill be 

transformed into two transitions and a placeholder (i.e. t5, t6 and ph3 respectively). The 

placeholder ph3 is connected with the transitions via an incoming arc from t5 and an 

outgoing arc into t6. The transitions in turn are connected to the main Petri Net block with an 

incoming arc from the precondition into t5 and an outgoing arc from t6 into the postcondition. 

The Petri Net block can be expanded in this way for every additional operand that exists. 

 Another additional condition is related to the content of the alternative fragments. If 

any of the operands inside the alternative fragment(including hierarchical fragments) contain 

the firstmessage of the Sequence Diagram, the Petri Net block is modified to include a token 

in the precondition.  

4.1.2.3 Rule 3:Transforming Option CombinedFragments 

The InteractionOperatorKind option is very similar to alternative. This is evident by the 

similarities in their construct [7]. For each CombinedFragment with the 

InteractionOperatorKind option, a Petri Net block is generated. 
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Figure 18: SD2PN Model Transformation Rule for option fragments 

 

 The Petri Net block that is generated for the option fragment is as shown in Figure 18 or 

𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where 

 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2} 

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4} 

𝑃𝑃 = {𝑝𝑝ℎ1,𝑝𝑝ℎ2} 

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ1), (𝑡𝑡2,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡3), (𝑝𝑝ℎ2, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)} 

 

The basic construct of the Petri Net block is identical to the alternative Petri Net block. 

However, the difference between the generated Petri Net block is condition the additional 

constraint; A CombinedFragment of type option may contain just one operand. In such cases, 

the Petri Net block depicted in Figure 18 is modified accordingly. Since only one operand 

exists, there must only be one placeholder in the Petri Net block. Thus, the placeholder ph2 is 

replaced with a place skip that mimics the system where the actions inside the option operand 

are ‘skipped’. The resulting Petri Net block is as shown in  

SD2PN
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t1opt
opt fragment 1

opt fragment 2
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Figure 19: A Petri Net block depicting an option fragment with one operand 

 

 Similarly to the previous rule, if the CombinedFragment contains the first message of 

the Sequence Diagram (including inside nested fragments), the precondition of the resulting 

Petri Net block must contain a token. 

4.1.2.4 Rule 4: Transforming Break CombinedFragments 

A breakCombinedFragment consists of a guard (condition) such that when it is satisfied, the 

operation breaks (i.e. terminates) [7]. The break fragment is a specialization of the ‘if... else...’ 

construct, where if the condition is satisfied, the system terminates. Each break fragment is 

transformed into a corresponding Petri Net block.  
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Figure 20: SD2PN Model Transformation Rule forbreak fragments 

 

A Petri Net block is created for every CombinedFragment of type break that exists in the 

Sequence Diagram. This Petri Net block consists of the precondition and postcondition 

modelled as places s1 and s2. The operand inside the break fragment is modelled by a 

placeholder in the Petri Net block. Similar to previous rules, two transitions, t1 and t3 are 

used to connect the placeholder to the precondition and postcondition. To illustrate 

termination of the system, a place marked by X is created. This is referred to as terminal node. 

The terminal node is connected to the precondition by means of a transition t2. However, the 

terminal node is not connected to the postcondition; since the system is terminated at X. The 

resulting Petri Net block can be written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where 

 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,𝑋𝑋} 

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3} 

𝑃𝑃 = {𝑝𝑝ℎ} 

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ), (𝑡𝑡2,𝑋𝑋), (𝑝𝑝ℎ, 𝑡𝑡3), (𝑡𝑡3, 𝑠𝑠2)} 

 

SD2PN
Rule 4

s1

s2

t1break

break fragment 
ph

t3

t2

X



75 
 

Unlike previous rules for CombinedFragments, the break fragment does not increase in 

number of operands. However, the condition for the existence of the first message of the 

Sequence Diagram remains the same. If the break fragment contains the first message, then 

the precondition of the resulting Petri Net block must contain a token. 

4.1.2.5 Rule 5: Transforming Parallel CombinedFragments 

The final rule of SD2PN is a rule that transforms every CombinedFragment with 

InteractionOperatorKindparallel into a Petri Net block. A paralleloperator specifies that two 

or more sets of event should occur concurrently without any pre-defined set of conditions, as 

described in page 468 of [133]. As such, there should not be any causality or conflicting event 

between all the operands of the parallel fragment.  

 

Figure 21: SD2PN Model Transformation Rule for parallel fragments 

 

For each CombinedFragment of type parallel that exists in the Sequence Diagram, a Petri Net 

block is created. Typically, this Petri Net block consists of a precondition (s1), postcondition 

(s2) and placeholders ph1 and ph2 that model the operands par fragment 1 and par fragment 

SD2PN
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2. However, to model the concurrency between the operands, a single transitiont1 is used to 

connect all the placeholders to the precondition. This is because the firing of t1 will provide 

tokens to both ph1 and ph2; allowing them to run in parallel. Another transition t2 is created 

to connect the placeholders to the postcondition. The Petri Net block generated by SD2PN 

can be written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where 

 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2} 

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2} 

𝑃𝑃 = {𝑝𝑝ℎ1,𝑝𝑝ℎ2} 

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1,𝑝𝑝ℎ1), (𝑡𝑡1,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡2), (𝑝𝑝ℎ2, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠2)} 

 

Similar to the alternative fragment, the parallel operator allows more than two operands. In 

the occurrence of such event, each additional operand is transformed into a single 

placeholder. This placeholder is connected to the main Petri Net block through and incoming 

arc from t1 and an outgoing arc into t2. This creates concurrency between all the operands, 

immaterial of the number.  

 If the parallel fragment, or any of its nested fragments contains the first message of 

the Sequence Diagram, then the place s1 (precondition) must be modified to include a token. 

4.1.3 Composition 

Following the mapping of each Sequence Diagram fragment into a corresponding Petri Net 

block, an integrated Petri Net that corresponds to the original Sequence Diagram needs to be 

produced by composing the Petri Net blocks.  
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 Examined closely, there is a commonality between all the Petri Net blocks generated 

via SD2PN; each have a single input and output place, or as previously introduced, 

precondition and postcondition. This is deliberate to allow a uniform method of putting the 

Petri Net blocks together. There are two local functions used for this purpose: morph and 

substitute. 

4.1.3.1 Morph 

The function morph is used to put together causal Petri Net blocks. In formal descriptions, the 

symbol ⊗ is used to denote morph (i.e. B1⊗B2

Figure 3

). The causality relationship is derived from the 

GeneralOrdering from the Sequence Diagram metamodel in . The morph function is 

used to connect Petri Net blocks by merging the postcondition of a block with the 

precondition of another, enforcing a causal behaviour. The morph function can only be called 

with two Petri Net blocks at a time. 

 

 

Figure 22: Example of a morph action between two Petri Net blocks 

s1

s2

t1

s3

s4

t2

morph

s1

s2

t1

s4

t2



78 
 

 Figure 22 illustrates the concept of morph using an example. When the morph 

function is invoked on two Petri Net blocks, the postcondition of the former is merged with 

the precondition of the latter, creating an integrated Petri Net block. As can be observed in 

Figure 22, the morphed place will always take the label of the former block – disregarding the 

latter. A more formal description is also provided below. 

Suppose B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) are two Petri Net Blocks. The 

morphing of B1 and B2, denoted by B1 ⊗B2 results in a Petri Net Block B = (S, T, P, F) such 

that T = T1∪T2, P = P1∪P2, S = (S1∪S2) \ {Out(B1)}, In(B) = In(B1) and Out(B) = Out(B2) 

and 

F = ((F1∪F2) \ {(x, y) y = Out(B1)} ∪ {(x, In(B2)  (x, Out(B1) ∈F1} ….. (∗). 

To explain (∗), notice that the arcs in B are obtained by including all the arcs in 

F1∪F2 except the arcs leading to output places of B1,Out(B1). All arcs that terminates in 

Out(B1) must be redirected to In(B2) in order to morphB1 and B2

As for the example in 

. 

Figure 22, suppose two Petri Net blocks B1 and B2 such that 

𝐵𝐵1 = ({𝑠𝑠1, 𝑠𝑠2}, {𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1, 𝑠𝑠2)}) and 

𝐵𝐵2 = ({𝑠𝑠3, 𝑠𝑠4}, {𝑡𝑡2}, { }, {(𝑠𝑠3, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠4)}) where s1 and s3 are preconditions of B1 and B2 

respectively and s2 and s4 are postconditions of B1 and B2. Invoking the morph function as B1 

⊗B2merges the postcondition of B1 and the precondition of B2, creating a Petri Net block 

such that: 

 

𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠4}, {𝑡𝑡1, 𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1, 𝑠𝑠2), (𝑠𝑠2, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠4)}) 
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4.1.3.2 Substitute 

The function substitute is used for composing hierarchical behaviour between Petri Net 

blocks. Substitute can only be used to replace a placeholder with a Petri Net block. The 

substitute function is invoked repeatedly until there are no more placeholders. The substitute 

function can also be written in as a mathematical function such as B2[B1/p], which means a 

placeholder p inside B2 is replaced with B1

 

. 

 

Figure 23: Example ofa substitute action between Petri Net blocks 

 

 Figure 23 illustrates an instance of substitution between two Petri Net blocks and the 

result of the substitution process. Every time the substitute function is invoked, a placeholder 
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is replaced by an entire Petri Net block such that the incoming arc into the placeholder is 

transferred into the precondition of the block, while the outgoing arc from the placeholder is 

transferred as if from the postcondition of the block. A more formal definition of substitute 

follows. 

 Suppose B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) are two Petri Net Blocks. Let 

ph1 be a placeholder in B2. Substituting the Petri Net Block, B1 into ph1, denoted by 

B2[B1/ph1] results in a Petri Net Block, B = (S, T, P, F), where S = S1∪S2, T = T1∪T2, P = 

(P1∪P2) \ {ph1}, In(B) = In(B2),  Out(B) = Out(B2) and 

F = (F1∪F2 \ {(x, y) x = ph1 or y = ph1}) ∪ {(x, In(B1))  (x, ph1) ∈F1} ∪ {(Out(B1), y)  

(ph1, y) ∈F1}  ..... (∗∗). 

 

 The equation (∗∗) states that arcs in B can be obtained by removing all arcs to and 

from ph1 and redirecting them to In(B1) and Out(B2

 Since most cases of substitution in SD2PN involve the need for two Petri Net blocks 

to be substituted into one Petri Net block with two placeholders (i.e. alternative, parallel and 

certain cases of option); another example is presented in 

) respectively. 

Figure 24. 
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Figure 24: Example of two substitute actions between Petri Net blocks 

  

As for the example in Figure 24, suppose three Petri Net blocks B1, B2 and B3

 

𝐵𝐵1 = ({𝑠𝑠3, 𝑠𝑠4}, {𝑡𝑡5}, { }, {(𝑠𝑠3, 𝑡𝑡5), (𝑡𝑡5, 𝑠𝑠4)}) 

 

𝐵𝐵2 = �
{𝑠𝑠1, 𝑠𝑠2}, {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}, {𝑝𝑝ℎ1,𝑝𝑝ℎ2},

�
(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ1),

(𝑡𝑡2,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡3), (𝑝𝑝ℎ2, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)�
� 

 

𝐵𝐵3 =  ({𝑠𝑠5, 𝑠𝑠6}, {𝑡𝑡6}, { }, {(𝑠𝑠5, 𝑡𝑡6), (𝑡𝑡6, 𝑠𝑠6)}) 

 

 such that 

Invoking the function substituteB2[B1/ph1]andB2[B3
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t6

s1
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t1

ph1 ph2
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t4

substitute substitute

B1 B3

B2

/ph2] results in a Petri Net block 

𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where 

 

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5, 𝑠𝑠6} 
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𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4, 𝑡𝑡5, 𝑡𝑡6} 

𝑃𝑃 = { } 

𝐹𝐹 = �(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠3), (𝑠𝑠3, 𝑡𝑡5), (𝑡𝑡5, 𝑠𝑠4), (𝑡𝑡2, 𝑠𝑠5),
(𝑠𝑠5, 𝑡𝑡6), (𝑡𝑡6, 𝑠𝑠6), (𝑠𝑠4, 𝑡𝑡3), (𝑠𝑠6, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)� 

 

In cases where the substitution is between three5 Petri Net blocks such that B1and B3 

substituted into B2 Figure 24 as presented in ; the order by which the substitution takes place is 

arbitrary. The substitution of B2[B1/ph1] followed by B2[B3/ph2] generates the same result as 

the substitution of B2[B3/ph2] followed by B2[B1/ph1]. As a result; 

B2[B1/ph1][B3/ph2] = B2[B3/ph2][B1

4.2 SD2PN Generates Free Choice Petri Nets 

/ph1] 

Following the definition of the SD2PN model transformation, an interesting and vital 

observation was made: SD2PN generates only Free Choice Petri Nets. Free Choice Petri Nets 

is a well studied subclass of Petri Net where conflicts and concurrencies may occur but not 

simultaneously.  

 Recalling the definition of Free Choice Petri Nets from Section 2.2.2, Baccelli [38] 

defines Free Choice Petri Nets, as whenever two transitions in the net share an input place, 

they must not have any other input places. This can also be written as for every s, when 

�𝑠𝑠°� > 1, for every 𝑡𝑡 ∈ 𝑠𝑠°, � 𝑡𝑡° � = 1. 

                                                 
5 This is also true for cases where more than two Petri Net blocks are substituted into one Petri Net block; 
however it is not explained since there are no Petri Net blocks with more than two placeholders in the SD2PN 
transformation rules. 
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 This section aims to prove the claim that SD2PN generates only Free Choice Petri 

Nets. To begin with, an extension of Free Choice Petri Nets to Petri Net blocks is defined. A 

Free Choice Petri Net Block is a Petri Net Block, B = (S, T, P, F) such that for each s ∈ S ∪ 

P, if�𝑠𝑠°� > 1, then every 𝑡𝑡 ∈ 𝑠𝑠°, � 𝑡𝑡° � = 1.Lemma 1 is derived directly from this definition. 

 

Lemma 1: A Free Choice Petri Net block with no placeholders is a Free Choice Petri Net. 

Proof: Trivial. 

 

Lemma 2: Every individual transformation rules of SD2PN generates a Free Choice Petri Net 

block. 

Proof: Rules 1 and 5 has no instance of �𝑠𝑠°� > 1, where else in Rules 2,3 and 5, in the 

instance where �𝑠𝑠°� > 1, every 𝑡𝑡 ∈ 𝑠𝑠°, � 𝑡𝑡° � = 1. Therefore, every individual transformation 

rules of SD2PN generates Free Choice Petri Net blocks. 

 

Lemma 3: The set of Free Choice Petri Net blocks are closed under morph and substitution, 

i.e. if B1 and B2 are Free Choice Petri Net Blocks, then B1⊗B2 and B2[B1 / p] where p is a 

placeholder in B2,

Proof: To show that B

 are also Free Choice Petri Net Blocks. 

1⊗B2 = (S, T, P, F) is a Free Choice Petri Net Block, suppose s∈S∪P 

such that �𝑠𝑠°� > 1, then s is either a place or a placeholder in B1 or B2, since s≠ Out(B1) 

because 𝑂𝑂𝑂𝑂𝑂𝑂(𝐵𝐵1)°
P

 = 0. In either case, since both B1 and B2 are Free Choice Petri Net 

Blocks, then B1⊗B2 is also a Free Choice Petri Net Block since B1⊗B2 

To show that B

does not create a new 

scenario such that �𝑠𝑠°� > 1. 

2[B1/p] = (S, T, P, F) is a Free Choice Petri Net, we suppose that p is a 

placeholder in B2. The process of substitution replaces all arcs into p and redirects them into 
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In(B2) and redirects Out(B2) into the output of p. This does not incur any new situation such 

that �𝑠𝑠°� > 1, because the redirection of arcs is a direct mapping from one node to another. 

Therefore B2[B1

4.3 SD2PN Preserves Semantics 

/p] is a Free Choice Petri Net Block. 

 

Theorem 1: Every Petri Net generated via SD2PN is a Free Choice Petri Net. 

Proof: As previously described, there are three stages in the SD2PN model transformation. 

The first stage of the model transformation decomposes the Sequence Diagrams into 

fragments. In stage 2, each fragment is transformed into Petri Net blocks.From Lemma 2, it is 

established that the Petri Net blocks are all Free Choice. Stage 3 puts together the Free Choice 

Petri Net blocks using morph and substitution. By Lemma 3, the set of Free Choice Petri Net 

blocks are closed under morph and substitute.Stage 3 ends when all the Petri Net blocks are 

connected and there are no more placeholders. By Lemma 1, a Free Choice Petri Net Block 

with no placeholders is a Free Choice Petri Net. Thus, SD2PN only generated Free Choice 

Petri Nets. 

As discussed in Chapter 3, preservation of semantics is vital in Multi Paradigm Modelling. In 

this case, it is essential for the resulting Petri Net to retain the same behavioural properties as 

the original Sequence Diagram. In this section, the term correctness refers to the preservation 

of semantics between the source model and the destination model. 

 In order to show that each Sequence Diagram fragment type described in Section 4.1.1 

and the corresponding Petri Net block presented in 4.1.2 consist of the same behaviour, the 
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semantics of both the Sequence Diagram fragment and the Petri Net block is compared. As 

such, a common semantic domain is required.  

 Labelled Event Structures (LES) is chosen as the common semantics domain since 

both Sequence Diagrams and Petri Nets can be depicted as LES using techniques from [40] 

and [41] respectively Furthermore LES offers a similar approach to modelling when 

compared to both Sequence Diagrams and Petri Nets such that all three languages focus on 

behaviours and flow of events. LES also offers the ability to model causality, conflicts and 

concurrencies; the three types of relationships offered in Sequence Diagrams. 

 

 

Figure 25: Using LES as a common semantics domain to prove correctness 

 

Figure 25depicts the outline of the approach in which Φ is a semantic map introduced by 

Küster-Filipe [40]  and Ψ is a semantic map introduced by McMillan [41] used in unfolding 

of Petri Nets. Using these semantic maps, Sequence Diagrams fragments and Petri Net blocks 

are mapped into LES; and the comparison between the LES is used as the proof that the 

SD2PN model transformation preserves the semantics of the Sequence Diagrams in the 

resulting Petri Nets. Preliminary information about LES and how Sequence Diagrams and 

Petri Nets map into LES can be recalled from Section 2.3. 

 In order to prove that SD2PN preserves semantics, both the LES generated from the 

Sequence Diagram and Petri Net has to be equal. This is shown using the following Lemmas. 

Sequence Diagrams Petri Nets

LESLES

SD2PN

Φ Ψ
=
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Lemma 4: Every Sequence Diagram fragments and its corresponding Petri Net block created 

by SD2PN generate the same LES. 

Proof: As previously established, there are five types of Sequence Diagram fragments; 

message, alternative, option, break and parallel. Since the alternative and option fragments 

are semantically equivalent, they will be grouped as one fragment for the purpose of this 

proof. 

 

Figure 26: LES obtained from Sequence Diagram fragments and each corresponding Petri Net blocks 

 

 Each type of Sequence Diagram fragment is translated into LES based on the semantic 

mapping Φ while the corresponding Petri Net block is unfolded into LES using the semantic 

mapping Ψ. This results in a Labelled Event Structure for each type of fragment, as depicted 

in Figure 26. Both the semantic maps are explained in Section 2.3. Due to the tedious nature 

of the individual translation into LES, an example using the parallel Sequence Diagram 

fragment is presented below while the remainder of the proof is presented in Appendix B. 

In Sequence Diagrams, a parallel fragment has an initial location l1. This location 

signifies the beginning of the fragment. Inside the fragment, there are 2 scopes; par(2)#1 and 

par(2)#2 as described in Section 2.3. These scopes represent the parallel events that occur 

inside the fragment. After the execution of these events, a location l2 signifies the end of the 

fragment. Since both l1 and l2

Message Alt / Opt Break Par

e1

e2

e2 e3

#

e1

e2

e3

#

e1

e2

e1

 has an alt_loc of 1, there is only 1 event to represent each these 



87 
 

locations, e1 and e2 such that e1 forks into the 2 scopes of events and merge into e2

Figure 26

. This 

creates an LES as shown in . 

In the corresponding block of Petri Net, it starts with a place s1 and ends with a place 

s2. They can be represented as events e1 and e2 respectively with e1 forking out into the 

placeholders and merging at e2 Figure 26. This is exactly the same as the representation in , 

thus showing that the transformation preserves the behaviour of the original Sequence 

Diagram. 

 

Lemma 5: In ordering of the Sequence Diagram fragments, every two fragments and the 

corresponding block of Petri Net that it maps into consist of the same semantics. 

Proof: For proof of Lemma 5, every possible permutation of events that may occur in the 

transformation is considered. There are two possible connectors between Petri Net blocks, as 

previously established; morph and substitute. Figure 27shows every possible permutation of 

events including all morph and substitution cases. Cases that allow both techniques are 

labeled asmor representing morph and sub representing substitution. 

Carrying from the proof of Lemma 4, for every two Sequence Diagram fragment, the 

translation into LES is performed using the semantic map Φ. This is followed by the 

unfolding of the corresponding Petri Net blocks into LES using Ψ. By comparison, the LES 

generated through both semantic maps are identical, as shown in Figure 27. By mapping 

every permutation of Sequence Diagrams fragment and the corresponding Petri Nets into LES 

as presented in Figure 276

                                                 
6 The translation of all sixteen permutations of Sequence Diagram fragments, and the unfolding of their 
corresponding Petri Nets into LES are performed similarly to the mapping presented in Appendix B and as such, 
it is omitted due to word restrictions. 

; it is proven that every two Sequence Diagram fragments and the 

corresponding block of Petri Net that it maps into consist of the same semantics. 
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Figure 27: LES generated by every two Sequence Diagram fragments and their corresponding Petri Net 
blocks 

  

e1

e2

e3

e1

e4

e5

e6

#

e2

e3

 

 

mor

sub

e1

e6#e2

e3

e4

e5

 

 

mor

sub

e1

e6

e4

e4

 

sub

e5

 

mor

e1

#

e2

e3 e4

e1

#

e2

e3

e4

e1

e2

e3

e1

#e2

e7

e3 e5

e8 e9

e4 e6

 

sub
 

mor

e1

#e2

e6

e3

e5

e7

e8

e4

 

sub
 

mor

e1

#e2

e5

 

sub
 

mor
e3

e6

e4

e1

#e2

e3 e6

e4

e7

sub

 

mor

#

#

#

#

e5

 

e1

#e2

e3

e6

e4

e7

sub

 

more5

 

#

#

#

#

e1

#e2

e3

e6

sub

 

mor

 e4

e5

e1

e3
e4

 
#

e2

e5

e6

#

e7 e8

 

mor

sub

e1

e4

 
#

e2

e5

#

e6

e7

 

mor

sub

e3

e1

 e2

e4  

mor

sub

e3

e5

M
es

sa
ge

A
lt 

/ O
pt

B
re

ak
P

ar
Message Alt / Opt Break Par



89 
 

 

CHAPTER 5 
SEQUENCE DIAGRAM ANALYSIS VIA 

SD2PN 

This chapter presents an approach for the analysis of Sequence Diagram based on the Multi 

Paradigm Modelling platform using SD2PN. 

5.1 Importance of Analysis in Sequence Diagram 

Sequence Diagrams are used to model dynamic aspects of a system. The dynamic aspects of a 

system include flow of events in various situations, interaction between various components 

of the system, as well as user interaction with the system. An accurately modelled Sequence 

Diagram is vital, and can be used not only in conveying information between stakeholders, 

but even in forward and reverse engineering of executable systems [134]. 

 In this respect, forward engineering refers to code generation from Sequence 

Diagrams where the accuracy of the Sequence Diagram determines the build quality of the 
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system. Code generation based on Sequence Diagrams that contain errors result in the 

creation of flawed systems that may require a thorough code examination or worse, 

remodelling. Performing model level analysis on the Sequence Diagrams before the codes are 

generated could potentially save countless man-hours and resources from being wasted in 

developing a flawed system. For example, a Sequence Diagram that is free from deadlock 

ensures a system without deadlock. However, model analysis is not meant to replace the 

testing phase in the system development cycle. The responsibility of performing analysis on 

the Sequence Diagram should be on the system designers. As such, any errors in the design 

could be rectified instantaneously ensuring only the highest quality, error-free Sequence 

Diagrams are used in the code generation. This therefore reduces the probability of a flawed 

system. 

 Reverse engineering on the other hand refer to the creation of Sequence Diagrams 

from codes or complete systems. Reverse engineering is a tricky process that could lead to 

complex Sequence Diagrams which contain too much information [134]. This leads to 

redundancy in the Sequence Diagrams, which in turn results in inaccurate representation of 

the system. Performing model analysis on the Sequence Diagram could pinpoint the errors 

and highlight the necessary changes to make the Sequence Diagram more accurate in its 

depiction of the system. 

5.2 Implementing SD2PN for Analysis of Sequence Diagrams 

SD2PN, in Chapter 4 is introduced as a MDD model transformation that transforms Sequence 

Diagrams into Free Choice Petri Nets. Based on the need for model analysis to be performed 
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on Sequence Diagrams and the suitability of Petri Nets for performing such analysis; SD2PN 

provides a framework that allows the analytical capabilities of Petri Nets to be utilised on 

Sequence Diagrams.  

SD2PN promotes model interoperability [124, 125] between Sequence Diagrams and 

Petri Nets, through Multi Paradigm Modelling supporting a seamless transition between these 

heterogeneous models. This is depicted in Figure 28 where a system designer models a 

system in Sequence Diagram using UML tools, then uses SD2PN to transform the models 

into Petri Nets. This allows complex analysis to be performed on the system using Petri Net 

tools. Finally, the system designer receives the analysis result in the form of a feedback. 

Using an automated model transformation framework as shown in Figure 28 allows the 

system designer to bridge the gap between the design and analysis phases of system design 

without extensive knowledge of Petri Nets. 

 

 

Figure 28: SD2PN Framework for Analysis 

 

There are various types of analysis that could be performed on Petri Nets; some of 

which are introduced in Section 2.2.3. By transforming Sequence Diagrams into Petri Nets, 

the analysis capabilities of Petri Nets are essentially applied on Sequence Diagrams. This 
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section describes how the analytical capabilities of Petri Nets can be applied in Sequence 

Diagrams.  

In Petri Nets, liveness translates to a complete absence of deadlock. This is also 

applicable to Sequence Diagrams. There are approaches that allows liveness analysis to be 

performed on Sequence Diagrams such as [135] where an automata based formal semantics is 

assigned to the Sequence Diagram and also [136] where OCL constraints are integrated with 

the Sequence Diagrams in order to conduct liveness analysis. This research on the other hand, 

takes advantage of the mathematical foundation behind Petri Nets to perform liveness analysis 

in Sequence Diagrams via SD2PN.  Based on SD2PN transformation rules, each message in 

the Sequence Diagram is represented by a transition in the corresponding Petri Net. The 

liveness criteria in Petri Net reflect that each and every transition in the Petri Net must be 

enabled following a firing sequence that begins from the initial marking. As such, a live 

Sequence Diagram means every message in the Sequence Diagram can be reached, thus 

ensuring a complete absence of deadlock in the Sequence Diagram. 

 The liveness analysis is essential in modelling a system.Sequence Diagrams model the 

behaviour and interactions within a system through messages, thus it is vital for each message 

to execute correctly. This could be achieved through liveness analysis. Proving the absence of 

deadlock in the system also prevents unpredictable behaviours in the system such as 

unexpected termination of a procedure. 

 The reachability analysis in Petri Nets on the other hand, calculates if a particular 

marking is reachable from any markings in the Petri Net. This allows the analyst to ascertain 

what (sequence of) actions, if any, may lead to a particular state in the Petri Net. This 

translates well for system design using Sequence Diagrams. 
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 In system design, this analysis could be beneficial from various points of view. For 

example in security terms, a reachability analysis could be performed to predict the possibility 

of an attack scenario. Using the same example, a reachability analysis could also be used to 

calculate precisely the sequence of actions that may result in the particular scenario, thus 

providing necessary information to the system designer to neutralize the threat. Not only that, 

a designer could also try to locate any specific flaws in the system by pin-pointing to a state 

and performing an analysis to determine what states are reachable, and what states are not.  

 An added advantage of performing analysis of Sequence Diagrams via SD2PN is that 

every Petri Net generated using SD2PN is a Free Choice Petri Net, as proven in Theorem 1 of 

Chapter 4. This allows analysis to be performed with a lower complexity to general Petri Nets 

– thus allowing the analysis results to be obtained much faster. Details about the benefits of 

analysis in Free Choice Petri Nets are presented in Chapter 2. 

5.3 Automated Analysis via SD2PN Transformer 

The MDD model transformation SD2PN provides a framework for Sequence Diagrams to be 

transformed into Petri Nets. This section discusses how this model transformation is 

automated as a tool called SD2PN Transformer7

 SD2PN Transformer is a Java tool built on the platform of SiTra [89, 111] utilising the 

model transformation algorithm of SD2PN. This tool accepts Sequence Diagrams as inputs 

, and how it could be used to perform model 

analysis. This section presents a brief introduction of the tool while the complete code for the 

tool is available in Appendix C. 

                                                 
7 The coding for SD2PN Transformer was done by Behrang Sabeghi Saroui under my supervision, based on my 
algorithm and tool architecture.  
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and produces corresponding Petri Nets as outputs. At present, the tool accepts Sequence 

Diagrams in the form of XML Metadata Interchange (XMI) [137] and presents the Petri Nets 

in the form of XML [138] as depicted in the outline of the tool in Figure 29. However, there 

are plans to fully automate the tool by allowing integration between SD2PN Transformer, a 

UML tool and a Petri Net tool.  

 

Figure 29: An outline of SD2PN Transformer 

 

 The execution of each transformation from Sequence Diagram to Petri Net in SD2PN 

Transformer goes through five stages; (i) generating XMI for Sequence Diagrams, (ii) parsing 

the XMI data into Java objects, (iii) applying the model transformation using SiTra, (iv) 

generating XML for the resulting Petri Net and finally (v) performing analysis on the Petri 

Net model using a Petri Net tool. These stages are further explained in the upcoming sections.  

5.3.1 Generating XMI for Sequence Diagrams 

XMI or XML Metadata Interchange [137] is a standard created by Object Management Group 

to allow the interchange of metadata information. XMI is commonly used to express UML 

models and as such, widely accepted as a form of output in UML tools. UML tools such as 

ArgoUML [139] and Poseidon [140] for example allow UML models designed within the tool 
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to be exported as XMI files. An example of a small snippet of XMI that represents a Sequence 

Diagram created using Poseidon is shown in Table 5. 

 

 

 

 

The snippet of XMI shown in Table 5 represents only a minute fragment of code that forms 

the entire Sequence Diagram. Furthermore, the code is also incomprehensible to most users 

and decoding the XMI to obtain information regarding the Sequence Diagram is a tedious 

process. However, this could be done using XMI parsers.  

<UML:GraphElement.semanticModel> 
<UML:SimpleSemanticModelElement xmi.id = 'Im1ec36c75m11b56ca071dmm7b4b' 
          presentation = '' typeInfo = 'SequenceDiagram'/> 
</UML:GraphElement.semanticModel> 
<UML:GraphElement.contained> 
<UML:GraphNode xmi.id = 'Im1ec36c75m11b56ca071dmm7b2d' isVisible = 'true'> 
<UML:GraphElement.position> 
<XMI.field>300.0</XMI.field> 
<XMI.field>20.0</XMI.field> 
</UML:GraphElement.position> 
<UML:GraphNode.size> 
<XMI.field>100.0</XMI.field> 
<XMI.field>192.0</XMI.field> 
</UML:GraphNode.size> 
<UML:DiagramElement.property> 
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1f' key = 'fill' value = '#ffffff'/> 
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1e' key = 'fill-opacity' 
              value = '1.0'/> 
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1d' key = 'font-color' 
              value = '#000000'/> 
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1c' key = 'font-family' 
              value = 'SansSerif'/> 
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1b' key = 'font-size' 
              value = '11'/> 
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1a' key = 'stroke' value = '#000000'/> 
</UML:DiagramElement.property> 

Table 5: Snippet of XMI for a Sequence Diagram 
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5.3.2 Parsing XMI Data into Java Objects 

Parsing is a process of syntactical analysis and interpretation of a structured text. In this case, 

parsing is required to interpret the XMI code generated from UML tools into Java objects that 

could be manipulated by SiTra. The parsing is performed using SDMetrics [141], a tool that 

allows XMI input from various different UML tools using its custom XMI import function. 

This XMI data is then analysed and condensed into a text file consisting all the information 

regarding the Sequence Diagram. The information in the text file is then extracted using a 

custom Java program that is created to create Java objects that corresponds to the original 

Sequence Diagram. 

5.3.3 Model Transformation via SiTra 

Following the parsing of the XMI data into Java objects, the actual model transformation 

process takes place. SiTra provides a platform for this model transformation to take place. 

Recalling the introduction of SiTra in Chapter 2, a typical model transformation requires a 

source metamodel, a destination metamodel and a set of transformation rules to be written in 

Java. Snippets of code from the Sequence Diagram metamodel, Petri Net metamodel and 

SD2PN model transformation rule are presented in  
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package petrinet; 
public class Transition { 
    private String name; 
    public Transition(String name) { 
        this.name = name; 
    } 
    public void setName(String newName) { 
        name = newName; 
    } 
    public String getName() { 
        return name; 
    } 
} 

package sequencediagram; 
public class Message { 
    private String id; 
    private String label; 
    private String context; 
    private EventOccurrence sendEvent; 
    private EventOccurrence receiveEvent;     
    public Message(String id, String label, String context, EventOccurrence sendEvent, EventOccurrence receiveEvent) { 
        this.id = id; 
        this.label = label; 
        this.context = context; 
        this.sendEvent = sendEvent; 
        this.receiveEvent = receiveEvent; 
    } 
    public final String getID() { 
        return id; 
    } 
    public final String getLabel() { 
        return label; 
    } 
    public final String getContext() { 
        return context; 
    }     
    public final EventOccurrence getSendEvent(){ 
        return sendEvent; 
    }     
    public final EventOccurrence getReceiveEvent(){ 
        return receiveEvent; 
    }     
    public final void setSendEvent(EventOccurrence eo){ 
        sendEvent = eo; 
    }     
    public final void setReceiveEvent(EventOccurrence eo){ 
        receiveEvent = eo; 
    }     
} 

Table 6: Snippet of code for the Sequence Diagram metamodel 

Table 7: Snippet of code for the Petri Net metamodel 
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The execution of the model transformation results in Petri Net Java objects that is based on 

the Petri Net metamodel in SiTra. However, for these Petri Net Java objects to be recognized 

by any Petri Net tools, it has to be written into an XML form recognized by the particular 

tool. 

package sitra; 
import petrinet.Arc; 
import petrinet.Mark; 
import petrinet.PetriNet; 
import petrinet.Place; 
import petrinet.PlaceHolder; 
import petrinet.Transition; 
import sequencediagram.CombinedFragments; 
import sequencediagram.InteractionOperatorKind; 
public class Rule3 implements Rule { 
    public Rule3() { 
    } 
    public boolean check(Object source) { 
        return (source instanceof CombinedFragments) && (((CombinedFragments) source).getOperator() == 
InteractionOperatorKind.OPT); 
    } 
    public PetriNet build(Object source, Transformer t) { 
        PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(), ((CombinedFragments) source).getID(), 
"OPT"); 
        Place p1 = new Place(new Mark(0)); 
        Place p2 = new Place(new Mark(0)); 
        for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments(); j++) { 
            Transition trans = new Transition("OPT" + j); 
            pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION)); 
            PlaceHolder ph1 = new PlaceHolder(((CombinedFragments) source).getContext(), ((CombinedFragments) 
source).getFragments()[j], "PH" + j); 
            pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER)); 
            Transition transEnd = new Transition("END-OPT" + j); 
            pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION)); 
            pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE)); 
        } 
        return pn; 
    } 
    public void setProperties(Object target, Object source, Transformer t) { 
    } 
} 

Table 8: Snippet of code for the SD2PN model transformation rule 
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5.3.4 Generating XML for Resulting Petri Net 

There are numerous Petri Net tools available in the market, among them CPNTools [27] and 

PIPE [28]. However, each Petri Net tool uses a different flavour of XML to represent the Petri 

Nets. This results in the need to create an XML writer for each type of Petri Net tool. The 

process of creating an XML writer to conform to a certain Petri Net tool involves tedious 

analysis of the tool’s output to recognize the patterns in the XML. This process can be 

exhaustive and redundant. 

 At present, a solution for this problem has not been obtained. The XML writer in 

SD2PN Transformer is configured to output the Petri Net in a textual format, not conforming 

to any Petri Net tools. However in the future, this problem could be eliminated by integrating 

the different toolsets of SD2PN Transformer and Petri Net tool, thus negating the need for an 

XML writer. 

5.3.5 Utilising Existing Petri Net Tools for Analysis 

The final stage of using SD2PN Transformer for analysis of Sequence Diagrams involves 

utilizing existing Petri Net tools such as CPNTools and PIPE to perform analysis on the 

resulting Petri Net. Analysis methods described in Section 2.2.3 such as liveness, 

boundedness, reachability, reversibility and persistence as well as various other analysis 

methods could be performed using the Petri Net tools without the need for extensive Petri Net 

knowledge by the system designer. 

 Presently, some knowledge of the Petri Net tool of choice is required from the system 

designer such as familiarity with the analysis functions offered by the tool. However as 

previously mentioned, future plans to integrate various toolsets with the SD2PN Transformer 
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could theoretically allow system designers with little to no knowledge of any Petri Net tool to 

perform analysis on their Sequence Diagram models. 

5.4 Example 

It has been previously established that Petri Nets are highly suitable for analysis, and that 

SD2PN creates a platform that allows system designers to take advantage of Petri Nets 

analytical prowess by transforming Sequence Diagrams into Petri Nets with the help of 

SD2PN Transformer. In this section, the usability of this concept is illustrated with the help of 

an example. This example is not only used to draw attention to the capabilities of SD2PN, but 

also to highlight a limitation of SD2PN. The following sections introduces the scenario of the 

example as well as the protocol behind it, followed by Sequence Diagram of the scenario, the 

corresponding Petri Net generated via SD2PN and the analysis of said Petri Net. The 

limitation of SD2PN as highlighted by the example is considered in the discussion section. 

5.4.1 Introduction of the Scenario 

This section provides a brief preliminary look at the scenario in this example. The example 

features the behaviour of a Personal Area Network (PAN). A typical example of a PAN 

consists of a number of stations and a router. However, an unseen element in the PAN is the 

medium between the stations and the router. In order to send a packet to the router, the 

stations in the PAN would have to compete to gain access to the medium. Thus, the more 

stations there are in a PAN, the larger the maximum waiting time for a single station to gain 

access to the medium. To deal with this, various protocols have been introduced within the 
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IEEE 802.11 standard. However in this example, a specific protocol within the IEEE 802.11 

standard is modelled using Sequence Diagrams and transformed into a Petri Net for analysis. 

 Figure 30 presents a simplified PAN that has two stations and a Wireless Router that 

serves as an access point to the Internet. In the router, the basic IEEE 802.11 Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA) protocol is used [142]. This scenario 

is modelled using a Sequence Diagram, where a single station attempts to gain access to the 

medium in order to send a packet to the router, based on the CSMA/CA protocol. Before that, 

the next section briefly introduces the CSMA/CA protocol. 

 

 

Figure 30: Overview of the Personal Area Network (PAN) 

 

5.4.2 Protocol Description 

As previously mentioned, the router in this example uses a basic IEEE 802.11 Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA) protocol. CSMA/CD assigns 

different waiting time to packets in order to manage the access of the stations to the medium. 

There are three different waiting times for various types of packets. The shortest waiting time 

for medium access is called Short inter-frame spacing (SIFS) which is used for short control 
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messages or polling responses. The waiting time for time-bounded service such as a poll from 

the access point is considered PCF inter-frame spacing (PIFS) and the longest waiting time 

and lowest priority, DCF inter-frame spacing (DIFS) is used for asynchronous data services. 

There is a mechanism called contention window (CW), which is introduced in order to 

facilitate collision avoidance. The contention window makes use of an integer value that starts 

with CWmin = 7 and doubles every time a collision occurs. Every time a station tries to gain 

access to the medium, a random number is generated between 0 and CW and is added to the 

waiting time. This ensures that the stations do not send their packets at the same time. CW is 

doubled for every collision that occurs to accommodate a larger number of stations vying for 

the access of the medium. Readers are referred to [142] for more information. 

Several assumptions were made in this example for the sake of clarity and to provide a 

better understanding of the tool. Firstly, the waiting time for all packets is constant and all 

packets are categorized as DIFS. Secondly, the CW is constant and does not increase, and 

since there are only two stations, the CW would be minimum, i.e. CWmin

5.4.3 Sequence Diagram Representation of the Scenario 

 = 7. Thirdly, the 

packets are dropped after the unsuccessful tries from the station and each station sends only 

one packet.  These assumptions do not invalidate the results of the analysis by any means; 

they onlylimit the scope of this example. 

This section presents a Sequence Diagram of the scenario described in the previous sections. 

The Sequence Diagram in Figure 31 gives an overview of how a station sends a packet to the 

medium in the IEEE 802.11 protocol. The medium access control (MAC) layer of the station 

receives a packet from an application and registers it. It then idles before checking the status 

of the medium. If the medium is free the station is able to send the packet across to the 
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medium. However, if the medium is busy the station has to wait until the medium is free 

before idling again. The MAC then checks the status of the medium again before either 

sending the packet across or waiting again. Each of the events in this scenario has multiple 

sub-events that occur in the background. The diagram is however simplified for the sake of 

clarity. 
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Figure 31: Sequence Diagram for a station in PAN 

5.4.4 Petri Net Representation of the Scenario Generated via SD2PN 

In this section, the Sequence Diagram from Figure 31 is transformed into an equivalent Petri 

Net using SD2PN. To begin the model transformation process, the Sequence Diagram is first 
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decomposed into fragmentsas defined in Section 4.1.1. The numbers depicted in Figure 31 

represent each Sequence Diagram fragment. Each fragment is transformed into an equivalent 

Petri Net block using the model transformation rules defined in Section 4.1.2. Once every 

Sequence Diagram fragment has been transformed into Petri Net blocks, the process of 

composing the Petri net blocks starts with the mapping of the causal relationships. This 

mapping requires calling the morph function recursively for each causal relationship in the 

original Sequence Diagram. Once all the causal relationships are mapped, the hierarchical 

relationships between the Petri Net blocks are considered. The hierarchical relationships are 

mapped by recursively applying the substitute function for every placeholder that exists in the 

Petri Net blocks. This results in an integrated Petri Net as shown in Figure 32. 
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Figure 32: Petri Net for a station in PAN 

5.4.5 Analysis of the Petri Net 

As previously presented in Section 5.2, there are various analysis methods available in Petri 

Nets. In this section, the Petri Net in Figure 32 is subjected to three analysis methods; 

liveness, boundedness and reachability analysis using PIPE [28].  

 The liveness and boundedness of the Petri Net are both calculated through State Space 

Analysis in PIPE where the liveness is determined through the absence of deadlocks in the 
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Petri Net while boundedness is computed through a P-invariant calculation. The result of the 

analysis confirms that the Petri Net is live and bounded. Through the P-invariant calculation, 

it is also revealed that the Petri Net in Figure 32 is safe (bounded with the value of 1). 

Subsequently, a reachability analysis is performed on the Petri Net, resulting in a Reachability 

Graph as presented in Figure 33. As a result, the reachability analysis reveals that every state 

in the Petri Net is reachable through a series of event. 

 

 

Figure 33: Reachability Graph generated using PIPE 
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5.4.6 Discussion 

The example presented in this section highlighted the capabilities of SD2PN in transforming 

Sequence Diagrams into Petri Nets, allowing various structural and behavioural analyses to be 

performed. Although the example is fairly simple, the liveness and boundedness analysis 

results reveal there are no deadlocks in the design of the PAN example and that the system is 

safe. This is vital in ensuring that there are no unforeseen behaviours such as a deadlock 

causing an unexpected termination or a trap in the system causing a registry overrun. The 

reachability analysis also reveals that every state in the system is reachable, thus ensuring 

none of the stations in the PAN are left out. 

 However there is a limitation in the scope of analysis in general Petri Nets. There is a 

vital analysis component that could be applied to the example – performance analysis. In a 

real-time or performance oriented system, timing properties are required to perform 

performance or quality of service (QoS) related analysis. General Petri Nets do not have the 

capability to handle timing properties. However there is a class of Petri Net, Timed Petri Net 

(TPN) that allows timeliness properties to be integrated into the firing of transitions in the net. 

This paves the way for an extension of SD2PN, as presented in Chapter 7. 
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CHAPTER 6 
SEQUENCE DIAGRAM SYNTHESIS VIA 

SD2PN 

Complex systems are not modelled as monolithic units, but often synthesized from various 

smaller models. Multiple models may be used to model different scenarios, different modules 

or even different perspectives of a system. For example, a general model of the system may 

portray the core elements of a system where else different models may be used to convey the 

security [54] or quality-of-service (QoS) aspects of the same system. The process of 

integrating two or more such models of a system is referred to as synthesis. In software 

design, Pfleeger and Atlee [143] define synthesis as the process of building a large structure 

(e.g., a software design) from smaller building blocks. Agerwala and Choed-Amphai [59] 

define synthesis as a method to integrate complex systems by putting elements together 

according to a set of pre-determined rules and constraints. The benefits of bridging the gap 

between model design and synthesis is also described in Section 3.2.3.3. 

 This chapter addresses the notions of synthesis in Sequence Diagrams and Petri Nets 

independently and how Multi Paradigm Modelling and Petri Nets, via SD2PN inspire three 
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synthesis algorithms for Sequence Diagrams. This chapter also features a case study of an e-

business model that is built incrementally using the aforementioned synthesis algorithms. The 

sections that make up this chapter are 6.1 and 6.2 addressing the notion of synthesis in 

Sequence Diagrams and Petri Nets respectively, while section 6.3 presents Petri Net inspired 

synthesis methods in Sequence Diagrams, with three algorithms for automated synthesis. 

6.1 Synthesis in Sequence Diagrams 

There have been a few approaches to Sequence Diagram synthesis, including Liang et al. [43], 

who describe a method for integration of Sequence Diagrams based on formalization of the 

Sequence Diagram into typed graphs. The method presented in their paper is designed for 

Sequence Diagram consisting of lifelines and messages. However based on [44], this 

synthesis algorithm does not include complex constructs such as parallelisms and conflicts, as 

evident in page 133 of [44]. Bowles and Bordbar [45] present a method of synthesis by 

mapping a design consisting of multiple views modelled by Sequence Diagrams into a unique 

mathematical model which is used for analysis and detecting inconsistencies. In [8], Sequence 

Diagrams are synthesized manually in order to create Alloy [5] models for analysis of the 

system. However, manual synthesis of Sequence Diagrams are error-prone, tedious and 

redundant. In Aspect-Oriented Modelling, the sequential composition of aspects could also be 

regarded as synthesis. The same also applies to the weaving of scenarios using an automated 

aspect weaver as described in [46]. The concept of synthesis also exists in Message Sequence 

Charts (MSC), a predecessor of Sequence Diagrams. Krüger’s [47] approach for refinement 

of MSC where a notational semantics for MSC features a notion of message refinement, 
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where a message is syntactically replaced by a protocol for every occurrence in the MSC. 

However, this approach of refinement does not preserve the equivalence relations as stated in 

page 172 of [47]. 

 The need for automated support for model synthesis has been outlined in various 

works[8, 43-47, 55-57].  This is to avoid the possibility of undesirable emergent properties 

from performing ad-hoc synthesis. In addition, essential properties of the individual models 

may not be preserved if thesynthesis is performed in an incorrect manner.  

6.2 Synthesis in Petri Nets 

The notion of synthesis in Petri Net is a well-studied area of research [12, 17, 20-26, 48, 58, 

59, 144-146]. Some of the methods used in Petri Net synthesis include top-down [22, 23, 48], 

bottom-up [23, 48], hybrid [26], knitting technique [20, 21, 25, 144], reduction [145, 146] and 

rough set [24]. Here the two well-studied methods for Petri Net synthesis are described; top-

down synthesis method and bottom-up synthesis method. 

6.2.1 Top-Down Synthesis Method 

A top-down synthesis method commonlybegins with an aggregate model of the system that 

disregards low-level details. Using the aggregate net as the basis, low-level details are 

gradually added into the net using a refinement process.  

One method of refinement is outlined by Valette[16], which focuses on the transitions 

in the Petri Net. This method replaces a transition with a different, complete Petri Net. For 

example, assume a Petri Net Nhas a transition tand another Petri Net T that consist of low 
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level details for the transition t.Using transition refinement, the transition t in the net N can be 

replaced with the net T, where all the input arcs into t and the output arcs from t are redirected 

into the start and end places of T respectively. 

Another method used in this technique is place refinement outlined by Suzuki and 

Murata[147]. In this method, the place that needs to be refined, p0 is first replaced with two 

places p1 and p2 and a transition t0. The input of p0 is redirected as input for p1 and the output 

of p0 is redirectedas the output of p2. The transitiont0 must have only p1as the input place and 

onlyp2as the output place. Themarking of p1 should be the same as the marking for p0while 

the marking of p2 must be 0. This is followed by performing a transition refinement ont

 The refinement technique has since been adopted by many including [22, 23, 26]. In 

essence, this technique can also be extended to replace a specific block of Petri Net (such as 

an SD2PN message block in 

0. 

Figure 34 (a), refer Section 4.1.2.1) with a different Petri Netas 

depicted in Figure 34 (b). 

 

 

Figure 34: Example of top-down synthesis in Petri Nets 
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The intentionally trivial synthesis example in Figure 34 (b) presents two Petri Nets PN1 and 

PN2 such that PN1 describes the daily morning and evening routines of the author and PN2 

that describes how to make coffee. By performing a top-down synthesis using the refinement 

technique, the both PN1 and PN2 could be put together; where the block of Petri Net that 

describes the action ‘make-coffee’ is refined with the entire Petri Net PN2 resulting in the 

Petri Net PN3. Of course it is also possible to refine the action ‘make-tea’ similarly, but for 

the purpose of this example, it is assumed that the reader already knows how to make tea. 

6.2.2 Bottom-Up Synthesis Method 

The bottom-up synthesis method is commonly used to integrate two or more Petri Nets that 

contain common nodes. This is done by merging of places and transitions between the Petri 

Nets while preserving all the interactions between the nodes.  

 One common technique used in the merging of places between Petri Nets is called 

one-way merge[59]. Using one-way merge, a set of common places between the Petri Nets are 

merged to form a new place. For example, suppose a set of places to be merged, Sm

 As a continuation to the example presented in 

 are 

merged into a new place p. For each place such that 𝑠𝑠 ∈ 𝑆𝑆𝑚𝑚 , the input arcs and output arcs for 

s, 𝑠𝑠°  and 𝑠𝑠°  respectively must be represented in 𝑝𝑝°  and 𝑝𝑝° . 

Figure 34 (b), the example in Figure 35 

is used to present bottom-up synthesis in Petri Nets in an easy-to-understand manner.  
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Figure 35:Example of bottom-up synthesis in Petri Nets 

 

Suppose PN38 Figure 35in  still represents the morning and evening routines of the author 

while the Petri Net PN4 describes a household policy when it comes to using milk. The two 

Petri Nets describe two different viewpoints and may exist independently of each other. 

However based on the common element between the two Petri Nets, ‘use-milk’, PN3 and PN4 

can be synthesized to create a Petri Net PN5. 

6.3 Petri Net Inspired Synthesis of Sequence Diagrams 

It is clear from sections 6.1 and 6.2 that the notion of synthesis is better established in the 

formal mathematical language of Petri Nets as compared to UML Sequence Diagrams. 

                                                 
8 The Petri Net PN3 in Figure 35 is the same as the Petri Net PN3 in Figure 34(b) with only cosmetic alterations. 
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However, using Multi-Paradigm Modelling, it has been established in Chapter 4 that 

Sequence Diagrams could map into Petri Nets without losing any semantic properties via 

SD2PN. As such, this section presents synthesis methods for Sequence Diagrams, inspired by 

Petri Nets. 

As means to illustrate the capabilities of the Sequence Diagram synthesis methods, as 

well as to provide better understanding of the algorithms, a case-study of an e-business model 

is used throughout this chapter – with each algorithm building up the model incrementally 

from the basic model in Figure 36. 

 

 

Figure 36: Basic e-Business Model 

 

The Sequence Diagram synthesisalgorithmsintroduced in this chapter are presented in the 

form of pseudocodes. The following notations are used for the purpose of the pseudocodes. 

 

Notation 1:  

L: set of lifelines in the Sequence Diagram 

Suppose the Sequence Diagram in Figure 36 as SD1, the set of lifelines in SD1can be written 

as LSD1

ActiveClient LoginSystem

login

homePage

visitorPage

visitorPage

alt
alt

If acct <> NULL

else

else

If prof <> NULL

 = {ActiveClient, LoginSystem}. 
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Notation 2: 

E: set of all events in the Sequence Diagram  

Suppose the Sequence Diagram in Figure 36 as SD1, the set of all events in SD1 can be 

written as ESD1

The function Scope(m) identifies the specific location of the message m with regards to 

combined fragments. Suppose the Sequence Diagram in 

 which would comprise of the sending and receiving of all messages in SD1. 

 

Notation 3: 

M: set of messages in the Sequence Diagram  

A message m∈ M is a tuple (a, s, r)indicating the operation signature a, the sender lifeline s, 

and the receiver lifeline r, such that s, r ∈ L. A message m also has direct associations with its 

sending and receiving events, denoted by m.snd, m.rcv.  

 

Notation 4: 

Scope(m): list of the nested combined fragments containing the message m, ordered from the 

inner to the outer fragment. 

Figure 36 as SD1; 

 

Scope(login) = SD1 

 

since the message login is not contained in any combined fragments. However 

 

Scope(homePage) = SD1.alt(2)#1.alt(2)#1 
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where the message homePage  resides in a nested alt fragment. SD1 refers to the Sequence 

Diagram, SD1.alt(2)#1 refers to the combined fragment altwith two (2) fragments in SD1; and 

the fragment number one (1),and SD1.alt(2)#1.alt(2)#1 refers to the alt combined fragment 

with two (2) fragments that resides inside another alt with two (2) fragments; and that the 

message resides in fragment number one (1) of the nested alt combined fragment. 

 

Using Notations 1 through 4 as presented above, each Sequence Diagram synthesis method 

introduced in this section is presented in the form of a pseudocode, and a case study example 

of an e-business model. Furthermore following each case study example, a complementary 

example of Petri Net synthesis of the same models is presented as a method for comparison 

between the new Sequence Diagram synthesis techniques introduced in this section and the 

well-studied Petri Net synthesis techniques from [16, 59].  

6.3.1 Top-DownSynthesis Method in Sequence Diagrams 

The top-down synthesis method for Sequence Diagrams refers to composing low-level details 

into an aggregate model by replacing a single message with an entire Sequence Diagram.This 

method allows for a Sequence Diagram that represents a top-level view of the system to be 

refined by multiple other low-level Sequence Diagrams in order to provide an integrated view 

of the system. The inspiration for this method comes from the transition refinement technique 

in Petri Net described in Section 6.2.1. Figure 34 also presented an example of this technique 

where a Petri Net block (that refers to a Sequence Diagram message as established in SD2PN 

Rule 1) is refined using an entirely different Petri Net.  

To maintain a naming relationship between the synthesis methods of Petri Nets and 

Sequence Diagrams, the technique presented in this section is called message refinement. A 
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message refinement synthesis integrates two Sequence Diagrams, SD1 and SD2 by replacing a 

message m in SD1 with an entire Sequence Diagram SD2.The algorithm for message 

refinement in Sequence Diagram is as follows: 

 

INPUT: (SD1, SD2 and m) where SD1andSD2 are two Sequence 

Diagrams and m is a message in SD1 that appears only once9

CONDITION: Suppose f represents the first message in SD2 

(such that there are no other event occurrences beforef) and 

l represents the last message in SD2 (such that there are no 

event occurrences afterl)

. 

There must also not be a copy of the message m in SD2. 

 

OUTPUT:  SD3, where every execution trace of SD3 consists of 

an execution trace in SD1 in which the message m is 

substituted with an execution trace of SD2. For every 

execution trace in SD1 with exception of the message m, 

there exist an execution trace in SD3 where the trace of SD1 

appears and for every execution trace in SD2 there exist an 

execution trace in SD3 where the trace of SD2 appears. In 

addition, the message m does not appear in any execution 

traces of SD3. 

 

10

                                                 
9 Should there be need to refine multiple instances of the same message, the algorithm should be run repeatedly; 
each time refining a single instance of the message m.  
10 The terms before and after here refer to the General Ordering of events in Sequence Diagrams (refer Section 
2.1.1). 

; the lifeline that sends the 

message f must be the same as the lifeline that sends the 

message m in SD1, and the lifeline that receives the message 
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l must be the same as the lifeline that receives the message 

m in SD1. 

 

ALGORITHM: 

1. Copy SD1 to SD3; 

2. Identify the sender, receiver and scope of message m 

asm.snd, m.rcv and Scope(m) respectively; 

3. If there exist a set of lifelines in SD2 that does not 

exist in SD3, copy the aforementioned set of lifelines 

into SD3 such that the set of lifelines in SD3 consist 

of all the lifelines in SD1 and SD2; 

4. Remove the message m from SD3; 

5. Add all the messages and Combined Fragments from SD2 

into SD3 ensuring that they correspond to their 

respective lifelines in the previous location ofm, 

such that (recalling the definition of f and l from 

the CONDITION section) the message before f must be 

the same as the message before m in SD1 and the 

message afterl must be the same as the message after 

m in SD1; 

5. End. 

 

To illustrate the message refinement method with an example, a top-level Sequence Diagram 

is presented in Figure 37 (a) and a low-level Sequence Diagram is presented in Figure 37 (b) 

describing a basic e-business model and a refinement model respectively. 
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Using the message refinement algorithm, the message 'login' in Figure 37 (a) is refined 

with the Sequence Diagram in Figure 37 (b). The application of the message refinement 

method results in a Sequence Diagram as shown in Figure 37 (c). For illustration purposes, 

the messages that are involved with the refinement are drawn with lines of different thickness. 

 

 

Figure 37: Example of a message refinement synthesis method featuring (a) a top-level Sequence Diagram, 
(b) a low-level Sequence Diagram and (c) the result of applying message refinement synthesis method to 

(a) and (b). 

 

In order to compare the Sequence Diagram synthesis algorithm presented in this section with 

the well established top-down synthesis method in Petri Nets, the Sequence Diagrams in 

Figure 37are transformed by using SD2PN into the Petri Nets shown inFigure 38. 
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Figure 38: Petri Nets derived from Sequence Diagrams in Figure 1 (a), (b) and (c) respectively. 

 

The Petri Nets in Figure 38 (a) and (b) are subjected to a top-down [22] synthesis method in 

Petri Nets where the transition ‘login’ in Figure 38 (a) is refined with the Petri Net in Figure 

38 (b). This results in a Petri Net identical to SD2PN transformation of the Sequence Diagram 

from Figure 37 (c), as presented in Figure 38 (c).  

6.3.2 Bottom-Up Synthesis Method in Sequence Diagrams 

A bottom-up synthesis method in Sequence Diagram is ideally used to put together multiple 

Sequence Diagrams based on the common elements between the diagrams. As described in 

Petri Net synthesis method (Section 6.2.2), the bottom-up technique merges all the common 

elements as one element; where all the relationship are still preserved.  

 Figure 35 depicted two Petri Nets of different perspective, but with one common 

element. Performing bottom-up synthesis on the Petri Nets created a Petri Net PN5 that 
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merged the common elements of PN3 and PN4 while still preserving all the relationship 

between the nodes. One observation that could be made at this point is how the actions ‘drink’ 

and ‘replace-milk’ occur non-deterministically; unrelated and independent of each other. It 

does not matter if the action ‘drink’ occurs before, after or at the same time as ‘replace-milk’. 

Unfortunately, it is not possible11

6.3.2.1 Part Decomposition Synthesis Method 

to achieve this result in Sequence Diagrams. If a bottom-up 

synthesis method is performed via a simple merge in Sequence Diagram, there would be an 

emergent relationship between the two actions; i.e. if the action ‘drink’ is located visually 

above the action ‘replace-milk’, it implies a causal relationship between the two events that 

should not be there. The same is also true if the action ‘replace-milk’ is located above the 

action ‘drink’. This enforces a behaviour that does not exist in the original set of execution 

traces, and as such does not represent a good synthesis result. One possible solution to this 

matter is the use of a parallel combined fragment. This allows both actions ‘drink’ and 

‘replace-milk’ to occur concurrently. However, this scenario also enforces an emergent 

behaviour if the form of concurrency that does not exist in the original set of execution traces.  

 However, there are cases where the bottom-up synthesis method in Petri Nets can be 

translated to bottom-up synthesis in Sequence Diagrams. Two such examples of the synthesis 

techniques are presented in the following sections. 

 

 

The part decomposition synthesis method refers to replacing a lifeline in a Sequence Diagram 

with a complete Sequence Diagram that corresponds to it. This method allows for a lifeline, 

                                                 
11 As of now, based on the author’s knowledge 
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which represents a composite object with an internal structure, to be expanded, providing 

more accurate information of the entities involved in the execution of a message. The lifeline 

in question can be replaced with an entire Sequence Diagram, provided that all the messages 

into and out of the original lifeline are accounted for. 

The inspiration for this method came from page 497 of [7] where UML 2.1 illustrates 

the existence of this capability. However, here the synthesis method is in the form of an 

algorithm; a Part Decomposition synthesis integrates two Sequence Diagrams SD1 and SD2 

by replacing a lifeline L in SD1 with the entire Sequence Diagram SD2. For the purpose of 

this algorithm, the notation ‘[]’ is regarded as an array of elements. The algorithm for an 

automated Part Decomposition synthesis is as follows: 

 

INPUT: (SD1, SD2 and L),where SD1andSD2 are two Sequence 

Diagrams and L is a lifeline in SD1representing a composite 

object with an internal object structure and SD2 a purpose-

built Sequence Diagram that contains describes the internal 

object structure of the lifeline L. 

 

OUTPUT:  SD3, where the set of all lifelines in SD3 is equal 

to the set of all lifelines in SD1 and SD2 except for L. 

 

CONDITION: There should not be a duplicate of lifelines 

between SD1 and SD2, such that 𝐿𝐿𝑆𝑆𝑆𝑆1 ∩ 𝐿𝐿𝑆𝑆𝑆𝑆2 = ∅. The set of all 

messages in SD2 should be a subset of the set of all 

messages in SD1 such that 𝑀𝑀𝑆𝑆𝑆𝑆2 ⊂ 𝑀𝑀𝑆𝑆𝑆𝑆1 where all the messages 

in and out of the lifeline L must be the same as the 

messages in and out of SD2. 
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ALGORITHM: 

 

1. Copy SD1 into SD3; 

2. Identify all outgoing and incoming messages from L and 

assign them to out [] and in [] respectively; 

3. Let new_out [] = all outgoing messages from SD2 and 

new_in [] = all incoming messages  from SD2;  

4. Copy the set of all lifelines from SD2 into SD3; 

5. For each message m∈ out []: merge m with its 

corresponding message m’∈new_out [] such that the 

sending lifeline m’.snd and the receiving lifeline m.rcv 

is retained; 

6. For each message m∈in []: merge with its corresponding 

message m’∈ new_in [] such that the sending lifeline 

m’.snd and the receiving lifeline m.rcv is retained; 

7. End. 
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Figure 39: An example of the part decomposition synthesis method featuring (a) the internal structure of 
‘LoginSystem’ lifeline in Figure 1 (c) and (b) the result of Part Decomposition synthesis. 

 

To demonstrate the Part Decomposition synthesis method, a continuation of the previous 

example is used. The result of the previous synthesis method in Figure 37 (c) is used as the 

top-level Sequence Diagram for this example while the Sequence Diagram in Figure 39 (a) 

represents the internal structure of the lifeline 'LoginSystem' in Figure 37 (c). The application 

of the Part Decomposition synthesis method to the Sequence Diagrams in Figure 37 (c) and 

Figure 39 (a), it results in a synthesized Sequence Diagram as shown in Figure 39 (b). 

 To compare the Sequence Diagram synthesis algorithm presented in this section with 

the well established bottom-up synthesis method in Petri Nets, the Sequence Diagrams 

involved in the synthesis as well as the synthesis results are transformed into Petri Nets via 

SD2PN. In the example presented in Section 6.3.2, common messages between Figure 37 (c) 

and Figure 39 (a) are merged to create a new Sequence Diagram. 
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Figure 40: Petri Net derived from the Sequence Diagram in Figure 2 (b). 

 

In this example, the application of the synthesis method generates a peculiar result. Using 

SD2PN, the Sequence Diagram in Figure 39 (a) can be transformed into the Petri Net in 

Figure 40. By applying the bottom-up synthesis method between the Petri Nets in Figure 38 

(c) and Figure 40, it still results in the Petri Net in Figure 40. This is true because every node 

in the Petri Net in Figure 38 (c) is already present in Figure 40. As peculiar as this result is, it 

still matches the Sequence Diagram in Figure 39 (b). 

6.3.2.2 Special Case Method: Synthesizing Attack Scenarios 

In this section, a synthesis method of a different nature is introduced. This is a domain-

specific method to simulate security breach scenarios where a specific attack model (i.e. man-

in-the-middle attack) is composed with a given scenario. Suppose a regular scenario model in 

SD1 and the behaviour of an attacker in SD2. The resulting Sequence Diagram will depict an 

act of security breach on the system and can be used to analyze the possibility of an attack as 

well as counter-measures. This method is motivated by the challenges faced in [54]. This 

synthesis enforces a special condition regarding the preservation of the sending and receiving 

events on certain lifelines (i.e. the parties whose communication is intercepted by the 

attacker). Any direct message m between these two parties in SD1 is replaced by a couple of 

messages (m’,m”) with the same signature, flowing through the attacker in SD2. We shall 

refer to  m, m’ and m” as matching messages.  
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The special case synthesis method creates a Sequence Diagram SD3 that consist of all 

the lifelines from SD1 and SD2 while replacing each message m between lifelines x and y in 

SD1 with a couple of messages (m’,m”) from SD2. The algorithm for this special case 

bottom-up synthesis is as follows: 

 

INPUT: (SD1, SD2, x and y),where SD1is a Sequence Diagram 

representing a normal scenario, SD2is a Sequence Diagram 

representing the behaviour of an attacker and x and y the 

two communicating lifelines in SD1 that the attacker would 

like to eavesdrop. 

 

OUTPUT:  SD3, where every execution trace of SD2and every 

execution trace of SD1 except ((m.snd = x & m.rcv = y) or 

(m.snd = y & m.rcv = x)) is represented in SD3.  

 

CONDITION: The number of lifelines in SD2 must be exactly 

three such that LSD2 = {x, y, z} where (x ∈ LSD2 = x ∈ LSD1), 

(y ∈ LSD2 = y ∈ LSD1) and z representing the attacker. For 

every message m in SD1 such that (m.snd = x & m.rcv = y) or 

(m.snd = y & m.rcv = x), there exist two messages m and m’in 

SD2 such that ((m.snd = x & m.rcv = z) & (m’.snd = z & 

m’.rcv = y)) and ((m.snd = y & m.rcv = z) & (m’.snd = z & 

m’.rcv = x)) respectively. 
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ALGORITHM: 

 

1. Create a new Sequence Diagram SD3; 

2. Add the union of the set of lifelines in SD1 and SD2 to 

SD3 such that 𝐿𝐿𝑆𝑆𝑆𝑆3 = 𝐿𝐿𝑆𝑆𝑆𝑆1 ∪ 𝐿𝐿𝑆𝑆𝑆𝑆2; 

3. Identify the set R of direct messages between x and y in 

SD1 such thatR= {m| m=(a,x,y)}; each m being replaced by 

a couple of matching messages m=(a,x,z), m’ =(a,z,y) in 

SD3; 

4. For each message m∈ R, if Scope(m)= Q and Q ≠ SD1, then 

add Q to SD3; 

5. Add all messages m ∈ MSD2

6. Add all remaining combined fragments from SD1 into SD3; 

 into SD3; 

7. Add all messages m such that (m ∈ MSD1

8. End. 

&m ∉ R) into SD3. 

 



129 
 

 

Figure 41: An example of the special case synthesis method featuring (a) the behaviour of an attacker and 
(b) result of the special case synthesis. 

 

To illustrate the special case synthesis method, this example introduces an 'attacker' to the 

previously created e-commerce login model in Figure 39 (b). The behaviour of this attacker is 

depicted in Figure 41(a). The application of the special case synthesis method to the Sequence 

Diagrams in Figure 39 (b) and Figure 41 (a) results in the Sequence Diagram represented in 

Figure 41(b). 

(a)

Attacker LoginManager

reqLoginPage

loginPage

login (uname, 
pword)

homePage

visitorPage

visitorPage

alt

alt

If acct <> NULL

else

else

If prof <> NULL

(b)

AcctManager ProfManager

validate 
(uname, pword)

acct

getProfile (uname)

prof

ActiveClient

reqLoginPage

loginPage

login (uname, 
pword)

homePage

visitorPage

visitorPage

Attacker LoginManager

reqLoginPage

loginPage

login (uname, 
pword)

homePage

visitorPage

visitorPage

alt

If acct <> NULL

else

else

If prof <> NULL

ActiveClient

reqLoginPage

loginPage

login (uname, 
pword)

homePage

visitorPage

visitorPage

alt



130 
 

 To compare this domain specific synthesis technique in Sequence Diagram with the 

established bottom-up method in Petri Nets, all the Sequence Diagrams involved in the 

synthesis are transformed into Petri Nets via SD2PN. The application of the bottom-up 

synthesis method to the Petri Nets in Figure 40 and Figure 42 (a) results in a Petri Net 

identical to Figure 42 (b); which is derived from the Sequence Diagram in Figure 41 (b).  
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Figure 42: Petri Nets derived from Sequence Diagrams in (a) Figure 3 (a) and (b) Figure 3 (b). 
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CHAPTER 7 
SD2PN AND TIMELINESS PROPERTIES 

The notion of time in modelling and analysis is a well studied notion. This chapter presents an 

approach to integrate timeliness properties into SD2PN. 

7.1 Significance of time in UML 

It has been established that UML [7] has been offered a privileged role in the modelling 

community. The ability to model from an abstract view of the system, to the more functional 

aspects of a system such as dependencies as well as communication between objects in the 

system allow UML to earn a steadfast reputation as the standard in modelling. However as the 

number of real-time and embedded systems increase, the demand for UML to model non-

functional properties, in particular timing information increases as well. 

 The various diagrams in UML allow structural and behavioural properties of a system 

to be modelled to a certain degree of accuracy. More complex properties of a system 
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interaction such as conflicting or parallel behaviour can also be modelled using high level 

additions into UML such as Interaction Operators. Restricting an interaction or behaviour in 

the model to reflect a specific property of the system can also be performed by integrating 

OCL [116] constraints into the UML model. However in this chapter, the restriction of 

behaviour in the UML model is narrowed down to a specific constraint; time. 

 Assigning timing properties to a specific event or interaction in the model could allow 

accurate depiction of the system in real-life where different tasks may require varying periods 

of time to complete. The addition of the timing constraint could change the sequence of 

events in the model, enforce delays between events to mimic real-life scenario as well as 

present emergent behaviour from the model. Analysing these properties and emergent 

behaviour in the modelling phase could prevent costly errors in the development phase.  

 In [148], the authors present a guideline on the requirements for timing constraints to 

be added into UML. To accurately express the time related aspects of a system, the notations 

used to represent the timing constraint must allow requirements such as system (or 

component) delays to be attached to the model. The notation must also allow external 

assumptions such as response time or inter occurrence times to be attached to the model. 

Assumptions on the underlying execution platform such as the execution times of various 

tasks as well as the dependencies between tasks must also be allowed as a notation on the 

model. Finally system behaviours that are dependent on time should be modelled on the 

system in the form of an independent timer or by granting access to the system clock. 

 In the next section, a short review of the literature is presented. 
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7.1.1 Review of UML extensions to include time 

Although there have been various research projects down the years to integrate time into 

UML, the execution between the pieces of research differs vastly. The element of time in 

UML models is usually expressed as a time constraint. According to [149], there are three 

types of commonly used time constraints; hard, soft and firm. A hard time constraint demands 

that any event or interaction that is attached to it occurs within the constraints. Any delay in 

the execution is unacceptable and the system run is deemed a failure.  A soft time constraint 

on the other hand allows violation in terms of the actual computation up to a certain degree. 

Finally a firm time constraint is a combination of hard and soft time constraints where the 

requirements are assessed as hard constraints and the computations are designated as soft 

constraints.  

 The execution of a system also relies on the arrival pattern of the messages between 

instances. This should also be reflected in the model. There are two major classifications in 

arrival patterns, periodic and aperiodic. Periodic messages have a predefined pattern. 

However, slight variations in the pattern are common and referred to as jitter. According to 

[150] jitter, which is a variation of latency or the time between two signals, transpires when 

there are multiple occurrence of the same signal. Aperiodic messages on the other hand do not 

have a pattern, and as such usually calculated using an average interval and standard 

deviation. Messages that are bursty or grouped together are also considered aperiodic 

messages. However bursty messages have a Poisson distribution, therefore do not have a 

standard deviation. 

  The table below presents a classification of various research projects that integrates 

time into UML based on several criteria. 
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Table 9: Review of existing pieces of research that integrates time into UML 

Types of time constraints 

Hard 

[148], [149], [151], [152], 

[153], [154], [155], [49], 

[156], [157], [158] 

Soft [149], [151], [156] 

Firm [149] 

Types of formalizations used 

Temporal Logic [159], [153] 

Purpose-built Formalisms [160], [156], [157], [158] 

None [149], [151], [49] 

Attachment of time to the model 

Message [151] , [49] 

Lifeline [156] 

Event 

[148], [151], [152], [153], 

[155], [160], [49], [156], 

[157], [158] 

Representation of time 

Interval 

[148], [151], [152], [159], 

[154], [160], [49], [156], 

[157], [158] 

Duration 
[148], [151], [155], [156], 

[157], [158] 

Classification of arrival time 
Periodic 

[149], [151], [153], [155], 

[158] 

Aperiodic [149], [158] 

Purpose of time extension in the 

model 

Modelling real-time 

systems 

[149], [151], [153], [161], 

[160], [157], [158] 

Analysis 
[148], [152], [159], [154], 

[155], [49], [156] 

 

All the literature presented in Table 9 uses a form of constraint to integrate timeliness 

properties into UML models. However, constraints are not the only way time can be 

represented in a model. In [161], time is presented as a scale in the model. The interval 

between the occurrences of events in the model is depicted by the gap between events on the 
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lifeline. Therefore a calculation of interval between two event occurrences could be 

performed by measuring the distance between the events and multiplying it by the scale. A 

look at page 63 of [149] assures that it is possible to allow a linear scale to be added to the 

UML models. However, it is an uncommon practice and to the best of my knowledge the tool 

support for a scaled UML model is nonexistent.  

In using various forms of constraints to integrate timeliness properties into UML, most 

research projects choose to handle only one type of constraint; hard. This is due to the 

straight-forward nature of hard-constraints. In [149], it is described that most hard constraints 

or hard deadlines are obtained from the performance bounds of a reactive system where the 

system is required to react in a timely fashion to an external event. In these cases, if any of the 

constraints are not satisfied, the system run is deemed to be a failure.  However in a real-life 

system, there are constraints that are relaxed to ensure less failure. Depicting the relaxed 

constraints (soft and firm constraints) in a model is more challenging because of the 

ambiguity that exists in non-absolute constraints. This is the predominant reason why a 

majority of research projects depict time only in the form of hard constraints. 

 A common approach to extending UML with timeliness properties is to formalize the 

model before introducing the notion of time. The classification in Table 9 reveals three 

different groups of formalisms; temporal logic, purpose-built formalisms or no formalism. 

The formalization of UML based on temporal logic allows logical statements to be inserted in 

the UML models as constraints; including time constraints such as deadlines, duration or 

interval. Besides temporal logic, other formal methods can also be used as a basis for the 

formalization of UML models. For example, [148, 152, 155] used automata as the basis for 

formalization while [154] represented constraints in the form of linear programming. 

However since neither automata nor linear programming contribute formalisms towards 
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Sequence Diagrams; they are excluded from the table. The purpose-built formalisms such as 

ACCORD [160], STAIRS [156, 157] and OOHARTS [158] on the other hand specify 

different methods of time integration into the UML models. However, research projects such 

as [49, 149, 151] outlines that formalizing the models is not a necessary step in integrating 

timeliness properties into UML models.  

The attachment of time to the UML models is often presented in the form of time-

stamps. These time-stamps are commonly attached to an event in the model, such as the 

sending or receiving of a message. This is evident in Table 9 where a vast majority of 

research projects attach timing constraints to event occurrences. However, time can also be 

represented as a duration constraint, tagged to the message itself. In these cases, the execution 

of the message must be of a specific duration as denoted in the tag. Although time stamps are 

not usually attached to a lifeline in the model, there is an exception as presented in Table 9. In 

[156], a variable now is placed at each lifeline in the model in order to synchronize between 

the lifelines. 

Table 9 presents the classification of two methods of representing time in UML; 

interval and duration. Störrle [162] divides the concept of time in UML Sequence Diagrams 

into two types; the first of which is preserving the state of the system for a certain time 

interval while the second represents the duration for a single event to occur. Interval 

represents a time frame with a compulsory maximum and minimum value where the 

occurrence of the event attached to it must be within the maximum and minimum value [7, 

163]. A duration on the other hand is defined as the temporal distance between two time 

instances [7, 163]. Duration consists of only one constraint value and the event associated 

with a particular duration constraint could only occur for the exact period of the specified 

constraint. A brief look at Table 9 points out research projects [148, 151, 156-158], where 
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both interval and duration constraints are supported. The remainder of the research projects 

supports only one or the other, with a slight bias towards interval. 

The comparison of arrival patterns in Table 9 shows the two most common 

classification; periodic and aperiodic. Although many literatures do not specify the type of 

arrival pattern that are supported, the ones that do tend to choose periodic instead of aperiodic. 

The reason for this is similar to the choice of hard constraints instead of soft or firm 

constraints; aperiodic messages lead to ambiguity and non-absolute constraints, thus more 

difficult to represent in a model.  

Finally Table 9 also shows that the purpose of extending the UML models with time 

constraints is evenly distributed between the need for modelling real-time systems accurately 

and the need for time related analysis. 

7.1.2 UML 2.1 and timeliness properties 

Based on the classification of research projects in Table 9, there are various methods to 

integrate timeliness properties into UML models. Most of the approaches taken introduce a 

type of formalism into Sequence Diagram where a typical Sequence Diagram metamodel is 

augmented with elements from temporal logic, automata or even purpose built formalism 

techniques. These approaches, although provide a certain degree of mathematical foundation 

to Sequence Diagrams – comes in the expense of the simplicity of the UML Sequence 

Diagrams.  

To keep with the ease of use in UML, there exist a package in the UML 2.1 

Superstructure document [7] named Common Behaviours which allows a more detailed 

behavioural definition in UML models. One subpackage of Common Behaviour is Simple 

Time. 
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Figure 43: Dependencies between packages in Common Behaviours [7] 

 

The Simple Time package allows time and the observation of time to be added into the UML 

models through the addition of relevant metaclasses. Among the metaclass additions are 

Interval, Interval Constraint, Duration and Duration Constraint. 

 Chapter 13 of [7] define Interval as the range between two values, a minimum value 

and a maximum value. An Interval is textually represented as the two associated values 

separated by “..”. An example of a textual representation for Interval is: 

< 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 >∷= < 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >′ . .′ < 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 > 

An Interval Constraint on the other hand is the constraint that describes the Interval it 

specifies. A Duration as described in page 437 of [7] specifies the temporal distance between 

two instances. Duration is represented as a single value that denotes the value of the duration, 
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commonly represented as a non-negative integer. Meanwhile the metaclass Duration 

Constraint defines the constraint that specifies the Duration.  

There are various other metaclasses that exist in the Simple Time subpackage. 

However, only four relevant metaclasses are presented in this section. Although the Simple 

Time package allows time to be integrated into UML models, more focussed packages that 

deal with specific extensions of time could be added in the form of UML packages. 

7.2 Extension of SD2PN to include timeliness properties 

As established in the previous section, extension of timeliness properties in UML is becoming 

a significant factor in model design. It is also established from Table 9 that a significant 

number of work in this area is geared towards analysis of the time annotated UML diagrams. 

In this section, the SD2PN model transformation is enhanced to allow time constraints from 

Sequence Diagrams to be transformed into Petri Nets for the purpose of analysis. 

 Referring to the review of existing research in Table 9, there are various formalisms 

and types of constraints used in decorating the UML models with timeliness properties. In 

Sequence Diagrams, time constraints can be attached to an event, a message or even a lifeline. 

There are even different representations of time as well as the classification of message 

arrival. Each research presents a different approach, with different sets of requirements. 

Although any of the aforementioned pieces of research could be adopted as the enhancement 

to the Sequence Diagram metamodel in SD2PN, the enhancement presented in this section 

features the timeliness properties from the UML 2.1 metamodel. 
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 In the next section, the Sequence Diagram metamodel used in the SD2PN model 

transformation will be enhanced to include timeliness properties from UML standard. 

Subsequently, the Petri Net metamodel and the SD2PN model transformation rules will also 

be enhanced with timeliness properties to allow the model transformation from time annotated 

Sequence Diagrams into Timed Petri Nets. 

7.2.1 Sequence Diagram metamodel enhancement 

To allow time constraints to be present in Sequence Diagrams, the Sequence Diagram 

metamodel in as Figure 3 is enhanced with time constraints. Figure 44 presents an enhanced 

metamodel for Sequence Diagrams where the shaded elements in the metamodel represent the 

extensions that signifies the addition of time properties into Sequence Diagrams. The shaded 

elements are adapted from "Common Behaviors", chapter 13 of the UML 2.1 Superstructure 

[7] as described in the previous section. 

 

 

Figure 44: Sequence Diagram Metamodel augmented with Timeliness Properties 
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This extension of the UML Sequence Diagram metamodel used in the model 

transformation allows Interval and Duration constraints to be added into Sequence Diagram 

metamodels. This extension, or enhancement of the metamodel takes into account the various 

researches in Table 9 where time constraints are represented as either Intervals of Durations. 

Table 9 also denotes that the attachment of time to Sequence Diagram elements occurs on 

events, messages and lifelines – all three types of attachments are catered for in this 

enhancement. Finally and most importantly, this metamodel enhancement does not deviate 

from the simplicity, a core concept in UML. Furthermore, the metamodel itself is a subset of 

the UML 2.1 metamodel with no foreign model elements introduced. As such, any Sequence 

Diagram that conforms to the metamodel used in this research will conform to the UML 2.1 

metamodel. 

Both Interval and Duration are syntactically represented textually inside curly brackets 

as specified in  [7, 163] and each value is expressed as float instead of Value Specification in 

order to manage the constraints more accurately and to keep the metamodel to a minimum. 

 

 

Figure 45: Example of a Sequence Diagram with time constraints 

 

Figure 45 shows an example of a Sequence Diagram that features both types of time 

constraint, Interval and Duration. The Interval between the sending and receiving events of 

m2 indicates that the completion (sending and receiving) of m2 takes between θ  and θ +3 to 

m1

m2 

Duration

{ }θ
{ }3... +θθ
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occur, where θ  is a constant. The Duration between m1 and m2 on the other hand indicates 

that after m1 is completed, the state is preserved for the duration of θ  before m2 could be 

sent.  

 The presence of Interval and Duration in the Sequence Diagram could present a 

unique case that is not represented in the previously defined fragments. The example in Figure 

45 shows the presence of a Duration that is not attached to a message. This warrants the 

inclusion of an additional fragment type and an additional transformation rule that will be 

addressed later in Section 7.2.3. 

7.2.2 Petri Net metamodel enhancement 

The enhancement of the Sequence Diagram metamodel with time constraints introduces an 

inconsistency between the source and the destination metamodels of the SD2PN model 

transformation. To allow the Sequence Diagrams to be accurately mapped into Petri Nets, the 

Petri Net metamodel has to be enhanced with time constraints as well. 

The addition of constraints to an ordinary Petri Net results in a type of Petri Net called 

Timed Petri Net [50]. Figure 46 represents the metamodel of Timed Petri Net where the 

shaded elements refer to the extension of the metamodel in Figure 7 with time properties. This 

metamodel is compiled from the theories of time in Petri Nets from [50] as well as from a 

direct correlation with the Sequence Diagram metamodel. The compatibility of the new 

Timed Petri Net metamodel with common Time Petri Net tools has also been taken into 

consideration, namely PIPE and CPNTools. 
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Figure 46: Petri Net Metamodel with Timeliness Properties 

 

The shaded elements in the metamodel in Figure 46 include Interval and two 

specializations of transition; immediate transition and timed transition. The Intervals are 

expressed as closed intervals [50] and consists of an upper and lower bound of type float, to 

be consistent with Sequence Diagrams. Intervals are connected to transitions. For a transition 

to fire, it must be enabled and once enabled, a clock starts; the transition can fire when the 

value of the clock is within the interval. An example of a timed transition is shown in Figure 

15 where the transition t2 has a time constraint with the closed interval [θ ,θ +3]. The 

transition t2 can only fire under two conditions: it must be enabled and the clock must be 

between θ and θ +3. 

 

 

Figure 47: Example of a Timed Petri Net 

 

Two types of transition are identified in Figure 47; immediate transitions and timed 

transitions. Immediate transitions, which aretransitions without time constraints, are depicted 
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as black rectangles while the timed transitions are depicted as white rectangles. An immediate 

transition may be considered as equivalent to a timed transition with an interval of [0, 0]. For 

timed transitions, the interval is shown in a bracket by the label of the transitions, with a 

comma separating the upper and lower bound. If the upper and lower bound of the interval is 

the same, such as [50, 50], it is abbreviated as [50]. 

7.2.3 SD2PN Transformation Rules enhancement 

In this section, the set of SD2PN model transformation rules are enhanced to include 

timeliness properties. Rule 1 of SD2PN is modified to accommodate the existence of the two 

types of transition while Rules 2 through 5 remains unchanged since there are no intervals or 

durations that are attached to CombinedFragments. Every transition in Rules 2 through 5 is 

therefore designated as immediate transitions. 

Rule 1 from Section 3.2 is used to transform every message in a Sequence Diagram 

into a Petri Net block consisting of two places, s1 and s2, and a transition, t. By adding a time 

constraint to this rule, the transition t is given an Interval constraint with a maximum and 

minimum value acting as its upper and lower bound. There are three possible cases for the 

execution of this rule: 

 

Case 1: If a message has an interval associated with it e.g. {10...30}, the transition t in the 

resulting Petri Net block is designated as a Timed Transition with a closed interval [10, 30].  

 

Case 2: If a message has a duration associated to it e.g. {20}, the transition t in the resulting 

Petri Net block is designated as a Timed Transition with a closed interval [20, 20] or 

abbreviated as [20].  
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Case 3: If a message does not have any time properties attached to it, the transition t in the 

resulting Petri Net block is designated as a transition with a closed interval [0, 0] or an 

Immediate Transition. 

 

 

Figure 48: Rule 6 of SD2PN 

 

Rule 6 – Duration: Recalling the new type of fragment defined in Section 7.2.1, an 

additional Rule is introduced to SD2PN. Rule 6, as illustrated in Figure 48 maps time 

properties that are not attached to any particular message into a Petri Net block. This results in 

a Petri Net similar to Rule 1. However, there are only two possible execution cases for Rule 6:  

 

Case 1: If a time constraint has an interval associated to it e.g. {10...30}, the transition t in the 

resulting Petri Net block is designated as a Timed Transition with a closed interval [10, 30].  

 

Case 2: If a time constraint has a duration associated to it i.e. {20}, the transition t in the 

resulting Petri Net block is designated as a Timed Transition with a closed interval [20, 20] or 

abbreviated as [20]. 
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Despite the metamodel enhancements, transformation rules enhancements and the 

addition of a new transformation rule, the fundamentals of the model transformation process 

described in Chapter 4 remains unchanged. The three stages of SD2PN are still valid: 

 

Stage 1: Decomposition of Sequence Diagrams into fragments. 

 

Stage 2: Transformation of each fragment into a Petri Net block. 

 

Stage 3: Composition of the Petri Net blocks using morph and substitute. 

 

 The process of Sequence Diagram decomposition in Stage 1 is enhanced through the 

introduction of an additional fragment type. In Chapter 4, five fragment types were 

introduced; message and CombinedFragments of type alternative, option, break and parallel. 

However, for the purpose of the time enhanced SD2PN model transformation, an additional 

fragment type is introduced, as described in Section 7.2.1.  

 Stage 2 of the model transformation makes use of the set of six transformation rules to 

transform the time augmented Sequence Diagrams into Timed Petri Nets. In Stage 3 of the 

model transformation, the Petri Net blocks are put together using morph and substitute to 

create a larger, more integrated Petri Net. The result presented in Chapter 4 where the 

correctness of the transformation was proved still applies to the enhanced model 

transformation since the enhancements made do not affect the structural consistency of the 

Petri Net blocks i.e. all Petri Net blocks begins and ends with a place. This ensures that the 

enhanced model transformation accurately transform Sequence Diagrams enhanced with time 

constraints into semantically equivalent Timed Petri Nets. 
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7.2.4 Discussion 

In the previous section, an extension to the SD2PN model transformation to include 

timeliness properties is presented. The extension is based on the Simple Time subpackage 

from Common Behaviours, chapter 13 of the UML 2.1 Superstructure document [7]. In order 

to perform the extension, the Sequence Diagram metamodel is enhanced to include Simple 

Time metaclasses from UML 2.1. This is followed by an enhancement to the Petri Net 

metamodel, followed by the transformation rules enhancement. 

 With reference to Table 9 from Section 7.1.1, this extension technique could also be 

applied to other classifications of time augmented Sequence Diagrams. The Sequence 

Diagram metamodel could be enhanced to include various metaclasses that describes the 

different classifications presented in Table 9. Different aspects of the metamodel could be 

used to describe the different elements in Table 9 such as the types of constraints, types of 

formalisms or even the classification of arrival time. 

 To illustrate a possible extension of SD2PN, a theoretical example is presented based 

on Table 9 where two research projects [153, 159] are formalized using temporal logic. The 

logical statements that augment the Sequence Diagrams could be represented as OCL 

constraints [116]. As such, the Sequence Diagram metamodel only needs to be enhanced to 

allow OCL constraints as a metaclass. However, since Timed Petri Nets do not support logical 

constraints, a different subset of Petri Net must be chosen; Coloured Petri Nets [74]. Coloured 

Petri Nets are a subclass of Petri Nets that allow logical constraints to act as guards to the 

firing of transitions in the net. Finally, the transformation rules needs to be enhanced to allow 

the OCL constraints in the Sequence Diagrams to be transformed into guards in the resulting 

Petri Nets. Although the extension described in this paragraph is theoretical, it is also 

regarded as an area for future research and will be described in more detail in Chapter 8. 
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 Among the classifications in Table 9, there is also a dichotomy between the reasons 

for augmenting Sequence Diagrams with timeliness properties. Various research projects [49, 

148, 152, 154-156, 159] cited analysis as the reason for the enhancement. A common type of 

analysis performed in time enhanced UML models is performance analysis [49]. The next 

section discusses performance analysis using the SD2PN model transformation. 

7.3 Using SD2PN for Performance Analysis 

The extension of SD2PN with timeliness properties creates a platform for various time 

sensitive analysis such as performance analysis, schedulability and Quality of Service (QoS) 

analysis to be performed on Sequence Diagrams based on Petri Nets. In this section, an 

instance of the time sensitive analysis is explored; performance analysis. 

 The next section presents the significance of performance analysis in Sequence 

Diagrams, followed by the capabilities of Petri Nets in performing such analysis. 

Subsequently, an example of how performance analysis can be performed on Sequence 

Diagrams using SD2PN is presented in comparison to the structural and behavioural analysis 

presented in Chapter 4.  

7.3.1 Significance of Performance Analysis in Sequence Diagrams 

The concept of performance analysis in design models is a well studied area of research [49, 

164-169]. For example, in [49], a technique for performance analysis in system design is 

presented based on UML Profile for Schedulability, Performance and Time 

Specification[170]. The UML Profile is used to tag values such as performance requirements 
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and resources onto UML behavioural models such as Sequence Diagrams. Although the 

profile is easily understandable, it lacks the level of formalism needed to perform analysis. 

Thus, a Layered Queuing Network (LQN) is used as the formalism for the analysis in [49]. 

The same sentiment is echoed in [169] where the UML Profile is acknowledged, but the 

analysis is performed by transforming the Sequence Diagram into a Communication 

Dependency Graph (CDG).  

 In [168], a survey on model based performance analysis in software engineering is 

presented, marking the transition from the traditional system development method purely 

concerned on the structural correctness of the system, to a more performance oriented system 

design. The survey outlined five major integrated methods used in model based performance 

analysis; Queuing Network based methodologies, process algebra based approaches, Petri Net 

based approaches, Simulation based methods and methodologies based on stochastic 

processes. Despite the five different types of approaches used, a major concern is the 

complexity of the performance models. Translating the design models into formal 

performance models requires a strong semantic mapping between the two formalisms. Even 

so, the complexity of the generated performance model may still prevent efficient 

performance analysis. Another concern highlighted in the survey is the lack of automation in 

the translation from the design model to the performance model, which could allow a system 

designer to perform the analysis and receive feedback with minimal knowledge of the 

formalism used in the analysis. 

7.3.2 Petri Nets and Performance Analysis 

While the analysis capabilities of general Petri Nets focus on the structural and behavioural 

properties of a system, the addition of time properties to the Petri Nets allows for performance 
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analysis as well. A Cycle-time analysis could be used to determine the duration for a complete 

sequence of action in the system while a tool such as CPNTools [27] can be used for 

computing the amount of time that separates two events, i.e. time between requesting access 

to a resource and getting the resource. Various Petri Net tools also provide a platform for 

other performance analysis such as average time, standard deviations, confidence intervals 

and throughput analysis as described in [28, 74]. 

 

7.3.3 Using SD2PN to allow Performance Analysis in Sequence Diagram 

The extension of SD2PN with timeliness properties as presented in Section 7.2 allows 

Sequence Diagrams annotated with time constraints to be transformed into Petri Nets. The 

inclusion of timeliness properties in SD2PN creates a platform for time sensitive analysis 

such as performance analysis to be performed on Sequence Diagrams. As established in the 

previous sections, performance analysis in Sequence Diagrams is an active area of research. 

In this section, the time enhanced SD2PN model transformation is used as a platform for 

performance analysis in Sequence Diagrams, taking advantage of the well-established 

analysis methods in Petri Nets.   

In Chapter 5, where the functionality of SD2PN was illustrated for the purpose of 

analysis, an example of the transformation process was provided. The Sequence Diagram in 

Figure 31, a representation of a Personal Area Network, was transformed via SD2PN into the 

Petri Net in Figure 32. To illustrate the introduction of time as an element in the model 

transformation, the Sequence Diagram in Figure 31is augmented with time constraints, 

resulting in the Sequence Diagram in Figure 49 (a). Using the enhanced SD2PN model 
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transformation, this Sequence Diagram is transformed into the Petri Net depicted in Figure 49 

(b). 

 

 

Figure 49: (a) Sequence Diagram for a station in PAN and (b) its equivalent Timed Petri Net 

 

The Petri Net generated via the enhanced SD2PN in Figure 49 (b) is structurally 

equivalent to the Petri Net in Figure 32; thus indicating the consistency of the model 

transformation. However, the introduction of timeliness properties into SD2PN allows 
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performance analysis to be performed in addition to the existing structural and behavioural 

analysis; time-sensitive analysis such as a cycle-time, average time, standard deviations, 

confidence intervals and throughput analysis can be performed, as described in references [28, 

74]. The focus of the performance analysis in this case is throughput analysis; this will be 

used to analyse the maximum delay for a station in the Personal Area Network.  

The maximum delay is calculated based on the time it takes for a station to gain access 

to the medium (sendPacket). The factor that contributes to the increase in waiting time is the 

number of stations. A higher number of stations will increase contention between the stations. 

This inevitably leads to a longer maximum waiting period. For the case of a single station in 

the PAN, the Petri Net would be the same as the Petri Net in Figure 49 (b). However, for 

cases where there is more than one station, the Petri Net in Figure 49 (b) would be replicated 

for each station.  The throughput analysis will compute the maximum waiting time based on 

the last station to gain access to the medium via the message ‘sendPacket’. For example, in a 

case where there are two stations trying to gain access to the medium, after registering the 

packet (firing of registerPacket transition), in Figure 49 (b), both stations will face a 

mandatory idle time of 50µs (firing of idle transition) before checking the status of the 

medium. Following that, only one station will be able to gain access to the medium while the 

other will have to wait between 120µs and 240µs (firing of waitForAccess transition), thus a 

maximum waiting time of 290µs (= 240µs + 50µs). 
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Figure 50: Maximum Waiting Time analysis result 

 

The graph in Figure 50 indicates the maximum delay that a station may face before gaining 

access to the medium to send a packet based on the throughput analysis. The number of 

stations is limited to 7 to ensure there are no collisions; this is based on the previous 

assumption that the contention window (CW) does not increase.  

In the example of the Petri Net in Figure 49 (b), the analysis performed could provide 

a basis to optimise related protocols to ensure a better performance. This provides a domain of 

interoperability from Sequence Diagrams to Petri Net allowing not only structural and 

behavioural analysis, but also performance analysis. The performance analysis is not limited 

only to throughput analysis. Various other performance analyses such as cycle-time analysis, 

average time, standard deviations, and confidence intervals analysis can also be performed.  
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CHAPTER 8 
DISCUSSION AND CONCLUSION 

This chapter concludes the work presented in this thesis. In Section 8.1, a summary of the 

contributions made in this thesis is presented. Section 8.2 presents a discussion on future work 

that could be done to expand and improve this research in the future while finally Section 8.3 

presents the implications of this research. 

8.1 Summary of Contributions 

The major contribution of this thesis is presenting the application of Multi Paradigm 

Modelling via Model Driven Development (MDD) model transformation from Sequence 

Diagrams to Petri Nets. The model transformation, SD2PN is used as a vehicle to perform 

analysis and synthesis in Sequence Diagrams using the well-defined and well-established 

analysis and synthesis methods in Petri Nets.  
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 In Chapter 2 of the thesis, an introduction to UML is presented, in particular Sequence 

Diagram. This is followed by an introduction of Petri Nets, including the various flavours of 

Petri Nets and a section on the well-studied subclass of Petri Nets; Free Choice Petri Nets. A 

review of existing Petri Net tools is also presented. This is followed by an introduction of 

Labelled Event Structures (LES) as well as the methods to translate both Sequence Diagrams 

and Petri Nets into LES. Finally a preliminary on MDD with a focus on a particular MDD 

model transformation framework, SiTra is presented. 

 The concept of Multi Paradigm Modelling is introduced in Chapter 3 where the role of 

modelling in system development is discussed together with the concept of model design, 

model analysis and model synthesis and the disparity between them. Besides providing an 

overview of how MDD model transformation, with regards to Multi Paradigm Modelling can 

be used to perform model analysis and model synthesis on a design model, this chapter also 

presents a method to overcome a weakness of Multi Paradigm Modelling which is proving 

semantic preservation between paradigms using a common semantics domain.  

 Chapter 4 presents an application of Multi Paradigm Modelling by defining a MDD 

model transformation from UML Sequence Diagrams to Petri Nets. The model 

transformation, named SD2PN, is presented in three stages; Decomposition, Transformation 

and Composition. In the Decomposition stage, a Sequence Diagram is split into multiple 

Sequence Diagram fragments based on the metamodel presented in Figure 3. In the 

Transformation stage, each Sequence Diagram fragment is transformed into an equivalent 

Petri Net block based on a set of model transformation rules which are also defined in Chapter 

4. Subsequently, in the Composition stage, the Petri Net blocks are put together using two 

local functions morph and substitute to create a Petri Net that is semantically equivalent to the 

original Sequence Diagram. Chapter 4 also presents a mathematical proof that each and every 
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Petri Net generated via SD2PN belongs to a well studied subclass of Petri Net known as Free 

Choice Petri Net. Finally, to prove that the Petri Nets generated by SD2PN via the 

aforementioned three stages are semantically equivalent to the original Sequence Diagrams, a 

proof using a common semantic domain in the form of Labelled Event Structures (LES) is 

presented followed by another proof using mathematical notations in the form of Incidence 

Matrices. 

 Chapter 5 utilizes the model transformation, SD2PN presented in Chapter 4, coupled 

with the methodology presented in Chapter 3 to analyze Sequence Diagram models using well 

established analysis methods in Petri Nets. This chapter starts with the description of various 

analysis methods available in Petri Nets followed by the advantages of using Free Choice 

Petri Nets in performing the analysis. Subsequently, a tool for automated analysis of 

Sequence Diagrams using Petri Nets is presented called SD2PN Transformer. SD2PN 

Transformer is a Java based tool that receives Sequence Diagrams in the form of XMI and 

parses the XMI data to create Java objects. The Java objects are transformed into Petri Net 

Java objects using Java code representing the SD2PN transformation algorithm and 

subsequently produced as an XML file that could be read by well-known Petri Net tools. 

Finally to illustrate the capabilities of SD2PN, an example of a Personal Area Network (PAN) 

is presented, starting from the description of the protocol and the Sequence Diagram 

representation of the protocol up to the analysis of the protocol using Petri Net analysis 

methods. 

 In Chapter 6, well established Petri Net synthesis methods are discussed followed by 

the adaptation of those synthesis methods into Sequence Diagrams. Three Sequence Diagram 

synthesis methods are introduced in this chapter; a message refinement method, a part 

decomposition method and a special case method to introduce a man-in-the-middle (MiM) 
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type of attack into a Sequence Diagram. Each synthesis method is presented together with an 

algorithm, an example of an e-commerce login system and a proof of semantic preservation.  

 The enhancement of SD2PN with timeliness properties is presented in Chapter 7. In 

this chapter, the significance of time in UML is discussed followed by a review of methods to 

integrate time into UML. Subsequently, an extension of SD2PN to support timeliness 

properties is presented including the metamodel enhancements for both Sequence Diagrams 

and Petri Nets as well as enhancements for the transformation rules. 

 As an overall reflection, this thesis contributes SD2PN – an MDD model 

transformation that serves as a basis for Multi Paradigm Modelling between the easy-to-use, 

widely accepted modelling language, UML Sequence Diagrams and a formal, mathematical 

language, Petri Nets. This model transformation then contributes towards two directions; 

analysis and synthesis of Sequence Diagrams. Finally the model transformation itself is 

enhanced to include timeliness properties allowing for a plethora of time-sensitive analysis to 

be performed. The entire research is described using various examples; ranging from the 

intentionally trivial examples to the slightly more complicated examples that could still be 

followed. However this does not mean that SD2PN can only withstand case studies with 

limited amount of elements. Based on the synthesis methods outlined in this thesis, analysis of 

large-scale Sequence Diagrams can already be performed by separately analysing aggregate 

models before synthesizing them together – achieving scalability. However, scalability in 

terms of larger Sequence Diagrams is also being studied not only with the object and message 

parameters of Sequence Diagrams, but also the number of conflicting and concurrent 

behaviours. Case studies involving real-life Sequence Diagrams are being conducted and 

evaluated and will be a core area of study for the future research together with other areas 

such as described in the following section. 
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8.2 Future Work 

This section presents the plans of the author to enhance the research further to make SD2PN a 

completely automated model interoperability framework that caters for analysis and synthesis 

of a larger range of Sequence Diagrams, including Sequence Diagrams with OCL[116] 

constraints attached. 

 The Sequence Diagram metamodel used in this research, as presented in Figure 3 is a 

subset of the UML metamodel derived from [7]. However, there are some elements that exist 

in the UML metamodel for Sequence Diagrams that has not been included in the metamodel 

used in this research; such as the Combined Fragment of type loop and negative. The loop 

operator specifies that all the messages that are a part of its operand are recurrent (looped) for 

a specified number of times based on the constraint(s) attached to it; while still preserving the 

order of causality between the messages. A loopCombined Fragment consists of only one 

operand and may contain other Combined Fragments.This operand may be transformed into 

Petri Nets by using a series of alternativeCombined Fragments to keep repeating a specific 

Petri Net block based on the condition specified in the original loop operand – however 

research is still in progress to analyze if the Petri Net block produced still preserves the 

semantics of the Sequence Diagram fragment; and if the resulting Petri Net could still be 

classified as a Free Choice Petri Net. 

 The Interaction Operatornegative in Sequence Diagrams (or abbreviated as 

neg)defines a Combined Fragment with only one operand where each sets of traces in the 

operand may not occur. Translating this operand into Petri Nets would require using a high-

level addition to Petri Nets called inhibitor arcs. Inhibitor arcs refer to arcs such as in the Petri 

Net metamodel in Figure 7; however, this arc will not fire when there are tokens in the places 
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that are its set of inputs. At present, research is still being conducted to study the effects of 

inhibitor arcs to the complexity of analysis and if correctness of the transformation could still 

be preserved. 

 Plans are also being drawn-up to enhance the SD2PN Transformer (refer section 5.4). 

At present, the tool is a Java based tool that requires input in the form of XMI (parsed through 

SDMetrics into Java objects). The tool then implements the SD2PN transformation rules and 

generates Petri Nets in the form of Java objects which are later written into XML that could 

be read by Petri Net tools. In the future, the author aims to migrate the tool into Eclipse 

Modelling Framework [171] to create an integrated toolset that could be used to create (or 

import) Sequence Diagrams, perform the transformation, conduct Petri Net analysis, and 

finally produce a report for the system designer. The tool development plan also includes a 

module for automated tool-based synthesis of Sequence Diagrams using the algorithms 

presented in this thesis; as well as the potential to add to the number of algorithms. 

 The synthesis techniques presented in this thesis adopted the top-down synthesis 

method to create a message refinement algorithm, and presented two specific cases where 

bottom-up synthesis method may be adopted in Sequence Diagrams. However, as discussed in 

Section 6.2, there are various other methods of synthesis in Petri Nets. Research is still in 

progress to determine which synthesis methods in Petri Nets could be adopted in Sequence 

Diagrams. Research is also being conducted to produce a generic way that all synthesis 

methods in Petri Net could be adopted seamlessly in Sequence Diagrams. One approach for 

seamless adoption of synthesis methods is through a bi-directional model transformation 

between Sequence Diagrams and Petri Nets where synthesis could be performed in Petri Nets 

and the results transformed back into Sequence Diagrams. However this could be complicated 

since the Petri Net language is more expressive that Sequence Diagrams. 
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 Finally, the author is also in process of enhancing the Sequence Diagram metamodel 

used in the SD2PN model transformation to include OCL constraints. OCL is a text-based 

language that uses first-order logic statements to provide constraints of the model elements in 

UML. Translating these constraints into Petri Nets requires a higher level of Petri Nets that 

could analyse logical statements – Coloured Petri Nets [74]. The enhanced model 

transformation will preserve all the results of SD2PN (i.e. Free Choice Petri Nets, semantic 

preservation) but with an added capability to analyse logic as well as structure, behaviour and 

performance. 
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APPENDIX A 
TRANSFORMING SEQUENCE 

DIAGRAM FRAGMENTS AND PETRI 
NET BLOCKS FROM SD2PN 

TRANSFORMATION RULES INTO LES 

A.1 Sequence Diagram Fragments to LES 

The translation of the Sequence Diagram fragments from the SD2PN transformation rules are 

based on the outline presented in Section 2.3.1 using the semantic mapping by [40]. 

Message 

In Sequence Diagrams, the fragment message is described by two events; e1 the event that 

describes the sending of the message, and e2 that describes the receiving of the message. 

Since both events are causal, and belong to the same scope (this is true for any case since 
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messages are horizontal and there can never be a scenario that the sending and receiving 

events of a message exist under different scopes). This results in the LES in Figure 26. 

Alternative 

For the Sequence Diagram fragment alternative, the fragment has an initial location l1 that 

represents the beginning of the fragment. Since the SD2PN transformation rules signifies two 

operands in the alternative fragment, there are 2 scopes; alt(2)#1 and alt(2)#2. Signifying the 

end of the alternative fragment is the location l2. There is only one alt_loc for location l1 

since there are no choices or concurrencies; as such the event e1 is the starting point of the 

LES. In location l2 however, there are two possible alt_loc since the alternative fragment 

produces two different scenarios. As such, the location l2produces two events e2and e3. Since 

e2 and e3

Figure 26

 are conflicting events, where there are no sets of execution traces that contain both 

events; the symbol ‘#´ is placed in between the events denoting conflicting behaviour. After 

the addition of placeholders to represent the placeholders in Sequence Diagrams, the resulting 

LES is presented in . 

Option 

The option fragment is semantically equivalent to the alternative fragment as discussed in 

Section 4.1.2.3. As such, the transformation is similar to the transformation of alternative 

fragments. 



164 
 

Break 

The break fragment also has a similar construct to the alternative fragment, but with just one 

placeholder. It still consist of two locations l1 and l2 where l1 has an alt_loc of 1 and l2 has an 

alt_loc of 2 – generating two conflicting events e2and e3 Figure 26 as presented in . 

Parallel 

In Sequence Diagrams, a parallel fragment has an initial location l1. This location signifies 

the beginning of the fragment. Inside the fragment, there are 2 scopes; par(2)#1 and par(2)#2 

as described in Section 2.3. These scopes represent the parallel events that occur inside the 

fragment. After the execution of these events, a location l2 signifies the end of the fragment. 

Since both l1 and l2 has an alt_loc of 1, there is only 1 event to represent each these locations, 

e1 and e2 such that e1 forks into the 2 scopes of events and merge into e2

Figure 26

. This creates an LES 

as shown in . 

A.2 Petri Net Blocks to LES 

The translation of Petri Net blocks into LES makes use of the unfolding method presented in 

[41] as presented in Section 2.3.2. 
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Message 

The unfolding of the Petri Net block representing message is straight-forward where there are 

two states in the Petri Net in form of places s1 and s2

Figure 26

. The causal relationship between the 

places ensures the LES as presented in . 

Alternative 

The Petri Net block that represents the fragment alternative begins with a state represented by 

the place s1, creating e1 in the LES. However, the conflict represented by the two outgoing 

arcs from s1

Figure 26

 signifies two conflicting events in the LES. As the placeholders are added to the 

LES to match the Petri Net, the resulting LES is presented in . 

Option 

This unfolding is similar to alternative. 

Break 

This unfolding is similar to alternative but with one placeholder. 

Parallel 

In the block of Petri Net representing parallel, it starts with a place s1 and ends with a place 

s2. They can be represented as events e1 and e2 respectively with e1 forking out into the 

placeholders and merging at e2 Figure 26. This results in the LES representation in . 
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APPENDIX B 
SOURCE CODE FOR SD2PN 

TRANSFORMER 

 

 

package csv.parser; 
 
import sequencediagram.*; 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.regex.Matcher; 
import java.util.regex.Pattern; 
import javax.swing.JFileChooser; 
import javax.swing.filechooser.FileFilter; 
 
public class CSVParser { 
 
    private JFileChooser fileChooser; 
    private File[] files; 
    private int status = JFileChooser.CANCEL_OPTION; 
    private ArrayList<String[]> data; 
 
    public CSVParser() { 
 
        data = new ArrayList<String[]>(); 
        //("D:/Summer Project/Ariff"); 
        fileChooser = new JFileChooser("C:/Documents and Settings/Ben Sab/My 
Documents/University of Birmingham/MSc Advanced Computer Science/Summer 
Project/Ariff"); 
        fileChooser.setAcceptAllFileFilterUsed(false); 
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        FileFilter filter1 = new ExtensionFileFilter("CSV files", "CSV"); 
        fileChooser.setFileFilter(filter1); 
 
        fileChooser.setDialogTitle("Open CSV files"); 
        fileChooser.setMultiSelectionEnabled(true); 
 
        status = fileChooser.showOpenDialog(null); 
 
        if (status == JFileChooser.APPROVE_OPTION) { 
            files = fileChooser.getSelectedFiles(); 
        } else { 
            System.exit(0); 
        } 
 
        parse(); 
 
    } 
 
    public final File[] getFiles() { 
        return files; 
    } 
 
    public final boolean isFileSelected(String fileName) { 
 
        for (int i = 0; i < getFiles().length; i++) { 
            if (getFiles()[i].getName().contains(fileName)) { 
                return true; 
            } 
        } 
 
        return false; 
 
    } 
 
    private final void parse() { 
 
        if (files.length != 0) { 
 
            try { 
 
                for (int i = 0; i < files.length; i++) { 
 
                    BufferedReader reader = new BufferedReader(new 
FileReader(files[i])); 
 
                    data.add(new String[]{files[i].getName()}); 
 
                    String line; 
                    String[] columns; 
 
                    while ((line = reader.readLine()) != null) { 
                        if (line.contains("[")) { 
 
                            Pattern pattern = Pattern.compile("\\[[^\\]]*\\]"); 
                            Matcher matcher = pattern.matcher(line); 
 
                            while (matcher.find()) { 
                                line = line.replaceFirst("\\[[^\\]]*\\]", 
matcher.group().substring(1, matcher.group().length() - 1).replace(",", ";")); 
                            } 
 
                        } 
                        line += " "; 
                        columns = line.split(","); 
                        data.add(columns); 



168 
 

                    } 
 
                } 
 
            } catch (IOException ioe) { 
                System.out.println(ioe.getMessage()); 
            } 
 
        } 
 
    } 
 
    public final ArrayList<String[]> getAllData() { 
        return data; 
    } 
 
    public final ArrayList<String> getColumnInFile(String fileName, int 
columnNumber) { 
 
        ArrayList<String> result = new ArrayList<String>(); 
 
        int err = 0; 
 
        if (files.length != 0 && data.size() > 0) { 
 
            try { 
 
                for (int i = 0; i < data.size(); i++) { 
                    if (data.get(i)[0].contains(fileName)) { 
                        for (int j = i + 1; j < data.size(); j++) { 
                            if (data.get(j)[0].endsWith(".csv")) { 
                                break; 
                            } 
                            result.add(data.get(j)[columnNumber]); 
                        } 
                        break; 
                    } 
                } 
 
                if (result.size() == 0) { 
                    System.err.println("The file: '" + fileName + "' was not 
imported."); 
                    err = -1; 
                } 
 
                return result; 
 
            } catch (ArrayIndexOutOfBoundsException aioobe) { 
                System.err.println("Column number does not exist."); 
                err = -1; 
            } 
 
        } 
 
        if (err == 0 && result.size() == 0) { 
            System.err.println("The file: '" + fileName + "' is either empty or no 
files have been imported."); 
        } 
 
        return result; 
 
    } 
 
    public final ArrayList<String> getColumnInFile(String fileName, String 
columnName) { 
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        ArrayList<String> result = new ArrayList<String>(); 
 
        int err = 0; 
 
        if (files.length != 0 && data.size() > 0) { 
 
            try { 
 
                for (int i = 0; i < data.size(); i++) { 
                    if (data.get(i)[0].contains(fileName)) { 
                        int columnNumber = -1; 
                        for (int j = i + 1; j < data.size(); j++) { 
                            if (j == i + 1) { 
                                for (int z = 0; z < data.get(j).length; z++) { 
                                    if (data.get(j)[z].trim().equals(columnName)) { 
                                        columnNumber = z; 
                                        break; 
                                    } 
                                } 
                                if (columnNumber == -1) { 
                                    System.err.println("The column: '" + columnName 
+ "' does not exist in the file: '" + fileName + "'."); 
                                    err = -1; 
                                    break; 
                                } 
                                j++; 
                            } 
                            if (data.get(j)[0].endsWith(".csv")) { 
                                break; 
                            } 
                            result.add(data.get(j)[columnNumber]); 
                        } 
                        break; 
                    } 
                } 
 
                if (err == 0 && result.size() == 0) { 
                    System.err.println("The file: '" + fileName + "' was not 
imported."); 
                    err = -1; 
                } 
 
                return result; 
 
            } catch (ArrayIndexOutOfBoundsException aioobe) { 
                System.err.println("Column number does not exist."); 
                err = -1; 
            } 
 
        } 
 
        if (err == 0 && result.size() == 0) { 
            System.err.println("The file: '" + fileName + "' is either empty or no 
files have been imported."); 
        } 
 
        return result; 
 
    } 
 
    public final ArrayList<String[]> getFileData(String fileName) { 
 
        ArrayList<String[]> result = new ArrayList<String[]>(); 
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        if (files.length != 0 && data.size() > 0) { 
 
            for (int i = 0; i < data.size(); i++) { 
                if (data.get(i)[0].contains(fileName)) { 
                    for (int j = i + 1; j < data.size(); j++) { 
                        if (data.get(j)[0].endsWith(".csv")) { 
                            break; 
                        } 
                        result.add(data.get(j)); 
                    } 
                    break; 
                } 
            } 
 
            if (result.size() == 0) { 
                System.err.println("The file: '" + fileName + "' was not 
imported."); 
            } 
 
            return result; 
 
        } 
 
        System.err.println("The file: '" + fileName + "' is empty or no files have 
been imported."); 
 
        return result; 
    } 
 
    public final ArrayList<EventOccurrence> getEventOccurences() { 
        ArrayList<EventOccurrence> events = new ArrayList<EventOccurrence>(); 
 
        if (isFileSelected("_occurrencespec.csv")) { 
 
            ArrayList<String> id = getColumnInFile("_occurrencespec.csv", "id"); 
            ArrayList<String> context = getColumnInFile("_occurrencespec.csv", 
"context"); 
 
            for (int i = 0; i < id.size(); i++) { 
                EventOccurrence event = new EventOccurrence(id.get(i), 
context.get(i), i); 
                events.add(event); 
            } 
 
        } else { 
            System.err.println("The following file was not imported: 
'_occurrencespec.csv'."); 
        } 
 
        return events; 
    } 
 
    public final ArrayList<CombinedFragments> getCombinedFragments() { 
        ArrayList<CombinedFragments> combinedFragments = new 
ArrayList<CombinedFragments>(); 
 
        if (isFileSelected("_combinedfragment.csv")) { 
 
            ArrayList<String> id = getColumnInFile("_combinedfragment.csv", "id"); 
            ArrayList<String> context = getColumnInFile("_combinedfragment.csv", 
"context"); 
            ArrayList<String> operator = getColumnInFile("_combinedfragment.csv", 
"operator"); 
            ArrayList<String> operands = getColumnInFile("_combinedfragment.csv", 
"operands"); 
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            for (int i = 0; i < id.size(); i++) { 
                int op = -1; 
                if (operator.get(i).equals("alt")) { 
                    op = InteractionOperatorKind.ALT; 
                } else if (operator.get(i).equals("break")) { 
                    op = InteractionOperatorKind.BREAK; 
                } else if (operator.get(i).equals("opt")) { 
                    op = InteractionOperatorKind.OPT; 
                } else if (operator.get(i).equals("par")) { 
                    op = InteractionOperatorKind.PAR; 
                } 
                CombinedFragments combinedFragment = new 
CombinedFragments(id.get(i), context.get(i), op, operands.get(i)); 
                combinedFragments.add(combinedFragment); 
            } 
 
        } else { 
            System.err.println("The following file was not imported: 
'_combinedfragment.csv'."); 
        } 
 
        return combinedFragments; 
    } 
 
    public final ArrayList<Lifeline> getLifeline() { 
        ArrayList<Lifeline> lifelines = new ArrayList<Lifeline>(); 
 
        if (isFileSelected("_lifeline.csv")) { 
 
            ArrayList<String> id = getColumnInFile("_lifeline.csv", "id"); 
            ArrayList<String> name = getColumnInFile("_lifeline.csv", "name"); 
            ArrayList<String> context = getColumnInFile("_lifeline.csv", 
"context"); 
 
            for (int i = 0; i < id.size(); i++) { 
                Lifeline lifeline = new Lifeline(id.get(i), name.get(i), 
context.get(i)); 
                lifelines.add(lifeline); 
            } 
 
        } else { 
            System.err.println("The following file was not imported: 
'_lifeline.csv'."); 
        } 
 
        return lifelines; 
    } 
 
    public final ArrayList<Message> getMessages(ArrayList<EventOccurrence> events) 
{ 
 
        ArrayList<Message> messages = new ArrayList<Message>(); 
 
        if (isFileSelected("_message.csv") && 
isFileSelected("_occurrencespec.csv")) { 
            ArrayList<String> id = getColumnInFile("_message.csv", "id"); 
            ArrayList<String> label = getColumnInFile("_message.csv", "name"); 
            ArrayList<String> context = getColumnInFile("_message.csv", "context"); 
            ArrayList<String> sendEvent = getColumnInFile("_message.csv", 
"sendevent"); 
            ArrayList<String> receiveEvent = getColumnInFile("_message.csv", 
"receiveevent"); 
            for (int i = 0; i < id.size(); i++) { 
                EventOccurrence send = null; 
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                EventOccurrence receive = null; 
 
                boolean sendFound = false; 
                boolean receiveFound = false; 
                for (int j = 0; j < events.size(); j++) { 
                    if (sendFound && receiveFound) { 
                        break; 
                    } 
                    if (sendEvent.get(i).equals(events.get(j).getID())) { 
                        send = events.get(j); 
                        sendFound = true; 
                    } else if (receiveEvent.get(i).equals(events.get(j).getID())) { 
                        receive = events.get(j); 
                        receiveFound = true; 
                    } 
                } 
                if (send == null || receive == null) { 
                    // There are one or more errors in the files 
                    System.err.println("getMessages: There are one or more errors 
in the files - events not found"); 
                } else { 
                    Message msg = new Message(id.get(i), label.get(i), 
context.get(i), send, receive); 
                    messages.add(msg); 
                } 
            } 
        } else { 
            System.err.println("Some of the following files were not imported: 
'_occurrencespec.csv', '_message.csv'."); 
        } 
 
        return messages; 
 
    } 
 
    public static void main(String[] args) { 
 
        CSVParser parser = new CSVParser(); 
        ArrayList<EventOccurrence> events = parser.getEventOccurences(); 
        ArrayList<Message> messages = parser.getMessages(events); 
        ArrayList<CombinedFragments> combinedfrags = parser.getCombinedFragments(); 
        ArrayList<Lifeline> lifelines = parser.getLifeline(); 
 
        for (int i = 0; i < messages.size(); i++) { 
            System.out.println("Message name: " + messages.get(i).getLabel()); 
            System.out.println("Message ID: " + messages.get(i).getID()); 
            System.out.println("    Send-Event ID: " + 
messages.get(i).getSendEvent().getID()); 
            System.out.println("    Receive-Event ID: " + 
messages.get(i).getReceiveEvent().getID()); 
        } 
 
        System.out.println("------------------------"); 
        for (int i = 0; i < lifelines.size(); i++) { 
            System.out.println("Lifeline name: " + lifelines.get(i).getName()); 
            System.out.println("Lifeline ID: " + lifelines.get(i).getID()); 
        } 
 
        System.out.println("------------------------"); 
        for (int i = 0; i < combinedfrags.size(); i++) { 
            System.out.println("CombinedFragment ID: " + 
combinedfrags.get(i).getID()); 
            System.out.println("CombinedFragment No. of Fragments: " + 
combinedfrags.get(i).getNumberOfFragments()); 
        } 
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        System.out.println("------------------------"); 
        Interaction interaction = new Interaction(lifelines, messages, events, 
combinedfrags); 
 
        for (int i = 0; i < interaction.getEventOccurrences().size(); i++) { 
            for (int j = 0; j < interaction.getMessages().size(); j++) { 
                if 
(interaction.getMessage(j).getReceiveEvent().getID().equals(interaction.getEventOcc
urrence(i).getID())) { 
                    System.out.println("Receiver: " + 
interaction.getMessage(j).getLabel()); 
                } else if 
(interaction.getMessage(j).getSendEvent().getID().equals(interaction.getEventOccurr
ence(i).getID())) { 
                    System.out.println("Sender: " + 
interaction.getMessage(j).getLabel()); 
                } 
            } 
        } 
    } 
 
    class ExtensionFileFilter extends FileFilter { 
 
        String description; 
        String extensions[]; 
 
        public ExtensionFileFilter(String description, String extension) { 
            this(description, new String[]{extension}); 
        } 
 
        public ExtensionFileFilter(String description, String extensions[]) { 
            if (description == null) { 
                this.description = extensions[0]; 
            } else { 
                this.description = description; 
            } 
            this.extensions = (String[]) extensions.clone(); 
            toLower(this.extensions); 
        } 
 
        private void toLower(String array[]) { 
            for (int i = 0, n = array.length; i < n; i++) { 
                array[i] = array[i].toLowerCase(); 
            } 
        } 
 
        public String getDescription() { 
            return description; 
        } 
 
        public boolean accept(File file) { 
            if (file.isDirectory()) { 
                return true; 
            } else { 
                String path = file.getAbsolutePath().toLowerCase(); 
                for (int i = 0, n = extensions.length; i < n; i++) { 
                    String extension = extensions[i]; 
                    if ((path.endsWith(extension) && (path.charAt(path.length() - 
extension.length() - 1)) == '.')) { 
                        return true; 
                    } 
                } 
            } 
            return false; 
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        } 
    } 
} 
 
package csv.parser; 
 
import java.util.ArrayList; 
import javax.swing.JFrame; 
import petrinet.*; 
import sequencediagram.*; 
import sitra.*; 
 
public class SD2PN { 
 
    private Transformer transformer; 
 
    public SD2PN(Transformer transformer) { 
        this.transformer = transformer; 
    } 
 
    public ArrayList<PetriNet> createPetriNets(Interaction interaction) { 
        ArrayList<PetriNet> petriArray = new ArrayList<PetriNet>(); 
 
        for (int j = 0; j < interaction.getEventOccurrences().size(); j++) { 
            for (int i = 0; i < interaction.getMessages().size(); i++) { 
                if 
(interaction.getEventOccurrence(j).getID().equals(interaction.getMessage(i).getSend
Event().getID()) || 
                        
interaction.getEventOccurrence(j).getID().equals(interaction.getMessage(i).getRecei
veEvent().getID())) { 
                    if (!interaction.getMessage(i).getLabel().trim().equals("")) { 
                        petriArray.add((PetriNet) 
transformer.transform(interaction.getMessage(i))); 
                    } 
                    j++; 
                } 
            } 
        } 
 
        for (int i = 0; i < interaction.getCombinedFragments().size(); i++) { 
            petriArray.add((PetriNet) 
transformer.transform(interaction.getCombinedFragment(i))); 
        } 
 
        // the next line should be modified because the first message might be in a 
placeholder 
        petriArray.get(0).getPlace(0).setMark(new Mark(1)); 
 
        return petriArray; 
    } 
 
    public PetriNet morphAndSubstitute(ArrayList<PetriNet> petrinets, Interaction 
interaction) { 
 
        // STEP 1 
        for (int i = 1; i < petrinets.size(); i++) { 
            if (petrinets.get(i).getName().trim().equals("") && 
                    petrinets.get(i - 1).getName().trim().equals("") && 
                    petrinets.get(i).getContext().trim().equals(petrinets.get(i - 
1).getContext().trim())) { 
 
                morph(petrinets.get(i - 1), petrinets.get(i)); 
                petrinets.remove(i - 1); 
                i--; 
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            } 
        } 
 
        // STEP 2 
        for (int i = 0; i < petrinets.size(); i++) { 
            if (petrinets.get(i).hasPlaceHolder()) { 
                for (int j = 0; j < petrinets.get(i).getPlaceHolders().size(); j++) 
{ 
                    // in the next line the condition (k < i) is assuming that  
                    // the messages are added first and then the combined 
fragments. 
                    for (int k = 0; k < i; k++) { 
                        if (petrinets.get(k).getName().trim().equals("") && 
                                
petrinets.get(i).getPlaceHolder(j).getID().trim().equals(petrinets.get(k).getContex
t().trim())) { 
                            substitute(petrinets.get(i), petrinets.get(k)); 
                            petrinets.remove(petrinets.get(k)); 
                            i--; 
                            j--; 
                            break; 
                        } 
                    } 
                } 
            } 
        } 
 
        // STEP 3 
        // this case has yet to be tested 
        for (int i = 0; i < petrinets.size(); i++) { 
            for (int j = 0; j < petrinets.size(); j++) { 
                if (petrinets.get(i).hasPlaceHolder() && i != j && 
!petrinets.get(i).getName().trim().equals("") && 
!petrinets.get(j).getName().trim().equals("")) { 
                    if 
(petrinets.get(i).getID().trim().equals(petrinets.get(j).getContext().trim())) { 
                        substitute(petrinets.get(i), petrinets.get(j)); 
                        petrinets.remove(petrinets.get(j)); 
                        i = 0; 
                        break; 
                    } 
                } 
            } 
        } 
 
        // STEP 4 
        for (int i = 0; i < petrinets.size(); i++) { 
            if (i + 1 < petrinets.size()) { 
                morph(petrinets.get(i), petrinets.get(i + 1)); 
                petrinets.remove(i); 
                i--; 
            } 
        } 
 
        return petrinets.get(0); 
 
    } 
 
    public PetriNet morph(PetriNet pn1, PetriNet pn2) { 
        boolean noErr = false; 
        Place last = pn1.getLastPlace(); 
        ArrayList<Arc> all = pn2.getAllArcs(pn2.getFirstPlace()); 
        for (int i = 0; i < all.size(); i++) { 
            all.get(i).setPlace(last); 
            noErr = true; 
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        } 
        if (noErr) { 
            pn2.removePlace(pn2.getPlace(0)); 
            pn2.addArcs(pn1.getArcs()); 
            pn2.addPlaces(pn1.getPlaces()); 
            pn2.addTransitions(pn1.getTransitions()); 
            pn2.addPlaceHolders(pn1.getPlaceHolders()); 
        } 
        return pn2; 
    } 
 
    public PetriNet substitute(PetriNet cf, PetriNet pn) { 
        if (cf != null && pn != null) { 
            if (cf.hasPlaceHolder()) { 
                for (int i = 0; i < cf.getPlaceHolders().size(); i++) { 
                    if 
(cf.getPlaceHolder(i).getID().trim().equals(pn.getContext().trim())) { 
                        boolean in = false; 
                        boolean out = false; 
                        for (int j = 0; j < cf.getArcs().size(); j++) { 
                            if (cf.getArc(j).hasPlaceHolder() && 
cf.getArc(j).getPlaceHolder().equals(cf.getPlaceHolder(i))) { 
                                if (cf.getArc(j).getDirection() == 
Arc.TRANSITION_TO_PLACEHOLDER) { 
                                    cf.getArc(j).setPlace(pn.getPlace(0)); 
                                    
cf.getArc(j).setDirection(Arc.TRANSITION_TO_PLACE); 
                                    in = true; 
                                } else { 
                                    
cf.getArc(j).setPlace(pn.getPlace(pn.getPlaces().size() - 1)); 
                                    
cf.getArc(j).setDirection(Arc.PLACE_TO_TRANSITION); 
                                    out = true; 
                                } 
                            } 
                            if (in && out) { 
                                cf.removePlaceHolder(cf.getPlaceHolder(i)); 
                                cf.removePlace(cf.getArc(j).getPlace()); 
                                cf.addArcs(pn.getArcs()); 
                                cf.addPlaces(pn.getPlaces()); 
                                cf.addTransitions(pn.getTransitions()); 
                                cf.addPlaceHolders(pn.getPlaceHolders()); 
                                return cf; 
                            } 
                        } 
                        break; 
                    } 
                } 
                return null; 
            } else { 
                System.err.println("SD2PN: SUBSTITUTE: No PlaceHolder in the given 
PetriNet."); 
                return null; 
            } 
        } else { 
            System.err.println("SD2PN: SUBSTITUTE: NullPointerException."); 
            return null; 
        } 
    } 
 
    public static void main(String[] args) { 
 
        CSVParser parser = new CSVParser(); 
        ArrayList<EventOccurrence> events = parser.getEventOccurences(); 
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        ArrayList<Message> messages = parser.getMessages(events); 
        ArrayList<CombinedFragments> combinedfrags = parser.getCombinedFragments(); 
        ArrayList<Lifeline> lifelines = parser.getLifeline(); 
        Interaction interaction = new Interaction(lifelines, messages, events, 
combinedfrags); 
 
        ArrayList<Class<? extends Rule>> rules = new ArrayList<Class<? extends 
Rule>>(); 
        rules.add(Rule1.class); 
        rules.add(Rule2.class); 
        rules.add(Rule3.class); 
        rules.add(Rule4.class); 
        rules.add(Rule5.class); 
 
        SD2PN sd2pn = new SD2PN(new SimpleTransformerImpl(rules)); 
 
        PetriNet petrinet = 
sd2pn.morphAndSubstitute(sd2pn.createPetriNets(interaction), interaction); 
 
        for (int j = 0; j < petrinet.getArcs().size(); j++) { 
            System.out.println("Place: " + 
petrinet.getArc(j).getPlace().toString().substring(petrinet.getArc(j).getPlace().to
String().indexOf("@") + 1) + (petrinet.getArc(j).getDirection() == 
Arc.PLACE_TO_TRANSITION ? " ---> " : " <--- ") + "Transition: " + 
petrinet.getArc(j).getTransition().getName()); 
        } 
 
    } 
} 
 
package petrinet; 
 
public class Arc { 
 
    public static final int TRANSITION_TO_PLACE = 0; 
    public static final int PLACE_TO_TRANSITION = 1; 
    public static final int PLACEHOLDER_TO_TRANSITION = 2; 
    public static final int TRANSITION_TO_PLACEHOLDER = 3; 
    private Place place; 
    private PlaceHolder placeHolder; 
    private Transition transition; 
    private int direction; 
 
    public Arc(Place place, Transition transition, int direction) { 
        this.place = place; 
        this.transition = transition; 
        this.direction = direction; 
        this.placeHolder = null; 
    } 
 
    public Arc(PlaceHolder placeHolder, Transition transition, int direction) { 
        this.placeHolder = placeHolder; 
        this.transition = transition; 
        this.direction = direction; 
        this.place = null; 
    } 
 
    public boolean hasPlaceHolder() { 
        return (placeHolder != null); 
    } 
 
    public Place getPlace() { 
        return place; 
    } 
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    public PlaceHolder getPlaceHolder() { 
        return placeHolder; 
    } 
 
    public Transition getTransition() { 
        return transition; 
    } 
 
    public int getDirection() { 
        return direction; 
    } 
 
    public void removePlaceHolder() { 
        placeHolder = null; 
    } 
 
    public void setPlace(Place newPlace) { 
        this.place = newPlace; 
        removePlaceHolder(); 
    } 
 
    public void setTransition(Transition newTransition) { 
        this.transition = newTransition; 
    } 
 
    public void setDirection(int newDirection) { 
        this.direction = newDirection; 
    } 
} 
 
package petrinet; 
 
public class Mark { 
 
    private int numberOfTokens; 
 
    public Mark(int numberOfTokens) { 
        this.numberOfTokens = numberOfTokens; 
    } 
 
    public void removeTokens(int number) { 
        if (numberOfTokens >= number) { 
            numberOfTokens -= number; 
        } 
    } 
 
    public void addTokens(int number) { 
        numberOfTokens += number; 
    } 
 
    public void clearTokens() { 
        numberOfTokens = 0; 
    } 
} 
 
package petrinet; 
 
import java.util.ArrayList; 
 
public class PetriNet { 
 
    private ArrayList<Place> places; 
    private ArrayList<PlaceHolder> placeHolders; 
    private ArrayList<Transition> transitions; 
    private ArrayList<Arc> arcs; 
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    private ArrayList<Marking> markings; 
    private String context; 
    private String id; 
    private String name; 
 
    public PetriNet(String fragmentContext, String fragmentID, String fragmentName) 
{ 
        places = new ArrayList<Place>(); 
        placeHolders = new ArrayList<PlaceHolder>(); 
        transitions = new ArrayList<Transition>(); 
        arcs = new ArrayList<Arc>(); 
        markings = new ArrayList<Marking>(); 
        context = fragmentContext; 
        id = fragmentID; 
        name = fragmentName; 
    } 
 
    public boolean addPlace(Place newPlace) { 
        if (newPlace != null) { 
            for (int i = 0; i < places.size(); i++) { 
                if (newPlace.equals(places.get(i))) { 
                    return false; 
                } 
            } 
            places.add(newPlace); 
            return true; 
        } 
        return false; 
    } 
 
    public void addPlaces(ArrayList<Place> newPlaces) { 
        for (int i = 0; i < newPlaces.size(); i++) { 
            addPlace(newPlaces.get(i)); 
        } 
    } 
 
    public boolean addPlaceHolder(PlaceHolder newPlaceHolder) { 
        if (newPlaceHolder != null) { 
            for (int i = 0; i < placeHolders.size(); i++) { 
                if (newPlaceHolder.equals(placeHolders.get(i))) { 
                    return false; 
                } 
            } 
            placeHolders.add(newPlaceHolder); 
            return true; 
        } 
        return false; 
    } 
 
    public void addPlaceHolders(ArrayList<PlaceHolder> newPlaceHolders) { 
        for (int i = 0; i < newPlaceHolders.size(); i++) { 
            addPlaceHolder(newPlaceHolders.get(i)); 
        } 
    } 
 
    public boolean addTransition(Transition newTransition) { 
        if (newTransition != null) { 
            for (int i = 0; i < transitions.size(); i++) { 
                if (newTransition.getName().equals(transitions.get(i).getName())) { 
                    return false; 
                } 
            } 
            transitions.add(newTransition); 
            return true; 
        } 
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        return false; 
    } 
 
    public void addTransitions(ArrayList<Transition> newTransitions) { 
        for (int i = 0; i < newTransitions.size(); i++) { 
            addTransition(newTransitions.get(i)); 
        } 
    } 
 
    public void addArc(Arc newArc) { 
        arcs.add(newArc); 
        if (!newArc.hasPlaceHolder()) { 
            addPlace(arcs.get(arcs.size() - 1).getPlace()); 
        } else { 
            addPlaceHolder(arcs.get(arcs.size() - 1).getPlaceHolder()); 
        } 
        addTransition(arcs.get(arcs.size() - 1).getTransition()); 
    } 
 
    public void addArcs(ArrayList<Arc> newArcs) { 
        for (int i = 0; i < newArcs.size(); i++) { 
            addArc(newArcs.get(i)); 
        } 
    } 
 
    public void addMarking(Marking newMarking) { 
        markings.add(newMarking); 
    } 
 
    /** This method has a meaning if the petrinet has only one starting place and 
one ending place */ 
    public Place getFirstPlace() { 
        for (int i = 0; i < places.size(); i++) { 
            ArrayList<Arc> input = getInputArcs(places.get(i)); 
            if (input.size() == 0) { 
                return places.get(i); 
            } 
        } 
        return null; 
    } 
 
    /** This method has a meaning if the petrinet has only one starting place and 
one ending place */ 
    public Place getLastPlace() { 
        for (int i = 0; i < places.size(); i++) { 
            ArrayList<Arc> output = getOutputArcs(places.get(i)); 
            if (output.size() == 0) { 
                return places.get(i); 
            } 
        } 
        return null; 
    } 
 
    public ArrayList<Arc> getAllArcs(Place place) { 
        ArrayList<Arc> all = new ArrayList<Arc>(); 
 
        for (int i = 0; i < arcs.size(); i++) { 
            if (arcs.get(i).getPlace().equals(place)) { 
                all.add(arcs.get(i)); 
            } 
        } 
 
        return all; 
    } 
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    public ArrayList<Arc> getInputArcs(Place place) { 
        ArrayList<Arc> all = new ArrayList<Arc>(); 
 
        for (int i = 0; i < arcs.size(); i++) { 
            if (arcs.get(i).getPlace().equals(place) && arcs.get(i).getDirection() 
== Arc.TRANSITION_TO_PLACE) { 
                all.add(arcs.get(i)); 
            } 
        } 
 
        return all; 
    } 
 
    public ArrayList<Arc> getOutputArcs(Place place) { 
        ArrayList<Arc> all = new ArrayList<Arc>(); 
 
        for (int i = 0; i < arcs.size(); i++) { 
            if (arcs.get(i).getPlace().equals(place) && arcs.get(i).getDirection() 
== Arc.PLACE_TO_TRANSITION) { 
                all.add(arcs.get(i)); 
            } 
        } 
 
        return all; 
    } 
 
    public ArrayList<Arc> getAllArcs(Transition t) { 
        ArrayList<Arc> all = new ArrayList<Arc>(); 
 
        for (int i = 0; i < arcs.size(); i++) { 
            if (arcs.get(i).getTransition().equals(t)) { 
                all.add(arcs.get(i)); 
            } 
        } 
 
        return all; 
    } 
 
    public ArrayList<Arc> getInputArcs(Transition t) { 
        ArrayList<Arc> all = new ArrayList<Arc>(); 
 
        for (int i = 0; i < arcs.size(); i++) { 
            if (arcs.get(i).getTransition().equals(t) && 
(arcs.get(i).getDirection() == Arc.PLACE_TO_TRANSITION || 
arcs.get(i).getDirection() == Arc.PLACEHOLDER_TO_TRANSITION)) { 
                all.add(arcs.get(i)); 
            } 
        } 
 
        return all; 
    } 
 
    public ArrayList<Arc> getOutputArcs(Transition t) { 
        ArrayList<Arc> all = new ArrayList<Arc>(); 
 
        for (int i = 0; i < arcs.size(); i++) { 
            if (arcs.get(i).getTransition().equals(t) && 
(arcs.get(i).getDirection() == Arc.TRANSITION_TO_PLACE || 
arcs.get(i).getDirection() == Arc.TRANSITION_TO_PLACEHOLDER)) { 
                all.add(arcs.get(i)); 
            } 
        } 
 
        return all; 
    } 
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    public Place getPlace(int index) { 
        return places.get(index); 
    } 
 
    public PlaceHolder getPlaceHolder(int index) { 
        return placeHolders.get(index); 
    } 
 
    public Transition getTransition(int index) { 
        return transitions.get(index); 
    } 
 
    public Arc getArc(int index) { 
        return arcs.get(index); 
    } 
 
    public Marking getMarking(int index) { 
        return markings.get(index); 
    } 
 
    public ArrayList<Place> getPlaces() { 
        return places; 
    } 
 
    public ArrayList<PlaceHolder> getPlaceHolders() { 
        return placeHolders; 
    } 
 
    public ArrayList<Transition> getTransitions() { 
        return transitions; 
    } 
 
    public ArrayList<Arc> getArcs() { 
        return arcs; 
    } 
 
    public ArrayList<Marking> getMarkings() { 
        return markings; 
    } 
 
    public String getContext() { 
        return context; 
    } 
 
    public String getID() { 
        return id; 
    } 
 
    public String getName() { 
        return name; 
    } 
 
    public boolean hasPlaceHolder() { 
        return !placeHolders.isEmpty(); 
    } 
 
    public void setContext(String context) { 
        this.context = context; 
    } 
 
    public void setID(String id) { 
        this.id = id; 
    } 
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    public void setName(String name) { 
        this.name = name; 
    } 
 
    public void removePlace(Place place) { 
        places.remove(place); 
    } 
 
    public void removePlaceHolder(PlaceHolder placeHolder) { 
        placeHolders.remove(placeHolder); 
    } 
 
    public void removeTransitions(Transition transition) { 
        transitions.remove(transition); 
    } 
 
    public void removeArc(Arc arc) { 
        arcs.remove(arc); 
    } 
 
    public void removeMarking(Marking marking) { 
        markings.remove(marking); 
    } 
} 
 
package petrinet; 
 
public class Place { 
 
    private Mark mark; 
 
    public Place(Mark mark) { 
        this.mark = mark; 
    } 
 
    public Mark getMark() { 
        return mark; 
    } 
 
    public void setMark(Mark newMark) { 
        mark = newMark; 
    } 
} 
 
package petrinet; 
 
public class PlaceHolder extends PetriNet{ 
 
    public PlaceHolder(String fragmentContext, String fragmentID, String 
fragmentName){ 
        super(fragmentContext, fragmentID, fragmentName); 
    } 
 
} 
 
package petrinet; 
 
public class Transition { 
 
    private String name; 
 
    public Transition(String name) { 
        this.name = name; 
    } 
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    public void setName(String newName) { 
        name = newName; 
    } 
 
    public String getName() { 
        return name; 
    } 
} 
 
package sequencediagram; 
 
public class CombinedFragments { 
 
    private String id; 
    private String context; 
    private int operatorKind; 
    private String[] fragments; 
    private int numberOfFragments; 
 
    public CombinedFragments(String id, String context, int operatorKind, String 
fragments) { 
        this.id = id; 
        this.context = context; 
        this.operatorKind = operatorKind; 
        this.fragments = fragments.split(";"); 
        this.numberOfFragments = this.fragments.length; 
    } 
 
    public String getID() { 
        return id; 
    } 
 
    public String getContext() { 
        return context; 
    } 
 
    public int getOperator() { 
        return operatorKind; 
    } 
 
    public String[] getFragments(){ 
        return fragments; 
    } 
 
    public int getNumberOfFragments(){ 
        return numberOfFragments; 
    } 
} 
 
package sequencediagram; 
 
public class EventOccurrence { 
 
    private String id; 
    private String context; 
    private int index; 
    // we need to have an index here for ordering 
    public EventOccurrence(String id, String context, int index) { 
        this.id = id; 
        this.context = context; 
        this.index = index; 
    } 
 
    public String getID() { 
        return id; 
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    } 
 
    public void setID(String id) { 
        this.id = id; 
    } 
 
    public String getContext() { 
        return context; 
    } 
 
    public void setContext(String context) { 
        this.context = context; 
    } 
 
    public int getIndex() { 
        return index; 
    } 
 
    public void setIndex(int index) { 
        this.index = index; 
    } 
} 
 
package sequencediagram; 
 
import java.util.ArrayList; 
 
public class GeneralOrdering { 
 
    public GeneralOrdering() { 
    } 
 
    public EventOccurrence getEventAfter(ArrayList<EventOccurrence> events, 
EventOccurrence event) { 
        for (int i = 0; i < events.size() - 1; i++) { 
            if (events.get(i).equals(event)) { 
                return events.get(i + 1); 
            } 
        } 
        return null; 
    } 
 
    public EventOccurrence getEventBefore(ArrayList<EventOccurrence> events, 
EventOccurrence event) { 
        for (int i = 1; i < events.size(); i++) { 
            if (events.get(i).equals(event)) { 
                return events.get(i - 1); 
            } 
        } 
        return null; 
    } 
 
    public EventOccurrence getEvent(ArrayList<EventOccurrence> events, String id) { 
        for (int i = 0; i < events.size(); i++) { 
            if (events.get(i).getID().equals(id)) { 
                return events.get(i); 
            } 
        } 
        return null; 
    } 
} 
 
package sequencediagram; 
 
import java.util.ArrayList; 
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public class Interaction { 
 
    public ArrayList<Lifeline> lifelines; 
    public ArrayList<Message> messages; 
    public ArrayList<EventOccurrence> events; 
    public ArrayList<CombinedFragments> combinedFragments; 
    public GeneralOrdering generalOrdering; 
 
    public Interaction(final ArrayList<Lifeline> lifelines, final 
ArrayList<Message> messages, final ArrayList<EventOccurrence> events, final 
ArrayList<CombinedFragments> combinedFragments) { 
        this.lifelines = new ArrayList<Lifeline>(lifelines); 
        this.messages = new ArrayList<Message>(messages); 
        this.combinedFragments = new 
ArrayList<CombinedFragments>(combinedFragments); 
        this.events = new ArrayList<EventOccurrence>(events); 
        this.generalOrdering = new GeneralOrdering(); 
    } 
 
    public Message getMessage(String id) { 
        for (int i = 0; i < messages.size(); i++) { 
            if (messages.get(i).getID().equals(id)) { 
                return messages.get(i); 
            } 
        } 
        return null; 
    } 
 
    public Lifeline getLifeline(String id) { 
        for (int i = 0; i < lifelines.size(); i++) { 
            if (lifelines.get(i).getID().equals(id)) { 
                return lifelines.get(i); 
            } 
        } 
        return null; 
    } 
 
    public EventOccurrence getEventOccurrence(String id) { 
        for (int i = 0; i < events.size(); i++) { 
            if (events.get(i).getID().equals(id)) { 
                return events.get(i); 
            } 
        } 
        return null; 
    } 
 
    public CombinedFragments getCombinedFragment(String id) { 
        for (int i = 0; i < combinedFragments.size(); i++) { 
            if (combinedFragments.get(i).getID().equals(id)) { 
                return combinedFragments.get(i); 
            } 
        } 
        return null; 
    } 
 
    public Message getMessage(int index) { 
        return messages.get(index); 
    } 
 
    public Lifeline getLifeline(int index) { 
        return lifelines.get(index); 
    } 
 
    public EventOccurrence getEventOccurrence(int index) { 
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        return events.get(index); 
    } 
 
    public CombinedFragments getCombinedFragment(int index) { 
        return combinedFragments.get(index); 
    } 
 
    public ArrayList<Message> getMessages() { 
        return messages; 
    } 
 
    public ArrayList<Lifeline> getLifelines() { 
        return lifelines; 
    } 
 
    public ArrayList<EventOccurrence> getEventOccurrences() { 
        return events; 
    } 
 
    public ArrayList<CombinedFragments> getCombinedFragments() { 
        return combinedFragments; 
    } 
 
    public GeneralOrdering getGeneralOrdering() { 
        return generalOrdering; 
    } 
} 
 
package sequencediagram; 
 
public class InteractionOperand { 
 
//    public InteractionConstraint theInteractionConstraint; 
    private String id; 
 
    public InteractionOperand(String id) { 
        this.id= id; 
    } 
 
    public String getID() { 
        return id; 
    } 
 
    public void setID(String id) { 
        this.id = id; 
    } 
} 
 
package sequencediagram; 
 
public class InteractionOperatorKind { 
 
    public final static int ALT = 0; 
    public final static int OPT = 1; 
    public final static int BREAK = 2; 
    public final static int PAR = 3; 
} 
 
package sequencediagram; 
 
public class Lifeline { 
 
    private String id; 
    private String name; 
    private String context; 
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    public Lifeline(String id, String name, String context) { 
        this.id = id; 
        this.name = name; 
        this.context = context; 
    } 
 
    public final String getID() { 
        return id; 
    } 
 
    public final String getName() { 
        return name; 
    } 
 
    public final String getContext() { 
        return context; 
    } 
} 
 
package sequencediagram; 
 
public class Message { 
 
    private String id; 
    private String label; 
    private String context; 
    private EventOccurrence sendEvent; 
    private EventOccurrence receiveEvent; 
 
    public Message(String id, String label, String context, EventOccurrence 
sendEvent, EventOccurrence receiveEvent) { 
        this.id = id; 
        this.label = label; 
        this.context = context; 
        this.sendEvent = sendEvent; 
        this.receiveEvent = receiveEvent; 
    } 
 
    public final String getID() { 
        return id; 
    } 
 
    public final String getLabel() { 
        return label; 
    } 
 
    public final String getContext() { 
        return context; 
    } 
 
    public final EventOccurrence getSendEvent(){ 
        return sendEvent; 
    } 
 
    public final EventOccurrence getReceiveEvent(){ 
        return receiveEvent; 
    } 
 
    public final void setSendEvent(EventOccurrence eo){ 
        sendEvent = eo; 
    } 
 
    public final void setReceiveEvent(EventOccurrence eo){ 
        receiveEvent = eo; 
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    } 
 
} 
 
package sitra; 
 
public interface Rule<S,T> { 
 boolean check(S source); 
 T build(S source, Transformer t); 
 void setProperties(T target, S source, Transformer t); 
} 
 
package sitra; 
 
import petrinet.Arc; 
import petrinet.Mark; 
import petrinet.PetriNet; 
import petrinet.Place; 
import petrinet.Transition; 
import sequencediagram.Message; 
 
public class Rule1 implements Rule { 
 
    public Rule1() { 
    } 
 
    public boolean check(Object source) { 
        return source instanceof Message; 
    } 
 
    public PetriNet build(Object source, Transformer t) { 
        PetriNet pn = new PetriNet(((Message) source).getSendEvent().getContext(), 
((Message) source).getID(), ""); 
        Transition tran = new Transition(((Message) source).getLabel()); 
        pn.addArc(new Arc(new Place(new Mark(0)), tran, Arc.PLACE_TO_TRANSITION)); 
        pn.addArc(new Arc(new Place(new Mark(0)), tran, Arc.TRANSITION_TO_PLACE)); 
        return pn; 
    } 
 
    public void setProperties(Object target, Object source, Transformer t) { 
    } 
} 
 
package sitra; 
 
import petrinet.Arc; 
import petrinet.Mark; 
import petrinet.PetriNet; 
import petrinet.Place; 
import petrinet.PlaceHolder; 
import petrinet.Transition; 
import sequencediagram.CombinedFragments; 
import sequencediagram.InteractionOperatorKind; 
 
public class Rule2 implements Rule { 
 
    public Rule2() { 
    } 
 
    public boolean check(Object source) { 
        return (source instanceof CombinedFragments) && (((CombinedFragments) 
source).getOperator() == InteractionOperatorKind.ALT); 
    } 
 
    public PetriNet build(Object source, Transformer t) { 
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        PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(), 
((CombinedFragments) source).getID(), "ALT"); 
        Place p1 = new Place(new Mark(0)); 
        Place p2 = new Place(new Mark(0)); 
        for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments(); 
j++) { 
            Transition trans = new Transition("ALT" + j); 
            pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION)); 
            PlaceHolder ph1 = new PlaceHolder(((CombinedFragments) 
source).getContext(), ((CombinedFragments) source).getFragments()[j], "PH" + j); 
            pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER)); 
            Transition transEnd = new Transition("END-ALT" + j); 
            pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION)); 
            pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE)); 
        } 
        return pn; 
    } 
 
    public void setProperties(Object target, Object source, Transformer t) { 
    } 
} 
 
package sitra; 
 
import petrinet.Arc; 
import petrinet.Mark; 
import petrinet.PetriNet; 
import petrinet.Place; 
import petrinet.PlaceHolder; 
import petrinet.Transition; 
import sequencediagram.CombinedFragments; 
import sequencediagram.InteractionOperatorKind; 
 
public class Rule3 implements Rule { 
 
    public Rule3() { 
    } 
 
    public boolean check(Object source) { 
        return (source instanceof CombinedFragments) && (((CombinedFragments) 
source).getOperator() == InteractionOperatorKind.OPT); 
    } 
 
    public PetriNet build(Object source, Transformer t) { 
        PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(), 
((CombinedFragments) source).getID(), "OPT"); 
        Place p1 = new Place(new Mark(0)); 
        Place p2 = new Place(new Mark(0)); 
        for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments(); 
j++) { 
            Transition trans = new Transition("OPT" + j); 
            pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION)); 
            PlaceHolder ph1 = new PlaceHolder(((CombinedFragments) 
source).getContext(), ((CombinedFragments) source).getFragments()[j], "PH" + j); 
            pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER)); 
            Transition transEnd = new Transition("END-OPT" + j); 
            pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION)); 
            pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE)); 
        } 
        return pn; 
    } 
 
    public void setProperties(Object target, Object source, Transformer t) { 
    } 
} 
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package sitra; 
 
import petrinet.Arc; 
import petrinet.Mark; 
import petrinet.PetriNet; 
import petrinet.Place; 
import petrinet.PlaceHolder; 
import petrinet.Transition; 
import sequencediagram.CombinedFragments; 
import sequencediagram.InteractionOperatorKind; 
 
public class Rule4 implements Rule { 
 
    public Rule4() { 
    } 
 
    public boolean check(Object source) { 
        return (source instanceof CombinedFragments) && (((CombinedFragments) 
source).getOperator() == InteractionOperatorKind.BREAK); 
    } 
 
    public PetriNet build(Object source, Transformer t) { 
        PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(), 
((CombinedFragments) source).getID(), "BREAK"); 
        Place p1 = new Place(new Mark(0)); 
        Place p2 = new Place(new Mark(0)); 
        Place pX = new Place(new Mark(0)); 
        Transition trans1 = new Transition("BREAK1"); 
        Transition trans2 = new Transition("BREAK2"); 
        Transition transEnd = new Transition("END-BREAK"); 
        pn.addArc(new Arc(p1, trans1, Arc.PLACE_TO_TRANSITION)); 
        pn.addArc(new Arc(p1, trans2, Arc.PLACE_TO_TRANSITION)); 
        PlaceHolder ph = new PlaceHolder(((CombinedFragments) source).getContext(), 
((CombinedFragments) source).getFragments()[0], "PH"); 
        pn.addArc(new Arc(ph, trans1, Arc.TRANSITION_TO_PLACEHOLDER)); 
        pn.addArc(new Arc(ph, transEnd, Arc.PLACEHOLDER_TO_TRANSITION)); 
        pn.addArc(new Arc(pX, trans2, Arc.TRANSITION_TO_PLACE)); 
        pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE)); 
        return pn; 
    } 
 
    public void setProperties(Object target, Object source, Transformer t) { 
    } 
} 
 
package sitra; 
 
import petrinet.Arc; 
import petrinet.Mark; 
import petrinet.PetriNet; 
import petrinet.Place; 
import petrinet.PlaceHolder; 
import petrinet.Transition; 
import sequencediagram.CombinedFragments; 
import sequencediagram.InteractionOperatorKind; 
 
public class Rule5 implements Rule { 
 
    public Rule5() { 
    } 
 
    public boolean check(Object source) { 
        return (source instanceof CombinedFragments) && (((CombinedFragments) 
source).getOperator() == InteractionOperatorKind.PAR); 
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    } 
 
    public PetriNet build(Object source, Transformer t) { 
        PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(), 
((CombinedFragments) source).getID(), "PAR"); 
        Place p1 = new Place(new Mark(0)); 
        Place p2 = new Place(new Mark(0)); 
        Transition trans = new Transition("PAR"); 
        Transition transEnd = new Transition("END-PAR"); 
        pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION)); 
        pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE)); 
        for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments(); 
j++) { 
            PlaceHolder ph1 = new PlaceHolder(((CombinedFragments) 
source).getContext(), ((CombinedFragments) source).getFragments()[j], "PH" + j); 
            pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER)); 
            pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION)); 
        } 
        return pn; 
    } 
 
    public void setProperties(Object target, Object source, Transformer t) { 
    } 
} 
 
package sitra; 
 
import java.lang.reflect.Modifier; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
import java.util.Vector; 
 
public class SimpleTransformerImpl implements Transformer { 
 public SimpleTransformerImpl(List<Class<? extends Rule>> ruleTypes) { 
  this.ruleTypes = ruleTypes; 
 } 
 Map<Class<? extends Rule>, Map<Object, Object>> mappings = new 
HashMap<Class<? extends Rule>, Map<Object, Object>>(); 
 <S, T> Map<S, T> getRuleMappings(Class<? extends Rule<S, T>> rule) { 
  Map<S, T> ruleMappings = (Map<S, T>) mappings.get(rule); 
  if (ruleMappings == null) { 
   ruleMappings = new HashMap<S, T>(); 
   mappings.put(rule, (Map<Object, Object>) ruleMappings); 
  } 
  return ruleMappings; 
 } 
 <S, T> void recordMaping(Class<? extends Rule<S, T>> rule, S source, T 
target) { 
  getRuleMappings(rule).put(source, target); 
 } 
 <S, T> T getExistingTargetFor(Class<? extends Rule<S, T>> rule, S source) { 
  return getRuleMappings(rule).get(source); 
 } 
 <S, T> T applyRule(Rule<S, T> r, S source) { 
  Class<? extends Rule<S, T>> ruleType = (Class<? extends Rule<S, 
T>>)r.getClass(); 
  T target = getExistingTargetFor(ruleType, source); 
  if (target == null) { 
   target = r.build(source, this); 
   recordMaping(ruleType, source, target); 
   r.setProperties(target,source,this); 
  } 
  return target; 
 } 
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 // --- Transformer --- 
 List<Class<? extends Rule>> ruleTypes; 
 public List<Class<? extends Rule>> getRuleTypes() { 
  if (this.ruleTypes == null) { 
   this.ruleTypes = new Vector<Class<? extends Rule>>(); 
  } 
  return this.ruleTypes; 
 } 
 public void addRuleType(Class<? extends Rule> ruleType) { 
  getRuleTypes().add(ruleType); 
 } 
 List<Rule> getRules(Class<? extends Rule> ruleType) { 
  List<Rule> rules = new Vector<Rule>(); 
  for (Class<? extends Rule> rt : getRuleTypes()) { 
   if (ruleType.isAssignableFrom(rt)) { 
    if (!Modifier.isAbstract(rt.getModifiers())) { 
     try { 
      rules.add(rt.newInstance()); 
     } catch (InstantiationException e) { 
      e.printStackTrace(); 
     } catch (IllegalAccessException e) { 
      e.printStackTrace(); 
     } 
    } 
   } 
  } 
  return rules; 
 } 
 public <S, T> T transform(Class<? extends Rule<S, T>> ruleType, S source) { 
  try { 
   List<Rule> rules = getRules(ruleType); 
   //might be better to do this as an follows, but needs 
assertions to be switched on 
   assert !rules.isEmpty() : "No rule " + ruleType + " found in 
transformer " + this; 
   if (rules.isEmpty()) { 
    System.err.println("No rule " + ruleType + " found in 
transformer " + this); 
   } else { 
    for (Rule rule : rules) { 
     Boolean b = false; 
     try { 
      b = rule.check(source); 
     } catch (ClassCastException e) {} 
     if (b) { 
      return applyRule((Rule<S, T>) rule, 
source); 
     } 
    } 
   } 
  } catch (Throwable t) { 
   t.printStackTrace(); 
  } 
  return null; 
 } 
 public <S, T> List<? extends T> transformAll(Class<? extends Rule<S, T>> 
ruleType, List<? extends S> element) { 
  List<T> targets = new Vector<T>(); 
  for (S s : element) { 
   T o = transform(ruleType, s); 
   targets.add(o); 
  } 
  return targets; 
 } 
 public Object transform(Object object) { 
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  return transform((Class)Rule.class, object); 
 } 
 public List<? extends Object> transformAll(List<? extends Object> 
sourceObjects) { 
  return transformAll((Class)Rule.class, sourceObjects); 
 } 
} 
 
package sitra; 
 
import java.util.List; 
 
public interface Transformer { 
 Object transform(Object object); 
 List<? extends Object> transformAll(List<? extends Object> sourceObjects); 
 <S, T> T transform(Class<? extends Rule<S, T>> ruleClass, S source); 
 <S, T> List<? extends T> transformAll(Class<? extends Rule<S, T>> ruleClass, 
List<? extends S> element); 
} 
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