
A MODEL DRIVEN APPROACH
TO ANALYSIS AND SYNTHESIS

OF SEQUENCE DIAGRAMS

by

MOHAMED ARIFF AMEEDEEN

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
The University of Birmingham
December 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/5222823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Software design is a vital phase in a software development life cycle as it creates a blueprint

for the implementation of the software. It is crucial that software designs are error-free since

any unresolved design-errors could lead to costly implementation errors. In an approach to

minimize these costly errors, the software community adopted the concept of modelling from

various other engineering disciplines. Modelling provides a platform to create and share

abstract or conceptual representations of the software system – leading to the birth of various

modelling languages, among them Unified Modelling Language (UML) and Petri Nets.

While Petri Nets strong mathematical capability allows various formal analyses to be

performed on the models, UMLs user-friendly nature presented a more appealing platform

for system designers. Using Multi Paradigm Modelling, this thesis presents an approach

where system designers may have the best of both worlds; SD2PN, a model transformation

that maps UML Sequence Diagrams into Petri Nets allows system designers to perform

modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm

Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to

be adopted into Sequence Diagram as a method of putting-together different Sequence

Diagrams based on a set of techniques and algorithms. Finally, the model transformation is

enhanced to transform Sequence Diagrams with timing constraints into Timed Petri Nets to

allow time-related analysis such as Quality of Service (QoS) and performance analysis.

Acknowledgement

‘

In the name of God, the Most Gracious, the Most Merciful’

 I would like to thank my supervisor, BehzadBordbar for his constant support,

encouragement and motivation as well as my thesis group members Mark Ryan and Antoni

Diller for taking an interest and providing me with constructive criticisms. I would also like

to thank RachidAnane for a fruitful research collaboration.

Firstly, a very big thank you to my family - without their blessing and support, I would not

have the courage to pursue my dreams. A hearty thank you to the Malaysian Government and

Universiti Malaysia Pahang for providing me with financial support and the opportunity for

me to further my studies.

 My gratitude to KyriakosAnastasakis for his help and guidance at the beginning of my

research.A special mention to Nur Hana Samsudin for being a great friend and for her help in

handing-in my thesis. Not to forget my fellow research students Seyyed, Mohammed, Vinoth,

Damien, Mike, Zeyn, Peter, Vivek and many others for making my stay in Birmingham a lot

more colourful.

From the bottom of my heart, Thank You...

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Problem Statement 7

1.2 Outline of Contributions 11

1.3 List of Publications 14

1.4 Overview of this Thesis 14

CHAPTER 2: FOUNDATION

2.1 Unified Modelling Language 16

2.1.1 Sequence Diagrams 22

2.2 Petri Nets 26

2.2.1 Flavours of Petri Nets 30

2.2.2 Free Choice Petri Nets 31

2.2.3 Analysis in Petri Nets 32

2.2.4 Petri Net Tools 35

2.3 Labelled Event Structures 38

2.3.1 Translating UML Sequence Diagrams into Labelled Event Structures 39

2.3.2 Unfolding Petri Nets into Labelled Event Structures 41

2.4 Model Driven Development 43

CHAPTER 3: MULTI PARADIGM MODELLING

3.1 Role of Modelling in System Development 45

3.1.1 Model Design 47

3.1.2 Model Analysis 47

3.1.3 Model Synthesis 48

3.2 Bridging the Gap between Design, Analysis and Synthesis of Models 50

3.2.1 Introduction of Multi Paradigm Modelling 50

3.2.1.1 Multi-Formalism Modelling 51

3.2.1.2 Model Abstraction 52

3.2.1.3 Metamodelling in Multi-Paradigm Modelling 52

3.2.2 Review of Existing Work 53

3.2.2.1 Design and Analysis 53

3.2.2.2 Design and Synthesis 55

3.2.3 Using Multi Paradigm Modelling to Bridge the Gap between

Design, Analysis and Synthesis of Models 56

3.2.3.1 Model Design Language 56

3.2.3.2 Model Design to Model Analysis 57

3.2.3.3 Model Design to Model Synthesis 58

3.2.3.4 Semantics Preservation in Multi Paradigm Modelling 59

CHAPTER 4: SD2PN – SEQUENCE DIAGRAMS TO PETRI NETS

4.1 SD2PN – The Model Transformation 63

4.1.1 Decomposition 64

4.1.2 Transformation 65

4.1.2.1 Transforming Messages 68

4.1.2.2 Transforming Alternative CombinedFragments 69

4.1.2.3 Transforming Option CombinedFragments 71

4.1.2.4 Transforming Break CombinedFragments 73

4.1.2.5 Transforming Parallel CombinedFragments 75

4.1.3 Composition 76

4.1.3.1 Morph 77

4.1.3.2 Substitute 79

4.2 SD2PN Generates Free Choice Petri Nets 82

4.3 SD2PN Preserves Semantics 84

CHAPTER 5: SEQUENCE DIAGRAM ANALYSIS VIA SD2PN

5.1 Importance of Analysis in Sequence Diagram 89

5.2 Implementing SD2PN for Analysis of Sequence Diagrams 90

5.3 Automated Analysis via SD2PN Transformer 93

5.3.1 Generating XMI for Sequence Diagrams 94

5.3.2 Parsing XMI Data into Java Objects 96

5.3.3 Model Transformation via SiTra 96

5.3.4 Generating XML for Resulting Petri Net 99

5.3.5 Utilising Existing Petri Net Tools for Analysis 99

5.4 Example 100

5.4.1 Introduction of the Scenario 100

5.4.2 Protocol Description 101

5.4.3 Sequence Diagram Representation of the Scenario 102

5.4.4 Petri Net Representation of the Scenario Generated via SD2PN 104

5.4.5 Analysis of the Petri Net 106

5.4.6 Discussion 108

CHAPTER 6: SEQUENCE DIAGRAM SYNTHESIS VIA SD2PN

6.1 Synthesis in Sequence Diagrams 110

6.2 Synthesis in Petri Nets 111

6.2.1 Top-Down Synthesis Method 111

6.2.2 Bottom-Up Synthesis Method 113

6.3 Petri Net Inspired Synthesis of Sequence Diagrams 115

6.3.1 Top-Down Synthesis Method in Sequence Diagrams 118

6.3.2 Bottom-Up Synthesis Method in Sequence Diagrams 122

6.3.2.1 Part Decomposition Synthesis Method 123

6.3.2.2 Special Case Method: Synthesizing Attack Scenarios 127

CHAPTER 7: SD2PN AND TIMELINESS PROPERTIES

7.1 Significance of time in UML 133

7.1.1 Review of UML extensions to include time 135

7.1.2 UML 2.1 and timeliness properties 139

7.2 Extension of SD2PN to include timeliness properties 141

7.2.1 Sequence Diagram metamodel enhancement 142

7.2.2 Petri Net metamodel enhancement 144

7.2.3 SD2PN Transformation Rules enhancement 146

7.2.4 Discussion 149

7.3 Using SD2PN for Performance Analysis 150

7.3.1 Significance of Performance Analysis in Sequence Diagrams 150

7.3.2 Petri Nets and Performance Analysis 151

7.3.3 Using SD2PN to allow Performance Analysis in Sequence Diagram 152

CHAPTER 8: DISCUSSION AND CONCLUSION

8.1 Summary of Contributions 156

8.2 Future Work 159

APPENDIX A: TRANSFORMING SEQUENCE DIAGRAM FRAGMENTS AND

PETRI NET BLOCKS FROM SD2PN TRANSFORMATION RULES INTO LES

A.1 Sequence Diagram Fragments to LES 162

Message 162

Alternative 163

Option 163

Break 164

Parallel 164

A.2 Petri Net Blocks to LES 164

Message 165

Alternative 165

Option 165

Break 165

Parallel 165

APPENDIX B: SOURCE CODE FOR SD2PN TRANSFORMER

Source Code 166

LIST OF FIGURES

Figure 1: A typical scenario in the software design phase 9

Figure 2: Classification of UML diagrams 18

Figure 3: Sequence Diagram Metamodel 22

Figure 4: Example of a Sequence Diagram 23

Figure 5: Example of a Petri Net 26

Figure 6: Example of a Petri Net Firing Sequence 27

Figure 7: Petri Net Metamodel 29

Figure 8: Example of events in a Sequence Diagram 40

Figure 9: Labelled Event Structure corresponding to the Sequence

Diagram in Figure 8 41

Figure 10: Model Driven Development Model Transformation 43

Figure 11: Example of Model Design and Analysis via Multi Paradigm Modelling 57

Figure 12: Example of Model Synthesis via Multi Paradigm Modelling 59

Figure 13: Using a Common Semantics Domain to Prove

Correctness of Model Transformation 61

Figure 14: Extended Petri Net Metamodel for SD2PN 66

Figure 15: Example of a Petri Net block 67

Figure 16: SD2PN Model Transformation Rule for message fragments 68

Figure 17: SD2PN Model Transformation Rule for alternative fragments 70

Figure 18: SD2PN Model Transformation Rule for option fragments 72

Figure 19: A Petri Net block depicting an option fragment with one operand 73

Figure 20: SD2PN Model Transformation Rule for break fragments 74

Figure 21: SD2PN Model Transformation Rule for parallel fragments 75

Figure 22: Example of a morph action between two Petri Net blocks 77

Figure 23: Example of a substitute action between Petri Net blocks 79

Figure 24: Example of two substitute actions between Petri Net blocks 81

Figure 25: Using LES as a common semantics domain to prove correctness 85

Figure 26: LES obtained from Sequence Diagram fragments and

each corresponding Petri Net blocks 86

Figure 27: LES generated by every two Sequence Diagram

fragments and their corresponding Petri Net blocks 88

Figure 28: SD2PN Framework for Analysis 91

Figure 29: An outline of SD2PN Transformer 94

Figure 30: Overview of the Personal Area Network (PAN) 101

Figure 31: Sequence Diagram for a station in PAN 104

Figure 32: Petri Net for a station in PAN 106

Figure 33: Reachability Graph generated using PIPE 107

Figure 34: Example of top-down synthesis in Petri Nets 113

Figure 35: Example of bottom-up synthesis in Petri Nets 114

Figure 36: Basic e-Business Model 115

Figure 37: Example of a message refinement synthesis method

featuring (a) a top-level Sequence Diagram, (b) a low-level

Sequence Diagram and (c) the result of applying message

refinement synthesis method to (a) and (b). 121

Figure 38: Petri Nets derived from Sequence Diagrams in

Figure 1 (a), (b) and (c) respectively. 122

Figure 39: An example of the part decomposition synthesis method

featuring (a) the internal structure of ‘LoginSystem’ lifeline in

Figure 1 (c) and (b) the result of Part Decomposition synthesis. 126

Figure 40: Petri Net derived from the Sequence Diagram in Figure 2 (b). 127

Figure 41: An example of the special case synthesis method featuring

(a) the behaviour of an attacker and (b) result of the special

case synthesis. 130

Figure 42: Petri Nets derived from Sequence Diagrams in (a) Figure 3 (a)

and (b) Figure 3 (b). 132

Figure 43: Dependencies between packages in Common Behaviours [7] 140

Figure 44: Sequence Diagram Metamodel augmented with Timeliness Properties 142

Figure 45: Example of a Sequence Diagram with time constraints 143

Figure 46: Petri Net Metamodel with Timeliness Properties 144

Figure 47: Example of a Timed Petri Net 145

Figure 48: Rule 6 of SD2PN 146

Figure 49: (a) Sequence Diagram for a station in PAN and

(b) its equivalent Timed Petri Net 153

Figure 50: Maximum Waiting Time analysis result 155

1

CHAPTER 1
INTRODUCTION

Software engineering is a discipline that facilitates the development of computer software

using various methods, tools and procedures. The primary goal of software engineering

according to Sametinger [1] is the cost-effective production of high-quality software systems.

In this respect, Sametinger outlines attributes such as reliability, robustness, user-friendliness,

efficiency and maintainability as the yardstick by which to measure the quality of the software

system. He further explains the phases involved in software engineering; management,

specification, design, implementation, testing and maintenance.

 The software design phase is vital in any software development life cycle as it

translates the specifications given by various stakeholders of the system into a set of

blueprints that the software implementation is based on. It is absolutely crucial for a software

design to be free from errors as any unresolved errors in the software design leads to errors in

implementation or bugs that could possibly waste countless precious resources such as time,

man-hours spent programming, and development cost to fix.

2

A complex software design process is iterative and is done on different levels of

abstraction. As such, it is very easy to accidentally overlook errors in the design. According to

[2]most software errors occur during the design phase. These design errors, or bugs increases

in number with the ever-expanding complexity of the software systems – not through

carelessness of the designers, but due to the human brain having limited ability to manage

complexity [3].

One of the efforts made by the software engineering community in order to reduce

these design errors is to adopt the concept of modelling from other engineering disciplines.

Modelling is the process of creating an abstract or conceptual representation of a design that

can be presented in an easily understandable format based on specific modelling languages. A

model is usually presented in either in graphical or mathematical format. In software

engineering, models were never at the forefront of software design until recently, despite the

complexity. With the emergence of modelling as a method of software design, the inevitable

birth of various modelling languages occurred.

 Languages such as Z [4],Alloy [5] and Petri Nets [6] offered a way to perform

software design in the form of models, based on the various constructs offered in the

respective languages. However, the main advantage of using these languages in software

design is the ability to perform formal, mathematical analysis of the software design, reducing

the possibility of costly design errors being carried into the implementation phase. The Zand

Alloy languages are mainly textual (modelled using mathematical and logical statements) and

are used to model static properties of a software system while Petri Nets is a graphical

modelling language with a strong mathematical foundation that is capable of modelling

diverse sets of behavioursincluding parallel, asynchronous, concurrent, hierarchical and

stochastic as well as dynamic behaviours[6]. Although these formal modelling languages are

3

precise and allow for mathematical analysis of the software design such as liveness and

deadlock detection as well as reachability, it requires a specific set of expertise to be able to

create and to understand the models; and as such it is not well adopted by system designers’

since it is not generally their forte.

 The evolvement of modelling language brought Unified Modelling Language (UML)

[7] to the forefront. UML is a family of languages, which is widely accepted as the de facto

standard forsoftware system modelling. UML models can be used to specify the structure of a

system, its behaviour and the constraints thatthe system must adhere to. Models in UML are

instances of metamodels1

 In an ideal environment, a software system designer could have the best of both

worlds; the easy to use, widely accepted nature of UML coupled with a strong mathematical

backbone such that in formal modelling languages, where various analyses may be performed

on the designs. This opens the door for MultiParadigm Modelling. MultiParadigm Modelling

. A metamodel includes system elements, theirrelationships and a set

of rules to which every model must conform in order to be well defined. UML diagrams can

be classified as either structural or behavioural diagrams. Each type of diagram is used to

model a specific aspect of a software system. For example, a Class Diagram (a structural

diagram) is used to model the different classes in the system, their attributes and operations,

as well as how the classes relate to one another; where else a Sequence Diagram (a

behavioural diagram) is used to model dynamic interactions in terms of messages passed

between objects in the system. Although UML has conferred itself a preferred role in the

software design community because of its graphical approach and user-friendly nature, the

trade-off may has been the strong mathematical foundation in which formal analysis of the

software design may be performed.

1Metamodels are themselves models, from whichmodels of systems are instantiated.

4

provides a platform for model interoperability where two or more models from different

levels of formalisms or different languages could be used interchangeably. Multi Paradigm

Modelling is based on the concept of Model Driven Development (MDD) [84]. Central to the

concept of MDD is model transformation, where a number of Transformation Rules are used

tospecify how various elements of one language are mapped into the elements of another

language. The process of Model Transformation is carried out automatically via the software

tools whichare commonly referred to as Model Transformation Frameworks [18–20].

One example of Multi Paradigm Modelling is UML2Alloy [8], an MDD model

transformation that transforms UML Class Diagrams into Alloy constraints using a specific

set of transformation rules. This allows the system designer to design the models in the form

of Class Diagrams using UMLs user-friendly interface, then transform the models into Alloy

using the UML2Alloy tool to analyse the model, taking advantage of the robust analysis

capabilities of Alloy. However, UML2Alloy only creates a platform for structural analysis to

be performed on the software design since both Class Diagrams and Alloy are static

languages that does not support dynamic behaviour modelling.

 This became the motivation behind this thesis – to create a platform for analysis of

dynamic models via model interoperability between two dynamic languages, namely UML

Sequence Diagrams and Petri Nets. Sequence Diagrams are a UML version of Message

Sequence Charts [13] and they are widely used in Software Engineering[14]. Sequence

Diagrams can be used in modelling complex software systems as they provide a sequential

listingof events and are also able to model parallelism and conflicts. Sequence Diagrams

model the behaviour of the system through interaction or communication between the various

objects of a software system and arranges them with reference to occurrence time. The quest

for mapping Sequence Diagrams into a more formal language began with the choice of the

5

formal language. There are numerous formal languages such as Z, B, Alloy and Petri Nets.

However choosing the right formal language depends not only on the standings or regards of

the language in the modelling community, it mainly needs to reflect the analysis capability of

the language. Languages such as Z, B and Alloy, even though are well-studied and are well-

capable to perform numerous analysis on various types of models; are more suited to

modelling static items with added logical constraints. As such, the choice of Petri Nets as the

formal language is straight-forward since it is also a very well-studied language with a strong

mathematical backbone that is instead capable of modelling dynamic behaviour and

interactions through causal events as well as parallelism and conflicts.

There are three main components in a Petri Net; places, transitions and arcs. Places

often depict the state of the system where else transitions often represent an action or a

transaction that occurs. Arcs on the other hand, connect places and transitions in a directional

manner. There are also strong theories and applications associated to Petri Nets such as

analysis [9-16] and synthesis [17-26].

 The model transformation to transform Sequence Diagrams into Petri Nets (SD2PN) is

created by mapping the Sequence Diagram metamodel into the Petri Net metamodel using a

set of transformation rules. As such, every Sequence Diagram that conforms to the Sequence

Diagram metamodel can be transformed into a Petri Net. These Petri Nets can then be

analysed using widely available Petri Net tools such as CPNTools[27], PIPE [28] and various

others[29-35]. In this thesis, it is also proven that each Petri Net generated by SD2PN belongs

to a special, well-studied sub-class of Petri Nets called Free Choice Petri Nets[36]. Free

Choice Petri Nets are unique in Petri Net circles where conflicts and concurrencies may occur,

but not simultaneously. This structural boundary between Free Choice Petri Nets and general

Petri Nets allows for computations to be performed far more efficiently in Free Choice Petri

6

Nets where analysis such as liveness and boundedness could be performed in polynomial time

[37] instead of the possible exponential complexity in analysis of general Petri Nets. Other

analyses problems that are based on live and bounded Free Choice Petri Nets are also feasible

in polynomial time based on the studies in [36, 38, 39].

 Another common issue in MultiParadigm Modelling is concerning the accuracy of the

model transformation. Model interoperability may not be achieved unless the entire semantics

of the source model is preserved in the destination model – and that no emergent properties

are incurred at the destination model. In SD2PN, the preservation of semantics that proves the

correctness of the model transformation is presented via a common semantics domain. As

there are strong theories that map both Sequence Diagrams [40] and Petri Nets [41] into

Labelled Event Structures (LES)2

 In creating the model interoperability between Sequence Diagrams and Petri Nets, it

was observed that an opportunity for sharing the theories and applications between the two

languages emerged. Synthesis, or the notion of putting together various elements based on

specific sets of constraints has been receiving considerable attention [8, 43-47] in the UML

community as it allows software design to be performed using different sets of models that

could be put together at a later point. Since it has been established that software design is a

complex process that could result in numerous costly bugs, it is a good approach to have

separate models for each modules in the system to reduce the complexity. However, manual

synthesis of these models is error-prone, tedious and redundant. As such, by adopting the

[42], it is chosen as the common semantic domain for

proving the correctness of the SD2PN model transformation, and as such achieving model

interoperability.

2 LES are models of processes that are capable to model causality, conflict and concurrency properties between
events.

7

well-studied notions of synthesis in Petri Nets, a similar notion of synthesis is introduced in

this thesis – based on the Multi-Paradigm Modelling framework.

 Taking inspiration from the prominent synthesis methods in Petri Nets – namely the

top-down [16] and bottom-up[23, 48] synthesis methods, two Sequence Diagram synthesis

methods of the same name are introduced. In the top-down method, an algorithm that replaces

a single message in a Sequence Diagram with an entire Sequence Diagram is presented, called

message refinement. In addition, two examples of the bottom-up method features an algorithm

called part decomposition that replaces a lifeline or an object in Sequence Diagram with a

different Sequence Diagram in order to explain the internal structure of said object and a

domain-specific synthesis algorithm to simulate a man-in-the-middletype attack in any

relevant systems.

 Finally, an extension of SD2PN to include timeliness properties is presented. By

enhancing the Sequence Diagram metamodel, the occurrences of events in Sequence

Diagrams are allowed to have a timing constraint attached to them. This permits time-related

analysis such as Quality-of-Service (QoS) analysis or performance analysis [49] to be

performed on the design model before they implemented. The model transformation generates

a flavour of Petri Nets called Timed Petri Nets [50] and can be analysed using numerous tools

including CPNTools and PIPE mentioned earlier.

1.1 Problem Statement

The ever-increasing complexity of the software development process has presented software

designers with a significant challenge. This complexity is due to various factors including the

8

variety of application domains, the variety of software platforms and the variety of the

methods and the tools that support the software development process. This complexity is

further compounded by the non-functional requirements for a software system to satisfy a set

of specific properties, such as fault-tolerance and security. Many approaches and methods

have been proposed as a way of addressing and reconciling these issues, as discussed in a

survey presented in [51]. Of particular significance in the generation of software system is the

need to facilitate a smooth transition from one domain of the software design process to the

next. This dichotomy between the domains manifests itself in the multiplicity of formalisms,

languages and software tools that are required for each phase. One of the main concerns of

software developers is how to bridge the gap between the different underlying domains and

allow for a seamless transition between them [52].An example of this challenge and one of

the two main focuses of this thesis is the transition from a model design domain to a model

analysis domain. This is very often critical, especially as it regularly involves incompatible

domains of discourse.

 In a normal scenario, the software designer models the software system in UML. This

design is then translated into a formal language such as Alloy [53], Z [4] or Petri Nets [6].

The existence of two types of models, created using two different sets of tools and using two

different languages is what is described as heterogeneity. Heterogeneous models cannot

communicate with each other under normal circumstances and requires a completely different

skill-set to design. For example, a software designer who is well-versed in UML may not

necessarily be familiar with the formal language models in Petri Nets, and vice-versa.

Heterogeneity also leads to tedious repeated modelling each time a change has to be made.

9

Figure 1: A typical scenario in the software design phase

Figure 1 above presents a likely example scenario where a model designer creates a design

model using UML and passes it to the model analyst who interprets the design model and

creates a corresponding analysis model. By performing a formal analysis on the model, the

model analyst then generates an analysis report for the model designer to review. The model

designer would then have to modify or create another design model. The whole process is

repeated as long as there are errors found in the formal analysis.

 A clear challenge presented in this scenario is to facilitate the transition between the

design model and the analysis model automatically without having a model analyst to

interpret the design model. This automated transition would not only eliminate the need for a

model analyst, it will also create a more accurate formal representation for analysis since there

would no longer be room for human misinterpretation of the design model. One possible way

to achieve this automated transition between the design and analysis model is through MDD

model transformation. This possible solution is explored in this thesis and makes up one of

the two major contributions in this thesis.

Design Model

Analysis Report Analysis Model

creates

generates

creates

interpreted by

based on

reviewed by

MODEL
DESIGNER

MODEL
ANALYST

10

 Another problem that system designers are faced with is the influx of models. This

could be on the basis of multi-viewpoint modelling or due to object-oriented design. To better

manage essential complexity, developers of large software systems often create multiple

models that describe the systems from a variety of perspectives. For example, developers may

create multiple UML static and behavioural models, some describing core business functions,

while others represent the system from a security[54]or quality-of-service (QoS) perspective.

Some designers on the other hand, opt to model each component of the software separately to

better identify critical sections of the software and keep the models manageable in size.

There are huge advantages to performing system design using multiple models, none

more so than reducing the complexity of the designs where designers potentially deal with

multiple instances of smaller, easier to design models instead of a single complex model for

the entire system. Moreover for the multi-viewpoint models, each model could cater to the

needs of a specific stakeholder as to gain better understanding of the software system through

a specific point-of-view. On the other hand, for object-oriented design models, not only would

it translate easily into object-oriented languages such as Java, but it also enables the system

designers to identify errors and critical areas more easily and quickly. By using multiple

models, error correction on the design level could be done easily – only the model that

presents the error needs to be modified or maintained and all the other models would be

unaffected.

Despite the advantages of performing system design using multiple models, during

development, it may be necessary to incorporateall the different models describing different

views.The process of incorporating different models together is called synthesis. A

synthesized model provides an integrated view of the system, thus allowing developers to

identify and analyze emergent properties that arise as a result of the integration. For example,

11

to support the evaluation of system’s security features against an attack scenario, a model can

be synthesized from two parts: one describing the attack scenario and the other the describing

security features[54]. The composed model can be analyzed to determine how the security

features withstand the attack. However, manual synthesis of non-trivial models can be

tedious, error-prone, and redundant. The process is especially problematic when the models

used for synthesis evolve; considerable effort is needed to manually synchronize such models.

It has been established in [8, 43-47, 55-57] that automated support for model synthesis is

needed for compositional development of models.

The challenge presented by this scenario is to automatically synthesize UML models

using various algorithms to present an integrated view of the system. Unfortunately, the

Unified Modelling Language (UML) [7] does not provide support for model synthesis in its

language framework. However, the notion of synthesis is already well-established in formal

languages such as Petri Nets[6, 17, 58, 59]. By utilising the aforementioned MDD model

transformation as the basis, this thesis presents an approach to perform synthesis in UML.

This signifies the second major contribution of this thesis. Meanwhile, other contributions are

outlined in the following section.

1.2 Outline of Contributions

The contributions of this thesis are as follows:

• A new approach to bridging the gap between design and analysis of behavioural

models via Model Driven Development (MDD). In particular:

12

o A model transformation called SD2PN that transforms UML Sequence

Diagrams into Petri Nets (refer page 63).

o Two metamodels are identified; one for Sequence Diagrams and the other for

Petri Nets (refer pages 22 and 29).

o A set of five transformation rules are defined to transforms fragments of

Sequence Diagrams into blocks of Petri Nets (refer page 65).

o A concept of placeholders is defined in Petri Nets as a temporary node that

mimics the connection capabilities of a place(refer page 66).

o Two local functions morph and substitute are defined to put together blocks of

Petri Nets (refer pages 77 and 79).

• The SD2PN model transformation is mathematically proven to only generate Free

Choice Petri Nets, a well-studied subclass of Petri Nets that is highly suited for

analysis due to its low complexity (refer page 82).

• An approach for proving semantic equivalence between two domains is presented.

More specifically:

o A common semantic domain between Sequence Diagrams and Petri Nets is

identified (refer page 59).

o Using well established methods, both Sequence Diagrams and Petri Nets are

mapped into the common semantic domain, which in this case is Labelled

Event Structures (LES) (refer page 84).

o The semantic preservation is established through comparison between the LES

generated from the Sequence Diagrams and the LES created from the Petri

Nets (refer page 84).

13

• An approach for analysis of Sequence Diagrams is presented using the SD2PN model

transformation, based on the well-established mathematical analysis methods in Petri

Nets (refer page 89).

• A tool for automated transformation of Sequence Diagrams into Petri Nets (SD2PN

Transformer) is presented. In particular:

o A method for parsing XMI data from well-known UML tools into Java objects

is identified (refer page 93).

o A Java code to perform the SD2PN model transformation is created (refer

page 166).

• Synthesis methods for Sequence Diagrams are introduced based on Petri Net synthesis

methods. More specifically:

o A message refinement synthesis method that replaces a single message in a

Sequence Diagram with a complete Sequence Diagram is presented (refer page

118).

o A part decomposition synthesis method is defined as an example of a bottom-

up synthesis method where the events attached to a certain lifeline are replaced

with an entire Sequence Diagram (refer page 123).

o A domain-specific, special case synthesis method used for introducing a man-

in-the-middle type attack on a Sequence Diagram is presented (refer page

127).

• A notion of time is introduced into SD2PN, allowing various time related analysis

such as performance analysis to be performed (refer page 133).

• A number of examples are presented in order to illustrate the feasibility of the studies

presented in this thesis (refer pages100, 118 and 149).

14

1.3 List of Publications

The following publications are a result of the research presented in this thesis:

• Mohamed A. Ameedeen, Behzad Bordbar and Rachid Anane. Model interoperability

via Model Driven Development. Journal of Computer and System Sciences. 2010.[60]

• Mohamed A. Ameedeen, Behzad Bordbar and Rachid Anane. A Model Driven

Approach to Analysis of Timeliness Properties. Fifth European Conference on Model-

Driven Architecture Foundations and Applications (ECMDA 2009). 2009: Enschede,

The Netherlands.[61]

• Mohamed Ariff Ameedeen and Behzad Bordbar. A Model Driven Approach to

Represent Sequence Diagrams as Free Choice Petri Nets. 12th International IEEE

Enterprise Distributed Object Computing Conference (EDOC). 2008: München,

Germany.[62]

1.4 Overview of this Thesis

The remainder of this thesis is organized as follows. In Chapter 2, preliminary and foundation

information regarding UML, in particular Sequence Diagrams, followed by Petri Nets,

Labelled Event Structures, Model Driven Development are presented.

 In Chapter 3, a methodology for Multi Paradigm Modelling is presented, where else in

Chapter 4, the application of Multi Paradigm Modelling in an MDD model transformation

from Sequence Diagrams to Petri Nets (SD2PN) is presented. Chapter 4 also presents a

15

method for the automated transformation of Sequence Diagrams in the form of XMI to Petri

Nets in the form of XML using a Java based tool. In Chapter 5, SD2PN is utilized to perform

analysis of Sequence Diagrams using the mathematical analysis techniques in Petri Nets.

Chapter 6 on the other hand brings the well-established notion of synthesis in Petri Nets into

Sequence Diagrams. In particular, three synthesis algorithms are specifically introduced for

Sequence Diagrams.

 Chapter 7 introduces the concept of time into SD2PN, allowing time related analysis

i.e. performance analysis to be performed using SD2PN. Finally, Chapter 8 summarizes the

thesis and discusses the future work that can be done to extend this research.

16

CHAPTER 2
FOUNDATION

This chapter presents preliminary information or foundation for the languages and the

technology used throughout this thesis including UML, Petri Nets and Model Driven

Development.

2.1 Unified Modelling Language

Unified Modelling Language (UML)[7] is a family of languages, which is widely accepted as

the de facto standard for software modelling. In the year 2003, UML was adjudged to be used

in almost 70 percent of object-oriented software developments [63] and it is widely believed

that this figure has ever since been steadily increasing. According to [64], the reason for this

success is the six main advantages of UML as presented in Table 1.

17

Table 1: Main advantages of UML (referenced from [64])

Advantage Description

Strongly defined Every element used in UML has a strongly defined meaning

provided in [7] and an explanation of how it could be used.

Concise The notations used in UML are simple and straightforward,

making the models clear, concise and simple.

Comprehensive UML is built as a collection of languages that could describe

various aspects of a system i.e. structure, behaviour,

interactions, etc.

Scalable UML is regarded to be strong enough to model large systems

modelling projects. However, it is also adaptable to modelling

smaller scaled systems without fuss.

Built on lesson-learned UML is built based on the best practices in previous systems

modelling methods. It is also constantly evolving for the

better, taking note of other current system modelling methods

as well.

Open standard Since UML is built on an open standard with constant

contributions from vendors and academics all over the world,

it promotes interoperability and discourages a vendor

monopoly.

 One of the main goals of UML, as outlined in [63] is to provide an easy-to-use,

expressive and visual languages that allows developers to design and share their models. In

order to accomplish this goal, the UML standard [7] not only describes semantics of the

18

language, but also visual representation of the languages in the form of diagrams. UML

diagrams are divided into two main classifications; structural diagrams and behavioural

diagrams. Structural diagrams are commonly used to represent the architectural construct of

the system by modelling the various structural and elemental properties. On the other hand,

behavioural diagrams are used in modelling functional aspects of the system such as event

flow and communication. Figure 2 presents the UML diagrams based on their classifications.

Figure 2: Classification of UML diagrams

Figure 2 classifies the six structural diagrams and seven behavioural diagrams, four of which

is further classified as interaction diagrams. Table 2 lists and describes the different types of

UML diagrams.

Table 2: Types of UML diagrams

Class Diagram

(page 23 of [7])

A Class Diagram is a static diagram that depicts the

structure of a system by representing the system in terms of

UML Diagram

Structural
Diagram

Behavioural
Diagram

Class Diagram Component
Diagram Object Diagram

Deployment
Diagram

Package
Diagram

Composite
Structure
Diagram

Activity Diagram Use Case
Diagram

Interaction
Diagram

State Machine
Diagram

Timing Diagram
Interaction
Overview
Diagram

Communication
Diagram

Sequence
Diagram

19

classes and the relationship between them. A typical class in

the Class Diagram is visually represented as a box with

three sections. The top section holds the name of the class,

the middle section lists the attributes of the class and the

bottom section holds the methods that are associated to the

class.

Component Diagram

(page 143 of [7])

A Component Diagram is a diagram used to depict how

various components in the system relates to one another. A

component represents a modular part of the system and the

relationship between the components, be it by connections

or encapsulations are depicted in a Component Diagram.

Object Diagram

(page 23 of [7])

An Object Diagram is used to represent a complete or

partial view of a system modelled at a specific time. Objects

Diagrams features object instances and attributes derived

from Class Diagrams and the relationship between these

instances. Object Diagrams are also used to provide

examples or test-cases for Class Diagrams.

Composite Structure Diagram

(page 161 of [7])

A Composite Structure Diagram is a type of static diagram

that shows the internal structure of a classes and the

collaboration between them. This diagram could be used to

describe the parts (roles) of various instances, the ports

(points) of connections between the classes, and connectors

that are used to bind the entities together.

Deployment Diagram A Deployment Diagram is used for modelling of the

20

(page 193 of [7]) physical deployment of artifacts. In UML, artifacts can be

among others a model file, source file, a table or even a

word document.

Package Diagram

(page 23 of [7])

A Package Diagram presents the dependencies between

packages in a model. It is commonly used to depict the

architecture of a system using layers and the

communication between them.

Activity Diagram

(page 295 of [7])

Activity Diagram is used to present the workflow of

activities in a system. It is capable of modelling iterations,

choice as well as parallel behaviour. An Activity Diagram is

often regarded as a form of flowchart.

Use Case Diagram

(page 585 of [7])

A Use Case Diagram is a form of behavioural diagram that

represents the overview of functionality in the system. A

Use Case Diagram consists of actors, use cases and the

dependencies between the use cases. A Use Case Diagram

is often used to capture the requirements of a system.

State Machine Diagram

(page 523 of [7])

The UML State Machine Diagram is a variation and

extension of statecharts [65]. There are two types of state

machines; behavioural state machines and protocol state

machines. The behavioural state machines are used to

specify behaviours of various model elements where else

the protocol state machine is used to express usage

protocols.

Sequence Diagram Sequence Diagram is a type of interaction diagram that is

21

(page 457 of [7]) used to depict the communication between various object

instances in the system. Sequence Diagrams are capable of

modelling flow of events in a system as well as iterations,

choice and parallelism.

Communication Diagram

(page 457 of [7])

A Communication Diagram is a type of interaction diagram

that is simplified from Collaboration Diagram in the

previous versions of UML. It is commonly regarded as a

combination between Class Diagrams, Sequence Diagrams

and Use Case Diagrams as it is capable to model both static

structures and dynamic behaviours.

Interaction Overview Diagram

(page 457 of [7])

An Interaction Overview Diagram is used to model the

control flow in a system (similar to Activity Diagram) using

types of interaction diagrams (Sequence Diagrams,

Communication Diagrams, Interaction Overview Diagrams

and Timing Diagrams).

Timing Diagram

(page 457 of [7])

Timing Diagram is a type of interaction diagram that

focuses on timing properties. The horizontal axis of the

Timing Diagram represents time, increasing from left to

right where else the vertical axis represents the object

instances.

Table 2 described the various types of UML diagrams. However, with reference to the

highlighted element in Figure 2, the next section provides a more detailed view of a specific

diagram type that will be used throughout this thesis; Sequence Diagrams.

22

2.1.1 Sequence Diagrams

Sequence Diagram is a type of UML Interaction Diagram adapted from its predecessor,

Message Sequence Charts (MSC) [66, 67]. Sequence Diagrams are two-dimensional charts

where the vertical axis represents the time and the horizontal axis represents interaction.

Sequence Diagrams are commonly used to depict the flow of information in a system through

communication between objects.

Figure 3: Sequence Diagram Metamodel

Figure 3 presents the metamodel for UML Sequence Diagrams featuring components

of Sequence Diagrams as used in this thesis. The main components of a Sequence Diagram

are lifelines, messages and Combined Fragments that are defined by Interaction Operators.

Lifelines are horizontal lines that represent objects or instances of a class in the system where

else messages are horizontal arrows that begins and ends at a lifeline. These messages

represent the communication between the objects that are represented by the respective

InteractionFragment

Interaction EventOccurrence CombinedFragments

InteractionOperator:
InteractionOpetratorKind

InteractionOperand

Lifeline

Message MessageEnd

GeneralOrdering InteractionConstraint

Constraint

<<enumeration>>
InteractionOperatorKind

Alt
Opt
Break
Par

+coveredBy

+fragment

+enclosing
Interaction

+fragment
(ordered)

+interaction

+interaction

+covered

+message

+sendMessage

+receiveMessage

+sendEvent

+receiveEvent

+before +after

+toBefore+toAfter

+operand

+guard

+generalOrdering

*
*

0..1

1

1

* 0..1

0..1 0..1
0..1

* *

11

0..1

1

23

lifelines. Messages are commonly used as a signal or a call for procedure or function in the

system. Figure 4 presents an example of a Sequence Diagram with two lifelines and four

messages. All four messages in Figure 4 depict communication from Object A to Object B.

Figure 4: Example of a Sequence Diagram

Combined Fragments are high level additions introduced to Sequence Diagrams. A

Combined Fragment is defined by the Interaction Operator that is attached to it, as well as the

number of operands it has. In Figure 4, a Combined Fragment with the Interaction Operator

alt is presented with two operands (number of sections in the Combined Fragment).

Interaction Operators are used as mechanisms to provide structure in the communication

between lifelines. For example, the Interaction Operator alt presented in Figure 4 refers to

alternative (conflicting) behaviour where only messages in one of the two operands pictured

would be executed. As such, if the message m2 is sent, then the message in the second

operand, m3 would not. The same is also true for the opposite. There are eleven types of

Interaction Operators outlined in [7], each structuring the messages in a different way. The

first four of the Interaction Operators from [7] are used in this thesis, and therefore introduced

in Table 3.

Object A Object B

alt

m1

m2

m3

m4

e1 e2

e3 e4

e5 e6

e7 e8

Lifeline
Message

Event

Combined
Fragment

Interaction
Operator

24

Table 3: Subset of Interaction Operators (referenced from [7])3

Interaction

Operator

Abbreviation Semantic Description

Alternative alt The alternative Interaction Operand depicts a choice

of behaviour where at most one of the operands in the

Combined Fragment is chosen. The operands of the

Combined Fragment could be assigned a guard or

constraint that has to be evaluated to be true for it to

be chosen.

Option opt An option is semantically equivalent to alternative

where a choice of behaviour occurs. The default for an

option Interaction Operator is one operand, where the

either the operand happens, or nothing happens.

Break - In a Combined Fragment with the Interaction Operator

break, a choice of behaviour is presented where an

operand occurs, or the remainder of the interaction is

ignored (i.e. termination of system). The operands

could be attached to a guard to determine the chosen

behaviour. However, a break Interaction Operator

without a guard leads to a non-deterministic choice of

behaviour.

3Interaction operators such as loop and neg are not a part of the metamodel used in this thesis due to the
limitations in the result and is further discussed in Section 8.2.

25

Parallel par The parallel Interaction Operator designates that a

parallel merge between all the operands of the

Combined Fragment occurs. The order of messages

within each operand of the Combined Fragment is

preserved. However, the order of messages between

operands can be interleaved in any variations.

 The Sequence Diagram in Figure 4 also presents a concept of events. In a typical

Sequence Diagram, events are not labelled, nor are they represented by a ‘point’ as they are in

Figure 4. The representation in Figure 4 is deliberate, to familiarize the users with the concept

of events used throughout this thesis. Events are attached to lifelines and denote the sending

and receiving of messages. According to [68], there are two rules in the sequencing of events

in a Sequence Diagrams;

1. The events on each lifeline must be ordered from top to bottom.

2. The event that denotes the sending of a message must occur before the event that denotes

the receiving of the same message.

The authors of [68] also went on to describe that as long as the two rules are followed,

ordering the events in a Sequence Diagram is arbitrary. However with reference to the

Sequence Diagram metamodel in Figure 3, each Interaction Fragment is has a General

Ordering that hasbeforeorafter events in the form of Event Occurrences. This ordering

framework is adapted for the purpose of this thesis.

26

2.2 Petri Nets

Petri Net [6] is a formal modelling language that has a strong mathematical foundation and a

graphical method of representation. Petri Nets are often used to model control flow in a

system and is capable of modelling complex behavioural properties such as conflicts (choice)

and concurrencies (parallelism). The main components of a Petri Net are places, transitions,

arcs and tokens.

Figure 5: Example of a Petri Net

Figure 5 presents an example of a Petri Net with seven places and five transitions.

Each place in a Petri Net may contain a number of tokens, referred to asmark. For example in

Figure 5, the mark of s1 is ‘1’ where else for all other places, the mark is ‘0’. A place is only

s1

s2 s3 s4

s5

t1 t2

t3 t4
Place

Transition

Arc

Token

s6 s7

t5

27

allowed to be connected to a transition via eitherinput arcs or output arcs. An input arc is

visually represented as an arrow with the arrow head pointing towards the place (or transition)

where else an output arc is an arrow with the arrowhead pointed away from the place (or

transition). For a transition to be enabled or ready to fire, each place that connects to it via an

input arc needs to be marked with at least one token. However each token can only be used to

fire one transition at a time as would be explained further using Figure 6 which presents an

example of a firing sequence for the Petri Net in Figure 5 while highlighting the conflict,

concurrency and causal relationships between the nodes.

Figure 6: Example of a Petri Net Firing Sequence

s1

t2t1

s2

t3

s5

s3

t4

s6

s4

t5

s7

s1

t2t1

s2

t3

s5

s3

t4

s6

s4

t5

s7

s1

t2t1

s2

t3

s5

s3

t4

s6

s4

t5

s7

s1

t2t1

s2

t3

s5

s3

t4

s6

s4

t5

s7

s1

t2t1

s2

t3

s5

s3

t4

s6

s4

t5

s7

(a) (b) (c)

(d) (e)

28

Figure 6 (a) shows a marked place, s1 with output arcs connected to two transitions t1

and t2. Both t1 and t2 becomes enabled since every place that is connected to them via input

arcs are marked. This represents a conflict where although both t1 and t2 are enabled, only

one of them may fire, based on the solitary token that is contained in the place s1. Figure 6 (b)

shows a scenario where t1 fires. This removes the token from s1 and places it in s2 which is

the only place connected via an output arc to t1. One observation that could be made here is

that the previously enabled t2 is no longer enabled since s1 no longer contains tokens. Since

t3 is the only transition enabled following the firing of t1 as depicted in Figure 6 (c), the firing

sequence is continued, removing a token from s2 and placing it in s5. The firing of t3 may

only ever occur following the firing of t1, thus creating a causal relationship between them.

An alternative scenario where t2 fires instead of t1 is presented in Figure 6 (d). The firing of

t2removes a token from s1 and places a token each in s3 and s4. This is described as a

concurrency or parallel relationship where one token is split into two (or more depending on

the number of concurrent nodes). The firing sequence then continues with t4 and t5 enabled

concurrently and independent of each other, as depicted in Figure 6 (e). Another observation

that could be made at this point is the absence of any causal relationship between t4 and t5

and the order of firing between them is non-deterministic.

29

Figure 7: Petri Net Metamodel

Figure 7presents the metamodel of Petri Net where Petri Net consists of at least one

place, one transition and one marking. Each place or transition may have any number of input

and output arcs and each place has a mark in the form of the integer number of tokens.

Alternatively, Petri Nets can also be presented formally as follows:

Definition 1:A Petri Net is a triple N = (S, T, F) where S is a finite set of places and T is a set

of transitions where S∩ T = ∅. F is a relations on S∪ T where F∩ (S x S) = F∩ (T x T) = ∅.

A marking of N is a function m:S→{0,1,2,3, …}, where each place s∈ S is assigned the

number of tokens. M0

This formalization can also be extended to the relationship between places and transitions. For

every place s∈ S, 𝑠𝑠° represents the set of transitions that are connected to it via input arcs

while 𝑠𝑠°represents the set of transitions that are connected to it via output arcs. Similarly for

each transition t∈ T, 𝑡𝑡° represents the set of transitions that are connected to it via input arcs

is used to show the initial marking, the number of tokens in each place

at the beginning of execution.

Petri Net

Place Transition

Marking

Mark

Arc

tokens: Integer
+in +in+out +out* * * *

1 1 1 1

30

while 𝑡𝑡°represents the set of transitions that are connected to it via output arcs. For example in

Figure 5, s1 is an input place for t1. This can be presented using the notation s1 ∈ 𝑡𝑡° 1. The

relationship between s1, t1 and t2 can also be represented as 𝑠𝑠1°= {t1, t2}.

2.2.1 Flavours of Petri Nets

The mathematical nature of the Petri Net modelling language created a basis for a variety of

flavours to be added to the core of the general Petri Net. There have been various extensions

made to Petri Nets over the years including the introduction of two types of arcs; the reset arc

[69] which resets the place after each termination, making the reachability of the net

undecidable, and the inhibitor arc [6], that allows firing of the transitions only when there are

no tokens in the input places of the transition. There have also been variations of the types of

Petri Nets such as the Stochastic Petri Nets [70], Coloured Petri Net [71], Prioritized Petri

Nets [72] and Dualistic Petri Nets [73].

 One of the well-established variations of Petri Nets is the Timed Petri Net. Timed

Petri Nets are extensions to the conventional Petri Nets by the inclusion of timing information

such as the time associated to the firing of transitions. There are many different interpretations

of Timed Petri Nets. However in this thesis, the Timed Petri Net with closed intervals as

outlined in [50] are used. The timing information in the metamodel are inferred from the Petri

Net tools where [28] shows the existence of two distinct types of transitions; immediate

transitions and timed transitions, while[74] states that each time property is modelled via

closed intervals. These intervals are defined via specific upper and lower bounds attached to a

transition. For a transition to fire, firstly it must be enabled. Secondly, from the moment it

gets enabled, a clock starts; the transition can fire when the value of the clock is within the

31

interval. The inclusion of time constraints in Petri Nets enhances their capability for

modelling time-sensitive systems. Moreover, with the benefit of using existing Petri Net tools

such as CPNTools [27] and PIPE [28], time related analysis such as performance analysis

could take place. Timed Petri Net, its applications and its analysis properties would be further

discussed in Chapter 7 of this thesis.

2.2.2 Free Choice Petri Nets

Petri Nets are highly suited for modelling systems with rich, dynamic constructs due to its

expressive power and strong mathematical foundation. However as described in [36], analysis

algorithms for Petri Nets have a high complexity as a result of its rich modelling capabilities.

One possible method to address this issue is to restrict the structural properties of the net,

creating a subset of Petri Net called Free Choice Petri Net.

 Free Choice Petri Net is a subclass of Petri Nets where conflicts and concurrency

could occur, but not simultaneously. This subclass of Petri Net is predominantly used for

effective and efficient analysis of a systems [75].

Definition 2:Baccelli [38] defines Free Choice Petri Nets, as whenever two transitions in the

net share an input place, they must not have any other input places. This can also be written as

when 𝑠𝑠°> 1, for every t∈𝑠𝑠°,  𝑡𝑡° = 1.

Definition 2 declares that if a place in the Petri Net has more than one output transitions, then

each of the transitions must have an input place of exactly one. This ensures that whenever a

conflicting behaviour occurs, a concurrent behaviour does not occur simultaneously.

32

 There also exists a weaker definition of Free Choice Petri Net that is also referred to as

extended Free Choice Petri Net, as presented in Definition 3.

Definition 3: In a Free Choice Petri Net, if there is an arc from a place s to a transition t, then

there must be an arc from any input place of t to any output place of s.

However as established in [36], if a Petri Net satisfies the weaker condition in Definition 3, it

also satisfies the condition in Definition 2.

 The benefits of Free Choice Petri Nets mainly regards to the complexity of various

analyses that could be performed on the nets. Esparza and Silva [37] presented an algorithm

that allows liveness in bounded Free Choice Petri Nets to be computed in polynomial time as

opposed to otherwise exponential complexity of computing liveness in Petri Nets. Rank

Theorem [36] also provides a way to compute the liveness and boundedness of a Petri Net in

polynomial time by utilising matrix algebra. There are various other studies that are done on

Free Choice Petri Nets to reduce the complexity of analysis such as the Reachability Theorem

[36], Shortest Sequence Thorem [36], soundness analysis [22], concurrency analysis [76] and

the reduction and synthesis rules for Free Choice Petri Nets [36]. In short, Free Choice Petri

Nets allow various complex analyses to be conducted in a much less complex manner

(polynomial complexity as opposed to exponential complexity) compared to general Petri

Nets.

2.2.3 Analysis in Petri Nets

There is a plethora of analysis properties in Petri Nets [6]; however a few well-known

properties that are applicable to this research are presented below:

33

Liveness

Liveness in Petri Nets is commonly associated with the complete absence of deadlock. A Petri

Net N is considered live if every transition 𝑡𝑡 ∈ 𝑁𝑁 can be enabled through a firing sequence

that begins with the transitions enabled at the initial marking M0. In this scenario, M0

A Petri Net is bounded when the number of tokens in every place of the Petri net does not

exceed a certain number. Suppose a Petri Net 𝑁𝑁 = (𝑆𝑆,𝑇𝑇,𝐹𝐹) has an initial marking M

 is often

referred to as a live marking. By definition, if any transition in N can be enabled through a

firing sequence, then every marking M where 𝑀𝑀0
𝜎𝜎
→𝑀𝑀 is also a live marking.

Boundedness

0. The

Petri Net is regarded as k-bounded if for all 𝑠𝑠 ∈ 𝑆𝑆, 𝑀𝑀(𝑠𝑠) ≤ 𝑘𝑘 where 𝑀𝑀0
𝜎𝜎
→𝑀𝑀. For example, if

the number of tokens in each place in N does not exceed one (1) for every marking that results

from M0

, the net N is said to be 1-bounded. 1-bounded Petri Nets are also referred to as safe

nets.

34

Reachability

Reachability in Petri Nets calculates if a certain state of marking is reachable from the initial

marking through a sequence of events. A marking M in a Petri Net N is reachable from the

initial marking M0

Reversability analysis can be described as complementary to the reachability analysis.

Suppose a Petri Net N with the initial marking M

 if there exist a firing sequence 𝜎𝜎 such that 𝑀𝑀0
𝜎𝜎
→𝑀𝑀.

Reversibility

0

Persistence analysis in Petri Net refers to the firing of two or more enabled transitions under a

single marking. Suppose a set of enabled transitions 𝑇𝑇𝑒𝑒 in a Petri Net N with under the

marking M. If the Petri Net N is persistent, then the firing of any single transition 𝑡𝑡 ∈ 𝑇𝑇𝑒𝑒

would not disable any other transitions in 𝑇𝑇𝑒𝑒 . This reflects concurrency or parallelism where

every enabled transition remains enabled until it fires. A persistent net also belongs to a class

of Petri Nets called Marked Graphs, a subset of Free Choice Petri Nets where conflicting

behaviours could not occur.

 and a set of markings 𝑀𝑀 ∈ ℳ. The Petri

Net N is reversible if for every marking 𝑀𝑀 ∈ ℳ, there exist a firing sequence 𝜎𝜎 such that

𝑀𝑀
𝜎𝜎
→𝑀𝑀0.

Persistence

35

 These properties and more are analysed using three main analysis methods in Petri

Nets: Reachability Tree, State Equation or Incidence Matrix and the Reduction method. The

Reachability Tree approach involves the enumeration of all reachable markings in the Petri

Net. However, this approach is limited to smaller sized Petri Nets due to the complexity of the

state-space explosion orcalculating reachable states for each marking in the net. The equation

and reduction methods on the other hand are more powerful and allow analysis to be

performed on larger nets. The State Equation or Incidence Matrix method performs algebraic

analysis on Petri Net behaviours that are expressed as matrices and equations. Meanwhile the

Reduction method is used to reduce large scale Petri Nets into smaller nets while preserving

the system properties to be analysed. However by using Petri Net tools, the complexity behind

these methods are hidden from the users and as such are not explained. Mathematical

explanation of the methods are found at [6].

2.2.4 Petri Net Tools

One of the main attractions of Petri Nets is the plethora of widely available tools to design,

share and analyse Petri Net models. The list of Petri Net tools are available in a

comprehensive tool database that is updated regularly at [34]. In Table 4, a selection of Petri

Net tools and their properties are presented.

36

Table 4: Petri Net Tools

Petri Net Tool

Modelling Type Analysis

Pl
at

fo
rm

 In
de

pe
nd

en
t

Fr
ee

 o
f C

ha
rg

e

G
ra

ph
ic

al
 E

di
to

r

T
ok

en
-G

am
e

A
ni

m
at

io
n

T
im

ed
 P

et
ri

 N
et

s

H
ig

h
L

ev
el

 P
et

ri

N
et

s

St
ru

ct
ur

al
 A

na
ly

si
s

B
eh

av
io

ur
al

A

na
ly

si
s

Pe
rf

or
m

an
ce

A

na
ly

si
s

AlPiNA [29] • • • • • • •

COSA BPM [77] • • • •

CPNTools [27] • • • • • • • • •

GreatSPN [30] • * • • • • • • •

Helena [78] • • •

HPSim [79] • • • • •

INA [80] • • • • • • •

JFern [31] • • • • • • •

LoLA [32] • • • •

Maria [81] • • • • • • •

NetLab [33] • * • • •

PetriSim [82] • • • •

PIPE [28] • • • • • • • •

TimeNet [83] • * • • • • • •

Tina [35] • • • • • • •

Table 4 presents a comparison between fifteen Petri Net tools based on nine evaluation

criteria. The first group of criteria – modelling, judges if a Petri Net tool supports visual

modelling of the Petri Nets and if it able to present an animation of the token-game (the flow

of token in the Petri Net). Majority of the tools provide a platform for visually modelling the

Petri Nets and a token-game animation. However, there are also tools (i.e. Helena, INA and

LoLA) that only accept text-based modelling of the Petri Nets.

37

 The second group of criteria that is evaluated in Table 4 is the type of Petri Nets

supported by the tool. Although there are various types of Petri Nets, only Timed Petri Nets

and High Level Petri Nets (i.e. Coloured Petri Nets) have bearing towards this research

project. As such, only the two types of Petri Nets are considered. Following the types of Petri

Nets, the next group of criteria is to evaluate the types of analysis that could be performed by

the Petri Net tools. Three types of analysis are evaluated; structural analysis (i.e. liveness

analysis, boundedness analysis), behavioural analysis (i.e. reachability analysis) and

performance analysis (i.e. throughput analysis, waiting time analysis). This is followed by the

platform independence criteria which evaluates if a tool could function across all the major

platforms (i.e. Windows, Linux, Apple, Sun, etc). Finally, the cost of obtaining the tool is

considered where most of the tools could be obtained free of charge, including the three tools

that are marked ‘*’ which are free of charge for academic purposes.

 In this research project, two of the tools presented in Table 4 are used for modelling

and analysis of Petri Nets; CPNTools and PIPE. Both CPNTools and PIPE are capable in

modelling the Petri Net visually as well as animating the flow of tokens in the system. Both

the tools could also be used to perform all the types of analysis evaluated in Table 4. Both

CPNTools and PIPE can be used across various platforms and can be obtained free of charge.

CPNTools is also highly capable in modelling Timed Petri Nets and High Level Petri nets.

However, PIPE is not suitable in modelling High Level Petri Nets. Nonetheless this limitation

is overshadowed by its other qualities as presented in Table 4.

38

2.3 Labelled Event Structures

Event Structures [42] are models of computational process that allows a system to be

modelled as a sequence of events. Event Structure models the behaviour of a system through

the relationship between the various events in the system. There are three main types of

relationship between events; causal relationship, conflicting relationship and concurrent

relationship.

Definition 4: An Event Structure is a triple, E = (Ev, →*, #) where Ev is a set of events and

→* and # representing binary relations causality and conflict such that →*, # ⊆Ev×Ev.

Causality is a partial order while conflict is symmetric, irreflexive and propagates over

causality. If two events e1, e2∈Ev are neither in causality or conflict, then they are concurrent,

such that e1coe2 iff ¬ (e1→* e2∨e2→* e1 ∨e1 # e2).

Definition 5: An Event Structure E = (Ev, →*, #) is discrete iff for every e, the local

configuration of e, ↓e = {enen→* e} is finite.

Immediate Causality refers to events such as e1, e2∈Ev that are causal and have no other

events occurring between them. If e1→* e2 has an immediate causality relationship, then e1 is

the immediate predecessor of e2 and e2 is the immediate successor of e1. Alternatively, this

relation could also be written as e1→e2.

39

Definition 6: Let E= (Ev, →*, #) be a Discrete Event Structure and L an arbitrary set where

l:Ev→L would be the labeling function that maps each event in E into an element in L.

From here on, Labelled Discrete Event Structures will be referred to as Labelled Event

Structures or LES. The next section presents the translation from Sequence Diagrams to LES

followed by the unfolding of Petri Nets into LES.

2.3.1 Translating UML Sequence Diagrams into Labelled Event Structures

In this section, a translation of Sequence Diagrams into LES is presented based on the

semantics in [40]. In order for a Sequence Diagram to be represented as an LES, a formalized

notation for Sequence Diagram is required. The notations for a Sequence Diagram followed

by the definition of two local functions scope and alt_occ are presented in Definitions 7, 8 and

9 respectively.

Definition 7: A Sequence Diagram can be represented as a tuple SD = (I, Loc, Locini, Mes, E,

Path, XI

• I is the set of instance identifiers corresponding to the objects in the diagram

) where:

• Loc is the set of locations

• Locini is the set of initial locations such that Locini

• Mes is the set of message labels

⊆Loc

• E is a set of edges where an edge (l1, m, l2)represents a message m sent from location

l1to l

• {X

2

i} where i ∈I is a family of I-indexed sets of constraint symbols

40

• Path is a given set of well-formed path terms for the diagram used to capture the

relative positions of the locations within a diagram

a:A

alt

l0

l1
l2

l3

l4

Figure 8: Example of events in a Sequence Diagram

Definition 8: Scope is a function given by scope: Loc→Path. Referring to Figure 8above,

scope(l2) = alt(2)#1 and scope(l3) = alt(2)#2. This can be explained by showing that l2 and l3

are inside an alt fragment with two segments, however l2 is in segment 1 and l3 is in segment

2. Scope for l1 and l4 however signifies the start and end of a fragment and are shown as

scope(l1) = alt(2) and scope(l4

Definition 9:Alt_occ is a local function given by alt_occ: loc(i) →ℕthat returns a possible

number of alternative scenarios that can lead to a specific location. Referring to

) = alt(2).alt(2).

Figure 8

above, alt_occ(l4) = 2 because there are 2 possible scenarios that could lead to l4 from the

initial location l0 which are scenarios S1 = {l0, l1, l2, l4} and S2 = {l0, l1, l3, l4

By using the local functionscope, messages that are not causal and have a relationship of

either conflict or concurrent can be identified. This information would be essential in the

creation of the LES. On the other hand, by using the local functionalt_occ, the number of

}.

41

alternative scenarios that leads to a specific location in the diagram can be obtained, as to

create the branches in the corresponding LES.

Following the example in Figure 8above, a fragment of LES that corresponds to that

particular Sequence Diagram can be created. Since l4 has an alt_occ of 2, then it has two

events associated to it; e4 and e5. The rest of the locations have an alt_occ of one, and will be

represented by e1, e2, and e3 respectively. Therefore, with 5 events Ev = {e1, e2, e3, e4, e5}

and e2 # e3 as can be seen from the scope, a fragment of LES such that ↓e4 = {e1, e2, e4}, ↓e5

= {e1, e3, e5 Figure 9} is the result, as shown in .

e1

e2 e3

e4 e5

#

Figure 9: Labelled Event Structure corresponding to the Sequence Diagram in Figure 8

An example of translating Sequence Diagrams into LES is presented in Appendix A.

2.3.2 Unfolding Petri Nets into Labelled Event Structures

In this section, a method that maps Petri Nets into LES is presented based on a branching

process of Petri Nets called unfolding. This method, introduced by McMillan [41] creates a

net where nodes in the net are labelled by the elements of the original net. This net represents

the firing sequence or a reachable marking of the original net. This net is also sometimes

42

referred to as a Labelled Causal Net or a Labelled Occurrence Net and can be interpreted as a

Labelled Event Structure.

Definition 10: Referring to [41], suppose a Petri Net N = (S, T, F), then a Labelled

Occurrence Net (unfolding of N) consist of a Petri Net N′ = (S′, T′, F′) and a labelling

function L′ which maps P′ onto the set P and T′ onto the set T while satisfying the following

conditions:

• Well-foundedness: every subset of T′ must have a minimal element with respect to

F′*.

• No forward conflicts: if p∈P′, p∈t1
• and p∈t2

•, then t1 and t2

• No self-conflicts: if t

 must ne the same.

1, t2, t3∈T′, t1F′* t3, t2 F′* t3 and •t1∩•t2≠∅, then t1 = t2

• No redundancy: if t

.

1, t2∈T′, L′(t1) = L′(t2) and •t1 = •t2, then t1 = t2

The construction of unfolding starts with the generation of a place for each places in the initial

set and adding transitions for every set concurrent places corresponding to the input set of the

original transition. From that transition, a place set corresponding to the output set of the

original transition is generated and this process is done iteratively for the whole Petri Net.

 For better understanding of how a Petri Net is unfolded into LES, an example of the

process is presented in Appendix A.

.

43

2.4 Model Driven Development

Model Driven Development [84] aims to promote the role of modelling in software

development. Models in the context of MDD are captured in machine-readable

representations, using languages which are widely adopted by software industry [7]. Hence it

is possible to communicate such models to various parties and reuse them. This results in

lower software production cost and shorter development cycles. For the purpose of this thesis,

MDD is used in the seamless transition of models between two languages; Sequence

Diagrams and Petri Nets. As such, software system design can be conducted in Sequence

Diagrams while the more formal notions of analysis could be performed in Petri Nets.

The transitions of models as used in this thesis adopts the standards set by Model

Driven Architecture (MDA) [85], a flavour of MDD which is initiated by the Object

Management Group (OMG). MDA outlines the concept of model transformation which is

central to the work presented in this thesis. Another standard that is central to the concept of

model transformation is Meta Object Facility (MOF) [86],used for describing metamodels.

Metamodels are themselves models, from which models of the system are instantiated. MOF

can be compared to EBNF, which is used for defining programming languages grammars. As

a result, MOF is a blueprint from which MOF Compliant metamodels are created.

Figure 10: Model Driven Development Model Transformation

44

Figure 10depicts an sketch of MDD model transformation as outlined by MDA [85]

and the metamodels that comply to MOF [86]. A number of transformationrules are used to

define how various elements of one metamodel (source metamodel) are mapped into the

elements of another metamodel (destination metamodel). The process of model

transformation is carried out automatically via the software tools which are commonly

referred to as model transformation frameworks [87-89]. A typical model transformation

framework requires three inputs: source metamodel, destination metamodel and

Transformation Rules. For any instance of the source metamodel, a transformation engine

executes the rules to create an instance of the destination metamodel.

45

CHAPTER 3
MULTI PARADIGM MODELLING

This chapter discusses the methodology used behind this research, Multi Paradigm Modelling

and how it could be used to solve the problem statement presented earlier in this thesis.

3.1 Role of Modelling in System Development

Modelling is becoming an essential component of system development. A model, according

to Blaha and Rumbaugh [90], is defined as an abstraction of something, used for the purpose

of understanding it before it is built. By applying this definition in the context of system

development, a model can be defined as an abstraction of the system that is used to

understand the works of the system before it is built. As such, modelling affords a system

designer the luxury of visualizing the system before it is developed.

 At present, modelling plays an important part in system design. Van Gigch [91] states

that there are three domains involved in system design; reality, modelling and metamodelling.

46

Reality represents the notion of the system in real life where else modelling represents an

abstraction of the reality by translating it into a verbal, graphical or mathematical notation.

Metamodelling on the other hand represents an abstraction of modelling or the modelling of

the modelling process. In short, the role of modelling in system design can be explained as the

process of translating a real life view of the system into a verbal, graphical or mathematical

notation, based on the metamodel.

 As well as the different levels of abstraction, modelling may involve different levels of

formalisms. Three levels of formalisms are identified in [92]; natural language, semi-formal

notation and formal notation. Natural language models are highly expressive and flexible, as

they contain descriptions and annotations that are easy to read. However, due to the lack of

semantics, the models could be interpreted differently by each stakeholder. On the other hand,

models with semi-formal notation use notational semantics to express the structure or

behaviour of the system. An example of this type of model is Unified Modelling Language

(UML) [7]. Finally, models with formal notations are known for their precise semantics with

underlying mathematical structures. For example, modelling languages with formal notations

are among others Z [4], Alloy [5] and Petri Nets[6]. This type of model is commonly used for

extensive reasoning and model analysis due to its mathematical nature.

 The role of modelling in system development is often confined to just model design.

Although it is undeniable that designing a model is essential, the role of modelling need not

end there. The system models could also be subjected to model analysis to evaluate the

structural rigidity and the behavioural properties of the system, or model synthesis where two

or more models with common elements could be put together in order to get a more holistic

view of the system. The following sections present model design, model analysis and model

47

synthesis; discussing their definitions and their importance in the role of modelling for system

development.

3.1.1 Model Design

Model design is the process of representing a view of the system in the form of models. For

this purpose, system designers often opt for a semi-formal notational model as it provides the

best balance between ease-of-use and precision. As a result, UML [7] has become the

preferred language in model design.

 There are various types of model in UML, divided mainly into structural diagrams and

behavioural diagrams. Structural diagrams such as Class Diagrams and Object Diagrams

represent the composition of the system, describing the various elements that make-up the

system. Behavioural diagrams such as Activity Diagram and Sequence Diagram on the other

hand describe the behaviour of the system under different circumstances as well as the

interaction between elements in the system.

 The different types of models, as well as the well established set of semantics for each

model type in [7] allows system designers to accurately project their views of the system into

models. The easily comprehendible nature of UML models also allows for straightforward

communication between stakeholders of the system without extensive knowledge of any

particular modelling or programming language.

3.1.2 Model Analysis

Model analysis could be regarded as a preliminary analysis of the system. Performing

mathematical analysis on models of the system could provide crucial feedback on any

48

structural design flaws or unwanted behaviours in the system. This allows the system designer

to rectify the design faults even before the system is built, essentially saving countless man-

hours and resources from having to re-build the systems.

 The mathematical nature of the analysis process dictates the need for modelling

languages with formal semantics such as Alloy and Petri Nets. Alloy is a declarative language

that models a system based on first-order logic [93]. It is highly suited to perform structural

analysis of a system. Petri Nets on the other hand is a state-based modelling language that is

capable of performing various types of performance analysis. The commonality between

Alloy and Petri Nets, as well as other formal modelling languages such as B and Z is the

strong mathematical foundation behind the language that makes it suitable for precise

computational analysis.

 Using model analysis, crucial mistakes can be avoided in the system development

process. Various types of analysis, such as liveness analysis, deadlock detection and

boundedness analysis could all be performed to effectively void the system of unwanted

behaviour. Examples of analysis in Petri Nets as well as their relevance to system

development are explained in Section 2.2.3. The importance of model analysis is also

highlighted in [94], among them are the computation of dependencies between states as well

as a risk analysis.

3.1.3 Model Synthesis

Model synthesis or model composition is the process of allowing two or more models to be

put together based on a set of common elements. This is necessary as modern complex system

must be broken down in the design phase, where each module of the system is designed

separately and independently of each other to reduce the overall complexity of the model.

49

There are also cases where models are built based on specific scenarios or from a

particularperspective such as security or quality-of-service (QoS). Performing model

synthesis between the different modules or integrating the various perspectives of a system

could not only present an integrated view of the system; it also highlights the dependencies

between the various modules and viewpoints.

 Model synthesis could also be applied to more enterprise systems in the form of plug-

ins. There exists a concept called refinement in model synthesis where a set of behaviours

could be plugged into an existing model without having to redesign the whole model. For

example, in designing a secure system, a system designer could plug in various security

protocols into the system design to find the best fit for needs of the system without having to

create multiple models.

 The notion of model synthesis is well-established in some modelling languages such

as Petri Nets [12, 16, 17, 21-23, 26, 58, 59] where various techniques and algorithms exist for

different types of synthesis. For example, refinement of a particular state in the Petri Net calls

for a top-down[22] synthesis method using a place refinement or transition refinement

algorithm [16]. On the other hand, synthesis of two Petri Nets from different perspectives can

be performed using a bottom-up approach where the common elements between the Petri Nets

are merged, causing the integration of the nets.

50

3.2 Bridging the Gap between Design, Analysis and Synthesis of

Models

As established in the previous section, the role of modelling in system development extends

not only to the model design, but also to model analysis and model synthesis. However, the

different requirements for the design, analysis and synthesis phases lead to the use of different

modelling languages. This results in heterogeneity where model design is often performed in

a semi-formal, easy to use language such as UML while model analysis and synthesis are

conducted on a more mathematical formal language such as Petri Nets. The incompatible

nature of the heterogeneous models compounded by the lack of interoperability between the

toolsets of the languages present a serious challenge to system developers [8, 75, 95]; to

provide a platform that allows interoperability between models with different levels of

formalisms. One possible solution for this challenge is Multi Paradigm Modelling.

3.2.1 Introduction of Multi Paradigm Modelling

Multi Paradigm Modelling[96-103] is a platform that promotes interoperability between

heterogeneous models. Applying Multi Paradigm Modelling in modelling and simulation [99-

102], Vangheluwe et al [103] described it as a field that addresses three directions of research;

multi-formalism modelling, model abstraction and metamodelling.

51

3.2.1.1 Multi-Formalism Modelling

Multi-formalism modelling provides an interoperability platform for models with differing

levels of formalisms on the basis of model transformation. Model transformation is the

process of translating one model into another using a set of predetermined rules.

 Currently, model transformation plays a key role in Model Driven Development

(MDD) [85]. According to a survey on model transformation [104], the intended application

of model transformation include generating low-level models from higher level models,

synchronizing models with different levels of formalisms and reverse engineering higher level

models from low-level models. There are various frameworks available for model

transformation, among others VIATRA (Visual Automated model Transformations)[105,

106], Kent Model Transformation Language [107], ATL [108], Kermeta [109] and SiTra

[110, 111]. A common way to express a model transformation is using QVT relational

language [112]. QVT is a standard for model transformation defined by Object Management

Group (OMG).

 A few key features that are common to all model transformation as described in [104]

include specification, such as the pre and post conditions for a model transformation, the set

of transformation rules, the directionality of the transformation as well as the source and

target relationship. In an MDD model transformation, a source metamodel and a target

metamodel are also required, whereby each source and target model should conform to the

respective metamodels.

52

3.2.1.2 Model Abstraction

Model abstraction is the process of removing a certain low-level detail from the model while

preserving the construct and general behaviour of the system. Similarly to multi-formalism

modelling, model abstraction also uses model transformation. However, a significant

difference between the two model transformations is that for model abstraction, the source

and destination models are of the level of formalism.

 Model abstraction is often used in removing various complicated low-level behaviours

in the system, according the requirements of a specific perspective. For example, a complete

model of the system filled with low-level behaviour might be too complicated for distribution

to various stakeholders. However using model abstraction, the model could be simplified up

to a certain level without losing its structural properties and vital behaviours. The same

concept can also be used for optimization [101] of models. Using a base model that is filled

with all the details, less detailed models can be automatically derived from it for various

operation tasks such as control design and performance assessment.

3.2.1.3 Metamodelling in Multi-Paradigm Modelling

Metamodelling (as explained in Chapter 2) refers to the modelling of models. Metamodel or

model of models is itself a model that defines other models. For example, suppose a modelling

language ℒ has a metamodel 𝕄𝕄ℒ. As such, 𝕄𝕄ℒ is a model that describes the constructs of the

language ℒ and every model that is written with the language ℒ must be an instance of the

metamodel 𝕄𝕄ℒ.

 Mosterman and Vangheluwe[101] describe the advantages of metamodelling as

numerous. The metamodel of a modelling language can be regarded as a specification for the

language which can either be used for documentation purposes or as a basis for model

53

analysis. Metamodelling also allows new languages to be born just by modifying or tweaking

parts of existing metamodels. This allows customization of the modelling languages to serve a

specific purpose.

3.2.2 Review of Existing Work

Multi Paradigm Modelling is an active area of research where many studies are being

conducted. Among others, Vangheluwe et al [103] presents an approach where Multi

Paradigm Modelling is applied to modelling and simulation [99-102] while Henkler and

Hirsch [113] apply Multi Paradigm Modelling to reconfigurable mechatronic systems by

allowing Mechatronic UML [114] to perform verification and code generation. However in

this section, the focus of the existing work review is on bridging the gap between design and

analysis, as well as design and synthesis.

3.2.2.1 Design and Analysis

Bridging the gap between the model design phase and the model analysis phase in system

development is vital due to the varying levels of formalisms between the models involved.

System design is often performed in UML while the model analysis is commonly performed

in a more formal mathematical language.

 One such work is UML2Alloy [8, 115] by an alumnus of University of Birmingham,

Kyriakos Anastasakis. UML2Alloy is a tool that allows UML models to be analysed using

Alloy. The implementation of UML2Alloy was created using an MDD model transformation

that transformed UML Class Diagrams [7] augmented with OCL [116] constraints into Alloy

models. The Alloy model is then analysed using Alloy Analyzer, a tool that allows model

level analysis using first order logic. UML2Alloy was developed on the platform of Java

54

using SiTra [110] as the model transformation framework. Although Alloy is highly suited to

model static models and constraints, it has its limitations when it comes to dynamic

behavioural models. Although some dynamic properties could be modelled using pre and post

conditions, Alloy does not have the mechanism to model complex behaviours such as

parallelism.

 Besides UML2Alloy, there have also been other model transformation approaches to

bridging the gap between model design and analysis. Kim [117] presents a model

transformation from both Class Diagrams and State Machines into Object-Z using MDA

technology. However, to the best of my knowledge, this transformation has not yet been

implemented. A similar approach is also adopted in [118] and [119] where Class Diagrams

and OCL Constraints are transformed into the formal language B [120]. In particular, [119]

proposes a UML profile for B called UML-B and the automation of the transformation with a

tool called U2B. A major feature of this approach is that it makes use of B provers to check

the conformance of the operations’ pre and post conditions to the invariants of the model. The

main difficulty with provers, as underlined in [119], is that even semi-automatic provers

assume a substantial amount of knowledge from the user.

 Another school of thinking to solve the heterogeneity problem between design and

analysis models is the integration of formal method techniques into UML [117-119, 121,

122]. Using this method, a formal and mathematical semantics adopted from a formal

language is integrated into UML to allow analysis to be performed without transforming the

individual models. Examples of UML formalization include Evans et al[121], who propose

the use of Z as the underlying semantics for Class Diagrams to deal with the static aspects of

models and Küster-Filipe [40], who presents a mathematical semantics for Sequence

Diagrams based on Labelled Event Structures.

55

Among the advantages of formalization include including the ability to analyse a

model via techniques such as model checking and theorem proving in order to ensure correct

specification. The introduction of logical and timing constraints into a model, in particular,

facilitates the investigation of non-functional aspects of the system such as QoS and security.

However it is worth noting that formalization comes at a cost – simplicity. The main reason

UML is chosen as the language for model design is its simplicity and semi-formal semantics.

Formalization creates a formal semantics for UML, making it harder to use and thus reducing

its appeal.

3.2.2.2 Design and Synthesis

The disparity between design models and models that can be synthesized stems from the lack

of synthesis capabilities in UML. Therefore, in order for synthesis to be carried out in UML

models, the Multi Paradigm Modelling platform is invoked to either transform the UML

models into a more synthesis-friendly language, or adopt the notion of synthesis form a

different language into UML.

 Liang et al. [43] describe a method for synthesis or integration of Sequence Diagrams

based on formalization of the Sequence Diagram into typed graphs. This method however is

designed for Sequence Diagrams that only consist of messages and lifelines without any

complex constructs such as parallelisms and conflicts as evident in page 133 of [44]. Bowles

and Bordbar [45] on the other hand present a method of synthesis by mapping a design

consisting of multiple views modelled by Sequence Diagrams into a unique mathematical

model which is used for analysis and detecting inconsistencies. This approach can also be

viewed as an instance of multi-formalism modelling where the Sequence Diagrams are

essentially transformed into a mathematical model before the synthesis is performed. Krüger

56

[47] also presents an approach for synthesis of Message Sequence Charts (MSC) [123] where

a notational semantics for MSC is introduced. A notion of message refinement is also

introduced in [47], where a message is syntactically replaced by a protocol for every

occurrence in the MSC. However, this approach of refinement does not preserve the

equivalence relations as stated in page 172 of [47]. A more primitive method of synthesis can

also be performed in UML – manual synthesis. However as evident in [8], synthesis of non-

trivial models could be tedious and redundant.

3.2.3 Using Multi Paradigm Modelling to Bridge the Gap between Design,

Analysis and Synthesis of Models

It has been previously established that Multi Paradigm Modelling is highly suited in bridging

the gap between heterogeneous models. In this section, an introduction to my research is

presented – how Multi Paradigm Modelling is used to bridge the gap between model designs

in Sequence Diagrams, model analysis in Petri Nets, and adopting the notion of model

synthesis from Petri Nets into Sequence Diagrams. On top of that, a brief introduction is also

presented on how semantic preservation between the heterogeneous models can be established

using Multi Paradigm Modelling.

3.2.3.1 Model Design Language

One of the primary goals of this research is to extend the capabilities of UML2Alloy in

bridging the gap between model design and analysis into dynamic behavioural models. As

such, UML Sequence Diagram is chosen as the language for designing the model due to its

capabilities in modelling complex behavioural properties and interactions.

57

3.2.3.2 Model Design to Model Analysis

Similar to UML2Alloy, a formal mathematical modelling language is chosen to perform

model analysis. In this research, the formal language of choice is Petri Nets due to its

capability to model dynamic behavioural models, its extensive capacity in model analysis as

well as a strong research community.

 Using Multi Paradigm Modelling as a platform, the Sequence Diagrams from the

system design could be transformed into Petri Nets using a set of transformation rules. This

creates model interoperability [60, 124, 125] between the Sequence Diagram models and Petri

Net models. This interoperability presents the system designer a chance to perform model

analysis before the system is built.

Figure 11: Example of Model Design and Analysis via Multi Paradigm Modelling

Figure 11 presents a scenario in Multi Paradigm Modelling between three levels of

formalisms, where a system designer models a system in a semi-formal language, performs

analysis on the model using a formal language and receives the feedback in natural language.

An example of this application is when a system designer takes advantage of the easy-to-use,

rich constructs of UML Sequence Diagrams to design the model. The interoperability

platform provided by Multi Paradigm Modelling allows the models designed in Sequence

Diagrams to then be analyzed in Petri Nets; a more formal, mathematical language. By using

System Designer

Model Design in Semi-
Formal Language

Model Analysis
in Formal
Language

Feedback in Natural
Language

58

the automated model transformation within Multi Paradigm Modelling, the system designer

does not even need extensive knowledge of Petri Nets or Petri Net tools to perform the model

analysis. Finally, the analysis result can be obtained in the form of reports from the Petri Net

tools. This scenario in this example clearly illustrates the advantages of using Multi Paradigm

Modelling in model analysis.

The model transformation from Sequence Diagram to Petri Nets is described in

Chapter 4 while the use of Petri Nets foundations for analysis of Sequence Diagrams is

presented in Chapter 5.

3.2.3.3 Model Design to Model Synthesis

The previous sections have established that Sequence Diagram is the language of choice for

model design and Petri Nets the choice for model analysis. Using the same combination, the

well-studied notion of synthesis in Petri Nets can also be adapted in Sequence Diagrams.

 One way to perform synthesis for Sequence Diagram models would to take advantage

of the model transformation platform provided by Multi Paradigm Modelling to transform the

Sequence Diagrams into Petri Nets, perform the synthesis, and transform the Petri Nets back

into Sequence Diagrams. However, bi-directionality in this model transformation is still a

subject for future research, thus it is not currently possible.

 Another method to perform synthesis in Sequence Diagrams is to adopt the well-

established notions of synthesis in Petri Nets into Sequence Diagrams. This can be done by

studying the equivalence relation between the Sequence Diagrams and Petri Nets through the

transformation rules and amend the algorithms accordingly. This is depicted in Figure 12

where a synthesis technique from one paradigm is adapted for use in a different paradigm.

59

Figure 12: Example of Model Synthesis via Multi Paradigm Modelling

The scenario in Figure 12illustrates that Multi Paradigm Modelling not only allows models to

be transformed from one language to another; it also allows constructs and methods to be

adapted from one paradigm to the other. A more complete description of Sequence Diagram

synthesis using Petri Net foundations is presented in Chapter 6.

3.2.3.4 Semantics Preservation in Multi Paradigm Modelling

By now, it has been made clear that Multi Paradigm Modelling provides a platform for

interoperability between heterogeneous models. However proving that the model

transformation does not alter the semantics of the original model is a different area of research

altogether.Interest in this area does exist, where in a case-study featuring the model

transformation of two simple, self-defined languages[126], the authors presented a discussion

of two techniques to proof the correctness of their model transformation; using triple-graph

grammar and in-situ transformation. However as of yet, this approach has not been applied to

a real-life model transformation between two complex languages. Sousa [127] on the other

hand, introduced a real-life model transformation from a Domain Specific Language to

automatically create Complex Control Systems Graphical User Interfaces and claimed that the

Synthesis Technique

Synthesis Technique
Paradigm 1

Paradigm 2

60

semantics are preserved; through manually comparing the paths between the source and

destination languages. There has also been an approach in [128] where a method for proving

correctness using a mathematical formalism called Constructive Type Theory (CTT) is

introduced where every model, metamodel, model transformation are all presented uniformly

in CTT. This approach is also extended in [129] by using Calculus of Inductive Constructions.

Other approaches to present semantic equivalence in model transformation include [130],

which is not dissimilar to the approaches in [128, 129]; as well as [131] which used an

automatic state-space checkerto compare the states of the source and destination model; and

[132] which presents semantic preservation through informal observation of test-case in each

step of the model transformation.

 The sketch of a proof of correctness for the model transformation in this thesis is

presented in [62]where the semantic preservationof themodel transformation is proven using a

common semantic domain. Suppose a model transformation from the source model to the

destination model in two different paradigms. The correctness of this model transformation

could be proven by the introduction of a third paradigm, provided both the source and

destination models could be translated into the third paradigm. Figure 13 illustrates this

scenario.

61

Figure 13: Using a Common Semantics Domain to Prove Correctness of Model Transformation

In the case of this research, the correctness of the model transformation from Sequence

Diagram to Petri Nets is proven using a common semantics in Labelled Event Structures

(LES); a graph that could represent the semantics of both Sequence Diagrams and Petri Nets.

By comparing the LES generated by fro both paradigms, the correctness of the model

transformation can be established. A more complete view of this proof is presented in Chapter

4.

Source
Model

Destination
Model

Semantics Semantics

model transformation
Paradigm 1 Paradigm 2

Common Semantics Domain

=

62

CHAPTER 4
SD2PN – SEQUENCE DIAGRAMS TO

PETRI NETS

Sequence Diagram, a member of the Unified Modelling Language (UML) family is an

interaction based modelling language that describes a system as a flow of events between

objects. Petri Net on the other hand is a formal, mathematical language that is typically used

for various types of analysis. Petri Net is also highly capable of modelling the flow of events

in a system. This commonality between the languages, compounded with the vastly different

levels of formalism and abstraction between Sequence Diagrams and Petri Nets, makes them

a candidate for implementing Multi Paradigm Modelling. The user friendly, low-formalism

Sequence Diagram could provide a platform for designing the system as well as

communicating the system design with other stakeholders, where else the mathematical nature

of Petri Nets could be used for analysis and manipulating the more formal elements of the

system.

 In this chapter, an MDD model transformation, SD2PN [62] is introduced. SD2PN

provides a framework for Sequence Diagrams to be transformed into Petri Nets, and serves as

63

a basis for the Multi Paradigm Modelling. This is followed by a proof that all Petri Nets

generated by SD2PN are Free Choice Petri Nets, a very well-studied subclass of Petri Nets.

This discovery and its significance are presented in Section 4.2. Finally, the correctness of the

model transformation is established in Section 4.3.

4.1 SD2PN – The Model Transformation

SD2PN is a rule-based MDD model transformation that transforms any Sequence Diagrams

that conforms to the metamodel in Chapter 2 into Petri Nets. The model transformation

process is hereby described in three stages:

Stage 1: Decomposition

 The Sequence Diagram inputted into SD2PN is decomposed into multiple

small fragments based on the Sequence Diagram metamodel.

Stage 2: Transformation

 Each Sequence Diagram fragment from Stage 1 is transformed into a Petri Net

block based on a set of model transformation rules.

Stage 3: Composition

 The Petri Net blocks from Stage 2 are put together using two local functions;

morph and substitute.

64

Each instance of the model transformation goes through the three stages in order to

successfully transform Sequence Diagrams into Petri Nets. The three stages are explained in

depth in Sections 4.1.1, 4.1.2 and 4.1.3.

4.1.1 Decomposition

The process of decomposition of a Sequence Diagram is carried out on the concrete syntax

representation and involves identification of various model elements and their relationships.

The metamodel of Figure 3in Chapter 2depicts model elements used in a Sequence Diagram.

 The main model element chosen from the metamodel is message. Message refers to

the events, or the flow of information between objects in the Sequence Diagrams. Each

message consists of two MessageEnds, as its sending and receiving events. These

MessageEnds are instances of EventOccurrence; where the causality of the events is

determined by GeneralOrdering. In Sequence Diagrams, this causality ordering is identical to

a top-down visual ordering. In this thesis, a message is considered to be a Sequence Diagram

fragment.

CombinedFragments are high level additions to Sequence Diagrams. They are

instances of InteractionFragment that consists of InteractionOperators. CombinedFragments

may include multiple InteractionFragments; which means it could consist of other

CombinedFragments. As a consequence, CombinedFragments may have a hierarchical

structure. This hierarchical structure is also sometimes referred to as nested

CombinedFragments. The nesting of CombinedFragments may also occur between different

InteractionOperatorKinds. There are four InteractionOperatorKind used in this thesis as

depicted in Figure 3; alternative, option, break and parallel. Since each of the four

65

InteractionOperatorKind changes the flow of events in a different way, they each are

designated as a fragment type.

Overall, there are five types of Sequence Diagram fragments; message, alternative,

option, break and parallel. Each Sequence Diagram inputted into SD2PN is decomposed

based on these five fragment types. The decomposition however preserves the causality of the

messages or the hierarchical structure of the CombinedFragments. In the next section, these

fragments are transformed into an equivalent Petri Net block.

4.1.2 Transformation

This section describes Stage 2 of the model transformation where each Sequence Diagram

fragment is transformed into a corresponding Petri Net block. This requires a set of five

transformation rules to be introduced; one for each type of fragment.

 Before the transformation rules are presented, a destination metamodel has to be

introduced. The Petri Net metamodel depicted in Figure 7of Chapter 2 corresponds to the

description of standard Petri Nets presented in Section 2.2. However for the purpose of this

section of the thesis, a temporary, necessary extension of Petri Nets is introduced through two

new concepts;placeholders and Petri Net blocks. As such the metamodel of Figure 7is

extended for the use of SD2PN, as depicted inFigure 14.

66

Figure 14: Extended Petri Net Metamodel for SD2PN

Definition 11:Placeholders are temporary nodes that mimic the structure of a place in Petri

Nets and are depicted as dashed rectangles.

Definition 12:Petri Net blocks are blocks of Petri Nets that have unique input and output

places, which are referred to as precondition and postcondition respectively. A more formal

definition of Petri Net blocks is as follows.

 A Petri Net block is a four tuple B = (S, T, P, F) where S is a finite set of places, T is a

finite set of transitions, and P is a finite set of placeholders. F⊆ ((S∪P) ×T) ∪ (T× (S∪P)) is

a set of arcs. In(B), Out(B) ∈ S are unique places (precondition and postcondition

respectively) such that In(B) has no incoming arcs and Out(B) has no outgoing arcs. They

represent the start and end places in the Petri Net blocks respectively. As such, a Petri Net

bock can also be textually represented as the sum of all its components. For example, the Petri

Net block in Figure 15 can also be written as

𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2}, {𝑡𝑡1, 𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1, 𝑠𝑠2), (𝑡𝑡2, 𝑠𝑠2)}).

Petri Net

Place Transition

Marking

Mark

Arc

tokens: Integer
+in +in+out +out* * * *

1 1 1 1

Placeholder

Petri Net Block

67

For larger Petri Net blocks where the textual representation such as above may be

cumbersome, it may also be written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2}

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2}

𝑃𝑃 = { }

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1, 𝑠𝑠2), (𝑡𝑡2, 𝑠𝑠2)}

Petri Net blocks also clearly extends the definition of conventional Petri Nets, since a Petri

Net block where P = ∅ is a conventional Petri Net.

Figure 15: Example of a Petri Net block

Following the definitions ofplaceholders Petri Net blocks, the Sequence Diagram

fragments can be transformed using a set of transformation rules. The description of each rule

is presented in the following sections, including a graphical representation of the rule and a

textual description as well as additional conditions.

s1

s2

t1 t2

68

4.1.2.1 Rule 1: Transforming Messages

As previously established, a message represents the flow of information in the system

between two objects. Page 491 of [133] describes a message as either a call for the execution

of an operation or depicting sending and receiving of a signal. A message not only signifies

the type of communication or signal, it also specifies the sender and receiver. For each

message fragment in the Sequence Diagram, an equivalent Petri Net block is generated.

Figure 16: SD2PN Model Transformation Rule for message fragments

For each message fragment that exists in the Sequence Diagram, a Petri Net block is created.

This Petri Net block consists of two places, s1 and s2. These places signify the precondition

and postcondition of the Petri Net block respectively. The message, m in the Sequence

Diagram fragment is transformed into a transition in the Petri Net block and labelled with the

same name. The transition m is connected to the precondition and postcondition via incoming

and outgoing arcs respectively. This result in a Petri Net block as depicted in Figure 16, or

textually as

m SD2PN
Rule 1

s1

s2

m

69

𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2}, {𝑚𝑚}, { }, {(𝑠𝑠1,𝑚𝑚), (𝑚𝑚, 𝑠𝑠2)})

There is however an additional constraint to the transformation of messages in SD2PN.

Suppose a messagem in the Sequence Diagram. Suppose that M is the set of all messagesin

the Sequence Diagram, then for every m ∈ M where there are no EventOccurrences or events

that occurs beforem(refer Section 2.1.1 for the description of before in EventOccurrences)4

Figure 16

;

the resulting Petri Net block is modified to include a token in its precondition (i.e. the places1

in).

4.1.2.2 Rule 2: Transforming Alternative CombinedFragments

A CombinedFragment with the InteractionOperatorKind alternative specifies a different set

of events that may occur based on the conditions in the fragment [7]. The alternative fragment

serves typically as an ‘if... else...’ condition in modelling interactions or behaviour. For each

alternativeCombinedFragment that exist in the Sequence Diagram, an equivalent Petri Net

block is generated.

4 From this point, any messagem ∈ M where there are no EventOccurrences or events that occur beforem could
also be referred to as first message for brevity.

70

Figure 17: SD2PN Model Transformation Rule for alternative fragments

For each CombinedFragment with the InteractionOperatorKind alternative in the Sequence

Diagram, a Petri Net block is created. The Petri Net block contains two places, s1 and s2 to

model its precondition and postcondition. The Petri Net block also contains two placeholders,

ph1 and ph2 as temporary places that will be replaced by the events in the operands alt

fragment 1 and alt fragment 2 respectively. The behaviour of the alternative fragment is

signified by two transitionst1 and t2 with incoming arcs from the precondition; thus only one

of the two transitions may fire. The transitions t1 and t2 are connected to ph1 and ph2

respectively. Two more transitions t3 and t4 are created to denote the end of the alternative

fragments. The transition t3 receives and incoming arc from ph1,t4 receives an incoming arc

from ph2 and both t3 and t4 are connected via an outgoing arc to the postcondition. This

results in a Petri Net block as depicted in Figure 17 or written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2}

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}

𝑃𝑃 = {𝑝𝑝ℎ1,𝑝𝑝ℎ2}

SD2PN
Rule 2

s1

s2

t1alt
alt fragment 1

alt fragment 2

ph1 ph2

t3

t2

t4

71

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ1), (𝑡𝑡2,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡3), (𝑝𝑝ℎ2, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)}

The graphical rule and textual description above depicts a scenario of an alternative

CombinedFragment with two operandsinside it. However, the flexibility of the rule allows for

more than two operands inside the alternative. In such cases, each additional operandwill be

transformed into two transitions and a placeholder (i.e. t5, t6 and ph3 respectively). The

placeholder ph3 is connected with the transitions via an incoming arc from t5 and an

outgoing arc into t6. The transitions in turn are connected to the main Petri Net block with an

incoming arc from the precondition into t5 and an outgoing arc from t6 into the postcondition.

The Petri Net block can be expanded in this way for every additional operand that exists.

 Another additional condition is related to the content of the alternative fragments. If

any of the operands inside the alternative fragment(including hierarchical fragments) contain

the firstmessage of the Sequence Diagram, the Petri Net block is modified to include a token

in the precondition.

4.1.2.3 Rule 3:Transforming Option CombinedFragments

The InteractionOperatorKind option is very similar to alternative. This is evident by the

similarities in their construct [7]. For each CombinedFragment with the

InteractionOperatorKind option, a Petri Net block is generated.

72

Figure 18: SD2PN Model Transformation Rule for option fragments

 The Petri Net block that is generated for the option fragment is as shown in Figure 18 or

𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2}

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}

𝑃𝑃 = {𝑝𝑝ℎ1,𝑝𝑝ℎ2}

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ1), (𝑡𝑡2,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡3), (𝑝𝑝ℎ2, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)}

The basic construct of the Petri Net block is identical to the alternative Petri Net block.

However, the difference between the generated Petri Net block is condition the additional

constraint; A CombinedFragment of type option may contain just one operand. In such cases,

the Petri Net block depicted in Figure 18 is modified accordingly. Since only one operand

exists, there must only be one placeholder in the Petri Net block. Thus, the placeholder ph2 is

replaced with a place skip that mimics the system where the actions inside the option operand

are ‘skipped’. The resulting Petri Net block is as shown in

SD2PN
Rule 3

s1

s2

t1opt
opt fragment 1

opt fragment 2

ph1 ph2

t3

t2

t4

73

Figure 19: A Petri Net block depicting an option fragment with one operand

 Similarly to the previous rule, if the CombinedFragment contains the first message of

the Sequence Diagram (including inside nested fragments), the precondition of the resulting

Petri Net block must contain a token.

4.1.2.4 Rule 4: Transforming Break CombinedFragments

A breakCombinedFragment consists of a guard (condition) such that when it is satisfied, the

operation breaks (i.e. terminates) [7]. The break fragment is a specialization of the ‘if... else...’

construct, where if the condition is satisfied, the system terminates. Each break fragment is

transformed into a corresponding Petri Net block.

s1

s2

t1

ph

t3

t2

t4

skip

74

Figure 20: SD2PN Model Transformation Rule forbreak fragments

A Petri Net block is created for every CombinedFragment of type break that exists in the

Sequence Diagram. This Petri Net block consists of the precondition and postcondition

modelled as places s1 and s2. The operand inside the break fragment is modelled by a

placeholder in the Petri Net block. Similar to previous rules, two transitions, t1 and t3 are

used to connect the placeholder to the precondition and postcondition. To illustrate

termination of the system, a place marked by X is created. This is referred to as terminal node.

The terminal node is connected to the precondition by means of a transition t2. However, the

terminal node is not connected to the postcondition; since the system is terminated at X. The

resulting Petri Net block can be written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,𝑋𝑋}

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3}

𝑃𝑃 = {𝑝𝑝ℎ}

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ), (𝑡𝑡2,𝑋𝑋), (𝑝𝑝ℎ, 𝑡𝑡3), (𝑡𝑡3, 𝑠𝑠2)}

SD2PN
Rule 4

s1

s2

t1break

break fragment
ph

t3

t2

X

75

Unlike previous rules for CombinedFragments, the break fragment does not increase in

number of operands. However, the condition for the existence of the first message of the

Sequence Diagram remains the same. If the break fragment contains the first message, then

the precondition of the resulting Petri Net block must contain a token.

4.1.2.5 Rule 5: Transforming Parallel CombinedFragments

The final rule of SD2PN is a rule that transforms every CombinedFragment with

InteractionOperatorKindparallel into a Petri Net block. A paralleloperator specifies that two

or more sets of event should occur concurrently without any pre-defined set of conditions, as

described in page 468 of [133]. As such, there should not be any causality or conflicting event

between all the operands of the parallel fragment.

Figure 21: SD2PN Model Transformation Rule for parallel fragments

For each CombinedFragment of type parallel that exists in the Sequence Diagram, a Petri Net

block is created. Typically, this Petri Net block consists of a precondition (s1), postcondition

(s2) and placeholders ph1 and ph2 that model the operands par fragment 1 and par fragment

SD2PN
Rule 5

s1

s2

t1par
par fragment 1

par fragment 2

ph1 ph2

t2

76

2. However, to model the concurrency between the operands, a single transitiont1 is used to

connect all the placeholders to the precondition. This is because the firing of t1 will provide

tokens to both ph1 and ph2; allowing them to run in parallel. Another transition t2 is created

to connect the placeholders to the postcondition. The Petri Net block generated by SD2PN

can be written as 𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2}

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2}

𝑃𝑃 = {𝑝𝑝ℎ1,𝑝𝑝ℎ2}

𝐹𝐹 = {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1,𝑝𝑝ℎ1), (𝑡𝑡1,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡2), (𝑝𝑝ℎ2, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠2)}

Similar to the alternative fragment, the parallel operator allows more than two operands. In

the occurrence of such event, each additional operand is transformed into a single

placeholder. This placeholder is connected to the main Petri Net block through and incoming

arc from t1 and an outgoing arc into t2. This creates concurrency between all the operands,

immaterial of the number.

 If the parallel fragment, or any of its nested fragments contains the first message of

the Sequence Diagram, then the place s1 (precondition) must be modified to include a token.

4.1.3 Composition

Following the mapping of each Sequence Diagram fragment into a corresponding Petri Net

block, an integrated Petri Net that corresponds to the original Sequence Diagram needs to be

produced by composing the Petri Net blocks.

77

 Examined closely, there is a commonality between all the Petri Net blocks generated

via SD2PN; each have a single input and output place, or as previously introduced,

precondition and postcondition. This is deliberate to allow a uniform method of putting the

Petri Net blocks together. There are two local functions used for this purpose: morph and

substitute.

4.1.3.1 Morph

The function morph is used to put together causal Petri Net blocks. In formal descriptions, the

symbol ⊗ is used to denote morph (i.e. B1⊗B2

Figure 3

). The causality relationship is derived from the

GeneralOrdering from the Sequence Diagram metamodel in . The morph function is

used to connect Petri Net blocks by merging the postcondition of a block with the

precondition of another, enforcing a causal behaviour. The morph function can only be called

with two Petri Net blocks at a time.

Figure 22: Example of a morph action between two Petri Net blocks

s1

s2

t1

s3

s4

t2

morph

s1

s2

t1

s4

t2

78

 Figure 22 illustrates the concept of morph using an example. When the morph

function is invoked on two Petri Net blocks, the postcondition of the former is merged with

the precondition of the latter, creating an integrated Petri Net block. As can be observed in

Figure 22, the morphed place will always take the label of the former block – disregarding the

latter. A more formal description is also provided below.

Suppose B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) are two Petri Net Blocks. The

morphing of B1 and B2, denoted by B1 ⊗B2 results in a Petri Net Block B = (S, T, P, F) such

that T = T1∪T2, P = P1∪P2, S = (S1∪S2) \ {Out(B1)}, In(B) = In(B1) and Out(B) = Out(B2)

and

F = ((F1∪F2) \ {(x, y) y = Out(B1)} ∪ {(x, In(B2)  (x, Out(B1) ∈F1} ….. (∗).

To explain (∗), notice that the arcs in B are obtained by including all the arcs in

F1∪F2 except the arcs leading to output places of B1,Out(B1). All arcs that terminates in

Out(B1) must be redirected to In(B2) in order to morphB1 and B2

As for the example in

.

Figure 22, suppose two Petri Net blocks B1 and B2 such that

𝐵𝐵1 = ({𝑠𝑠1, 𝑠𝑠2}, {𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1, 𝑠𝑠2)}) and

𝐵𝐵2 = ({𝑠𝑠3, 𝑠𝑠4}, {𝑡𝑡2}, { }, {(𝑠𝑠3, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠4)}) where s1 and s3 are preconditions of B1 and B2

respectively and s2 and s4 are postconditions of B1 and B2. Invoking the morph function as B1

⊗B2merges the postcondition of B1 and the precondition of B2, creating a Petri Net block

such that:

𝐵𝐵 = ({𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠4}, {𝑡𝑡1, 𝑡𝑡2}, { }, {(𝑠𝑠1, 𝑡𝑡1), (𝑡𝑡1, 𝑠𝑠2), (𝑠𝑠2, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠4)})

79

4.1.3.2 Substitute

The function substitute is used for composing hierarchical behaviour between Petri Net

blocks. Substitute can only be used to replace a placeholder with a Petri Net block. The

substitute function is invoked repeatedly until there are no more placeholders. The substitute

function can also be written in as a mathematical function such as B2[B1/p], which means a

placeholder p inside B2 is replaced with B1

.

Figure 23: Example ofa substitute action between Petri Net blocks

 Figure 23 illustrates an instance of substitution between two Petri Net blocks and the

result of the substitution process. Every time the substitute function is invoked, a placeholder

s3

s4

t3

s2

t1

ph1

t2

substitute

t1
s1

s3

s4

t3

s2

t2

s1

B1

B2

B3

80

is replaced by an entire Petri Net block such that the incoming arc into the placeholder is

transferred into the precondition of the block, while the outgoing arc from the placeholder is

transferred as if from the postcondition of the block. A more formal definition of substitute

follows.

 Suppose B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) are two Petri Net Blocks. Let

ph1 be a placeholder in B2. Substituting the Petri Net Block, B1 into ph1, denoted by

B2[B1/ph1] results in a Petri Net Block, B = (S, T, P, F), where S = S1∪S2, T = T1∪T2, P =

(P1∪P2) \ {ph1}, In(B) = In(B2), Out(B) = Out(B2) and

F = (F1∪F2 \ {(x, y) x = ph1 or y = ph1}) ∪ {(x, In(B1))  (x, ph1) ∈F1} ∪ {(Out(B1), y) 

(ph1, y) ∈F1} (∗∗).

 The equation (∗∗) states that arcs in B can be obtained by removing all arcs to and

from ph1 and redirecting them to In(B1) and Out(B2

 Since most cases of substitution in SD2PN involve the need for two Petri Net blocks

to be substituted into one Petri Net block with two placeholders (i.e. alternative, parallel and

certain cases of option); another example is presented in

) respectively.

Figure 24.

81

Figure 24: Example of two substitute actions between Petri Net blocks

As for the example in Figure 24, suppose three Petri Net blocks B1, B2 and B3

𝐵𝐵1 = ({𝑠𝑠3, 𝑠𝑠4}, {𝑡𝑡5}, { }, {(𝑠𝑠3, 𝑡𝑡5), (𝑡𝑡5, 𝑠𝑠4)})

𝐵𝐵2 = �
{𝑠𝑠1, 𝑠𝑠2}, {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4}, {𝑝𝑝ℎ1,𝑝𝑝ℎ2},

�
(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡1,𝑝𝑝ℎ1),

(𝑡𝑡2,𝑝𝑝ℎ2), (𝑝𝑝ℎ1, 𝑡𝑡3), (𝑝𝑝ℎ2, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)�
�

𝐵𝐵3 = ({𝑠𝑠5, 𝑠𝑠6}, {𝑡𝑡6}, { }, {(𝑠𝑠5, 𝑡𝑡6), (𝑡𝑡6, 𝑠𝑠6)})

 such that

Invoking the function substituteB2[B1/ph1]andB2[B3

s3

s4

t5

s5

s6

t6

s1

s2

t1

ph1 ph2

t3

t2

t4

substitute substitute

B1 B3

B2

/ph2] results in a Petri Net block

𝐵𝐵 = (𝑆𝑆,𝑇𝑇,𝑃𝑃,𝐹𝐹) where

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5, 𝑠𝑠6}

82

𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4, 𝑡𝑡5, 𝑡𝑡6}

𝑃𝑃 = { }

𝐹𝐹 = �(𝑠𝑠1, 𝑡𝑡1), (𝑠𝑠1, 𝑡𝑡2), (𝑡𝑡2, 𝑠𝑠3), (𝑠𝑠3, 𝑡𝑡5), (𝑡𝑡5, 𝑠𝑠4), (𝑡𝑡2, 𝑠𝑠5),
(𝑠𝑠5, 𝑡𝑡6), (𝑡𝑡6, 𝑠𝑠6), (𝑠𝑠4, 𝑡𝑡3), (𝑠𝑠6, 𝑡𝑡4), (𝑡𝑡3, 𝑠𝑠2), (𝑡𝑡4, 𝑠𝑠2)�

In cases where the substitution is between three5 Petri Net blocks such that B1and B3

substituted into B2 Figure 24 as presented in ; the order by which the substitution takes place is

arbitrary. The substitution of B2[B1/ph1] followed by B2[B3/ph2] generates the same result as

the substitution of B2[B3/ph2] followed by B2[B1/ph1]. As a result;

B2[B1/ph1][B3/ph2] = B2[B3/ph2][B1

4.2 SD2PN Generates Free Choice Petri Nets

/ph1]

Following the definition of the SD2PN model transformation, an interesting and vital

observation was made: SD2PN generates only Free Choice Petri Nets. Free Choice Petri Nets

is a well studied subclass of Petri Net where conflicts and concurrencies may occur but not

simultaneously.

 Recalling the definition of Free Choice Petri Nets from Section 2.2.2, Baccelli [38]

defines Free Choice Petri Nets, as whenever two transitions in the net share an input place,

they must not have any other input places. This can also be written as for every s, when

�𝑠𝑠°� > 1, for every 𝑡𝑡 ∈ 𝑠𝑠°, � 𝑡𝑡° � = 1.

5 This is also true for cases where more than two Petri Net blocks are substituted into one Petri Net block;
however it is not explained since there are no Petri Net blocks with more than two placeholders in the SD2PN
transformation rules.

83

 This section aims to prove the claim that SD2PN generates only Free Choice Petri

Nets. To begin with, an extension of Free Choice Petri Nets to Petri Net blocks is defined. A

Free Choice Petri Net Block is a Petri Net Block, B = (S, T, P, F) such that for each s ∈ S ∪

P, if�𝑠𝑠°� > 1, then every 𝑡𝑡 ∈ 𝑠𝑠°, � 𝑡𝑡° � = 1.Lemma 1 is derived directly from this definition.

Lemma 1: A Free Choice Petri Net block with no placeholders is a Free Choice Petri Net.

Proof: Trivial.

Lemma 2: Every individual transformation rules of SD2PN generates a Free Choice Petri Net

block.

Proof: Rules 1 and 5 has no instance of �𝑠𝑠°� > 1, where else in Rules 2,3 and 5, in the

instance where �𝑠𝑠°� > 1, every 𝑡𝑡 ∈ 𝑠𝑠°, � 𝑡𝑡° � = 1. Therefore, every individual transformation

rules of SD2PN generates Free Choice Petri Net blocks.

Lemma 3: The set of Free Choice Petri Net blocks are closed under morph and substitution,

i.e. if B1 and B2 are Free Choice Petri Net Blocks, then B1⊗B2 and B2[B1 / p] where p is a

placeholder in B2,

Proof: To show that B

 are also Free Choice Petri Net Blocks.

1⊗B2 = (S, T, P, F) is a Free Choice Petri Net Block, suppose s∈S∪P

such that �𝑠𝑠°� > 1, then s is either a place or a placeholder in B1 or B2, since s≠ Out(B1)

because 𝑂𝑂𝑂𝑂𝑂𝑂(𝐵𝐵1)°
P

 = 0. In either case, since both B1 and B2 are Free Choice Petri Net

Blocks, then B1⊗B2 is also a Free Choice Petri Net Block since B1⊗B2

To show that B

does not create a new

scenario such that �𝑠𝑠°� > 1.

2[B1/p] = (S, T, P, F) is a Free Choice Petri Net, we suppose that p is a

placeholder in B2. The process of substitution replaces all arcs into p and redirects them into

84

In(B2) and redirects Out(B2) into the output of p. This does not incur any new situation such

that �𝑠𝑠°� > 1, because the redirection of arcs is a direct mapping from one node to another.

Therefore B2[B1

4.3 SD2PN Preserves Semantics

/p] is a Free Choice Petri Net Block.

Theorem 1: Every Petri Net generated via SD2PN is a Free Choice Petri Net.

Proof: As previously described, there are three stages in the SD2PN model transformation.

The first stage of the model transformation decomposes the Sequence Diagrams into

fragments. In stage 2, each fragment is transformed into Petri Net blocks.From Lemma 2, it is

established that the Petri Net blocks are all Free Choice. Stage 3 puts together the Free Choice

Petri Net blocks using morph and substitution. By Lemma 3, the set of Free Choice Petri Net

blocks are closed under morph and substitute.Stage 3 ends when all the Petri Net blocks are

connected and there are no more placeholders. By Lemma 1, a Free Choice Petri Net Block

with no placeholders is a Free Choice Petri Net. Thus, SD2PN only generated Free Choice

Petri Nets.

As discussed in Chapter 3, preservation of semantics is vital in Multi Paradigm Modelling. In

this case, it is essential for the resulting Petri Net to retain the same behavioural properties as

the original Sequence Diagram. In this section, the term correctness refers to the preservation

of semantics between the source model and the destination model.

 In order to show that each Sequence Diagram fragment type described in Section 4.1.1

and the corresponding Petri Net block presented in 4.1.2 consist of the same behaviour, the

85

semantics of both the Sequence Diagram fragment and the Petri Net block is compared. As

such, a common semantic domain is required.

 Labelled Event Structures (LES) is chosen as the common semantics domain since

both Sequence Diagrams and Petri Nets can be depicted as LES using techniques from [40]

and [41] respectively Furthermore LES offers a similar approach to modelling when

compared to both Sequence Diagrams and Petri Nets such that all three languages focus on

behaviours and flow of events. LES also offers the ability to model causality, conflicts and

concurrencies; the three types of relationships offered in Sequence Diagrams.

Figure 25: Using LES as a common semantics domain to prove correctness

Figure 25depicts the outline of the approach in which Φ is a semantic map introduced by

Küster-Filipe [40] and Ψ is a semantic map introduced by McMillan [41] used in unfolding

of Petri Nets. Using these semantic maps, Sequence Diagrams fragments and Petri Net blocks

are mapped into LES; and the comparison between the LES is used as the proof that the

SD2PN model transformation preserves the semantics of the Sequence Diagrams in the

resulting Petri Nets. Preliminary information about LES and how Sequence Diagrams and

Petri Nets map into LES can be recalled from Section 2.3.

 In order to prove that SD2PN preserves semantics, both the LES generated from the

Sequence Diagram and Petri Net has to be equal. This is shown using the following Lemmas.

Sequence Diagrams Petri Nets

LESLES

SD2PN

Φ Ψ
=

86

Lemma 4: Every Sequence Diagram fragments and its corresponding Petri Net block created

by SD2PN generate the same LES.

Proof: As previously established, there are five types of Sequence Diagram fragments;

message, alternative, option, break and parallel. Since the alternative and option fragments

are semantically equivalent, they will be grouped as one fragment for the purpose of this

proof.

Figure 26: LES obtained from Sequence Diagram fragments and each corresponding Petri Net blocks

 Each type of Sequence Diagram fragment is translated into LES based on the semantic

mapping Φ while the corresponding Petri Net block is unfolded into LES using the semantic

mapping Ψ. This results in a Labelled Event Structure for each type of fragment, as depicted

in Figure 26. Both the semantic maps are explained in Section 2.3. Due to the tedious nature

of the individual translation into LES, an example using the parallel Sequence Diagram

fragment is presented below while the remainder of the proof is presented in Appendix B.

In Sequence Diagrams, a parallel fragment has an initial location l1. This location

signifies the beginning of the fragment. Inside the fragment, there are 2 scopes; par(2)#1 and

par(2)#2 as described in Section 2.3. These scopes represent the parallel events that occur

inside the fragment. After the execution of these events, a location l2 signifies the end of the

fragment. Since both l1 and l2

Message Alt / Opt Break Par

e1

e2

e2 e3

#

e1

e2

e3

#

e1

e2

e1

 has an alt_loc of 1, there is only 1 event to represent each these

87

locations, e1 and e2 such that e1 forks into the 2 scopes of events and merge into e2

Figure 26

. This

creates an LES as shown in .

In the corresponding block of Petri Net, it starts with a place s1 and ends with a place

s2. They can be represented as events e1 and e2 respectively with e1 forking out into the

placeholders and merging at e2 Figure 26. This is exactly the same as the representation in ,

thus showing that the transformation preserves the behaviour of the original Sequence

Diagram.

Lemma 5: In ordering of the Sequence Diagram fragments, every two fragments and the

corresponding block of Petri Net that it maps into consist of the same semantics.

Proof: For proof of Lemma 5, every possible permutation of events that may occur in the

transformation is considered. There are two possible connectors between Petri Net blocks, as

previously established; morph and substitute. Figure 27shows every possible permutation of

events including all morph and substitution cases. Cases that allow both techniques are

labeled asmor representing morph and sub representing substitution.

Carrying from the proof of Lemma 4, for every two Sequence Diagram fragment, the

translation into LES is performed using the semantic map Φ. This is followed by the

unfolding of the corresponding Petri Net blocks into LES using Ψ. By comparison, the LES

generated through both semantic maps are identical, as shown in Figure 27. By mapping

every permutation of Sequence Diagrams fragment and the corresponding Petri Nets into LES

as presented in Figure 276

6 The translation of all sixteen permutations of Sequence Diagram fragments, and the unfolding of their
corresponding Petri Nets into LES are performed similarly to the mapping presented in Appendix B and as such,
it is omitted due to word restrictions.

; it is proven that every two Sequence Diagram fragments and the

corresponding block of Petri Net that it maps into consist of the same semantics.

88

Figure 27: LES generated by every two Sequence Diagram fragments and their corresponding Petri Net
blocks

e1

e2

e3

e1

e4

e5

e6

#

e2

e3

mor

sub

e1

e6#e2

e3

e4

e5

mor

sub

e1

e6

e4

e4

sub

e5

mor

e1

#

e2

e3 e4

e1

#

e2

e3

e4

e1

e2

e3

e1

#e2

e7

e3 e5

e8 e9

e4 e6

sub

mor

e1

#e2

e6

e3

e5

e7

e8

e4

sub

mor

e1

#e2

e5

sub

mor
e3

e6

e4

e1

#e2

e3 e6

e4

e7

sub

mor

#

#

#

#

e5

e1

#e2

e3

e6

e4

e7

sub

more5

#

#

#

#

e1

#e2

e3

e6

sub

mor

 e4

e5

e1

e3
e4

#

e2

e5

e6

#

e7 e8

mor

sub

e1

e4

#

e2

e5

#

e6

e7

mor

sub

e3

e1

 e2

e4

mor

sub

e3

e5

M
es

sa
ge

A
lt

/ O
pt

B
re

ak
P

ar
Message Alt / Opt Break Par

89

CHAPTER 5
SEQUENCE DIAGRAM ANALYSIS VIA

SD2PN

This chapter presents an approach for the analysis of Sequence Diagram based on the Multi

Paradigm Modelling platform using SD2PN.

5.1 Importance of Analysis in Sequence Diagram

Sequence Diagrams are used to model dynamic aspects of a system. The dynamic aspects of a

system include flow of events in various situations, interaction between various components

of the system, as well as user interaction with the system. An accurately modelled Sequence

Diagram is vital, and can be used not only in conveying information between stakeholders,

but even in forward and reverse engineering of executable systems [134].

 In this respect, forward engineering refers to code generation from Sequence

Diagrams where the accuracy of the Sequence Diagram determines the build quality of the

90

system. Code generation based on Sequence Diagrams that contain errors result in the

creation of flawed systems that may require a thorough code examination or worse,

remodelling. Performing model level analysis on the Sequence Diagrams before the codes are

generated could potentially save countless man-hours and resources from being wasted in

developing a flawed system. For example, a Sequence Diagram that is free from deadlock

ensures a system without deadlock. However, model analysis is not meant to replace the

testing phase in the system development cycle. The responsibility of performing analysis on

the Sequence Diagram should be on the system designers. As such, any errors in the design

could be rectified instantaneously ensuring only the highest quality, error-free Sequence

Diagrams are used in the code generation. This therefore reduces the probability of a flawed

system.

 Reverse engineering on the other hand refer to the creation of Sequence Diagrams

from codes or complete systems. Reverse engineering is a tricky process that could lead to

complex Sequence Diagrams which contain too much information [134]. This leads to

redundancy in the Sequence Diagrams, which in turn results in inaccurate representation of

the system. Performing model analysis on the Sequence Diagram could pinpoint the errors

and highlight the necessary changes to make the Sequence Diagram more accurate in its

depiction of the system.

5.2 Implementing SD2PN for Analysis of Sequence Diagrams

SD2PN, in Chapter 4 is introduced as a MDD model transformation that transforms Sequence

Diagrams into Free Choice Petri Nets. Based on the need for model analysis to be performed

91

on Sequence Diagrams and the suitability of Petri Nets for performing such analysis; SD2PN

provides a framework that allows the analytical capabilities of Petri Nets to be utilised on

Sequence Diagrams.

SD2PN promotes model interoperability [124, 125] between Sequence Diagrams and

Petri Nets, through Multi Paradigm Modelling supporting a seamless transition between these

heterogeneous models. This is depicted in Figure 28 where a system designer models a

system in Sequence Diagram using UML tools, then uses SD2PN to transform the models

into Petri Nets. This allows complex analysis to be performed on the system using Petri Net

tools. Finally, the system designer receives the analysis result in the form of a feedback.

Using an automated model transformation framework as shown in Figure 28 allows the

system designer to bridge the gap between the design and analysis phases of system design

without extensive knowledge of Petri Nets.

Figure 28: SD2PN Framework for Analysis

There are various types of analysis that could be performed on Petri Nets; some of

which are introduced in Section 2.2.3. By transforming Sequence Diagrams into Petri Nets,

the analysis capabilities of Petri Nets are essentially applied on Sequence Diagrams. This

System Designer

Sequence Diagrams

SD2PN

Petri Nets

analysis

design

feedback

92

section describes how the analytical capabilities of Petri Nets can be applied in Sequence

Diagrams.

In Petri Nets, liveness translates to a complete absence of deadlock. This is also

applicable to Sequence Diagrams. There are approaches that allows liveness analysis to be

performed on Sequence Diagrams such as [135] where an automata based formal semantics is

assigned to the Sequence Diagram and also [136] where OCL constraints are integrated with

the Sequence Diagrams in order to conduct liveness analysis. This research on the other hand,

takes advantage of the mathematical foundation behind Petri Nets to perform liveness analysis

in Sequence Diagrams via SD2PN. Based on SD2PN transformation rules, each message in

the Sequence Diagram is represented by a transition in the corresponding Petri Net. The

liveness criteria in Petri Net reflect that each and every transition in the Petri Net must be

enabled following a firing sequence that begins from the initial marking. As such, a live

Sequence Diagram means every message in the Sequence Diagram can be reached, thus

ensuring a complete absence of deadlock in the Sequence Diagram.

 The liveness analysis is essential in modelling a system.Sequence Diagrams model the

behaviour and interactions within a system through messages, thus it is vital for each message

to execute correctly. This could be achieved through liveness analysis. Proving the absence of

deadlock in the system also prevents unpredictable behaviours in the system such as

unexpected termination of a procedure.

 The reachability analysis in Petri Nets on the other hand, calculates if a particular

marking is reachable from any markings in the Petri Net. This allows the analyst to ascertain

what (sequence of) actions, if any, may lead to a particular state in the Petri Net. This

translates well for system design using Sequence Diagrams.

93

 In system design, this analysis could be beneficial from various points of view. For

example in security terms, a reachability analysis could be performed to predict the possibility

of an attack scenario. Using the same example, a reachability analysis could also be used to

calculate precisely the sequence of actions that may result in the particular scenario, thus

providing necessary information to the system designer to neutralize the threat. Not only that,

a designer could also try to locate any specific flaws in the system by pin-pointing to a state

and performing an analysis to determine what states are reachable, and what states are not.

 An added advantage of performing analysis of Sequence Diagrams via SD2PN is that

every Petri Net generated using SD2PN is a Free Choice Petri Net, as proven in Theorem 1 of

Chapter 4. This allows analysis to be performed with a lower complexity to general Petri Nets

– thus allowing the analysis results to be obtained much faster. Details about the benefits of

analysis in Free Choice Petri Nets are presented in Chapter 2.

5.3 Automated Analysis via SD2PN Transformer

The MDD model transformation SD2PN provides a framework for Sequence Diagrams to be

transformed into Petri Nets. This section discusses how this model transformation is

automated as a tool called SD2PN Transformer7

 SD2PN Transformer is a Java tool built on the platform of SiTra [89, 111] utilising the

model transformation algorithm of SD2PN. This tool accepts Sequence Diagrams as inputs

, and how it could be used to perform model

analysis. This section presents a brief introduction of the tool while the complete code for the

tool is available in Appendix C.

7 The coding for SD2PN Transformer was done by Behrang Sabeghi Saroui under my supervision, based on my
algorithm and tool architecture.

94

and produces corresponding Petri Nets as outputs. At present, the tool accepts Sequence

Diagrams in the form of XML Metadata Interchange (XMI) [137] and presents the Petri Nets

in the form of XML [138] as depicted in the outline of the tool in Figure 29. However, there

are plans to fully automate the tool by allowing integration between SD2PN Transformer, a

UML tool and a Petri Net tool.

Figure 29: An outline of SD2PN Transformer

 The execution of each transformation from Sequence Diagram to Petri Net in SD2PN

Transformer goes through five stages; (i) generating XMI for Sequence Diagrams, (ii) parsing

the XMI data into Java objects, (iii) applying the model transformation using SiTra, (iv)

generating XML for the resulting Petri Net and finally (v) performing analysis on the Petri

Net model using a Petri Net tool. These stages are further explained in the upcoming sections.

5.3.1 Generating XMI for Sequence Diagrams

XMI or XML Metadata Interchange [137] is a standard created by Object Management Group

to allow the interchange of metadata information. XMI is commonly used to express UML

models and as such, widely accepted as a form of output in UML tools. UML tools such as

ArgoUML [139] and Poseidon [140] for example allow UML models designed within the tool

UML
Tools

Petri Net
Tools

XMI Parser

SiTra

XML Writer

SD2PN Transformer

95

to be exported as XMI files. An example of a small snippet of XMI that represents a Sequence

Diagram created using Poseidon is shown in Table 5.

The snippet of XMI shown in Table 5 represents only a minute fragment of code that forms

the entire Sequence Diagram. Furthermore, the code is also incomprehensible to most users

and decoding the XMI to obtain information regarding the Sequence Diagram is a tedious

process. However, this could be done using XMI parsers.

<UML:GraphElement.semanticModel>
<UML:SimpleSemanticModelElement xmi.id = 'Im1ec36c75m11b56ca071dmm7b4b'
 presentation = '' typeInfo = 'SequenceDiagram'/>
</UML:GraphElement.semanticModel>
<UML:GraphElement.contained>
<UML:GraphNode xmi.id = 'Im1ec36c75m11b56ca071dmm7b2d' isVisible = 'true'>
<UML:GraphElement.position>
<XMI.field>300.0</XMI.field>
<XMI.field>20.0</XMI.field>
</UML:GraphElement.position>
<UML:GraphNode.size>
<XMI.field>100.0</XMI.field>
<XMI.field>192.0</XMI.field>
</UML:GraphNode.size>
<UML:DiagramElement.property>
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1f' key = 'fill' value = '#ffffff'/>
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1e' key = 'fill-opacity'
 value = '1.0'/>
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1d' key = 'font-color'
 value = '#000000'/>
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1c' key = 'font-family'
 value = 'SansSerif'/>
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1b' key = 'font-size'
 value = '11'/>
<UML:Property xmi.id = 'Im1ec36c75m11b56ca071dmm7b1a' key = 'stroke' value = '#000000'/>
</UML:DiagramElement.property>

Table 5: Snippet of XMI for a Sequence Diagram

96

5.3.2 Parsing XMI Data into Java Objects

Parsing is a process of syntactical analysis and interpretation of a structured text. In this case,

parsing is required to interpret the XMI code generated from UML tools into Java objects that

could be manipulated by SiTra. The parsing is performed using SDMetrics [141], a tool that

allows XMI input from various different UML tools using its custom XMI import function.

This XMI data is then analysed and condensed into a text file consisting all the information

regarding the Sequence Diagram. The information in the text file is then extracted using a

custom Java program that is created to create Java objects that corresponds to the original

Sequence Diagram.

5.3.3 Model Transformation via SiTra

Following the parsing of the XMI data into Java objects, the actual model transformation

process takes place. SiTra provides a platform for this model transformation to take place.

Recalling the introduction of SiTra in Chapter 2, a typical model transformation requires a

source metamodel, a destination metamodel and a set of transformation rules to be written in

Java. Snippets of code from the Sequence Diagram metamodel, Petri Net metamodel and

SD2PN model transformation rule are presented in

97

package petrinet;
public class Transition {
 private String name;
 public Transition(String name) {
 this.name = name;
 }
 public void setName(String newName) {
 name = newName;
 }
 public String getName() {
 return name;
 }
}

package sequencediagram;
public class Message {
 private String id;
 private String label;
 private String context;
 private EventOccurrence sendEvent;
 private EventOccurrence receiveEvent;
 public Message(String id, String label, String context, EventOccurrence sendEvent, EventOccurrence receiveEvent) {
 this.id = id;
 this.label = label;
 this.context = context;
 this.sendEvent = sendEvent;
 this.receiveEvent = receiveEvent;
 }
 public final String getID() {
 return id;
 }
 public final String getLabel() {
 return label;
 }
 public final String getContext() {
 return context;
 }
 public final EventOccurrence getSendEvent(){
 return sendEvent;
 }
 public final EventOccurrence getReceiveEvent(){
 return receiveEvent;
 }
 public final void setSendEvent(EventOccurrence eo){
 sendEvent = eo;
 }
 public final void setReceiveEvent(EventOccurrence eo){
 receiveEvent = eo;
 }
}

Table 6: Snippet of code for the Sequence Diagram metamodel

Table 7: Snippet of code for the Petri Net metamodel

98

The execution of the model transformation results in Petri Net Java objects that is based on

the Petri Net metamodel in SiTra. However, for these Petri Net Java objects to be recognized

by any Petri Net tools, it has to be written into an XML form recognized by the particular

tool.

package sitra;
import petrinet.Arc;
import petrinet.Mark;
import petrinet.PetriNet;
import petrinet.Place;
import petrinet.PlaceHolder;
import petrinet.Transition;
import sequencediagram.CombinedFragments;
import sequencediagram.InteractionOperatorKind;
public class Rule3 implements Rule {
 public Rule3() {
 }
 public boolean check(Object source) {
 return (source instanceof CombinedFragments) && (((CombinedFragments) source).getOperator() ==
InteractionOperatorKind.OPT);
 }
 public PetriNet build(Object source, Transformer t) {
 PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(), ((CombinedFragments) source).getID(),
"OPT");
 Place p1 = new Place(new Mark(0));
 Place p2 = new Place(new Mark(0));
 for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments(); j++) {
 Transition trans = new Transition("OPT" + j);
 pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION));
 PlaceHolder ph1 = new PlaceHolder(((CombinedFragments) source).getContext(), ((CombinedFragments)
source).getFragments()[j], "PH" + j);
 pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER));
 Transition transEnd = new Transition("END-OPT" + j);
 pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION));
 pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE));
 }
 return pn;
 }
 public void setProperties(Object target, Object source, Transformer t) {
 }
}

Table 8: Snippet of code for the SD2PN model transformation rule

99

5.3.4 Generating XML for Resulting Petri Net

There are numerous Petri Net tools available in the market, among them CPNTools [27] and

PIPE [28]. However, each Petri Net tool uses a different flavour of XML to represent the Petri

Nets. This results in the need to create an XML writer for each type of Petri Net tool. The

process of creating an XML writer to conform to a certain Petri Net tool involves tedious

analysis of the tool’s output to recognize the patterns in the XML. This process can be

exhaustive and redundant.

 At present, a solution for this problem has not been obtained. The XML writer in

SD2PN Transformer is configured to output the Petri Net in a textual format, not conforming

to any Petri Net tools. However in the future, this problem could be eliminated by integrating

the different toolsets of SD2PN Transformer and Petri Net tool, thus negating the need for an

XML writer.

5.3.5 Utilising Existing Petri Net Tools for Analysis

The final stage of using SD2PN Transformer for analysis of Sequence Diagrams involves

utilizing existing Petri Net tools such as CPNTools and PIPE to perform analysis on the

resulting Petri Net. Analysis methods described in Section 2.2.3 such as liveness,

boundedness, reachability, reversibility and persistence as well as various other analysis

methods could be performed using the Petri Net tools without the need for extensive Petri Net

knowledge by the system designer.

 Presently, some knowledge of the Petri Net tool of choice is required from the system

designer such as familiarity with the analysis functions offered by the tool. However as

previously mentioned, future plans to integrate various toolsets with the SD2PN Transformer

100

could theoretically allow system designers with little to no knowledge of any Petri Net tool to

perform analysis on their Sequence Diagram models.

5.4 Example

It has been previously established that Petri Nets are highly suitable for analysis, and that

SD2PN creates a platform that allows system designers to take advantage of Petri Nets

analytical prowess by transforming Sequence Diagrams into Petri Nets with the help of

SD2PN Transformer. In this section, the usability of this concept is illustrated with the help of

an example. This example is not only used to draw attention to the capabilities of SD2PN, but

also to highlight a limitation of SD2PN. The following sections introduces the scenario of the

example as well as the protocol behind it, followed by Sequence Diagram of the scenario, the

corresponding Petri Net generated via SD2PN and the analysis of said Petri Net. The

limitation of SD2PN as highlighted by the example is considered in the discussion section.

5.4.1 Introduction of the Scenario

This section provides a brief preliminary look at the scenario in this example. The example

features the behaviour of a Personal Area Network (PAN). A typical example of a PAN

consists of a number of stations and a router. However, an unseen element in the PAN is the

medium between the stations and the router. In order to send a packet to the router, the

stations in the PAN would have to compete to gain access to the medium. Thus, the more

stations there are in a PAN, the larger the maximum waiting time for a single station to gain

access to the medium. To deal with this, various protocols have been introduced within the

101

IEEE 802.11 standard. However in this example, a specific protocol within the IEEE 802.11

standard is modelled using Sequence Diagrams and transformed into a Petri Net for analysis.

 Figure 30 presents a simplified PAN that has two stations and a Wireless Router that

serves as an access point to the Internet. In the router, the basic IEEE 802.11 Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA) protocol is used [142]. This scenario

is modelled using a Sequence Diagram, where a single station attempts to gain access to the

medium in order to send a packet to the router, based on the CSMA/CA protocol. Before that,

the next section briefly introduces the CSMA/CA protocol.

Figure 30: Overview of the Personal Area Network (PAN)

5.4.2 Protocol Description

As previously mentioned, the router in this example uses a basic IEEE 802.11 Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA) protocol. CSMA/CD assigns

different waiting time to packets in order to manage the access of the stations to the medium.

There are three different waiting times for various types of packets. The shortest waiting time

for medium access is called Short inter-frame spacing (SIFS) which is used for short control

102

messages or polling responses. The waiting time for time-bounded service such as a poll from

the access point is considered PCF inter-frame spacing (PIFS) and the longest waiting time

and lowest priority, DCF inter-frame spacing (DIFS) is used for asynchronous data services.

There is a mechanism called contention window (CW), which is introduced in order to

facilitate collision avoidance. The contention window makes use of an integer value that starts

with CWmin = 7 and doubles every time a collision occurs. Every time a station tries to gain

access to the medium, a random number is generated between 0 and CW and is added to the

waiting time. This ensures that the stations do not send their packets at the same time. CW is

doubled for every collision that occurs to accommodate a larger number of stations vying for

the access of the medium. Readers are referred to [142] for more information.

Several assumptions were made in this example for the sake of clarity and to provide a

better understanding of the tool. Firstly, the waiting time for all packets is constant and all

packets are categorized as DIFS. Secondly, the CW is constant and does not increase, and

since there are only two stations, the CW would be minimum, i.e. CWmin

5.4.3 Sequence Diagram Representation of the Scenario

 = 7. Thirdly, the

packets are dropped after the unsuccessful tries from the station and each station sends only

one packet. These assumptions do not invalidate the results of the analysis by any means;

they onlylimit the scope of this example.

This section presents a Sequence Diagram of the scenario described in the previous sections.

The Sequence Diagram in Figure 31 gives an overview of how a station sends a packet to the

medium in the IEEE 802.11 protocol. The medium access control (MAC) layer of the station

receives a packet from an application and registers it. It then idles before checking the status

of the medium. If the medium is free the station is able to send the packet across to the

103

medium. However, if the medium is busy the station has to wait until the medium is free

before idling again. The MAC then checks the status of the medium again before either

sending the packet across or waiting again. Each of the events in this scenario has multiple

sub-events that occur in the background. The diagram is however simplified for the sake of

clarity.

104

Figure 31: Sequence Diagram for a station in PAN

5.4.4 Petri Net Representation of the Scenario Generated via SD2PN

In this section, the Sequence Diagram from Figure 31 is transformed into an equivalent Petri

Net using SD2PN. To begin the model transformation process, the Sequence Diagram is first

Station Medium

registerPacket

idle

checkStatus

sendPacket

waitForAccess

sendPacket

waitForAccess

sendPacket

waitForAccess

sendPacket

dropPacket

If free

If free

If free

If free

If busy

If busy

If busy

If busy

alt

alt

alt

alt

1

2

3

4
5

6

7
8

9

10
11

12

13
14

15

105

decomposed into fragmentsas defined in Section 4.1.1. The numbers depicted in Figure 31

represent each Sequence Diagram fragment. Each fragment is transformed into an equivalent

Petri Net block using the model transformation rules defined in Section 4.1.2. Once every

Sequence Diagram fragment has been transformed into Petri Net blocks, the process of

composing the Petri net blocks starts with the mapping of the causal relationships. This

mapping requires calling the morph function recursively for each causal relationship in the

original Sequence Diagram. Once all the causal relationships are mapped, the hierarchical

relationships between the Petri Net blocks are considered. The hierarchical relationships are

mapped by recursively applying the substitute function for every placeholder that exists in the

Petri Net blocks. This results in an integrated Petri Net as shown in Figure 32.

106

Figure 32: Petri Net for a station in PAN

5.4.5 Analysis of the Petri Net

As previously presented in Section 5.2, there are various analysis methods available in Petri

Nets. In this section, the Petri Net in Figure 32 is subjected to three analysis methods;

liveness, boundedness and reachability analysis using PIPE [28].

 The liveness and boundedness of the Petri Net are both calculated through State Space

Analysis in PIPE where the liveness is determined through the absence of deadlocks in the

p0

p1

idle

p2

checkStatus

If free

p4

sendPacket

p5

p3

If busy

registerPacket

p6

waitForAccess

If free

p8

sendPacket

p9

p7

If busy

waitForAccess

If free

p12

sendPacket

p13

p11

If busy

p14

If free

p16

sendPacket

p17

p15

If busy

p18

dropPacket

p10

waitForAccess

1

2

3

4

6

7

8

5

15

11

14

13

9

10

12

107

Petri Net while boundedness is computed through a P-invariant calculation. The result of the

analysis confirms that the Petri Net is live and bounded. Through the P-invariant calculation,

it is also revealed that the Petri Net in Figure 32 is safe (bounded with the value of 1).

Subsequently, a reachability analysis is performed on the Petri Net, resulting in a Reachability

Graph as presented in Figure 33. As a result, the reachability analysis reveals that every state

in the Petri Net is reachable through a series of event.

Figure 33: Reachability Graph generated using PIPE

108

5.4.6 Discussion

The example presented in this section highlighted the capabilities of SD2PN in transforming

Sequence Diagrams into Petri Nets, allowing various structural and behavioural analyses to be

performed. Although the example is fairly simple, the liveness and boundedness analysis

results reveal there are no deadlocks in the design of the PAN example and that the system is

safe. This is vital in ensuring that there are no unforeseen behaviours such as a deadlock

causing an unexpected termination or a trap in the system causing a registry overrun. The

reachability analysis also reveals that every state in the system is reachable, thus ensuring

none of the stations in the PAN are left out.

 However there is a limitation in the scope of analysis in general Petri Nets. There is a

vital analysis component that could be applied to the example – performance analysis. In a

real-time or performance oriented system, timing properties are required to perform

performance or quality of service (QoS) related analysis. General Petri Nets do not have the

capability to handle timing properties. However there is a class of Petri Net, Timed Petri Net

(TPN) that allows timeliness properties to be integrated into the firing of transitions in the net.

This paves the way for an extension of SD2PN, as presented in Chapter 7.

109

CHAPTER 6
SEQUENCE DIAGRAM SYNTHESIS VIA

SD2PN

Complex systems are not modelled as monolithic units, but often synthesized from various

smaller models. Multiple models may be used to model different scenarios, different modules

or even different perspectives of a system. For example, a general model of the system may

portray the core elements of a system where else different models may be used to convey the

security [54] or quality-of-service (QoS) aspects of the same system. The process of

integrating two or more such models of a system is referred to as synthesis. In software

design, Pfleeger and Atlee [143] define synthesis as the process of building a large structure

(e.g., a software design) from smaller building blocks. Agerwala and Choed-Amphai [59]

define synthesis as a method to integrate complex systems by putting elements together

according to a set of pre-determined rules and constraints. The benefits of bridging the gap

between model design and synthesis is also described in Section 3.2.3.3.

 This chapter addresses the notions of synthesis in Sequence Diagrams and Petri Nets

independently and how Multi Paradigm Modelling and Petri Nets, via SD2PN inspire three

110

synthesis algorithms for Sequence Diagrams. This chapter also features a case study of an e-

business model that is built incrementally using the aforementioned synthesis algorithms. The

sections that make up this chapter are 6.1 and 6.2 addressing the notion of synthesis in

Sequence Diagrams and Petri Nets respectively, while section 6.3 presents Petri Net inspired

synthesis methods in Sequence Diagrams, with three algorithms for automated synthesis.

6.1 Synthesis in Sequence Diagrams

There have been a few approaches to Sequence Diagram synthesis, including Liang et al. [43],

who describe a method for integration of Sequence Diagrams based on formalization of the

Sequence Diagram into typed graphs. The method presented in their paper is designed for

Sequence Diagram consisting of lifelines and messages. However based on [44], this

synthesis algorithm does not include complex constructs such as parallelisms and conflicts, as

evident in page 133 of [44]. Bowles and Bordbar [45] present a method of synthesis by

mapping a design consisting of multiple views modelled by Sequence Diagrams into a unique

mathematical model which is used for analysis and detecting inconsistencies. In [8], Sequence

Diagrams are synthesized manually in order to create Alloy [5] models for analysis of the

system. However, manual synthesis of Sequence Diagrams are error-prone, tedious and

redundant. In Aspect-Oriented Modelling, the sequential composition of aspects could also be

regarded as synthesis. The same also applies to the weaving of scenarios using an automated

aspect weaver as described in [46]. The concept of synthesis also exists in Message Sequence

Charts (MSC), a predecessor of Sequence Diagrams. Krüger’s [47] approach for refinement

of MSC where a notational semantics for MSC features a notion of message refinement,

111

where a message is syntactically replaced by a protocol for every occurrence in the MSC.

However, this approach of refinement does not preserve the equivalence relations as stated in

page 172 of [47].

 The need for automated support for model synthesis has been outlined in various

works[8, 43-47, 55-57]. This is to avoid the possibility of undesirable emergent properties

from performing ad-hoc synthesis. In addition, essential properties of the individual models

may not be preserved if thesynthesis is performed in an incorrect manner.

6.2 Synthesis in Petri Nets

The notion of synthesis in Petri Net is a well-studied area of research [12, 17, 20-26, 48, 58,

59, 144-146]. Some of the methods used in Petri Net synthesis include top-down [22, 23, 48],

bottom-up [23, 48], hybrid [26], knitting technique [20, 21, 25, 144], reduction [145, 146] and

rough set [24]. Here the two well-studied methods for Petri Net synthesis are described; top-

down synthesis method and bottom-up synthesis method.

6.2.1 Top-Down Synthesis Method

A top-down synthesis method commonlybegins with an aggregate model of the system that

disregards low-level details. Using the aggregate net as the basis, low-level details are

gradually added into the net using a refinement process.

One method of refinement is outlined by Valette[16], which focuses on the transitions

in the Petri Net. This method replaces a transition with a different, complete Petri Net. For

example, assume a Petri Net Nhas a transition tand another Petri Net T that consist of low

112

level details for the transition t.Using transition refinement, the transition t in the net N can be

replaced with the net T, where all the input arcs into t and the output arcs from t are redirected

into the start and end places of T respectively.

Another method used in this technique is place refinement outlined by Suzuki and

Murata[147]. In this method, the place that needs to be refined, p0 is first replaced with two

places p1 and p2 and a transition t0. The input of p0 is redirected as input for p1 and the output

of p0 is redirectedas the output of p2. The transitiont0 must have only p1as the input place and

onlyp2as the output place. Themarking of p1 should be the same as the marking for p0while

the marking of p2 must be 0. This is followed by performing a transition refinement ont

 The refinement technique has since been adopted by many including [22, 23, 26]. In

essence, this technique can also be extended to replace a specific block of Petri Net (such as

an SD2PN message block in

0.

Figure 34 (a), refer Section 4.1.2.1) with a different Petri Netas

depicted in Figure 34 (b).

Figure 34: Example of top-down synthesis in Petri Nets

s1

s2

t1

s1

s2

s4

s6

s3

s5

s7

s8

s9

s10

s4

s6

s1

s2 s8

s9

s7

s10

evening

make-tea

drink-
tea

make-
coffee

get-cup

brew-
coffee

use-
milk

evening

make-tea

get-cup

brew-
coffee

use-
milk

(a)

(b)

PN1 PN2 PN3

morning

drink-
coffee

morning

drink-
coffee

drink-
tea

113

The intentionally trivial synthesis example in Figure 34 (b) presents two Petri Nets PN1 and

PN2 such that PN1 describes the daily morning and evening routines of the author and PN2

that describes how to make coffee. By performing a top-down synthesis using the refinement

technique, the both PN1 and PN2 could be put together; where the block of Petri Net that

describes the action ‘make-coffee’ is refined with the entire Petri Net PN2 resulting in the

Petri Net PN3. Of course it is also possible to refine the action ‘make-tea’ similarly, but for

the purpose of this example, it is assumed that the reader already knows how to make tea.

6.2.2 Bottom-Up Synthesis Method

The bottom-up synthesis method is commonly used to integrate two or more Petri Nets that

contain common nodes. This is done by merging of places and transitions between the Petri

Nets while preserving all the interactions between the nodes.

 One common technique used in the merging of places between Petri Nets is called

one-way merge[59]. Using one-way merge, a set of common places between the Petri Nets are

merged to form a new place. For example, suppose a set of places to be merged, Sm

 As a continuation to the example presented in

 are

merged into a new place p. For each place such that 𝑠𝑠 ∈ 𝑆𝑆𝑚𝑚 , the input arcs and output arcs for

s, 𝑠𝑠° and 𝑠𝑠° respectively must be represented in 𝑝𝑝° and 𝑝𝑝° .

Figure 34 (b), the example in Figure 35

is used to present bottom-up synthesis in Petri Nets in an easy-to-understand manner.

114

Figure 35:Example of bottom-up synthesis in Petri Nets

Suppose PN38 Figure 35in still represents the morning and evening routines of the author

while the Petri Net PN4 describes a household policy when it comes to using milk. The two

Petri Nets describe two different viewpoints and may exist independently of each other.

However based on the common element between the two Petri Nets, ‘use-milk’, PN3 and PN4

can be synthesized to create a Petri Net PN5.

6.3 Petri Net Inspired Synthesis of Sequence Diagrams

It is clear from sections 6.1 and 6.2 that the notion of synthesis is better established in the

formal mathematical language of Petri Nets as compared to UML Sequence Diagrams.

8 The Petri Net PN3 in Figure 35 is the same as the Petri Net PN3 in Figure 34(b) with only cosmetic alterations.

use-
milk

take-
milk

replace
-milk

PN4

s13

s14

s11

s12

PN5

s4

s6

s1

s2 s8

s9

s7

s10

evening

make-tea

get-cup

brew-
coffee

use-
milk

PN3

morning

drink-
coffee

drink-
tea

s4

s6

s1

s2 s8

s9

s7

s10

evening

make-tea

get-cup

brew-
coffee

morning

drink-
coffee

drink-
tea

use-
milk

take-
milk

replace
-milk

s13

s14

s11

s12

115

However, using Multi-Paradigm Modelling, it has been established in Chapter 4 that

Sequence Diagrams could map into Petri Nets without losing any semantic properties via

SD2PN. As such, this section presents synthesis methods for Sequence Diagrams, inspired by

Petri Nets.

As means to illustrate the capabilities of the Sequence Diagram synthesis methods, as

well as to provide better understanding of the algorithms, a case-study of an e-business model

is used throughout this chapter – with each algorithm building up the model incrementally

from the basic model in Figure 36.

Figure 36: Basic e-Business Model

The Sequence Diagram synthesisalgorithmsintroduced in this chapter are presented in the

form of pseudocodes. The following notations are used for the purpose of the pseudocodes.

Notation 1:

L: set of lifelines in the Sequence Diagram

Suppose the Sequence Diagram in Figure 36 as SD1, the set of lifelines in SD1can be written

as LSD1

ActiveClient LoginSystem

login

homePage

visitorPage

visitorPage

alt
alt

If acct <> NULL

else

else

If prof <> NULL

 = {ActiveClient, LoginSystem}.

116

Notation 2:

E: set of all events in the Sequence Diagram

Suppose the Sequence Diagram in Figure 36 as SD1, the set of all events in SD1 can be

written as ESD1

The function Scope(m) identifies the specific location of the message m with regards to

combined fragments. Suppose the Sequence Diagram in

 which would comprise of the sending and receiving of all messages in SD1.

Notation 3:

M: set of messages in the Sequence Diagram

A message m∈ M is a tuple (a, s, r)indicating the operation signature a, the sender lifeline s,

and the receiver lifeline r, such that s, r ∈ L. A message m also has direct associations with its

sending and receiving events, denoted by m.snd, m.rcv.

Notation 4:

Scope(m): list of the nested combined fragments containing the message m, ordered from the

inner to the outer fragment.

Figure 36 as SD1;

Scope(login) = SD1

since the message login is not contained in any combined fragments. However

Scope(homePage) = SD1.alt(2)#1.alt(2)#1

117

where the message homePage resides in a nested alt fragment. SD1 refers to the Sequence

Diagram, SD1.alt(2)#1 refers to the combined fragment altwith two (2) fragments in SD1; and

the fragment number one (1),and SD1.alt(2)#1.alt(2)#1 refers to the alt combined fragment

with two (2) fragments that resides inside another alt with two (2) fragments; and that the

message resides in fragment number one (1) of the nested alt combined fragment.

Using Notations 1 through 4 as presented above, each Sequence Diagram synthesis method

introduced in this section is presented in the form of a pseudocode, and a case study example

of an e-business model. Furthermore following each case study example, a complementary

example of Petri Net synthesis of the same models is presented as a method for comparison

between the new Sequence Diagram synthesis techniques introduced in this section and the

well-studied Petri Net synthesis techniques from [16, 59].

6.3.1 Top-DownSynthesis Method in Sequence Diagrams

The top-down synthesis method for Sequence Diagrams refers to composing low-level details

into an aggregate model by replacing a single message with an entire Sequence Diagram.This

method allows for a Sequence Diagram that represents a top-level view of the system to be

refined by multiple other low-level Sequence Diagrams in order to provide an integrated view

of the system. The inspiration for this method comes from the transition refinement technique

in Petri Net described in Section 6.2.1. Figure 34 also presented an example of this technique

where a Petri Net block (that refers to a Sequence Diagram message as established in SD2PN

Rule 1) is refined using an entirely different Petri Net.

To maintain a naming relationship between the synthesis methods of Petri Nets and

Sequence Diagrams, the technique presented in this section is called message refinement. A

118

message refinement synthesis integrates two Sequence Diagrams, SD1 and SD2 by replacing a

message m in SD1 with an entire Sequence Diagram SD2.The algorithm for message

refinement in Sequence Diagram is as follows:

INPUT: (SD1, SD2 and m) where SD1andSD2 are two Sequence

Diagrams and m is a message in SD1 that appears only once9

CONDITION: Suppose f represents the first message in SD2

(such that there are no other event occurrences beforef) and

l represents the last message in SD2 (such that there are no

event occurrences afterl)

.

There must also not be a copy of the message m in SD2.

OUTPUT: SD3, where every execution trace of SD3 consists of

an execution trace in SD1 in which the message m is

substituted with an execution trace of SD2. For every

execution trace in SD1 with exception of the message m,

there exist an execution trace in SD3 where the trace of SD1

appears and for every execution trace in SD2 there exist an

execution trace in SD3 where the trace of SD2 appears. In

addition, the message m does not appear in any execution

traces of SD3.

10

9 Should there be need to refine multiple instances of the same message, the algorithm should be run repeatedly;
each time refining a single instance of the message m.
10 The terms before and after here refer to the General Ordering of events in Sequence Diagrams (refer Section
2.1.1).

; the lifeline that sends the

message f must be the same as the lifeline that sends the

message m in SD1, and the lifeline that receives the message

119

l must be the same as the lifeline that receives the message

m in SD1.

ALGORITHM:

1. Copy SD1 to SD3;

2. Identify the sender, receiver and scope of message m

asm.snd, m.rcv and Scope(m) respectively;

3. If there exist a set of lifelines in SD2 that does not

exist in SD3, copy the aforementioned set of lifelines

into SD3 such that the set of lifelines in SD3 consist

of all the lifelines in SD1 and SD2;

4. Remove the message m from SD3;

5. Add all the messages and Combined Fragments from SD2

into SD3 ensuring that they correspond to their

respective lifelines in the previous location ofm,

such that (recalling the definition of f and l from

the CONDITION section) the message before f must be

the same as the message before m in SD1 and the

message afterl must be the same as the message after

m in SD1;

5. End.

To illustrate the message refinement method with an example, a top-level Sequence Diagram

is presented in Figure 37 (a) and a low-level Sequence Diagram is presented in Figure 37 (b)

describing a basic e-business model and a refinement model respectively.

120

Using the message refinement algorithm, the message 'login' in Figure 37 (a) is refined

with the Sequence Diagram in Figure 37 (b). The application of the message refinement

method results in a Sequence Diagram as shown in Figure 37 (c). For illustration purposes,

the messages that are involved with the refinement are drawn with lines of different thickness.

Figure 37: Example of a message refinement synthesis method featuring (a) a top-level Sequence Diagram,
(b) a low-level Sequence Diagram and (c) the result of applying message refinement synthesis method to

(a) and (b).

In order to compare the Sequence Diagram synthesis algorithm presented in this section with

the well established top-down synthesis method in Petri Nets, the Sequence Diagrams in

Figure 37are transformed by using SD2PN into the Petri Nets shown inFigure 38.

ActiveClient LoginSystem

login

homePage

visitorPage

visitorPage

alt
alt

If acct <> NULL

else

else

If prof <> NULL

ActiveClient LoginSystem

reqLoginPage

loginPage

login (uname,
pword)

ActiveClient LoginSystem

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

alt

alt

If acct <> NULL

else

else

If prof <> NULL

(a)

(b)

(c)

121

Figure 38: Petri Nets derived from Sequence Diagrams in Figure 1 (a), (b) and (c) respectively.

The Petri Nets in Figure 38 (a) and (b) are subjected to a top-down [22] synthesis method in

Petri Nets where the transition ‘login’ in Figure 38 (a) is refined with the Petri Net in Figure

38 (b). This results in a Petri Net identical to SD2PN transformation of the Sequence Diagram

from Figure 37 (c), as presented in Figure 38 (c).

6.3.2 Bottom-Up Synthesis Method in Sequence Diagrams

A bottom-up synthesis method in Sequence Diagram is ideally used to put together multiple

Sequence Diagrams based on the common elements between the diagrams. As described in

Petri Net synthesis method (Section 6.2.2), the bottom-up technique merges all the common

elements as one element; where all the relationship are still preserved.

 Figure 35 depicted two Petri Nets of different perspective, but with one common

element. Performing bottom-up synthesis on the Petri Nets created a Petri Net PN5 that

login

homePage

visitorPage

visitorPage

If acct
<> NULL

else

else

If prof <> NULL

End.If

End.If

End.If

End.If reqLogin
Page

loginPage

login
(uname,

pword)

homePage

visitorPage

visitorPage

If acct
<> NULL

else

else

If prof <> NULL

End.If

End.If

End.If

End.IfreqLogin
Page

login
(uname,

pword)

(a) (b)

(c)

122

merged the common elements of PN3 and PN4 while still preserving all the relationship

between the nodes. One observation that could be made at this point is how the actions ‘drink’

and ‘replace-milk’ occur non-deterministically; unrelated and independent of each other. It

does not matter if the action ‘drink’ occurs before, after or at the same time as ‘replace-milk’.

Unfortunately, it is not possible11

6.3.2.1 Part Decomposition Synthesis Method

to achieve this result in Sequence Diagrams. If a bottom-up

synthesis method is performed via a simple merge in Sequence Diagram, there would be an

emergent relationship between the two actions; i.e. if the action ‘drink’ is located visually

above the action ‘replace-milk’, it implies a causal relationship between the two events that

should not be there. The same is also true if the action ‘replace-milk’ is located above the

action ‘drink’. This enforces a behaviour that does not exist in the original set of execution

traces, and as such does not represent a good synthesis result. One possible solution to this

matter is the use of a parallel combined fragment. This allows both actions ‘drink’ and

‘replace-milk’ to occur concurrently. However, this scenario also enforces an emergent

behaviour if the form of concurrency that does not exist in the original set of execution traces.

 However, there are cases where the bottom-up synthesis method in Petri Nets can be

translated to bottom-up synthesis in Sequence Diagrams. Two such examples of the synthesis

techniques are presented in the following sections.

The part decomposition synthesis method refers to replacing a lifeline in a Sequence Diagram

with a complete Sequence Diagram that corresponds to it. This method allows for a lifeline,

11 As of now, based on the author’s knowledge

123

which represents a composite object with an internal structure, to be expanded, providing

more accurate information of the entities involved in the execution of a message. The lifeline

in question can be replaced with an entire Sequence Diagram, provided that all the messages

into and out of the original lifeline are accounted for.

The inspiration for this method came from page 497 of [7] where UML 2.1 illustrates

the existence of this capability. However, here the synthesis method is in the form of an

algorithm; a Part Decomposition synthesis integrates two Sequence Diagrams SD1 and SD2

by replacing a lifeline L in SD1 with the entire Sequence Diagram SD2. For the purpose of

this algorithm, the notation ‘[]’ is regarded as an array of elements. The algorithm for an

automated Part Decomposition synthesis is as follows:

INPUT: (SD1, SD2 and L),where SD1andSD2 are two Sequence

Diagrams and L is a lifeline in SD1representing a composite

object with an internal object structure and SD2 a purpose-

built Sequence Diagram that contains describes the internal

object structure of the lifeline L.

OUTPUT: SD3, where the set of all lifelines in SD3 is equal

to the set of all lifelines in SD1 and SD2 except for L.

CONDITION: There should not be a duplicate of lifelines

between SD1 and SD2, such that 𝐿𝐿𝑆𝑆𝑆𝑆1 ∩ 𝐿𝐿𝑆𝑆𝑆𝑆2 = ∅. The set of all

messages in SD2 should be a subset of the set of all

messages in SD1 such that 𝑀𝑀𝑆𝑆𝑆𝑆2 ⊂ 𝑀𝑀𝑆𝑆𝑆𝑆1 where all the messages

in and out of the lifeline L must be the same as the

messages in and out of SD2.

124

ALGORITHM:

1. Copy SD1 into SD3;

2. Identify all outgoing and incoming messages from L and

assign them to out [] and in [] respectively;

3. Let new_out [] = all outgoing messages from SD2 and

new_in [] = all incoming messages from SD2;

4. Copy the set of all lifelines from SD2 into SD3;

5. For each message m∈ out []: merge m with its

corresponding message m’∈new_out [] such that the

sending lifeline m’.snd and the receiving lifeline m.rcv

is retained;

6. For each message m∈in []: merge with its corresponding

message m’∈ new_in [] such that the sending lifeline

m’.snd and the receiving lifeline m.rcv is retained;

7. End.

125

Figure 39: An example of the part decomposition synthesis method featuring (a) the internal structure of
‘LoginSystem’ lifeline in Figure 1 (c) and (b) the result of Part Decomposition synthesis.

To demonstrate the Part Decomposition synthesis method, a continuation of the previous

example is used. The result of the previous synthesis method in Figure 37 (c) is used as the

top-level Sequence Diagram for this example while the Sequence Diagram in Figure 39 (a)

represents the internal structure of the lifeline 'LoginSystem' in Figure 37 (c). The application

of the Part Decomposition synthesis method to the Sequence Diagrams in Figure 37 (c) and

Figure 39 (a), it results in a synthesized Sequence Diagram as shown in Figure 39 (b).

 To compare the Sequence Diagram synthesis algorithm presented in this section with

the well established bottom-up synthesis method in Petri Nets, the Sequence Diagrams

involved in the synthesis as well as the synthesis results are transformed into Petri Nets via

SD2PN. In the example presented in Section 6.3.2, common messages between Figure 37 (c)

and Figure 39 (a) are merged to create a new Sequence Diagram.

LoginManager

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

alt

alt

If acct <> NULL

else

else

If prof <> NULL

(a)

AcctManager ProfManager

validate
(uname, pword)

acct

getProfile (uname)

prof

ActiveClient LoginManager

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

alt

alt

If acct <> NULL

else

else

If prof <> NULL

(b)

AcctManager ProfManager

validate
(uname, pword)

acct

getProfile (uname)

prof

126

Figure 40: Petri Net derived from the Sequence Diagram in Figure 2 (b).

In this example, the application of the synthesis method generates a peculiar result. Using

SD2PN, the Sequence Diagram in Figure 39 (a) can be transformed into the Petri Net in

Figure 40. By applying the bottom-up synthesis method between the Petri Nets in Figure 38

(c) and Figure 40, it still results in the Petri Net in Figure 40. This is true because every node

in the Petri Net in Figure 38 (c) is already present in Figure 40. As peculiar as this result is, it

still matches the Sequence Diagram in Figure 39 (b).

6.3.2.2 Special Case Method: Synthesizing Attack Scenarios

In this section, a synthesis method of a different nature is introduced. This is a domain-

specific method to simulate security breach scenarios where a specific attack model (i.e. man-

in-the-middle attack) is composed with a given scenario. Suppose a regular scenario model in

SD1 and the behaviour of an attacker in SD2. The resulting Sequence Diagram will depict an

act of security breach on the system and can be used to analyze the possibility of an attack as

well as counter-measures. This method is motivated by the challenges faced in [54]. This

synthesis enforces a special condition regarding the preservation of the sending and receiving

events on certain lifelines (i.e. the parties whose communication is intercepted by the

attacker). Any direct message m between these two parties in SD1 is replaced by a couple of

messages (m’,m”) with the same signature, flowing through the attacker in SD2. We shall

refer to m, m’ and m” as matching messages.

reqLoginPage loginPage login (uname,
pword)

If acct <> NULL

else

validate (uname,
pword)

acct getProfile (uname)

profvisitorPageEnd.If If prof <> NULL

End.If homePageelse visitorPage End.If

End.If

127

The special case synthesis method creates a Sequence Diagram SD3 that consist of all

the lifelines from SD1 and SD2 while replacing each message m between lifelines x and y in

SD1 with a couple of messages (m’,m”) from SD2. The algorithm for this special case

bottom-up synthesis is as follows:

INPUT: (SD1, SD2, x and y),where SD1is a Sequence Diagram

representing a normal scenario, SD2is a Sequence Diagram

representing the behaviour of an attacker and x and y the

two communicating lifelines in SD1 that the attacker would

like to eavesdrop.

OUTPUT: SD3, where every execution trace of SD2and every

execution trace of SD1 except ((m.snd = x & m.rcv = y) or

(m.snd = y & m.rcv = x)) is represented in SD3.

CONDITION: The number of lifelines in SD2 must be exactly

three such that LSD2 = {x, y, z} where (x ∈ LSD2 = x ∈ LSD1),

(y ∈ LSD2 = y ∈ LSD1) and z representing the attacker. For

every message m in SD1 such that (m.snd = x & m.rcv = y) or

(m.snd = y & m.rcv = x), there exist two messages m and m’in

SD2 such that ((m.snd = x & m.rcv = z) & (m’.snd = z &

m’.rcv = y)) and ((m.snd = y & m.rcv = z) & (m’.snd = z &

m’.rcv = x)) respectively.

128

ALGORITHM:

1. Create a new Sequence Diagram SD3;

2. Add the union of the set of lifelines in SD1 and SD2 to

SD3 such that 𝐿𝐿𝑆𝑆𝑆𝑆3 = 𝐿𝐿𝑆𝑆𝑆𝑆1 ∪ 𝐿𝐿𝑆𝑆𝑆𝑆2;

3. Identify the set R of direct messages between x and y in

SD1 such thatR= {m| m=(a,x,y)}; each m being replaced by

a couple of matching messages m=(a,x,z), m’ =(a,z,y) in

SD3;

4. For each message m∈ R, if Scope(m)= Q and Q ≠ SD1, then

add Q to SD3;

5. Add all messages m ∈ MSD2

6. Add all remaining combined fragments from SD1 into SD3;

 into SD3;

7. Add all messages m such that (m ∈ MSD1

8. End.

&m ∉ R) into SD3.

129

Figure 41: An example of the special case synthesis method featuring (a) the behaviour of an attacker and
(b) result of the special case synthesis.

To illustrate the special case synthesis method, this example introduces an 'attacker' to the

previously created e-commerce login model in Figure 39 (b). The behaviour of this attacker is

depicted in Figure 41(a). The application of the special case synthesis method to the Sequence

Diagrams in Figure 39 (b) and Figure 41 (a) results in the Sequence Diagram represented in

Figure 41(b).

(a)

Attacker LoginManager

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

alt

alt

If acct <> NULL

else

else

If prof <> NULL

(b)

AcctManager ProfManager

validate
(uname, pword)

acct

getProfile (uname)

prof

ActiveClient

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

Attacker LoginManager

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

alt

If acct <> NULL

else

else

If prof <> NULL

ActiveClient

reqLoginPage

loginPage

login (uname,
pword)

homePage

visitorPage

visitorPage

alt

130

 To compare this domain specific synthesis technique in Sequence Diagram with the

established bottom-up method in Petri Nets, all the Sequence Diagrams involved in the

synthesis are transformed into Petri Nets via SD2PN. The application of the bottom-up

synthesis method to the Petri Nets in Figure 40 and Figure 42 (a) results in a Petri Net

identical to Figure 42 (b); which is derived from the Sequence Diagram in Figure 41 (b).

131

Figure 42: Petri Nets derived from Sequence Diagrams in (a) Figure 3 (a) and (b) Figure 3 (b).

login
(uname,

pword)

reqLogin
Page

login
Page

login (uname,
pword)

reqLogin
Page

login
Page

If acct <> NULL

else

visitor
Page

visitor
Page

End.If

If prof <>
NULL

home
Page

home
Page

End.If

visitor
Page

visitor
Page

End.If

else

End.If

(a)

reqLogin
Page

login
Page

reqLogin
Page

loginPage

login
(uname,

pword)

login
(uname,

pword)

validate
(uname,

pword)

acct

If acct
<> NULL

getProfile
(uname)

prof

If prof
<> NULL

else

visitor
Page

visitor
Page

home
Page

homePage

End.If

End.If

else visitorPage

visitor
Page

End.If

(b)

End.If

132

CHAPTER 7
SD2PN AND TIMELINESS PROPERTIES

The notion of time in modelling and analysis is a well studied notion. This chapter presents an

approach to integrate timeliness properties into SD2PN.

7.1 Significance of time in UML

It has been established that UML [7] has been offered a privileged role in the modelling

community. The ability to model from an abstract view of the system, to the more functional

aspects of a system such as dependencies as well as communication between objects in the

system allow UML to earn a steadfast reputation as the standard in modelling. However as the

number of real-time and embedded systems increase, the demand for UML to model non-

functional properties, in particular timing information increases as well.

 The various diagrams in UML allow structural and behavioural properties of a system

to be modelled to a certain degree of accuracy. More complex properties of a system

133

interaction such as conflicting or parallel behaviour can also be modelled using high level

additions into UML such as Interaction Operators. Restricting an interaction or behaviour in

the model to reflect a specific property of the system can also be performed by integrating

OCL [116] constraints into the UML model. However in this chapter, the restriction of

behaviour in the UML model is narrowed down to a specific constraint; time.

 Assigning timing properties to a specific event or interaction in the model could allow

accurate depiction of the system in real-life where different tasks may require varying periods

of time to complete. The addition of the timing constraint could change the sequence of

events in the model, enforce delays between events to mimic real-life scenario as well as

present emergent behaviour from the model. Analysing these properties and emergent

behaviour in the modelling phase could prevent costly errors in the development phase.

 In [148], the authors present a guideline on the requirements for timing constraints to

be added into UML. To accurately express the time related aspects of a system, the notations

used to represent the timing constraint must allow requirements such as system (or

component) delays to be attached to the model. The notation must also allow external

assumptions such as response time or inter occurrence times to be attached to the model.

Assumptions on the underlying execution platform such as the execution times of various

tasks as well as the dependencies between tasks must also be allowed as a notation on the

model. Finally system behaviours that are dependent on time should be modelled on the

system in the form of an independent timer or by granting access to the system clock.

 In the next section, a short review of the literature is presented.

134

7.1.1 Review of UML extensions to include time

Although there have been various research projects down the years to integrate time into

UML, the execution between the pieces of research differs vastly. The element of time in

UML models is usually expressed as a time constraint. According to [149], there are three

types of commonly used time constraints; hard, soft and firm. A hard time constraint demands

that any event or interaction that is attached to it occurs within the constraints. Any delay in

the execution is unacceptable and the system run is deemed a failure. A soft time constraint

on the other hand allows violation in terms of the actual computation up to a certain degree.

Finally a firm time constraint is a combination of hard and soft time constraints where the

requirements are assessed as hard constraints and the computations are designated as soft

constraints.

 The execution of a system also relies on the arrival pattern of the messages between

instances. This should also be reflected in the model. There are two major classifications in

arrival patterns, periodic and aperiodic. Periodic messages have a predefined pattern.

However, slight variations in the pattern are common and referred to as jitter. According to

[150] jitter, which is a variation of latency or the time between two signals, transpires when

there are multiple occurrence of the same signal. Aperiodic messages on the other hand do not

have a pattern, and as such usually calculated using an average interval and standard

deviation. Messages that are bursty or grouped together are also considered aperiodic

messages. However bursty messages have a Poisson distribution, therefore do not have a

standard deviation.

 The table below presents a classification of various research projects that integrates

time into UML based on several criteria.

135

Table 9: Review of existing pieces of research that integrates time into UML

Types of time constraints

Hard

[148], [149], [151], [152],

[153], [154], [155], [49],

[156], [157], [158]

Soft [149], [151], [156]

Firm [149]

Types of formalizations used

Temporal Logic [159], [153]

Purpose-built Formalisms [160], [156], [157], [158]

None [149], [151], [49]

Attachment of time to the model

Message [151] , [49]

Lifeline [156]

Event

[148], [151], [152], [153],

[155], [160], [49], [156],

[157], [158]

Representation of time

Interval

[148], [151], [152], [159],

[154], [160], [49], [156],

[157], [158]

Duration
[148], [151], [155], [156],

[157], [158]

Classification of arrival time
Periodic

[149], [151], [153], [155],

[158]

Aperiodic [149], [158]

Purpose of time extension in the

model

Modelling real-time

systems

[149], [151], [153], [161],

[160], [157], [158]

Analysis
[148], [152], [159], [154],

[155], [49], [156]

All the literature presented in Table 9 uses a form of constraint to integrate timeliness

properties into UML models. However, constraints are not the only way time can be

represented in a model. In [161], time is presented as a scale in the model. The interval

between the occurrences of events in the model is depicted by the gap between events on the

136

lifeline. Therefore a calculation of interval between two event occurrences could be

performed by measuring the distance between the events and multiplying it by the scale. A

look at page 63 of [149] assures that it is possible to allow a linear scale to be added to the

UML models. However, it is an uncommon practice and to the best of my knowledge the tool

support for a scaled UML model is nonexistent.

In using various forms of constraints to integrate timeliness properties into UML, most

research projects choose to handle only one type of constraint; hard. This is due to the

straight-forward nature of hard-constraints. In [149], it is described that most hard constraints

or hard deadlines are obtained from the performance bounds of a reactive system where the

system is required to react in a timely fashion to an external event. In these cases, if any of the

constraints are not satisfied, the system run is deemed to be a failure. However in a real-life

system, there are constraints that are relaxed to ensure less failure. Depicting the relaxed

constraints (soft and firm constraints) in a model is more challenging because of the

ambiguity that exists in non-absolute constraints. This is the predominant reason why a

majority of research projects depict time only in the form of hard constraints.

 A common approach to extending UML with timeliness properties is to formalize the

model before introducing the notion of time. The classification in Table 9 reveals three

different groups of formalisms; temporal logic, purpose-built formalisms or no formalism.

The formalization of UML based on temporal logic allows logical statements to be inserted in

the UML models as constraints; including time constraints such as deadlines, duration or

interval. Besides temporal logic, other formal methods can also be used as a basis for the

formalization of UML models. For example, [148, 152, 155] used automata as the basis for

formalization while [154] represented constraints in the form of linear programming.

However since neither automata nor linear programming contribute formalisms towards

137

Sequence Diagrams; they are excluded from the table. The purpose-built formalisms such as

ACCORD [160], STAIRS [156, 157] and OOHARTS [158] on the other hand specify

different methods of time integration into the UML models. However, research projects such

as [49, 149, 151] outlines that formalizing the models is not a necessary step in integrating

timeliness properties into UML models.

The attachment of time to the UML models is often presented in the form of time-

stamps. These time-stamps are commonly attached to an event in the model, such as the

sending or receiving of a message. This is evident in Table 9 where a vast majority of

research projects attach timing constraints to event occurrences. However, time can also be

represented as a duration constraint, tagged to the message itself. In these cases, the execution

of the message must be of a specific duration as denoted in the tag. Although time stamps are

not usually attached to a lifeline in the model, there is an exception as presented in Table 9. In

[156], a variable now is placed at each lifeline in the model in order to synchronize between

the lifelines.

Table 9 presents the classification of two methods of representing time in UML;

interval and duration. Störrle [162] divides the concept of time in UML Sequence Diagrams

into two types; the first of which is preserving the state of the system for a certain time

interval while the second represents the duration for a single event to occur. Interval

represents a time frame with a compulsory maximum and minimum value where the

occurrence of the event attached to it must be within the maximum and minimum value [7,

163]. A duration on the other hand is defined as the temporal distance between two time

instances [7, 163]. Duration consists of only one constraint value and the event associated

with a particular duration constraint could only occur for the exact period of the specified

constraint. A brief look at Table 9 points out research projects [148, 151, 156-158], where

138

both interval and duration constraints are supported. The remainder of the research projects

supports only one or the other, with a slight bias towards interval.

The comparison of arrival patterns in Table 9 shows the two most common

classification; periodic and aperiodic. Although many literatures do not specify the type of

arrival pattern that are supported, the ones that do tend to choose periodic instead of aperiodic.

The reason for this is similar to the choice of hard constraints instead of soft or firm

constraints; aperiodic messages lead to ambiguity and non-absolute constraints, thus more

difficult to represent in a model.

Finally Table 9 also shows that the purpose of extending the UML models with time

constraints is evenly distributed between the need for modelling real-time systems accurately

and the need for time related analysis.

7.1.2 UML 2.1 and timeliness properties

Based on the classification of research projects in Table 9, there are various methods to

integrate timeliness properties into UML models. Most of the approaches taken introduce a

type of formalism into Sequence Diagram where a typical Sequence Diagram metamodel is

augmented with elements from temporal logic, automata or even purpose built formalism

techniques. These approaches, although provide a certain degree of mathematical foundation

to Sequence Diagrams – comes in the expense of the simplicity of the UML Sequence

Diagrams.

To keep with the ease of use in UML, there exist a package in the UML 2.1

Superstructure document [7] named Common Behaviours which allows a more detailed

behavioural definition in UML models. One subpackage of Common Behaviour is Simple

Time.

139

Figure 43: Dependencies between packages in Common Behaviours [7]

The Simple Time package allows time and the observation of time to be added into the UML

models through the addition of relevant metaclasses. Among the metaclass additions are

Interval, Interval Constraint, Duration and Duration Constraint.

 Chapter 13 of [7] define Interval as the range between two values, a minimum value

and a maximum value. An Interval is textually represented as the two associated values

separated by “..”. An example of a textual representation for Interval is:

< 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 >∷= < 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >′ . .′ < 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >

An Interval Constraint on the other hand is the constraint that describes the Interval it

specifies. A Duration as described in page 437 of [7] specifies the temporal distance between

two instances. Duration is represented as a single value that denotes the value of the duration,

140

commonly represented as a non-negative integer. Meanwhile the metaclass Duration

Constraint defines the constraint that specifies the Duration.

There are various other metaclasses that exist in the Simple Time subpackage.

However, only four relevant metaclasses are presented in this section. Although the Simple

Time package allows time to be integrated into UML models, more focussed packages that

deal with specific extensions of time could be added in the form of UML packages.

7.2 Extension of SD2PN to include timeliness properties

As established in the previous section, extension of timeliness properties in UML is becoming

a significant factor in model design. It is also established from Table 9 that a significant

number of work in this area is geared towards analysis of the time annotated UML diagrams.

In this section, the SD2PN model transformation is enhanced to allow time constraints from

Sequence Diagrams to be transformed into Petri Nets for the purpose of analysis.

 Referring to the review of existing research in Table 9, there are various formalisms

and types of constraints used in decorating the UML models with timeliness properties. In

Sequence Diagrams, time constraints can be attached to an event, a message or even a lifeline.

There are even different representations of time as well as the classification of message

arrival. Each research presents a different approach, with different sets of requirements.

Although any of the aforementioned pieces of research could be adopted as the enhancement

to the Sequence Diagram metamodel in SD2PN, the enhancement presented in this section

features the timeliness properties from the UML 2.1 metamodel.

141

 In the next section, the Sequence Diagram metamodel used in the SD2PN model

transformation will be enhanced to include timeliness properties from UML standard.

Subsequently, the Petri Net metamodel and the SD2PN model transformation rules will also

be enhanced with timeliness properties to allow the model transformation from time annotated

Sequence Diagrams into Timed Petri Nets.

7.2.1 Sequence Diagram metamodel enhancement

To allow time constraints to be present in Sequence Diagrams, the Sequence Diagram

metamodel in as Figure 3 is enhanced with time constraints. Figure 44 presents an enhanced

metamodel for Sequence Diagrams where the shaded elements in the metamodel represent the

extensions that signifies the addition of time properties into Sequence Diagrams. The shaded

elements are adapted from "Common Behaviors", chapter 13 of the UML 2.1 Superstructure

[7] as described in the previous section.

Figure 44: Sequence Diagram Metamodel augmented with Timeliness Properties

InteractionFragment

Interaction EventOccurrence CombinedFragments

InteractionOperator:
InteractionOpetratorKind

InteractionOperand

Lifeline

Message MessageEnd

GeneralOrdering InteractionConstraint

Constraint

<<enumeration>>
InteractionOperatorKind

Alt
Opt
Break
Par

+coveredBy

+fragment

+enclosing
Interaction

+fragment
(ordered)

+interaction

+interaction

+covered

+message

+sendMessage

+receiveMessage

+sendEvent

+receiveEvent

+before +after

+toBefore+toAfter

+operand

+guard

+generalOrdering

*
*

0..1

1

1

* 0..1

0..1 0..1
0..1

* *

11

0..1

1

TimeConstraint

DurationInterval

Duration

TimeInterval

Interval

IntervalConstraint

DurationConstraint

+specification

+specification

0..1

0..1
1

1

* *

1 1+min +max

min : Float
max : Float

142

This extension of the UML Sequence Diagram metamodel used in the model

transformation allows Interval and Duration constraints to be added into Sequence Diagram

metamodels. This extension, or enhancement of the metamodel takes into account the various

researches in Table 9 where time constraints are represented as either Intervals of Durations.

Table 9 also denotes that the attachment of time to Sequence Diagram elements occurs on

events, messages and lifelines – all three types of attachments are catered for in this

enhancement. Finally and most importantly, this metamodel enhancement does not deviate

from the simplicity, a core concept in UML. Furthermore, the metamodel itself is a subset of

the UML 2.1 metamodel with no foreign model elements introduced. As such, any Sequence

Diagram that conforms to the metamodel used in this research will conform to the UML 2.1

metamodel.

Both Interval and Duration are syntactically represented textually inside curly brackets

as specified in [7, 163] and each value is expressed as float instead of Value Specification in

order to manage the constraints more accurately and to keep the metamodel to a minimum.

Figure 45: Example of a Sequence Diagram with time constraints

Figure 45 shows an example of a Sequence Diagram that features both types of time

constraint, Interval and Duration. The Interval between the sending and receiving events of

m2 indicates that the completion (sending and receiving) of m2 takes between θ and θ +3 to

m1

m2

Duration

{ }θ
{ }3... +θθ

Interval

143

occur, where θ is a constant. The Duration between m1 and m2 on the other hand indicates

that after m1 is completed, the state is preserved for the duration of θ before m2 could be

sent.

 The presence of Interval and Duration in the Sequence Diagram could present a

unique case that is not represented in the previously defined fragments. The example in Figure

45 shows the presence of a Duration that is not attached to a message. This warrants the

inclusion of an additional fragment type and an additional transformation rule that will be

addressed later in Section 7.2.3.

7.2.2 Petri Net metamodel enhancement

The enhancement of the Sequence Diagram metamodel with time constraints introduces an

inconsistency between the source and the destination metamodels of the SD2PN model

transformation. To allow the Sequence Diagrams to be accurately mapped into Petri Nets, the

Petri Net metamodel has to be enhanced with time constraints as well.

The addition of constraints to an ordinary Petri Net results in a type of Petri Net called

Timed Petri Net [50]. Figure 46 represents the metamodel of Timed Petri Net where the

shaded elements refer to the extension of the metamodel in Figure 7 with time properties. This

metamodel is compiled from the theories of time in Petri Nets from [50] as well as from a

direct correlation with the Sequence Diagram metamodel. The compatibility of the new

Timed Petri Net metamodel with common Time Petri Net tools has also been taken into

consideration, namely PIPE and CPNTools.

144

Figure 46: Petri Net Metamodel with Timeliness Properties

The shaded elements in the metamodel in Figure 46 include Interval and two

specializations of transition; immediate transition and timed transition. The Intervals are

expressed as closed intervals [50] and consists of an upper and lower bound of type float, to

be consistent with Sequence Diagrams. Intervals are connected to transitions. For a transition

to fire, it must be enabled and once enabled, a clock starts; the transition can fire when the

value of the clock is within the interval. An example of a timed transition is shown in Figure

15 where the transition t2 has a time constraint with the closed interval [θ ,θ +3]. The

transition t2 can only fire under two conditions: it must be enabled and the clock must be

between θ and θ +3.

Figure 47: Example of a Timed Petri Net

Two types of transition are identified in Figure 47; immediate transitions and timed

transitions. Immediate transitions, which aretransitions without time constraints, are depicted

Petri Net

Place Transition

Marking

Mark

Arc

Time Constraints Interval

Immediate
Transition

Timed Transition
tokens: Integer

lowerBound: float
upperBound: float

+in +in+out +out* * * *

1 1 1 1

p1 p2t1

p4 t2 p3Place

Token Immediate
Transition

Arc

Timed
Transition

[]θ

[]3, +θθ

145

as black rectangles while the timed transitions are depicted as white rectangles. An immediate

transition may be considered as equivalent to a timed transition with an interval of [0, 0]. For

timed transitions, the interval is shown in a bracket by the label of the transitions, with a

comma separating the upper and lower bound. If the upper and lower bound of the interval is

the same, such as [50, 50], it is abbreviated as [50].

7.2.3 SD2PN Transformation Rules enhancement

In this section, the set of SD2PN model transformation rules are enhanced to include

timeliness properties. Rule 1 of SD2PN is modified to accommodate the existence of the two

types of transition while Rules 2 through 5 remains unchanged since there are no intervals or

durations that are attached to CombinedFragments. Every transition in Rules 2 through 5 is

therefore designated as immediate transitions.

Rule 1 from Section 3.2 is used to transform every message in a Sequence Diagram

into a Petri Net block consisting of two places, s1 and s2, and a transition, t. By adding a time

constraint to this rule, the transition t is given an Interval constraint with a maximum and

minimum value acting as its upper and lower bound. There are three possible cases for the

execution of this rule:

Case 1: If a message has an interval associated with it e.g. {10...30}, the transition t in the

resulting Petri Net block is designated as a Timed Transition with a closed interval [10, 30].

Case 2: If a message has a duration associated to it e.g. {20}, the transition t in the resulting

Petri Net block is designated as a Timed Transition with a closed interval [20, 20] or

abbreviated as [20].

146

Case 3: If a message does not have any time properties attached to it, the transition t in the

resulting Petri Net block is designated as a transition with a closed interval [0, 0] or an

Immediate Transition.

Figure 48: Rule 6 of SD2PN

Rule 6 – Duration: Recalling the new type of fragment defined in Section 7.2.1, an

additional Rule is introduced to SD2PN. Rule 6, as illustrated in Figure 48 maps time

properties that are not attached to any particular message into a Petri Net block. This results in

a Petri Net similar to Rule 1. However, there are only two possible execution cases for Rule 6:

Case 1: If a time constraint has an interval associated to it e.g. {10...30}, the transition t in the

resulting Petri Net block is designated as a Timed Transition with a closed interval [10, 30].

Case 2: If a time constraint has a duration associated to it i.e. {20}, the transition t in the

resulting Petri Net block is designated as a Timed Transition with a closed interval [20, 20] or

abbreviated as [20].

s2

SD2PN
Rule 6

s1

{ }θ []θ

147

Despite the metamodel enhancements, transformation rules enhancements and the

addition of a new transformation rule, the fundamentals of the model transformation process

described in Chapter 4 remains unchanged. The three stages of SD2PN are still valid:

Stage 1: Decomposition of Sequence Diagrams into fragments.

Stage 2: Transformation of each fragment into a Petri Net block.

Stage 3: Composition of the Petri Net blocks using morph and substitute.

 The process of Sequence Diagram decomposition in Stage 1 is enhanced through the

introduction of an additional fragment type. In Chapter 4, five fragment types were

introduced; message and CombinedFragments of type alternative, option, break and parallel.

However, for the purpose of the time enhanced SD2PN model transformation, an additional

fragment type is introduced, as described in Section 7.2.1.

 Stage 2 of the model transformation makes use of the set of six transformation rules to

transform the time augmented Sequence Diagrams into Timed Petri Nets. In Stage 3 of the

model transformation, the Petri Net blocks are put together using morph and substitute to

create a larger, more integrated Petri Net. The result presented in Chapter 4 where the

correctness of the transformation was proved still applies to the enhanced model

transformation since the enhancements made do not affect the structural consistency of the

Petri Net blocks i.e. all Petri Net blocks begins and ends with a place. This ensures that the

enhanced model transformation accurately transform Sequence Diagrams enhanced with time

constraints into semantically equivalent Timed Petri Nets.

148

7.2.4 Discussion

In the previous section, an extension to the SD2PN model transformation to include

timeliness properties is presented. The extension is based on the Simple Time subpackage

from Common Behaviours, chapter 13 of the UML 2.1 Superstructure document [7]. In order

to perform the extension, the Sequence Diagram metamodel is enhanced to include Simple

Time metaclasses from UML 2.1. This is followed by an enhancement to the Petri Net

metamodel, followed by the transformation rules enhancement.

 With reference to Table 9 from Section 7.1.1, this extension technique could also be

applied to other classifications of time augmented Sequence Diagrams. The Sequence

Diagram metamodel could be enhanced to include various metaclasses that describes the

different classifications presented in Table 9. Different aspects of the metamodel could be

used to describe the different elements in Table 9 such as the types of constraints, types of

formalisms or even the classification of arrival time.

 To illustrate a possible extension of SD2PN, a theoretical example is presented based

on Table 9 where two research projects [153, 159] are formalized using temporal logic. The

logical statements that augment the Sequence Diagrams could be represented as OCL

constraints [116]. As such, the Sequence Diagram metamodel only needs to be enhanced to

allow OCL constraints as a metaclass. However, since Timed Petri Nets do not support logical

constraints, a different subset of Petri Net must be chosen; Coloured Petri Nets [74]. Coloured

Petri Nets are a subclass of Petri Nets that allow logical constraints to act as guards to the

firing of transitions in the net. Finally, the transformation rules needs to be enhanced to allow

the OCL constraints in the Sequence Diagrams to be transformed into guards in the resulting

Petri Nets. Although the extension described in this paragraph is theoretical, it is also

regarded as an area for future research and will be described in more detail in Chapter 8.

149

 Among the classifications in Table 9, there is also a dichotomy between the reasons

for augmenting Sequence Diagrams with timeliness properties. Various research projects [49,

148, 152, 154-156, 159] cited analysis as the reason for the enhancement. A common type of

analysis performed in time enhanced UML models is performance analysis [49]. The next

section discusses performance analysis using the SD2PN model transformation.

7.3 Using SD2PN for Performance Analysis

The extension of SD2PN with timeliness properties creates a platform for various time

sensitive analysis such as performance analysis, schedulability and Quality of Service (QoS)

analysis to be performed on Sequence Diagrams based on Petri Nets. In this section, an

instance of the time sensitive analysis is explored; performance analysis.

 The next section presents the significance of performance analysis in Sequence

Diagrams, followed by the capabilities of Petri Nets in performing such analysis.

Subsequently, an example of how performance analysis can be performed on Sequence

Diagrams using SD2PN is presented in comparison to the structural and behavioural analysis

presented in Chapter 4.

7.3.1 Significance of Performance Analysis in Sequence Diagrams

The concept of performance analysis in design models is a well studied area of research [49,

164-169]. For example, in [49], a technique for performance analysis in system design is

presented based on UML Profile for Schedulability, Performance and Time

Specification[170]. The UML Profile is used to tag values such as performance requirements

150

and resources onto UML behavioural models such as Sequence Diagrams. Although the

profile is easily understandable, it lacks the level of formalism needed to perform analysis.

Thus, a Layered Queuing Network (LQN) is used as the formalism for the analysis in [49].

The same sentiment is echoed in [169] where the UML Profile is acknowledged, but the

analysis is performed by transforming the Sequence Diagram into a Communication

Dependency Graph (CDG).

 In [168], a survey on model based performance analysis in software engineering is

presented, marking the transition from the traditional system development method purely

concerned on the structural correctness of the system, to a more performance oriented system

design. The survey outlined five major integrated methods used in model based performance

analysis; Queuing Network based methodologies, process algebra based approaches, Petri Net

based approaches, Simulation based methods and methodologies based on stochastic

processes. Despite the five different types of approaches used, a major concern is the

complexity of the performance models. Translating the design models into formal

performance models requires a strong semantic mapping between the two formalisms. Even

so, the complexity of the generated performance model may still prevent efficient

performance analysis. Another concern highlighted in the survey is the lack of automation in

the translation from the design model to the performance model, which could allow a system

designer to perform the analysis and receive feedback with minimal knowledge of the

formalism used in the analysis.

7.3.2 Petri Nets and Performance Analysis

While the analysis capabilities of general Petri Nets focus on the structural and behavioural

properties of a system, the addition of time properties to the Petri Nets allows for performance

151

analysis as well. A Cycle-time analysis could be used to determine the duration for a complete

sequence of action in the system while a tool such as CPNTools [27] can be used for

computing the amount of time that separates two events, i.e. time between requesting access

to a resource and getting the resource. Various Petri Net tools also provide a platform for

other performance analysis such as average time, standard deviations, confidence intervals

and throughput analysis as described in [28, 74].

7.3.3 Using SD2PN to allow Performance Analysis in Sequence Diagram

The extension of SD2PN with timeliness properties as presented in Section 7.2 allows

Sequence Diagrams annotated with time constraints to be transformed into Petri Nets. The

inclusion of timeliness properties in SD2PN creates a platform for time sensitive analysis

such as performance analysis to be performed on Sequence Diagrams. As established in the

previous sections, performance analysis in Sequence Diagrams is an active area of research.

In this section, the time enhanced SD2PN model transformation is used as a platform for

performance analysis in Sequence Diagrams, taking advantage of the well-established

analysis methods in Petri Nets.

In Chapter 5, where the functionality of SD2PN was illustrated for the purpose of

analysis, an example of the transformation process was provided. The Sequence Diagram in

Figure 31, a representation of a Personal Area Network, was transformed via SD2PN into the

Petri Net in Figure 32. To illustrate the introduction of time as an element in the model

transformation, the Sequence Diagram in Figure 31is augmented with time constraints,

resulting in the Sequence Diagram in Figure 49 (a). Using the enhanced SD2PN model

152

transformation, this Sequence Diagram is transformed into the Petri Net depicted in Figure 49

(b).

Figure 49: (a) Sequence Diagram for a station in PAN and (b) its equivalent Timed Petri Net

The Petri Net generated via the enhanced SD2PN in Figure 49 (b) is structurally

equivalent to the Petri Net in Figure 32; thus indicating the consistency of the model

transformation. However, the introduction of timeliness properties into SD2PN allows

p0

p1

idle [50]

p2

checkStatus

If free

p4

sendPacket

p5

p3

If busy

registerPacket

p6

waitForAccess
[120,240]

If free

p8

sendPacket

p9

p7

If busy

waitForAccess
[120,240]

If free

p12

sendPacket

p13

p11

If busy

p14

If free

p16

sendPacket

p17

p15

If busy

p18

dropPacket

p10

Station Medium

registerPacket

idle {50}

checkStatus

return status

sendPacket

waitForAccess {120...240}

sendPacket

waitForAccess{120...220}

sendPacket

waitForAccess{120...200}

sendPacket

dropPacket

If free

If free

If free

If free

If busy

If busy

If busy

If busy

(a) (b)

alt

alt

alt

alt

waitForAccess
[120,240]

p19 p20

p21

p22

p23

p24

153

performance analysis to be performed in addition to the existing structural and behavioural

analysis; time-sensitive analysis such as a cycle-time, average time, standard deviations,

confidence intervals and throughput analysis can be performed, as described in references [28,

74]. The focus of the performance analysis in this case is throughput analysis; this will be

used to analyse the maximum delay for a station in the Personal Area Network.

The maximum delay is calculated based on the time it takes for a station to gain access

to the medium (sendPacket). The factor that contributes to the increase in waiting time is the

number of stations. A higher number of stations will increase contention between the stations.

This inevitably leads to a longer maximum waiting period. For the case of a single station in

the PAN, the Petri Net would be the same as the Petri Net in Figure 49 (b). However, for

cases where there is more than one station, the Petri Net in Figure 49 (b) would be replicated

for each station. The throughput analysis will compute the maximum waiting time based on

the last station to gain access to the medium via the message ‘sendPacket’. For example, in a

case where there are two stations trying to gain access to the medium, after registering the

packet (firing of registerPacket transition), in Figure 49 (b), both stations will face a

mandatory idle time of 50µs (firing of idle transition) before checking the status of the

medium. Following that, only one station will be able to gain access to the medium while the

other will have to wait between 120µs and 240µs (firing of waitForAccess transition), thus a

maximum waiting time of 290µs (= 240µs + 50µs).

154

Figure 50: Maximum Waiting Time analysis result

The graph in Figure 50 indicates the maximum delay that a station may face before gaining

access to the medium to send a packet based on the throughput analysis. The number of

stations is limited to 7 to ensure there are no collisions; this is based on the previous

assumption that the contention window (CW) does not increase.

In the example of the Petri Net in Figure 49 (b), the analysis performed could provide

a basis to optimise related protocols to ensure a better performance. This provides a domain of

interoperability from Sequence Diagrams to Petri Net allowing not only structural and

behavioural analysis, but also performance analysis. The performance analysis is not limited

only to throughput analysis. Various other performance analyses such as cycle-time analysis,

average time, standard deviations, and confidence intervals analysis can also be performed.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

M
ax

im
um

 W
ai

tin
g

Ti
m

e
(µ

s)

Number of Stations

155

CHAPTER 8
DISCUSSION AND CONCLUSION

This chapter concludes the work presented in this thesis. In Section 8.1, a summary of the

contributions made in this thesis is presented. Section 8.2 presents a discussion on future work

that could be done to expand and improve this research in the future while finally Section 8.3

presents the implications of this research.

8.1 Summary of Contributions

The major contribution of this thesis is presenting the application of Multi Paradigm

Modelling via Model Driven Development (MDD) model transformation from Sequence

Diagrams to Petri Nets. The model transformation, SD2PN is used as a vehicle to perform

analysis and synthesis in Sequence Diagrams using the well-defined and well-established

analysis and synthesis methods in Petri Nets.

156

 In Chapter 2 of the thesis, an introduction to UML is presented, in particular Sequence

Diagram. This is followed by an introduction of Petri Nets, including the various flavours of

Petri Nets and a section on the well-studied subclass of Petri Nets; Free Choice Petri Nets. A

review of existing Petri Net tools is also presented. This is followed by an introduction of

Labelled Event Structures (LES) as well as the methods to translate both Sequence Diagrams

and Petri Nets into LES. Finally a preliminary on MDD with a focus on a particular MDD

model transformation framework, SiTra is presented.

 The concept of Multi Paradigm Modelling is introduced in Chapter 3 where the role of

modelling in system development is discussed together with the concept of model design,

model analysis and model synthesis and the disparity between them. Besides providing an

overview of how MDD model transformation, with regards to Multi Paradigm Modelling can

be used to perform model analysis and model synthesis on a design model, this chapter also

presents a method to overcome a weakness of Multi Paradigm Modelling which is proving

semantic preservation between paradigms using a common semantics domain.

 Chapter 4 presents an application of Multi Paradigm Modelling by defining a MDD

model transformation from UML Sequence Diagrams to Petri Nets. The model

transformation, named SD2PN, is presented in three stages; Decomposition, Transformation

and Composition. In the Decomposition stage, a Sequence Diagram is split into multiple

Sequence Diagram fragments based on the metamodel presented in Figure 3. In the

Transformation stage, each Sequence Diagram fragment is transformed into an equivalent

Petri Net block based on a set of model transformation rules which are also defined in Chapter

4. Subsequently, in the Composition stage, the Petri Net blocks are put together using two

local functions morph and substitute to create a Petri Net that is semantically equivalent to the

original Sequence Diagram. Chapter 4 also presents a mathematical proof that each and every

157

Petri Net generated via SD2PN belongs to a well studied subclass of Petri Net known as Free

Choice Petri Net. Finally, to prove that the Petri Nets generated by SD2PN via the

aforementioned three stages are semantically equivalent to the original Sequence Diagrams, a

proof using a common semantic domain in the form of Labelled Event Structures (LES) is

presented followed by another proof using mathematical notations in the form of Incidence

Matrices.

 Chapter 5 utilizes the model transformation, SD2PN presented in Chapter 4, coupled

with the methodology presented in Chapter 3 to analyze Sequence Diagram models using well

established analysis methods in Petri Nets. This chapter starts with the description of various

analysis methods available in Petri Nets followed by the advantages of using Free Choice

Petri Nets in performing the analysis. Subsequently, a tool for automated analysis of

Sequence Diagrams using Petri Nets is presented called SD2PN Transformer. SD2PN

Transformer is a Java based tool that receives Sequence Diagrams in the form of XMI and

parses the XMI data to create Java objects. The Java objects are transformed into Petri Net

Java objects using Java code representing the SD2PN transformation algorithm and

subsequently produced as an XML file that could be read by well-known Petri Net tools.

Finally to illustrate the capabilities of SD2PN, an example of a Personal Area Network (PAN)

is presented, starting from the description of the protocol and the Sequence Diagram

representation of the protocol up to the analysis of the protocol using Petri Net analysis

methods.

 In Chapter 6, well established Petri Net synthesis methods are discussed followed by

the adaptation of those synthesis methods into Sequence Diagrams. Three Sequence Diagram

synthesis methods are introduced in this chapter; a message refinement method, a part

decomposition method and a special case method to introduce a man-in-the-middle (MiM)

158

type of attack into a Sequence Diagram. Each synthesis method is presented together with an

algorithm, an example of an e-commerce login system and a proof of semantic preservation.

 The enhancement of SD2PN with timeliness properties is presented in Chapter 7. In

this chapter, the significance of time in UML is discussed followed by a review of methods to

integrate time into UML. Subsequently, an extension of SD2PN to support timeliness

properties is presented including the metamodel enhancements for both Sequence Diagrams

and Petri Nets as well as enhancements for the transformation rules.

 As an overall reflection, this thesis contributes SD2PN – an MDD model

transformation that serves as a basis for Multi Paradigm Modelling between the easy-to-use,

widely accepted modelling language, UML Sequence Diagrams and a formal, mathematical

language, Petri Nets. This model transformation then contributes towards two directions;

analysis and synthesis of Sequence Diagrams. Finally the model transformation itself is

enhanced to include timeliness properties allowing for a plethora of time-sensitive analysis to

be performed. The entire research is described using various examples; ranging from the

intentionally trivial examples to the slightly more complicated examples that could still be

followed. However this does not mean that SD2PN can only withstand case studies with

limited amount of elements. Based on the synthesis methods outlined in this thesis, analysis of

large-scale Sequence Diagrams can already be performed by separately analysing aggregate

models before synthesizing them together – achieving scalability. However, scalability in

terms of larger Sequence Diagrams is also being studied not only with the object and message

parameters of Sequence Diagrams, but also the number of conflicting and concurrent

behaviours. Case studies involving real-life Sequence Diagrams are being conducted and

evaluated and will be a core area of study for the future research together with other areas

such as described in the following section.

159

8.2 Future Work

This section presents the plans of the author to enhance the research further to make SD2PN a

completely automated model interoperability framework that caters for analysis and synthesis

of a larger range of Sequence Diagrams, including Sequence Diagrams with OCL[116]

constraints attached.

 The Sequence Diagram metamodel used in this research, as presented in Figure 3 is a

subset of the UML metamodel derived from [7]. However, there are some elements that exist

in the UML metamodel for Sequence Diagrams that has not been included in the metamodel

used in this research; such as the Combined Fragment of type loop and negative. The loop

operator specifies that all the messages that are a part of its operand are recurrent (looped) for

a specified number of times based on the constraint(s) attached to it; while still preserving the

order of causality between the messages. A loopCombined Fragment consists of only one

operand and may contain other Combined Fragments.This operand may be transformed into

Petri Nets by using a series of alternativeCombined Fragments to keep repeating a specific

Petri Net block based on the condition specified in the original loop operand – however

research is still in progress to analyze if the Petri Net block produced still preserves the

semantics of the Sequence Diagram fragment; and if the resulting Petri Net could still be

classified as a Free Choice Petri Net.

 The Interaction Operatornegative in Sequence Diagrams (or abbreviated as

neg)defines a Combined Fragment with only one operand where each sets of traces in the

operand may not occur. Translating this operand into Petri Nets would require using a high-

level addition to Petri Nets called inhibitor arcs. Inhibitor arcs refer to arcs such as in the Petri

Net metamodel in Figure 7; however, this arc will not fire when there are tokens in the places

160

that are its set of inputs. At present, research is still being conducted to study the effects of

inhibitor arcs to the complexity of analysis and if correctness of the transformation could still

be preserved.

 Plans are also being drawn-up to enhance the SD2PN Transformer (refer section 5.4).

At present, the tool is a Java based tool that requires input in the form of XMI (parsed through

SDMetrics into Java objects). The tool then implements the SD2PN transformation rules and

generates Petri Nets in the form of Java objects which are later written into XML that could

be read by Petri Net tools. In the future, the author aims to migrate the tool into Eclipse

Modelling Framework [171] to create an integrated toolset that could be used to create (or

import) Sequence Diagrams, perform the transformation, conduct Petri Net analysis, and

finally produce a report for the system designer. The tool development plan also includes a

module for automated tool-based synthesis of Sequence Diagrams using the algorithms

presented in this thesis; as well as the potential to add to the number of algorithms.

 The synthesis techniques presented in this thesis adopted the top-down synthesis

method to create a message refinement algorithm, and presented two specific cases where

bottom-up synthesis method may be adopted in Sequence Diagrams. However, as discussed in

Section 6.2, there are various other methods of synthesis in Petri Nets. Research is still in

progress to determine which synthesis methods in Petri Nets could be adopted in Sequence

Diagrams. Research is also being conducted to produce a generic way that all synthesis

methods in Petri Net could be adopted seamlessly in Sequence Diagrams. One approach for

seamless adoption of synthesis methods is through a bi-directional model transformation

between Sequence Diagrams and Petri Nets where synthesis could be performed in Petri Nets

and the results transformed back into Sequence Diagrams. However this could be complicated

since the Petri Net language is more expressive that Sequence Diagrams.

161

 Finally, the author is also in process of enhancing the Sequence Diagram metamodel

used in the SD2PN model transformation to include OCL constraints. OCL is a text-based

language that uses first-order logic statements to provide constraints of the model elements in

UML. Translating these constraints into Petri Nets requires a higher level of Petri Nets that

could analyse logical statements – Coloured Petri Nets [74]. The enhanced model

transformation will preserve all the results of SD2PN (i.e. Free Choice Petri Nets, semantic

preservation) but with an added capability to analyse logic as well as structure, behaviour and

performance.

162

APPENDIX A
TRANSFORMING SEQUENCE

DIAGRAM FRAGMENTS AND PETRI
NET BLOCKS FROM SD2PN

TRANSFORMATION RULES INTO LES

A.1 Sequence Diagram Fragments to LES

The translation of the Sequence Diagram fragments from the SD2PN transformation rules are

based on the outline presented in Section 2.3.1 using the semantic mapping by [40].

Message

In Sequence Diagrams, the fragment message is described by two events; e1 the event that

describes the sending of the message, and e2 that describes the receiving of the message.

Since both events are causal, and belong to the same scope (this is true for any case since

163

messages are horizontal and there can never be a scenario that the sending and receiving

events of a message exist under different scopes). This results in the LES in Figure 26.

Alternative

For the Sequence Diagram fragment alternative, the fragment has an initial location l1 that

represents the beginning of the fragment. Since the SD2PN transformation rules signifies two

operands in the alternative fragment, there are 2 scopes; alt(2)#1 and alt(2)#2. Signifying the

end of the alternative fragment is the location l2. There is only one alt_loc for location l1

since there are no choices or concurrencies; as such the event e1 is the starting point of the

LES. In location l2 however, there are two possible alt_loc since the alternative fragment

produces two different scenarios. As such, the location l2produces two events e2and e3. Since

e2 and e3

Figure 26

 are conflicting events, where there are no sets of execution traces that contain both

events; the symbol ‘#´ is placed in between the events denoting conflicting behaviour. After

the addition of placeholders to represent the placeholders in Sequence Diagrams, the resulting

LES is presented in .

Option

The option fragment is semantically equivalent to the alternative fragment as discussed in

Section 4.1.2.3. As such, the transformation is similar to the transformation of alternative

fragments.

164

Break

The break fragment also has a similar construct to the alternative fragment, but with just one

placeholder. It still consist of two locations l1 and l2 where l1 has an alt_loc of 1 and l2 has an

alt_loc of 2 – generating two conflicting events e2and e3 Figure 26 as presented in .

Parallel

In Sequence Diagrams, a parallel fragment has an initial location l1. This location signifies

the beginning of the fragment. Inside the fragment, there are 2 scopes; par(2)#1 and par(2)#2

as described in Section 2.3. These scopes represent the parallel events that occur inside the

fragment. After the execution of these events, a location l2 signifies the end of the fragment.

Since both l1 and l2 has an alt_loc of 1, there is only 1 event to represent each these locations,

e1 and e2 such that e1 forks into the 2 scopes of events and merge into e2

Figure 26

. This creates an LES

as shown in .

A.2 Petri Net Blocks to LES

The translation of Petri Net blocks into LES makes use of the unfolding method presented in

[41] as presented in Section 2.3.2.

165

Message

The unfolding of the Petri Net block representing message is straight-forward where there are

two states in the Petri Net in form of places s1 and s2

Figure 26

. The causal relationship between the

places ensures the LES as presented in .

Alternative

The Petri Net block that represents the fragment alternative begins with a state represented by

the place s1, creating e1 in the LES. However, the conflict represented by the two outgoing

arcs from s1

Figure 26

 signifies two conflicting events in the LES. As the placeholders are added to the

LES to match the Petri Net, the resulting LES is presented in .

Option

This unfolding is similar to alternative.

Break

This unfolding is similar to alternative but with one placeholder.

Parallel

In the block of Petri Net representing parallel, it starts with a place s1 and ends with a place

s2. They can be represented as events e1 and e2 respectively with e1 forking out into the

placeholders and merging at e2 Figure 26. This results in the LES representation in .

166

APPENDIX B
SOURCE CODE FOR SD2PN

TRANSFORMER

package csv.parser;

import sequencediagram.*;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.swing.JFileChooser;
import javax.swing.filechooser.FileFilter;

public class CSVParser {

 private JFileChooser fileChooser;
 private File[] files;
 private int status = JFileChooser.CANCEL_OPTION;
 private ArrayList<String[]> data;

 public CSVParser() {

 data = new ArrayList<String[]>();
 //("D:/Summer Project/Ariff");
 fileChooser = new JFileChooser("C:/Documents and Settings/Ben Sab/My
Documents/University of Birmingham/MSc Advanced Computer Science/Summer
Project/Ariff");
 fileChooser.setAcceptAllFileFilterUsed(false);

167

 FileFilter filter1 = new ExtensionFileFilter("CSV files", "CSV");
 fileChooser.setFileFilter(filter1);

 fileChooser.setDialogTitle("Open CSV files");
 fileChooser.setMultiSelectionEnabled(true);

 status = fileChooser.showOpenDialog(null);

 if (status == JFileChooser.APPROVE_OPTION) {
 files = fileChooser.getSelectedFiles();
 } else {
 System.exit(0);
 }

 parse();

 }

 public final File[] getFiles() {
 return files;
 }

 public final boolean isFileSelected(String fileName) {

 for (int i = 0; i < getFiles().length; i++) {
 if (getFiles()[i].getName().contains(fileName)) {
 return true;
 }
 }

 return false;

 }

 private final void parse() {

 if (files.length != 0) {

 try {

 for (int i = 0; i < files.length; i++) {

 BufferedReader reader = new BufferedReader(new
FileReader(files[i]));

 data.add(new String[]{files[i].getName()});

 String line;
 String[] columns;

 while ((line = reader.readLine()) != null) {
 if (line.contains("[")) {

 Pattern pattern = Pattern.compile("\\[[^\\]]*\\]");
 Matcher matcher = pattern.matcher(line);

 while (matcher.find()) {
 line = line.replaceFirst("\\[[^\\]]*\\]",
matcher.group().substring(1, matcher.group().length() - 1).replace(",", ";"));
 }

 }
 line += " ";
 columns = line.split(",");
 data.add(columns);

168

 }

 }

 } catch (IOException ioe) {
 System.out.println(ioe.getMessage());
 }

 }

 }

 public final ArrayList<String[]> getAllData() {
 return data;
 }

 public final ArrayList<String> getColumnInFile(String fileName, int
columnNumber) {

 ArrayList<String> result = new ArrayList<String>();

 int err = 0;

 if (files.length != 0 && data.size() > 0) {

 try {

 for (int i = 0; i < data.size(); i++) {
 if (data.get(i)[0].contains(fileName)) {
 for (int j = i + 1; j < data.size(); j++) {
 if (data.get(j)[0].endsWith(".csv")) {
 break;
 }
 result.add(data.get(j)[columnNumber]);
 }
 break;
 }
 }

 if (result.size() == 0) {
 System.err.println("The file: '" + fileName + "' was not
imported.");
 err = -1;
 }

 return result;

 } catch (ArrayIndexOutOfBoundsException aioobe) {
 System.err.println("Column number does not exist.");
 err = -1;
 }

 }

 if (err == 0 && result.size() == 0) {
 System.err.println("The file: '" + fileName + "' is either empty or no
files have been imported.");
 }

 return result;

 }

 public final ArrayList<String> getColumnInFile(String fileName, String
columnName) {

169

 ArrayList<String> result = new ArrayList<String>();

 int err = 0;

 if (files.length != 0 && data.size() > 0) {

 try {

 for (int i = 0; i < data.size(); i++) {
 if (data.get(i)[0].contains(fileName)) {
 int columnNumber = -1;
 for (int j = i + 1; j < data.size(); j++) {
 if (j == i + 1) {
 for (int z = 0; z < data.get(j).length; z++) {
 if (data.get(j)[z].trim().equals(columnName)) {
 columnNumber = z;
 break;
 }
 }
 if (columnNumber == -1) {
 System.err.println("The column: '" + columnName
+ "' does not exist in the file: '" + fileName + "'.");
 err = -1;
 break;
 }
 j++;
 }
 if (data.get(j)[0].endsWith(".csv")) {
 break;
 }
 result.add(data.get(j)[columnNumber]);
 }
 break;
 }
 }

 if (err == 0 && result.size() == 0) {
 System.err.println("The file: '" + fileName + "' was not
imported.");
 err = -1;
 }

 return result;

 } catch (ArrayIndexOutOfBoundsException aioobe) {
 System.err.println("Column number does not exist.");
 err = -1;
 }

 }

 if (err == 0 && result.size() == 0) {
 System.err.println("The file: '" + fileName + "' is either empty or no
files have been imported.");
 }

 return result;

 }

 public final ArrayList<String[]> getFileData(String fileName) {

 ArrayList<String[]> result = new ArrayList<String[]>();

170

 if (files.length != 0 && data.size() > 0) {

 for (int i = 0; i < data.size(); i++) {
 if (data.get(i)[0].contains(fileName)) {
 for (int j = i + 1; j < data.size(); j++) {
 if (data.get(j)[0].endsWith(".csv")) {
 break;
 }
 result.add(data.get(j));
 }
 break;
 }
 }

 if (result.size() == 0) {
 System.err.println("The file: '" + fileName + "' was not
imported.");
 }

 return result;

 }

 System.err.println("The file: '" + fileName + "' is empty or no files have
been imported.");

 return result;
 }

 public final ArrayList<EventOccurrence> getEventOccurences() {
 ArrayList<EventOccurrence> events = new ArrayList<EventOccurrence>();

 if (isFileSelected("_occurrencespec.csv")) {

 ArrayList<String> id = getColumnInFile("_occurrencespec.csv", "id");
 ArrayList<String> context = getColumnInFile("_occurrencespec.csv",
"context");

 for (int i = 0; i < id.size(); i++) {
 EventOccurrence event = new EventOccurrence(id.get(i),
context.get(i), i);
 events.add(event);
 }

 } else {
 System.err.println("The following file was not imported:
'_occurrencespec.csv'.");
 }

 return events;
 }

 public final ArrayList<CombinedFragments> getCombinedFragments() {
 ArrayList<CombinedFragments> combinedFragments = new
ArrayList<CombinedFragments>();

 if (isFileSelected("_combinedfragment.csv")) {

 ArrayList<String> id = getColumnInFile("_combinedfragment.csv", "id");
 ArrayList<String> context = getColumnInFile("_combinedfragment.csv",
"context");
 ArrayList<String> operator = getColumnInFile("_combinedfragment.csv",
"operator");
 ArrayList<String> operands = getColumnInFile("_combinedfragment.csv",
"operands");

171

 for (int i = 0; i < id.size(); i++) {
 int op = -1;
 if (operator.get(i).equals("alt")) {
 op = InteractionOperatorKind.ALT;
 } else if (operator.get(i).equals("break")) {
 op = InteractionOperatorKind.BREAK;
 } else if (operator.get(i).equals("opt")) {
 op = InteractionOperatorKind.OPT;
 } else if (operator.get(i).equals("par")) {
 op = InteractionOperatorKind.PAR;
 }
 CombinedFragments combinedFragment = new
CombinedFragments(id.get(i), context.get(i), op, operands.get(i));
 combinedFragments.add(combinedFragment);
 }

 } else {
 System.err.println("The following file was not imported:
'_combinedfragment.csv'.");
 }

 return combinedFragments;
 }

 public final ArrayList<Lifeline> getLifeline() {
 ArrayList<Lifeline> lifelines = new ArrayList<Lifeline>();

 if (isFileSelected("_lifeline.csv")) {

 ArrayList<String> id = getColumnInFile("_lifeline.csv", "id");
 ArrayList<String> name = getColumnInFile("_lifeline.csv", "name");
 ArrayList<String> context = getColumnInFile("_lifeline.csv",
"context");

 for (int i = 0; i < id.size(); i++) {
 Lifeline lifeline = new Lifeline(id.get(i), name.get(i),
context.get(i));
 lifelines.add(lifeline);
 }

 } else {
 System.err.println("The following file was not imported:
'_lifeline.csv'.");
 }

 return lifelines;
 }

 public final ArrayList<Message> getMessages(ArrayList<EventOccurrence> events)
{

 ArrayList<Message> messages = new ArrayList<Message>();

 if (isFileSelected("_message.csv") &&
isFileSelected("_occurrencespec.csv")) {
 ArrayList<String> id = getColumnInFile("_message.csv", "id");
 ArrayList<String> label = getColumnInFile("_message.csv", "name");
 ArrayList<String> context = getColumnInFile("_message.csv", "context");
 ArrayList<String> sendEvent = getColumnInFile("_message.csv",
"sendevent");
 ArrayList<String> receiveEvent = getColumnInFile("_message.csv",
"receiveevent");
 for (int i = 0; i < id.size(); i++) {
 EventOccurrence send = null;

172

 EventOccurrence receive = null;

 boolean sendFound = false;
 boolean receiveFound = false;
 for (int j = 0; j < events.size(); j++) {
 if (sendFound && receiveFound) {
 break;
 }
 if (sendEvent.get(i).equals(events.get(j).getID())) {
 send = events.get(j);
 sendFound = true;
 } else if (receiveEvent.get(i).equals(events.get(j).getID())) {
 receive = events.get(j);
 receiveFound = true;
 }
 }
 if (send == null || receive == null) {
 // There are one or more errors in the files
 System.err.println("getMessages: There are one or more errors
in the files - events not found");
 } else {
 Message msg = new Message(id.get(i), label.get(i),
context.get(i), send, receive);
 messages.add(msg);
 }
 }
 } else {
 System.err.println("Some of the following files were not imported:
'_occurrencespec.csv', '_message.csv'.");
 }

 return messages;

 }

 public static void main(String[] args) {

 CSVParser parser = new CSVParser();
 ArrayList<EventOccurrence> events = parser.getEventOccurences();
 ArrayList<Message> messages = parser.getMessages(events);
 ArrayList<CombinedFragments> combinedfrags = parser.getCombinedFragments();
 ArrayList<Lifeline> lifelines = parser.getLifeline();

 for (int i = 0; i < messages.size(); i++) {
 System.out.println("Message name: " + messages.get(i).getLabel());
 System.out.println("Message ID: " + messages.get(i).getID());
 System.out.println(" Send-Event ID: " +
messages.get(i).getSendEvent().getID());
 System.out.println(" Receive-Event ID: " +
messages.get(i).getReceiveEvent().getID());
 }

 System.out.println("------------------------");
 for (int i = 0; i < lifelines.size(); i++) {
 System.out.println("Lifeline name: " + lifelines.get(i).getName());
 System.out.println("Lifeline ID: " + lifelines.get(i).getID());
 }

 System.out.println("------------------------");
 for (int i = 0; i < combinedfrags.size(); i++) {
 System.out.println("CombinedFragment ID: " +
combinedfrags.get(i).getID());
 System.out.println("CombinedFragment No. of Fragments: " +
combinedfrags.get(i).getNumberOfFragments());
 }

173

 System.out.println("------------------------");
 Interaction interaction = new Interaction(lifelines, messages, events,
combinedfrags);

 for (int i = 0; i < interaction.getEventOccurrences().size(); i++) {
 for (int j = 0; j < interaction.getMessages().size(); j++) {
 if
(interaction.getMessage(j).getReceiveEvent().getID().equals(interaction.getEventOcc
urrence(i).getID())) {
 System.out.println("Receiver: " +
interaction.getMessage(j).getLabel());
 } else if
(interaction.getMessage(j).getSendEvent().getID().equals(interaction.getEventOccurr
ence(i).getID())) {
 System.out.println("Sender: " +
interaction.getMessage(j).getLabel());
 }
 }
 }
 }

 class ExtensionFileFilter extends FileFilter {

 String description;
 String extensions[];

 public ExtensionFileFilter(String description, String extension) {
 this(description, new String[]{extension});
 }

 public ExtensionFileFilter(String description, String extensions[]) {
 if (description == null) {
 this.description = extensions[0];
 } else {
 this.description = description;
 }
 this.extensions = (String[]) extensions.clone();
 toLower(this.extensions);
 }

 private void toLower(String array[]) {
 for (int i = 0, n = array.length; i < n; i++) {
 array[i] = array[i].toLowerCase();
 }
 }

 public String getDescription() {
 return description;
 }

 public boolean accept(File file) {
 if (file.isDirectory()) {
 return true;
 } else {
 String path = file.getAbsolutePath().toLowerCase();
 for (int i = 0, n = extensions.length; i < n; i++) {
 String extension = extensions[i];
 if ((path.endsWith(extension) && (path.charAt(path.length() -
extension.length() - 1)) == '.')) {
 return true;
 }
 }
 }
 return false;

174

 }
 }
}

package csv.parser;

import java.util.ArrayList;
import javax.swing.JFrame;
import petrinet.*;
import sequencediagram.*;
import sitra.*;

public class SD2PN {

 private Transformer transformer;

 public SD2PN(Transformer transformer) {
 this.transformer = transformer;
 }

 public ArrayList<PetriNet> createPetriNets(Interaction interaction) {
 ArrayList<PetriNet> petriArray = new ArrayList<PetriNet>();

 for (int j = 0; j < interaction.getEventOccurrences().size(); j++) {
 for (int i = 0; i < interaction.getMessages().size(); i++) {
 if
(interaction.getEventOccurrence(j).getID().equals(interaction.getMessage(i).getSend
Event().getID()) ||

interaction.getEventOccurrence(j).getID().equals(interaction.getMessage(i).getRecei
veEvent().getID())) {
 if (!interaction.getMessage(i).getLabel().trim().equals("")) {
 petriArray.add((PetriNet)
transformer.transform(interaction.getMessage(i)));
 }
 j++;
 }
 }
 }

 for (int i = 0; i < interaction.getCombinedFragments().size(); i++) {
 petriArray.add((PetriNet)
transformer.transform(interaction.getCombinedFragment(i)));
 }

 // the next line should be modified because the first message might be in a
placeholder
 petriArray.get(0).getPlace(0).setMark(new Mark(1));

 return petriArray;
 }

 public PetriNet morphAndSubstitute(ArrayList<PetriNet> petrinets, Interaction
interaction) {

 // STEP 1
 for (int i = 1; i < petrinets.size(); i++) {
 if (petrinets.get(i).getName().trim().equals("") &&
 petrinets.get(i - 1).getName().trim().equals("") &&
 petrinets.get(i).getContext().trim().equals(petrinets.get(i -
1).getContext().trim())) {

 morph(petrinets.get(i - 1), petrinets.get(i));
 petrinets.remove(i - 1);
 i--;

175

 }
 }

 // STEP 2
 for (int i = 0; i < petrinets.size(); i++) {
 if (petrinets.get(i).hasPlaceHolder()) {
 for (int j = 0; j < petrinets.get(i).getPlaceHolders().size(); j++)
{
 // in the next line the condition (k < i) is assuming that
 // the messages are added first and then the combined
fragments.
 for (int k = 0; k < i; k++) {
 if (petrinets.get(k).getName().trim().equals("") &&

petrinets.get(i).getPlaceHolder(j).getID().trim().equals(petrinets.get(k).getContex
t().trim())) {
 substitute(petrinets.get(i), petrinets.get(k));
 petrinets.remove(petrinets.get(k));
 i--;
 j--;
 break;
 }
 }
 }
 }
 }

 // STEP 3
 // this case has yet to be tested
 for (int i = 0; i < petrinets.size(); i++) {
 for (int j = 0; j < petrinets.size(); j++) {
 if (petrinets.get(i).hasPlaceHolder() && i != j &&
!petrinets.get(i).getName().trim().equals("") &&
!petrinets.get(j).getName().trim().equals("")) {
 if
(petrinets.get(i).getID().trim().equals(petrinets.get(j).getContext().trim())) {
 substitute(petrinets.get(i), petrinets.get(j));
 petrinets.remove(petrinets.get(j));
 i = 0;
 break;
 }
 }
 }
 }

 // STEP 4
 for (int i = 0; i < petrinets.size(); i++) {
 if (i + 1 < petrinets.size()) {
 morph(petrinets.get(i), petrinets.get(i + 1));
 petrinets.remove(i);
 i--;
 }
 }

 return petrinets.get(0);

 }

 public PetriNet morph(PetriNet pn1, PetriNet pn2) {
 boolean noErr = false;
 Place last = pn1.getLastPlace();
 ArrayList<Arc> all = pn2.getAllArcs(pn2.getFirstPlace());
 for (int i = 0; i < all.size(); i++) {
 all.get(i).setPlace(last);
 noErr = true;

176

 }
 if (noErr) {
 pn2.removePlace(pn2.getPlace(0));
 pn2.addArcs(pn1.getArcs());
 pn2.addPlaces(pn1.getPlaces());
 pn2.addTransitions(pn1.getTransitions());
 pn2.addPlaceHolders(pn1.getPlaceHolders());
 }
 return pn2;
 }

 public PetriNet substitute(PetriNet cf, PetriNet pn) {
 if (cf != null && pn != null) {
 if (cf.hasPlaceHolder()) {
 for (int i = 0; i < cf.getPlaceHolders().size(); i++) {
 if
(cf.getPlaceHolder(i).getID().trim().equals(pn.getContext().trim())) {
 boolean in = false;
 boolean out = false;
 for (int j = 0; j < cf.getArcs().size(); j++) {
 if (cf.getArc(j).hasPlaceHolder() &&
cf.getArc(j).getPlaceHolder().equals(cf.getPlaceHolder(i))) {
 if (cf.getArc(j).getDirection() ==
Arc.TRANSITION_TO_PLACEHOLDER) {
 cf.getArc(j).setPlace(pn.getPlace(0));

cf.getArc(j).setDirection(Arc.TRANSITION_TO_PLACE);
 in = true;
 } else {

cf.getArc(j).setPlace(pn.getPlace(pn.getPlaces().size() - 1));

cf.getArc(j).setDirection(Arc.PLACE_TO_TRANSITION);
 out = true;
 }
 }
 if (in && out) {
 cf.removePlaceHolder(cf.getPlaceHolder(i));
 cf.removePlace(cf.getArc(j).getPlace());
 cf.addArcs(pn.getArcs());
 cf.addPlaces(pn.getPlaces());
 cf.addTransitions(pn.getTransitions());
 cf.addPlaceHolders(pn.getPlaceHolders());
 return cf;
 }
 }
 break;
 }
 }
 return null;
 } else {
 System.err.println("SD2PN: SUBSTITUTE: No PlaceHolder in the given
PetriNet.");
 return null;
 }
 } else {
 System.err.println("SD2PN: SUBSTITUTE: NullPointerException.");
 return null;
 }
 }

 public static void main(String[] args) {

 CSVParser parser = new CSVParser();
 ArrayList<EventOccurrence> events = parser.getEventOccurences();

177

 ArrayList<Message> messages = parser.getMessages(events);
 ArrayList<CombinedFragments> combinedfrags = parser.getCombinedFragments();
 ArrayList<Lifeline> lifelines = parser.getLifeline();
 Interaction interaction = new Interaction(lifelines, messages, events,
combinedfrags);

 ArrayList<Class<? extends Rule>> rules = new ArrayList<Class<? extends
Rule>>();
 rules.add(Rule1.class);
 rules.add(Rule2.class);
 rules.add(Rule3.class);
 rules.add(Rule4.class);
 rules.add(Rule5.class);

 SD2PN sd2pn = new SD2PN(new SimpleTransformerImpl(rules));

 PetriNet petrinet =
sd2pn.morphAndSubstitute(sd2pn.createPetriNets(interaction), interaction);

 for (int j = 0; j < petrinet.getArcs().size(); j++) {
 System.out.println("Place: " +
petrinet.getArc(j).getPlace().toString().substring(petrinet.getArc(j).getPlace().to
String().indexOf("@") + 1) + (petrinet.getArc(j).getDirection() ==
Arc.PLACE_TO_TRANSITION ? " ---> " : " <--- ") + "Transition: " +
petrinet.getArc(j).getTransition().getName());
 }

 }
}

package petrinet;

public class Arc {

 public static final int TRANSITION_TO_PLACE = 0;
 public static final int PLACE_TO_TRANSITION = 1;
 public static final int PLACEHOLDER_TO_TRANSITION = 2;
 public static final int TRANSITION_TO_PLACEHOLDER = 3;
 private Place place;
 private PlaceHolder placeHolder;
 private Transition transition;
 private int direction;

 public Arc(Place place, Transition transition, int direction) {
 this.place = place;
 this.transition = transition;
 this.direction = direction;
 this.placeHolder = null;
 }

 public Arc(PlaceHolder placeHolder, Transition transition, int direction) {
 this.placeHolder = placeHolder;
 this.transition = transition;
 this.direction = direction;
 this.place = null;
 }

 public boolean hasPlaceHolder() {
 return (placeHolder != null);
 }

 public Place getPlace() {
 return place;
 }

178

 public PlaceHolder getPlaceHolder() {
 return placeHolder;
 }

 public Transition getTransition() {
 return transition;
 }

 public int getDirection() {
 return direction;
 }

 public void removePlaceHolder() {
 placeHolder = null;
 }

 public void setPlace(Place newPlace) {
 this.place = newPlace;
 removePlaceHolder();
 }

 public void setTransition(Transition newTransition) {
 this.transition = newTransition;
 }

 public void setDirection(int newDirection) {
 this.direction = newDirection;
 }
}

package petrinet;

public class Mark {

 private int numberOfTokens;

 public Mark(int numberOfTokens) {
 this.numberOfTokens = numberOfTokens;
 }

 public void removeTokens(int number) {
 if (numberOfTokens >= number) {
 numberOfTokens -= number;
 }
 }

 public void addTokens(int number) {
 numberOfTokens += number;
 }

 public void clearTokens() {
 numberOfTokens = 0;
 }
}

package petrinet;

import java.util.ArrayList;

public class PetriNet {

 private ArrayList<Place> places;
 private ArrayList<PlaceHolder> placeHolders;
 private ArrayList<Transition> transitions;
 private ArrayList<Arc> arcs;

179

 private ArrayList<Marking> markings;
 private String context;
 private String id;
 private String name;

 public PetriNet(String fragmentContext, String fragmentID, String fragmentName)
{
 places = new ArrayList<Place>();
 placeHolders = new ArrayList<PlaceHolder>();
 transitions = new ArrayList<Transition>();
 arcs = new ArrayList<Arc>();
 markings = new ArrayList<Marking>();
 context = fragmentContext;
 id = fragmentID;
 name = fragmentName;
 }

 public boolean addPlace(Place newPlace) {
 if (newPlace != null) {
 for (int i = 0; i < places.size(); i++) {
 if (newPlace.equals(places.get(i))) {
 return false;
 }
 }
 places.add(newPlace);
 return true;
 }
 return false;
 }

 public void addPlaces(ArrayList<Place> newPlaces) {
 for (int i = 0; i < newPlaces.size(); i++) {
 addPlace(newPlaces.get(i));
 }
 }

 public boolean addPlaceHolder(PlaceHolder newPlaceHolder) {
 if (newPlaceHolder != null) {
 for (int i = 0; i < placeHolders.size(); i++) {
 if (newPlaceHolder.equals(placeHolders.get(i))) {
 return false;
 }
 }
 placeHolders.add(newPlaceHolder);
 return true;
 }
 return false;
 }

 public void addPlaceHolders(ArrayList<PlaceHolder> newPlaceHolders) {
 for (int i = 0; i < newPlaceHolders.size(); i++) {
 addPlaceHolder(newPlaceHolders.get(i));
 }
 }

 public boolean addTransition(Transition newTransition) {
 if (newTransition != null) {
 for (int i = 0; i < transitions.size(); i++) {
 if (newTransition.getName().equals(transitions.get(i).getName())) {
 return false;
 }
 }
 transitions.add(newTransition);
 return true;
 }

180

 return false;
 }

 public void addTransitions(ArrayList<Transition> newTransitions) {
 for (int i = 0; i < newTransitions.size(); i++) {
 addTransition(newTransitions.get(i));
 }
 }

 public void addArc(Arc newArc) {
 arcs.add(newArc);
 if (!newArc.hasPlaceHolder()) {
 addPlace(arcs.get(arcs.size() - 1).getPlace());
 } else {
 addPlaceHolder(arcs.get(arcs.size() - 1).getPlaceHolder());
 }
 addTransition(arcs.get(arcs.size() - 1).getTransition());
 }

 public void addArcs(ArrayList<Arc> newArcs) {
 for (int i = 0; i < newArcs.size(); i++) {
 addArc(newArcs.get(i));
 }
 }

 public void addMarking(Marking newMarking) {
 markings.add(newMarking);
 }

 /** This method has a meaning if the petrinet has only one starting place and
one ending place */
 public Place getFirstPlace() {
 for (int i = 0; i < places.size(); i++) {
 ArrayList<Arc> input = getInputArcs(places.get(i));
 if (input.size() == 0) {
 return places.get(i);
 }
 }
 return null;
 }

 /** This method has a meaning if the petrinet has only one starting place and
one ending place */
 public Place getLastPlace() {
 for (int i = 0; i < places.size(); i++) {
 ArrayList<Arc> output = getOutputArcs(places.get(i));
 if (output.size() == 0) {
 return places.get(i);
 }
 }
 return null;
 }

 public ArrayList<Arc> getAllArcs(Place place) {
 ArrayList<Arc> all = new ArrayList<Arc>();

 for (int i = 0; i < arcs.size(); i++) {
 if (arcs.get(i).getPlace().equals(place)) {
 all.add(arcs.get(i));
 }
 }

 return all;
 }

181

 public ArrayList<Arc> getInputArcs(Place place) {
 ArrayList<Arc> all = new ArrayList<Arc>();

 for (int i = 0; i < arcs.size(); i++) {
 if (arcs.get(i).getPlace().equals(place) && arcs.get(i).getDirection()
== Arc.TRANSITION_TO_PLACE) {
 all.add(arcs.get(i));
 }
 }

 return all;
 }

 public ArrayList<Arc> getOutputArcs(Place place) {
 ArrayList<Arc> all = new ArrayList<Arc>();

 for (int i = 0; i < arcs.size(); i++) {
 if (arcs.get(i).getPlace().equals(place) && arcs.get(i).getDirection()
== Arc.PLACE_TO_TRANSITION) {
 all.add(arcs.get(i));
 }
 }

 return all;
 }

 public ArrayList<Arc> getAllArcs(Transition t) {
 ArrayList<Arc> all = new ArrayList<Arc>();

 for (int i = 0; i < arcs.size(); i++) {
 if (arcs.get(i).getTransition().equals(t)) {
 all.add(arcs.get(i));
 }
 }

 return all;
 }

 public ArrayList<Arc> getInputArcs(Transition t) {
 ArrayList<Arc> all = new ArrayList<Arc>();

 for (int i = 0; i < arcs.size(); i++) {
 if (arcs.get(i).getTransition().equals(t) &&
(arcs.get(i).getDirection() == Arc.PLACE_TO_TRANSITION ||
arcs.get(i).getDirection() == Arc.PLACEHOLDER_TO_TRANSITION)) {
 all.add(arcs.get(i));
 }
 }

 return all;
 }

 public ArrayList<Arc> getOutputArcs(Transition t) {
 ArrayList<Arc> all = new ArrayList<Arc>();

 for (int i = 0; i < arcs.size(); i++) {
 if (arcs.get(i).getTransition().equals(t) &&
(arcs.get(i).getDirection() == Arc.TRANSITION_TO_PLACE ||
arcs.get(i).getDirection() == Arc.TRANSITION_TO_PLACEHOLDER)) {
 all.add(arcs.get(i));
 }
 }

 return all;
 }

182

 public Place getPlace(int index) {
 return places.get(index);
 }

 public PlaceHolder getPlaceHolder(int index) {
 return placeHolders.get(index);
 }

 public Transition getTransition(int index) {
 return transitions.get(index);
 }

 public Arc getArc(int index) {
 return arcs.get(index);
 }

 public Marking getMarking(int index) {
 return markings.get(index);
 }

 public ArrayList<Place> getPlaces() {
 return places;
 }

 public ArrayList<PlaceHolder> getPlaceHolders() {
 return placeHolders;
 }

 public ArrayList<Transition> getTransitions() {
 return transitions;
 }

 public ArrayList<Arc> getArcs() {
 return arcs;
 }

 public ArrayList<Marking> getMarkings() {
 return markings;
 }

 public String getContext() {
 return context;
 }

 public String getID() {
 return id;
 }

 public String getName() {
 return name;
 }

 public boolean hasPlaceHolder() {
 return !placeHolders.isEmpty();
 }

 public void setContext(String context) {
 this.context = context;
 }

 public void setID(String id) {
 this.id = id;
 }

183

 public void setName(String name) {
 this.name = name;
 }

 public void removePlace(Place place) {
 places.remove(place);
 }

 public void removePlaceHolder(PlaceHolder placeHolder) {
 placeHolders.remove(placeHolder);
 }

 public void removeTransitions(Transition transition) {
 transitions.remove(transition);
 }

 public void removeArc(Arc arc) {
 arcs.remove(arc);
 }

 public void removeMarking(Marking marking) {
 markings.remove(marking);
 }
}

package petrinet;

public class Place {

 private Mark mark;

 public Place(Mark mark) {
 this.mark = mark;
 }

 public Mark getMark() {
 return mark;
 }

 public void setMark(Mark newMark) {
 mark = newMark;
 }
}

package petrinet;

public class PlaceHolder extends PetriNet{

 public PlaceHolder(String fragmentContext, String fragmentID, String
fragmentName){
 super(fragmentContext, fragmentID, fragmentName);
 }

}

package petrinet;

public class Transition {

 private String name;

 public Transition(String name) {
 this.name = name;
 }

184

 public void setName(String newName) {
 name = newName;
 }

 public String getName() {
 return name;
 }
}

package sequencediagram;

public class CombinedFragments {

 private String id;
 private String context;
 private int operatorKind;
 private String[] fragments;
 private int numberOfFragments;

 public CombinedFragments(String id, String context, int operatorKind, String
fragments) {
 this.id = id;
 this.context = context;
 this.operatorKind = operatorKind;
 this.fragments = fragments.split(";");
 this.numberOfFragments = this.fragments.length;
 }

 public String getID() {
 return id;
 }

 public String getContext() {
 return context;
 }

 public int getOperator() {
 return operatorKind;
 }

 public String[] getFragments(){
 return fragments;
 }

 public int getNumberOfFragments(){
 return numberOfFragments;
 }
}

package sequencediagram;

public class EventOccurrence {

 private String id;
 private String context;
 private int index;
 // we need to have an index here for ordering
 public EventOccurrence(String id, String context, int index) {
 this.id = id;
 this.context = context;
 this.index = index;
 }

 public String getID() {
 return id;

185

 }

 public void setID(String id) {
 this.id = id;
 }

 public String getContext() {
 return context;
 }

 public void setContext(String context) {
 this.context = context;
 }

 public int getIndex() {
 return index;
 }

 public void setIndex(int index) {
 this.index = index;
 }
}

package sequencediagram;

import java.util.ArrayList;

public class GeneralOrdering {

 public GeneralOrdering() {
 }

 public EventOccurrence getEventAfter(ArrayList<EventOccurrence> events,
EventOccurrence event) {
 for (int i = 0; i < events.size() - 1; i++) {
 if (events.get(i).equals(event)) {
 return events.get(i + 1);
 }
 }
 return null;
 }

 public EventOccurrence getEventBefore(ArrayList<EventOccurrence> events,
EventOccurrence event) {
 for (int i = 1; i < events.size(); i++) {
 if (events.get(i).equals(event)) {
 return events.get(i - 1);
 }
 }
 return null;
 }

 public EventOccurrence getEvent(ArrayList<EventOccurrence> events, String id) {
 for (int i = 0; i < events.size(); i++) {
 if (events.get(i).getID().equals(id)) {
 return events.get(i);
 }
 }
 return null;
 }
}

package sequencediagram;

import java.util.ArrayList;

186

public class Interaction {

 public ArrayList<Lifeline> lifelines;
 public ArrayList<Message> messages;
 public ArrayList<EventOccurrence> events;
 public ArrayList<CombinedFragments> combinedFragments;
 public GeneralOrdering generalOrdering;

 public Interaction(final ArrayList<Lifeline> lifelines, final
ArrayList<Message> messages, final ArrayList<EventOccurrence> events, final
ArrayList<CombinedFragments> combinedFragments) {
 this.lifelines = new ArrayList<Lifeline>(lifelines);
 this.messages = new ArrayList<Message>(messages);
 this.combinedFragments = new
ArrayList<CombinedFragments>(combinedFragments);
 this.events = new ArrayList<EventOccurrence>(events);
 this.generalOrdering = new GeneralOrdering();
 }

 public Message getMessage(String id) {
 for (int i = 0; i < messages.size(); i++) {
 if (messages.get(i).getID().equals(id)) {
 return messages.get(i);
 }
 }
 return null;
 }

 public Lifeline getLifeline(String id) {
 for (int i = 0; i < lifelines.size(); i++) {
 if (lifelines.get(i).getID().equals(id)) {
 return lifelines.get(i);
 }
 }
 return null;
 }

 public EventOccurrence getEventOccurrence(String id) {
 for (int i = 0; i < events.size(); i++) {
 if (events.get(i).getID().equals(id)) {
 return events.get(i);
 }
 }
 return null;
 }

 public CombinedFragments getCombinedFragment(String id) {
 for (int i = 0; i < combinedFragments.size(); i++) {
 if (combinedFragments.get(i).getID().equals(id)) {
 return combinedFragments.get(i);
 }
 }
 return null;
 }

 public Message getMessage(int index) {
 return messages.get(index);
 }

 public Lifeline getLifeline(int index) {
 return lifelines.get(index);
 }

 public EventOccurrence getEventOccurrence(int index) {

187

 return events.get(index);
 }

 public CombinedFragments getCombinedFragment(int index) {
 return combinedFragments.get(index);
 }

 public ArrayList<Message> getMessages() {
 return messages;
 }

 public ArrayList<Lifeline> getLifelines() {
 return lifelines;
 }

 public ArrayList<EventOccurrence> getEventOccurrences() {
 return events;
 }

 public ArrayList<CombinedFragments> getCombinedFragments() {
 return combinedFragments;
 }

 public GeneralOrdering getGeneralOrdering() {
 return generalOrdering;
 }
}

package sequencediagram;

public class InteractionOperand {

// public InteractionConstraint theInteractionConstraint;
 private String id;

 public InteractionOperand(String id) {
 this.id= id;
 }

 public String getID() {
 return id;
 }

 public void setID(String id) {
 this.id = id;
 }
}

package sequencediagram;

public class InteractionOperatorKind {

 public final static int ALT = 0;
 public final static int OPT = 1;
 public final static int BREAK = 2;
 public final static int PAR = 3;
}

package sequencediagram;

public class Lifeline {

 private String id;
 private String name;
 private String context;

188

 public Lifeline(String id, String name, String context) {
 this.id = id;
 this.name = name;
 this.context = context;
 }

 public final String getID() {
 return id;
 }

 public final String getName() {
 return name;
 }

 public final String getContext() {
 return context;
 }
}

package sequencediagram;

public class Message {

 private String id;
 private String label;
 private String context;
 private EventOccurrence sendEvent;
 private EventOccurrence receiveEvent;

 public Message(String id, String label, String context, EventOccurrence
sendEvent, EventOccurrence receiveEvent) {
 this.id = id;
 this.label = label;
 this.context = context;
 this.sendEvent = sendEvent;
 this.receiveEvent = receiveEvent;
 }

 public final String getID() {
 return id;
 }

 public final String getLabel() {
 return label;
 }

 public final String getContext() {
 return context;
 }

 public final EventOccurrence getSendEvent(){
 return sendEvent;
 }

 public final EventOccurrence getReceiveEvent(){
 return receiveEvent;
 }

 public final void setSendEvent(EventOccurrence eo){
 sendEvent = eo;
 }

 public final void setReceiveEvent(EventOccurrence eo){
 receiveEvent = eo;

189

 }

}

package sitra;

public interface Rule<S,T> {
 boolean check(S source);
 T build(S source, Transformer t);
 void setProperties(T target, S source, Transformer t);
}

package sitra;

import petrinet.Arc;
import petrinet.Mark;
import petrinet.PetriNet;
import petrinet.Place;
import petrinet.Transition;
import sequencediagram.Message;

public class Rule1 implements Rule {

 public Rule1() {
 }

 public boolean check(Object source) {
 return source instanceof Message;
 }

 public PetriNet build(Object source, Transformer t) {
 PetriNet pn = new PetriNet(((Message) source).getSendEvent().getContext(),
((Message) source).getID(), "");
 Transition tran = new Transition(((Message) source).getLabel());
 pn.addArc(new Arc(new Place(new Mark(0)), tran, Arc.PLACE_TO_TRANSITION));
 pn.addArc(new Arc(new Place(new Mark(0)), tran, Arc.TRANSITION_TO_PLACE));
 return pn;
 }

 public void setProperties(Object target, Object source, Transformer t) {
 }
}

package sitra;

import petrinet.Arc;
import petrinet.Mark;
import petrinet.PetriNet;
import petrinet.Place;
import petrinet.PlaceHolder;
import petrinet.Transition;
import sequencediagram.CombinedFragments;
import sequencediagram.InteractionOperatorKind;

public class Rule2 implements Rule {

 public Rule2() {
 }

 public boolean check(Object source) {
 return (source instanceof CombinedFragments) && (((CombinedFragments)
source).getOperator() == InteractionOperatorKind.ALT);
 }

 public PetriNet build(Object source, Transformer t) {

190

 PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(),
((CombinedFragments) source).getID(), "ALT");
 Place p1 = new Place(new Mark(0));
 Place p2 = new Place(new Mark(0));
 for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments();
j++) {
 Transition trans = new Transition("ALT" + j);
 pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION));
 PlaceHolder ph1 = new PlaceHolder(((CombinedFragments)
source).getContext(), ((CombinedFragments) source).getFragments()[j], "PH" + j);
 pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER));
 Transition transEnd = new Transition("END-ALT" + j);
 pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION));
 pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE));
 }
 return pn;
 }

 public void setProperties(Object target, Object source, Transformer t) {
 }
}

package sitra;

import petrinet.Arc;
import petrinet.Mark;
import petrinet.PetriNet;
import petrinet.Place;
import petrinet.PlaceHolder;
import petrinet.Transition;
import sequencediagram.CombinedFragments;
import sequencediagram.InteractionOperatorKind;

public class Rule3 implements Rule {

 public Rule3() {
 }

 public boolean check(Object source) {
 return (source instanceof CombinedFragments) && (((CombinedFragments)
source).getOperator() == InteractionOperatorKind.OPT);
 }

 public PetriNet build(Object source, Transformer t) {
 PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(),
((CombinedFragments) source).getID(), "OPT");
 Place p1 = new Place(new Mark(0));
 Place p2 = new Place(new Mark(0));
 for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments();
j++) {
 Transition trans = new Transition("OPT" + j);
 pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION));
 PlaceHolder ph1 = new PlaceHolder(((CombinedFragments)
source).getContext(), ((CombinedFragments) source).getFragments()[j], "PH" + j);
 pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER));
 Transition transEnd = new Transition("END-OPT" + j);
 pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION));
 pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE));
 }
 return pn;
 }

 public void setProperties(Object target, Object source, Transformer t) {
 }
}

191

package sitra;

import petrinet.Arc;
import petrinet.Mark;
import petrinet.PetriNet;
import petrinet.Place;
import petrinet.PlaceHolder;
import petrinet.Transition;
import sequencediagram.CombinedFragments;
import sequencediagram.InteractionOperatorKind;

public class Rule4 implements Rule {

 public Rule4() {
 }

 public boolean check(Object source) {
 return (source instanceof CombinedFragments) && (((CombinedFragments)
source).getOperator() == InteractionOperatorKind.BREAK);
 }

 public PetriNet build(Object source, Transformer t) {
 PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(),
((CombinedFragments) source).getID(), "BREAK");
 Place p1 = new Place(new Mark(0));
 Place p2 = new Place(new Mark(0));
 Place pX = new Place(new Mark(0));
 Transition trans1 = new Transition("BREAK1");
 Transition trans2 = new Transition("BREAK2");
 Transition transEnd = new Transition("END-BREAK");
 pn.addArc(new Arc(p1, trans1, Arc.PLACE_TO_TRANSITION));
 pn.addArc(new Arc(p1, trans2, Arc.PLACE_TO_TRANSITION));
 PlaceHolder ph = new PlaceHolder(((CombinedFragments) source).getContext(),
((CombinedFragments) source).getFragments()[0], "PH");
 pn.addArc(new Arc(ph, trans1, Arc.TRANSITION_TO_PLACEHOLDER));
 pn.addArc(new Arc(ph, transEnd, Arc.PLACEHOLDER_TO_TRANSITION));
 pn.addArc(new Arc(pX, trans2, Arc.TRANSITION_TO_PLACE));
 pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE));
 return pn;
 }

 public void setProperties(Object target, Object source, Transformer t) {
 }
}

package sitra;

import petrinet.Arc;
import petrinet.Mark;
import petrinet.PetriNet;
import petrinet.Place;
import petrinet.PlaceHolder;
import petrinet.Transition;
import sequencediagram.CombinedFragments;
import sequencediagram.InteractionOperatorKind;

public class Rule5 implements Rule {

 public Rule5() {
 }

 public boolean check(Object source) {
 return (source instanceof CombinedFragments) && (((CombinedFragments)
source).getOperator() == InteractionOperatorKind.PAR);

192

 }

 public PetriNet build(Object source, Transformer t) {
 PetriNet pn = new PetriNet(((CombinedFragments) source).getContext(),
((CombinedFragments) source).getID(), "PAR");
 Place p1 = new Place(new Mark(0));
 Place p2 = new Place(new Mark(0));
 Transition trans = new Transition("PAR");
 Transition transEnd = new Transition("END-PAR");
 pn.addArc(new Arc(p1, trans, Arc.PLACE_TO_TRANSITION));
 pn.addArc(new Arc(p2, transEnd, Arc.TRANSITION_TO_PLACE));
 for (int j = 0; j < ((CombinedFragments) source).getNumberOfFragments();
j++) {
 PlaceHolder ph1 = new PlaceHolder(((CombinedFragments)
source).getContext(), ((CombinedFragments) source).getFragments()[j], "PH" + j);
 pn.addArc(new Arc(ph1, trans, Arc.TRANSITION_TO_PLACEHOLDER));
 pn.addArc(new Arc(ph1, transEnd, Arc.PLACEHOLDER_TO_TRANSITION));
 }
 return pn;
 }

 public void setProperties(Object target, Object source, Transformer t) {
 }
}

package sitra;

import java.lang.reflect.Modifier;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Vector;

public class SimpleTransformerImpl implements Transformer {
 public SimpleTransformerImpl(List<Class<? extends Rule>> ruleTypes) {
 this.ruleTypes = ruleTypes;
 }
 Map<Class<? extends Rule>, Map<Object, Object>> mappings = new
HashMap<Class<? extends Rule>, Map<Object, Object>>();
 <S, T> Map<S, T> getRuleMappings(Class<? extends Rule<S, T>> rule) {
 Map<S, T> ruleMappings = (Map<S, T>) mappings.get(rule);
 if (ruleMappings == null) {
 ruleMappings = new HashMap<S, T>();
 mappings.put(rule, (Map<Object, Object>) ruleMappings);
 }
 return ruleMappings;
 }
 <S, T> void recordMaping(Class<? extends Rule<S, T>> rule, S source, T
target) {
 getRuleMappings(rule).put(source, target);
 }
 <S, T> T getExistingTargetFor(Class<? extends Rule<S, T>> rule, S source) {
 return getRuleMappings(rule).get(source);
 }
 <S, T> T applyRule(Rule<S, T> r, S source) {
 Class<? extends Rule<S, T>> ruleType = (Class<? extends Rule<S,
T>>)r.getClass();
 T target = getExistingTargetFor(ruleType, source);
 if (target == null) {
 target = r.build(source, this);
 recordMaping(ruleType, source, target);
 r.setProperties(target,source,this);
 }
 return target;
 }

193

 // --- Transformer ---
 List<Class<? extends Rule>> ruleTypes;
 public List<Class<? extends Rule>> getRuleTypes() {
 if (this.ruleTypes == null) {
 this.ruleTypes = new Vector<Class<? extends Rule>>();
 }
 return this.ruleTypes;
 }
 public void addRuleType(Class<? extends Rule> ruleType) {
 getRuleTypes().add(ruleType);
 }
 List<Rule> getRules(Class<? extends Rule> ruleType) {
 List<Rule> rules = new Vector<Rule>();
 for (Class<? extends Rule> rt : getRuleTypes()) {
 if (ruleType.isAssignableFrom(rt)) {
 if (!Modifier.isAbstract(rt.getModifiers())) {
 try {
 rules.add(rt.newInstance());
 } catch (InstantiationException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 }
 }
 }
 }
 return rules;
 }
 public <S, T> T transform(Class<? extends Rule<S, T>> ruleType, S source) {
 try {
 List<Rule> rules = getRules(ruleType);
 //might be better to do this as an follows, but needs
assertions to be switched on
 assert !rules.isEmpty() : "No rule " + ruleType + " found in
transformer " + this;
 if (rules.isEmpty()) {
 System.err.println("No rule " + ruleType + " found in
transformer " + this);
 } else {
 for (Rule rule : rules) {
 Boolean b = false;
 try {
 b = rule.check(source);
 } catch (ClassCastException e) {}
 if (b) {
 return applyRule((Rule<S, T>) rule,
source);
 }
 }
 }
 } catch (Throwable t) {
 t.printStackTrace();
 }
 return null;
 }
 public <S, T> List<? extends T> transformAll(Class<? extends Rule<S, T>>
ruleType, List<? extends S> element) {
 List<T> targets = new Vector<T>();
 for (S s : element) {
 T o = transform(ruleType, s);
 targets.add(o);
 }
 return targets;
 }
 public Object transform(Object object) {

194

 return transform((Class)Rule.class, object);
 }
 public List<? extends Object> transformAll(List<? extends Object>
sourceObjects) {
 return transformAll((Class)Rule.class, sourceObjects);
 }
}

package sitra;

import java.util.List;

public interface Transformer {
 Object transform(Object object);
 List<? extends Object> transformAll(List<? extends Object> sourceObjects);
 <S, T> T transform(Class<? extends Rule<S, T>> ruleClass, S source);
 <S, T> List<? extends T> transformAll(Class<? extends Rule<S, T>> ruleClass,
List<? extends S> element);
}

195

REFERENCES

1. Sametinger, J., Software Engineering with Reusable Components. 1997: Springer.
2. Pan, J., Software Testing. Dependable Embedded Systems, 1999.
3. Pirzadeh, L., Human Factors in Software Development: A Systematic Literature

Review. 2010, Chalmers University of Technology.
4. Spivey, J.M., The Z Notation: a reference manual. 2001: Prentice Hall (out of print,

available at http://spivey.oriel.ox.ac.uk/~mike/zrm/).
5. AlloyAnalyzer, Alloy Analyzer Website, http://alloy.mit.edu/beta/2005.
6. Murata, T., Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 1989. 77(4): p. 541-580.
7. OMG, OMG Unified Modelling Language (UML) Superstructure 2.1, available at

www.omg.org. 2007.
8. Anastasakis, K., et al. UML2Alloy: a Challenging Model Transformation. in

ACM/IEEE 10th international conference on Model Driven Engineering Languages
and Systems. 2007.

9. Barkaoui, K., R. Ayed, and Z. Sbai, Workflow Soundness Verification based on
Structure Theory of Petri Nets. International Journal of Computing & Information
Sciences, 2007.

10. Christensen, S. and L. Petrucci, Modular Analysis of Petri nets. The Computer
Journal, 2000. 43(3): p. 224-242.

11. Christensen, S. and L. Petrucci. Modular state space analysis of coloured
Petri nets. in 16th Int. Conf. Application and Theory of Petri Nets (ICATPN'95). 1995.

12. Esparza, J. and M. Silva, On the analysis and synthesis of free choice systems.
Advances in Petri Nets, 1990.

13. Guerra, E. and J.d. Lara, A Framework for the Verification of UML Models. Examples
Using Petri Nets. JISBD 2003, 2003: p. 325-334.

14. Javier, E., Reachability in live and safe free-choice Petri nets is NP-complete. Theor.
Comput. Sci., 1998. 198(1-2): p. 211-224.

15. Jiroveanu, G., R.K. Boel, and B. Bordbar, Contextual Analysis of Partially Observable
Large Petri Nets. submitted to Journal of Discrete Event Dynamic Systems, 2005.

16. Valette, R., Analysis of Petri Nets by Stepwise Refinement. Journal of Computer and
System Sciences, 1979.

17. Badouel, E. and P. Darondeau, On the synthesis of General Petri Nets. Inria Research
Report 1996. 3025.

18. Benatallah, B., et al. A Top-Down Petri Net-Based Approach for Dynamic Workflow
Modeling. in Business Process Management, International Conference, BPM 2003.
2003: Springer Verlag.

19. Berthelot, G. Transformation and decomposition of nets. in Advances in Petri nets.
1986: Springer-Verlag.

20. Chao, D.Y. and D.T. Wang, Knitting technique with TP-PT generations for Petri net
synthesis, in IEEE International Conference on Intelligent Systems for the 21st
Century. 1995.

21. Chao, D.Y., M. Zhott, and D.T. Wang, Extending Knitting Technique To Petri Net
Synthesis Of Automated Manufacturing Systems, in Proceedings of the Third
International Conference on Computer Integrated Manufacturing 1992.

http://spivey.oriel.ox.ac.uk/~mike/zrm/)�
http://alloy.mit.edu/beta/�
http://www.omg.org/�

196

22. Esparza, J. and M. Silva, Top-Down synthesis of live and bounded free choice nets.
Advances in Petri Nets, 1991.

23. Jeng, M.D. and F. DiCesare, A review of synthesis techniques for Petri nets with
applications to automated manufacturing systems. IEEE Transactions on Systems,
Man and Cybernetics, 1993.

24. Pancerz, K., Synthesis of Petri Net Models: A Rough Set Approach. Fundamenta
Informaticae, 2003.

25. Wang, D.T. and D.Y. Chao, Enhanced knitting technique to Petri net synthesis, in
IEEE International Conference on Humans, Information and Technology. 1994.

26. Zhou, M., D. F., and D.A. A., A hybrid methodology for synthesis of Petri net models
for manufacturing systems, in IEEE Transactions on Robotics and Automation. 1992.

27. CPNTools, Computer Tool for Coloured Petri Nets, http://wiki.daimi.au.dk/cpntools/.
28. Bonet, P., et al., PIPE v2.5: a Petri Net Tool for Performance Modeling, in XXXIii

Conferencia Latinoaméricana de Informática. 2007.
29. AlPiNA : an Algebraic Petri Net Analyzer. Available from: http://alpina.unige.ch/.
30. GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets - GreatSPN.

Available from: http://www.di.unito.it/~greatspn/index.html.
31. JFern, Java-based Petri Net framework. Available from:

http://sourceforge.net/projects/jfern/.
32. LoLA - A Low Level Petri Net Analyser. Available from:

http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/.
33. Netlab Petri Net tool. Available from: http://www.irt.rwth-

aachen.de/en/downloads/petri-net-tool-netlab.html.
34. Petri Net World: Online Service for the International Petri Net Community. Available

from: www.informatik.uni-hamburg.de/TGI/PetriNets.
35. TINA - Time Petri Net Analyzer. Available from:

http://homepages.laas.fr/bernard/tina/.
36. Desel, J. and J. Esparza, Free Choice Petri Nets. 1995: Cambridge University Press.
37. Esparza, J. and M. Silva, A Polynomial-Time Algorithm to Decide Liveness of

Bounded Free Choice Nets. Theoretical Computer Science, 1992. 102: p. 185-205.
38. Baccelli, F., S. Foss, and B. Gaujal, Free Choice Petri Net: an Algebraic Approach.

IEEE Trans. on Automatic Control, 1996.
39. Baccelli, F.o., B. Gaujal, and S. Foss, Structural, temporal and stochastic properties

of unbounded free-choice Petri nets. 2006, HAL - CCSD.
40. Küster-Filipe, J., Modelling concurrent interactions. Theoretical Computer Science,

2006. 351(2): p. 203-220.
41. McMillan, K.L., A technique of state space search based on unfolding. Form. Methods

Syst. Des., 1995. 6(1): p. 45-65.
42. Winskel, G., An introduction to event structures, in Linear Time, Branching Time and

Partial Order in Logics and Models for Concurrency, School/Workshop. 1989,
Springer-Verlag.

43. Liang, H., et al. A general approach for scenario integration. in 11th international
conference on Model Driven Engineering Languages and Systems. 2008: Springer-
Verlag.

44. Liang, H., Sequence Diagram Integration via Typed Graph: Theory and
Implementation, in School of Computing. 2009, Queen’s University: Kingston,
Ontario, Canada.

http://wiki.daimi.au.dk/cpntools/�
http://alpina.unige.ch/�
http://www.di.unito.it/~greatspn/index.html�
http://sourceforge.net/projects/jfern/�
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/�
http://www.irt.rwth-aachen.de/en/downloads/petri-net-tool-netlab.html�
http://www.irt.rwth-aachen.de/en/downloads/petri-net-tool-netlab.html�
http://www.informatik.uni-hamburg.de/TGI/PetriNets�
http://homepages.laas.fr/bernard/tina/�

197

45. Bowles, J.K.F. and B. Bordbar. A Formal Model for Integrating Multiple Views. in
Application of Concurrency to System Design (ACSD). 2007.

46. Klein, J., L. Hélouët, and J.-M. Jézéquel, Semantic-based weaving of scenarios, in
AOSD-Europe : European Network of Excellent on Aspect-oriented Software
Development. 2006.

47. Krüger, I.H., Distributed System Design with Message Sequence Charts. 2000,
Technische Universität München.

48. Jeng, M.D. and F. DiCesare, A review of synthesis techniques for Petri nets with
applications to automated manufacturing systems. IEEE Transactions on Systems,
Man and Cybernetics, 1993.

49. Xu, J., M. Woodside, and D. Petriu, Performance Analysis of a Software Design Using
the UML Profile for Schedulability, Performance, and Time, in Computer
Performance. 2003, Springer Berlin / Heidelberg.

50. Wang, J., Timed Petri Nets: Theory and Application. 1998: Springer.
51. Sannella, D., A Survey of Formal Software Development Methods, in Tech. Rept. ECS-

LFCS-88-56. 1988, Edinburgh University.
52. Medvidovic, N., R.F. Gamble, and D.S. Rosenblum, Towards Software

Multioperability: Bridging Heterogeneous Software Interoperability Platforms, in
Fourth International Software Architecture Workshop (ISAW-4). 2000: Limerick,
Ireland.

53. Jackson, D., Software Abstractions Logic, Language, and Analysis. 2006: MIT press.
54. Georg, G., et al., An Aspect-Oriented Methodology for Developing Secure

Applications. Journal of Information and Software Technology, 2009. 51(5): p. 846-
864.

55. Reddy, Y.R., et al., Directives for Composing Aspect-Oriented Design Class Models
in Transactions on Aspect-Oriented Software Development I 2006, Springer Berlin /
Heidelberg.

56. Klein, J., F. Fleurey, and J.-M. Jézéquel, Weaving Multiple Aspects in Sequence
Diagrams, in Transactions on Aspect-Oriented Software Development III, S.B.
Heidelberg, Editor. 2007.

57. Klein, J. and J. Kienzle, Reusable Aspect Models, in 11th Workshop on Aspect-
Oriented Modeling. 2007: Nashville, TN, USA.

58. Yakovlev, A.V., et al., Modelling, Analysis and Synthesis of Asynchronous Control
Circuits Using Petri Nets. INTEGRATION: the VLSI Journal 1996. 21: p. 143-170.

59. Agerwala, T. and Y.-C. Choed-Amphai, A synthesis rule for concurrent systems, in
ACM IEEE Design Automation Conference. 1978.

60. Ameedeen, M.A., B. Bordbar, and R. Anane, Model Interoperability via Model Driven
Development accepted for publication in Journal of Computer and System Sciences,
2010.

61. Ameedeen, M.A., B. Bordbar, and R. Anane, A Model Driven Approach to Analysis of
Timeliness Properties, in Fifth European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA 2009) (to appear). 2009.

62. Ameedeen, M.A. and B. Bordbar, A Model Driven Approach to Represent Sequence
Diagrams as Free Choice Petri Nets, in 12th International IEEE Enterprise
Distributed Object Computing Conference (EDOC). 2008: München, Germany. p. 213
- 221.

63. Pender, T., UML Bible. 2003, Indianapolis, {IN}: Wiley Publishing.
64. Miles, R. and K. Hamilton, Learning UML 2.0. 2006: O'Reilly Media, Inc.

198

65. Harel, D., Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 1987. 8(3): p. 231-274.

66. Mauw, S. and M. Reniers, An algebraic semantics of basic message sequence charts.
The Computer Journal, 1994. 37: p. 269-277.

67. Alur, R., E. Kousha, and Y. Mihalis, Inference of message sequence charts, in
Proceedings of the 22nd international conference on Software engineering. 2000,
ACM: Limerick, Ireland.

68. Baker, P., et al., Model-Driven Testing: Using the UML Testing Profile. 2007:
Springer-Verlag New York, Inc.

69. Dufourd, C., A. Finkel, and P. Schnoebelen, Reset Nets Between Decidability and
Undecidability, in Proceedings of the 25th International Colloquium on Automata,
Languages and Programming. 1998, Springer-Verlag.

70. Marsan, M.A., Stochastic Petri nets: an elementary introduction, in Advances in Petri
Nets 1989, covers the 9th European Workshop on Applications and Theory in Petri
Nets-selected papers. 1990, Springer-Verlag.

71. Jensen, K., Coloured Petri Nets (2nd ed.): basic concepts, analysis methods and
practical use: volume 1. 1996: Springer-Verlag. 234.

72. Guan, S.-U. and S.-S. Lim, Modeling with enhanced prioritized Petri nets: EP-nets.
Computer Communications, 2002. 25(8): p. 812-824.

73. Dawis, E.P., J.F. Dawis, and W.-P. Koo, Architecture of Computer-based Systems
using Dualistic Petri Nets, in IEEE International Conference on Systems, Man, and
Cybernetics. 2001.

74. Jensen, K., L.M. Kristensen, and L. Wells, Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer (STTT), 2007.

75. Vanhatalo, J., H. Volzer, and F. Leymann, Faster and More Focussed Control-Flow
Analysis for Business Process Models Through SESE Decomposition, in Fifth
International Conference on Service Oriented Computing. 2007, Springer: Vienna,
Austria. p. 43-55.

76. Kovalyov, A. and J. Esparza, A Polynomial Algortihm to Compute the Concurrency
Relation of Free-Choice Signal Transition Graphs, in International Workshop on
Discrete Event Systems. 1995.

77. Business Process Management (BPM), Workflow and DMS Solutions by COSA.
Available from: http://www.cosa.nl/Homeen.html.

78. HELENA - a High LEvel Net Analyzer. Available from: http://helena.cnam.fr/.
79. Anschuetz, H. HPSim. Available from: http://www.winpesim.de/3.html.
80. INA - Integrated Net Analyzer. Available from: http://www2.informatik.hu-

berlin.de/~starke/ina.html.
81. Maria: The Modular Reachability Analyzer. Available from:

http://www.tcs.hut.fi/Software/maria/.
82. PetriSim - Discrete Simulation Environment. Available from:

http://staff.um.edu.mt/jskl1/petrisim/.
83. TimeNET (timed net evaluation tool). Available from: http://www.tu-

ilmenau.de/fakia/8086.html.
84. Stahl, T. and M. Volter, Model Driven Software Development; technology engineering

management. 2006: Wiley.
85. MDA, Model Driven Architecture, Object Management Group www.omg.org/mda/.

2005.

http://www.cosa.nl/Homeen.html�
http://helena.cnam.fr/�
http://www.winpesim.de/3.html�
http://www2.informatik.hu-berlin.de/~starke/ina.html�
http://www2.informatik.hu-berlin.de/~starke/ina.html�
http://www.tcs.hut.fi/Software/maria/�
http://staff.um.edu.mt/jskl1/petrisim/�
http://www.tu-ilmenau.de/fakia/8086.html�
http://www.tu-ilmenau.de/fakia/8086.html�
http://www.omg.org/mda/�

199

86. MOF. Meta Object Facility (MOF) 2.0 Core Specification, Object Management
Group, available at www.omg.org,. 2004; Available from: http://www.omg.org.

87. ATLAS, ATLAS, Université de Nantes, http://www.sciences.univ-nantes.fr/lina/atl/.
2005.

88. kermeta, Triskell Metamodelling Kernel, www.kermeta.org. 2005.
89. Akehurst, D.H., et al. SiTra: Simple Transformations in Java. in ACM/IEEE 9TH

International Conference on Model Driven Engineering Languages and Systems.
2006.

90. Blaha, M. and J. Rumbaugh, Object-Oriented Modeling and Design with UML, 2/E
2005: Prentice Hall.

91. Gigch, J.P.V., System design modeling and metamodeling. 1991: Springer.
92. Loucopoulos, P. and V. Karakostas, System Requirements Engineering. 1995:

McGraw Hill.
93. Smullyan, R.M., First-Order Logic. 1995, New York: Dover Publications.
94. Wieland, P., F. Høgberg, and K. Strømseng, Enhancements in Software Project Risk

Management, in Reliable Software Technologies Ada-Europe 2000. 2000, Springer
Berlin / Heidelberg.

95. van der Aalst, W.M.P., The Application of Petri Nets for Workflow Management. The
Journal of Circuits, Systems and Computers, 1998. 8(1): p. 21-66.

96. Villa, F. and R. Costanza, Design of Multi-Paradigm Integrating Modelling Tools for
Ecological Research. Environmentla Modelling & Software, 2000. 15.

97. The OsMoSys approach to multi-formalism modeling of systems. Software and
Systems Modeling (SoSyM), 2004. 3: p. 68-81.

98. Vangheluwe, H. and E. Kerckhoffs, Computer automated modelling of complex
systems, in 15th European Simulation Multi-conference (ESM). 2001: Prague, Czech
Republic.

99. de Lara, J. and H. Vangheluwe, Computer Aided Multi-paradigm Modelling to
Process Petri-Nets and Statecharts, in First International Conference on Graph
Transformation. 2002.

100. de Lara, J., H. Vangheluwe, and M. Alfonseca, Computer Aided Multi-Paradigm
Modelling of Hybrid Systems with AToM3, in Summer Computer Simulation
Conference: Society for Computer Simulation International (SCS). 2003: Montreal,
Canada.

101. Mosterman, P.J. and H. Vangheluwe, Computer automated multi paradigm modeling
in control system design, in IEEE International Symposium on Computer-Aided
Control System Design. 2002, IEEE Computer Society Pres: Anchorage, Alaska.

102. Mosterman, P.J. and H. Vangheluwe, Guest editorial: Special issue on computer
automated multi-paradigm modeling. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 2002. 12(4): p. 249-255.

103. Vangheluwe, H., J.d. Lara, and P.J. Mosterman, An introduction to multi-paradigm
modelling and simulation, in AI, Simulation and Planning in High Autonomy Systems
(AIS'2002). 2002: Lisboa, Portugal.

104. Czarnecki, K. and S. Helsen, Feature-based survey of model transformation
approaches. IBM Systems Journal, 2006. 45.

105. Varró, D. and A. Pataricza, Generic and Meta-Transformations for Model
Transformation Engineering, in 7th International Conference on the Unified Modeling
Language. 2004: Lisbon, Portugal

http://www.omg.org,/�
http://www.omg.org/�
http://www.sciences.univ-nantes.fr/lina/atl/�
http://www.kermeta.org/�

200

106. Varró, D., G. Varró, and A. Pataricza, Designing the Automatic Transformation of
Visual Languages. Science of Computer Programming 2002. 44.

107. Akehurst, D.H., W.G. Howells, and K.D. McDonald-Maier. Kent Model
Transformation Language. in Model Transformations in Practice Workshop, part of
MoDELS 2005. 2005. Montego Bay,Jamaica.

108. Jouault, F. and I. Kurtev. Transforming Models with ATL in Model Transformations
in Practice Workshop at MoDELS. 2005. Montego Bay, Jamaica.

109. kermeta. Triskell Metamodelling Kernel. 2005; Available from: www.kermeta.org.
110. Akehurst, D.H., et al. SiTra: Simple Transformations in Java. in ACM/IEEE 9th

International Conference on Model Driven Engineering Languages and Systems
(formerly the UML series of conferences). 2006. Genova, Italy.

111. SiTra, Simple Transformer (SiTra): an MDE tool,
www.cs.bham.ac.uk/~bxb/SiTra.html. 2006.

112. OMG, MOF 2.0 Query/View/Transformation (QVT) Specification, available at
www.omg.org. 2008.

113. Henkler, S. and M. Hirsch, A Multi-Paradigm Modeling Approach for Reconfigurable
Mechatronic Systems, in International Workshop on Multi-Paradigm Modeling:
Concepts and Tools (MPM06), Satellite Event of the the 9th International Conference
on Model-Driven Engineering Languages and Systems MoDELS/UML2006. 2006:
Genova, Italy.

114. Burmester, S., H. Giese, and M. Tichy, Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML in Lecture Notes in Computer Science
2005, Springer Berlin / Heidelberg.

115. UML2Alloy. A tool for analysis of UML model via Alloy, available at
www.cs.bham.ac.uk/~bxb/old_UML2Alloy.html. 2005.

116. OMG. UML 2.0 OCL Specification. Document Id: ptc/03-10-14 2003; OMG Final
Adopted Specification:[Available from: http://www.omg.org/docs/ptc/05-06-06.pdf.

117. Kim, S.-K., A Metamodel-based Approach to Integrate Object-Oriented Graphical
and Formal Specification Techniques. 2002, University of Queensland: Brisbane,
Australia.

118. Marcano, R. and N. Lévy, Transformation Rules of OCL Constraints into B Formal
Expressions, in 5th International Conference on the Unified Modeling Language.
2002: Dresden, Germany.

119. Snook, C. and M. Butler, UML-B: Formal modelling and design aided by UML, in
ACM Transactions on Software Engineering and Methodology. 2006.

120. Abrial, J.-R., The B-book: Assigning Programs to Meanings. 1996: Cambridge
University Press.

121. Evans, A.F., Robert & Grant, Emanuel. Towards Formal Reasoning with UML
Models. in Proceedings of the OOPSLA'99 Workshop on Behavioral Semantics. 1999.

122. Kim, D., et al. A UML-Based Metamodeling Language to Specify Design Patterns.
2003; Available from: http://www.cs.colostate.edu/~georg/aspectsPub/WISME03-
dkk.pdf.

123. Muscholl, A. and D. Peled, Analyzing message sequence charts, in 2nd Workshop on
SDL and MSC. 2000: Grenoble, France.

124. Kühn, H., M. Murzek, and F. Bayer, Horizontal Business Process Model
Interoperability using Model Transformation, in INTEREST’2004 Workshop at
ECOOP 2004. 2004: Oslo, Norway.

http://www.kermeta.org/�
http://www.cs.bham.ac.uk/~bxb/SiTra.html�
http://www.omg.org/�
http://www.cs.bham.ac.uk/~bxb/old_UML2Alloy.html�
http://www.omg.org/docs/ptc/05-06-06.pdf�
http://www.cs.colostate.edu/~georg/aspectsPub/WISME03-dkk.pdf�
http://www.cs.colostate.edu/~georg/aspectsPub/WISME03-dkk.pdf�

201

125. Bertolini, D., et al., A Tropos Model-Driven Development Environment, in 18th
Conference on Advanced Information Systems Engineering (CAiSE-06). 2006,
Springer Verlag: Luxembourg.

126. Méry, D., et al., Showing Full Semantics Preservation in Model Transformation - A
Comparison of Techniques, in Integrated Formal Methods, Springer Berlin /
Heidelberg. p. 183-198.

127. Sousa, V.N.d.S.d., Model driven development implementation of a control systems
user interfaces specification tool. 2009, Universidade Nova de Lisboa.

128. Poernomo, I., Proofs-as-Model-Transformations, in Proceedings of the 1st
international conference on Theory and Practice of Model Transformations. 2008,
Springer-Verlag: Zurich, Switzerland.

129. Poernomo, I. and J. Terrell, Correct-by-construction model transformations from
partially ordered specifications in Coq, in Proceedings of the 12th international
conference on Formal engineering methods and software engineering, Springer-
Verlag: Shanghai, China.

130. Fiorentini, C., et al., A constructive approach to testing model transformations, in
Proceedings of the Third international conference on Theory and practice of model
transformations, Springer-Verlag: M\&\#225;laga, Spain.

131. Lúcio, L., B. Barroca, and V. Amaral, A technique for automatic validation of model
transformations, in Proceedings of the 13th international conference on Model driven
engineering languages and systems: Part I, Springer-Verlag: Oslo, Norway.

132. Kuster, J.M., K. Ryndina, and R. Hauser, A Systematic Approach to Designing Model
Transformations, IBM Research GmbH: Zurich Research Laboratory.

133. UML, UML Superstructure 2.0, Object Management Group, available at
www.omg.org. 2003.

134. Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide. 1998: Addison Wesley.

135. Radu, G. and A.S. Scott, Safety-Liveness Semantics for UML 2.0 Sequence Diagrams,
in Proceedings of the Fifth International Conference on Application of Concurrency
to System Design. 2005, IEEE Computer Society.

136. Cavarra, A. and J. Küster-Filipe, Combining Sequence Diagrams and OCL for
Liveness. Electronic Notes in Theoretical Computer Science, 2005. 115: p. 19-38.

137. OMG. XML Metadata Interchange (XMI), v2.0. 2005; Available from:
http://www.omg.org.

138. W3C, Extensible Markup Language (XML) 1.0, Third Edition, W3C Recommendation.
2004.

139. ArgoUML, ArgoUML web site, sourceforge.net/projects/argouml. 2005.
140. Poseidon. Poseidon for UML, from Gentleware, www.gentleware.com/. 2006.
141. SDMetrics. SDMetrics: The Software Design Metrics tool for the UML. Available

from: http://www.sdmetrics.com.
142. Schiller, J.H., Mobile Communications. 2003: Pearson Education.
143. Pfleeger, S.H. and J.M. Atlee, Software Engineering - Theory and Practice. 3rd

Edition ed. 2006: Prentice Hall.
144. Chao, D.Y. and D.T. Wang, Petri net synthesis and synchronization using knitting

technique. Systems, Man, and Cybernetics, 1994.
145. Esparza, J., Reduction and synthesis of live and bounded free choice Petri nets.

Information and Computation, 1994.

http://www.omg.org/�
http://www.omg.org/�
http://www.gentleware.com/�
http://www.sdmetrics.com/�

202

146. Haddad, S. A reduction theory for coloured Peti nets. in Advances in Petri nets. 1989:
Springer-Verlag.

147. SUZUKI, I. and T. MURATA, A method for stepwise refinement and abstraction of
Petri nets. Journal of computer and system sciences, 1983.

148. Graf, S., I. Ober, and I. Ober, Timed annotations in UML. International Journal on
Software Tools for Technology Transfer (STTT), 2005.

149. Douglass, B.P., Real-Time UML Second Edition. Developing Efficient Objectsfor
Embedded Systems. Object Technology Series. 1999: Addison Wesley.

150. Bordbar, B. and R. Anane. An Architecture for Automated QoS Resolution in Wireless
Systems. in Proceeding of the IEEE International Workshop on Web and Mobile
Information Systems (WAMIS). 2005.

151. OMG, Response to the OMG RFP for Schedulability, Performance and Time. 2001.
152. Knapp, A., S. Merz, and C. Rauh, Model checking-timed UML state machines and

collaborations, in Formal Techniques in Real-Time and Fault-Tolerant Systems. 2002,
Springer: Oldenburg, Germany.

153. Roubtsova, E.E., et al., Real-Time Systems: Specification of Properties in UML, in
ASCI 2001 Conference. 2001: Heijen, The Netherlands.

154. Li, X. and J. Lilius, Timing Analysis of UML Sequence Diagrams. 1999, Turku Centre
for Computer Science.

155. Firley, T., et al., Timed Sequence Diagrams and tool-based analysis : A case study, in
UML '99 : the unified modeling language : beyond the standard 1999, Springer,
Berlin: Fort Collins.

156. Lund, M.S., Operational analysis of sequence diagram specifications. 2007, The
University of Oslo: Oslo.

157. Haugen, Ø., et al., Why Timed Sequence Diagrams Require Three-Event Semantics, in
Scenarios: Models, Transformations and Tools, S.B. Heidelberg, Editor. 2005.

158. Kabous, L. and W. Nebel, Modeling Hard Real Time Systems with UML The
OOHARTS Approach, in «UML»’99 — The Unified Modeling Language. 1999,
Springer Berlin / Heidelberg.

159. Flake, S. and W. Mueller, A UML Profile for Real-Time Constraints with the OCL, in
Proceedings of the 5th International Conference on The Unified Modeling Language.
2002, Springer-Verlag.

160. Lanusse, A., S. Gérard, and F. Terrier, Real-Time Modeling with UML: The ACCORD
Approach, in The Unified Modeling Language. «UML»’98: Beyond the Notation.
1999, Springer Berlin / Heidelberg.

161. Seemann, J. and J.W.v. Gudenberg, Extension of UML Sequence Diagrams for Real-
Time Systems, in The Unified Modeling Language. «UML»’98: Beyond the Notation.
1999, Springer Berlin / Heidelberg.

162. Störrle, H., Trace Semantics of UML 2.0 Interactions. 2004, University of Munich.
163. Douglass, B.P., Doing Hard Time: Developing Real-time Systems with UML, Objects,

Frameworks and Patterns. Object Technology Series. 1999: Addison Wesley.
164. Petriu, D.C. and H. Shen, Applying the UML Performance Profile: Graph Grammar-

Based Derivation of LQN Models from UML Specifications, in Computer
Performance Evaluation: Modelling Techniques and Tools. 2002, Springer Berlin /
Heidelberg.

165. Petriu, D.C., H. Shen, and A. Sabetta, Performance Analysis of Aspect-Oriented UML
Models. Software and Systems Modeling, 2007. Vol. 6: p. 453-471.

203

166. Skene, J. and W. Emmerich, Model Driven Performance Analysis of Enterprise
Information Systems. Electronic Notes in Theoretical Computer Science, 2003. 82(6):
p. 147-157.

167. Lindemann, C., et al., Performance analysis of time-enhanced UML diagrams based
on stochastic processes, in Proceedings of the 3rd international workshop on Software
and performance. 2002, ACM: Rome, Italy.

168. Simonetta, B., et al., Model-Based Performance Prediction in Software Development:
A Survey. IEEE Transactions on Software Engineering, 2004. 30: p. 295-310.

169. Viehl, A., et al., Formal performance analysis and simulation of UML/SysML models
for ESL design, in Proceedings of the conference on Design, automation and test in
Europe: Proceedings. 2006, European Design and Automation Association: Munich,
Germany.

170. OMG, UML Profile for Schedulability, Performance and Time Specification. 2002.
171. Budinsky, F., et al., Eclipse Modeling Framework: A Developer's Guide. 2003:

Addison Wesley.

	Pre
	Abstract
	Acknowledgement

	Contents
	Body
	1.1 Problem Statement
	1.2 Outline of Contributions
	1.3 List of Publications
	1.4 Overview of this Thesis
	2.1 Unified Modelling Language
	2.1.1 Sequence Diagrams

	2.2 Petri Nets
	2.2.1 Flavours of Petri Nets
	2.2.2 Free Choice Petri Nets
	2.2.3 Analysis in Petri Nets
	2.2.4 Petri Net Tools

	2.3 Labelled Event Structures
	2.3.1 Translating UML Sequence Diagrams into Labelled Event Structures
	2.3.2 Unfolding Petri Nets into Labelled Event Structures

	2.4 Model Driven Development
	3.1 Role of Modelling in System Development
	3.1.1 Model Design
	3.1.2 Model Analysis
	3.1.3 Model Synthesis

	3.2 Bridging the Gap between Design, Analysis and Synthesis of Models
	3.2.1 Introduction of Multi Paradigm Modelling
	3.2.1.1 Multi-Formalism Modelling
	3.2.1.2 Model Abstraction
	3.2.1.3 Metamodelling in Multi-Paradigm Modelling

	3.2.2 Review of Existing Work
	3.2.2.1 Design and Analysis
	3.2.2.2 Design and Synthesis

	3.2.3 Using Multi Paradigm Modelling to Bridge the Gap between Design, Analysis and Synthesis of Models
	3.2.3.1 Model Design Language
	3.2.3.2 Model Design to Model Analysis
	3.2.3.3 Model Design to Model Synthesis
	3.2.3.4 Semantics Preservation in Multi Paradigm Modelling

	4.1 SD2PN – The Model Transformation
	4.1.1 Decomposition
	4.1.2 Transformation
	4.1.2.1 Rule 1: Transforming Messages
	4.1.2.2 Rule 2: Transforming Alternative CombinedFragments
	4.1.2.3 Rule 3:Transforming Option CombinedFragments
	4.1.2.4 Rule 4: Transforming Break CombinedFragments
	4.1.2.5 Rule 5: Transforming Parallel CombinedFragments

	4.1.3 Composition
	4.1.3.1 Morph
	4.1.3.2 Substitute

	4.2 SD2PN Generates Free Choice Petri Nets
	4.3 SD2PN Preserves Semantics
	5.1 Importance of Analysis in Sequence Diagram
	5.2 Implementing SD2PN for Analysis of Sequence Diagrams
	5.3 Automated Analysis via SD2PN Transformer
	5.3.1 Generating XMI for Sequence Diagrams
	5.3.2 Parsing XMI Data into Java Objects
	5.3.3 Model Transformation via SiTra
	5.3.4 Generating XML for Resulting Petri Net
	5.3.5 Utilising Existing Petri Net Tools for Analysis

	5.4 Example
	5.4.1 Introduction of the Scenario
	5.4.2 Protocol Description
	5.4.3 Sequence Diagram Representation of the Scenario
	5.4.4 Petri Net Representation of the Scenario Generated via SD2PN
	5.4.5 Analysis of the Petri Net
	5.4.6 Discussion

	6.1 Synthesis in Sequence Diagrams
	6.2 Synthesis in Petri Nets
	6.2.1 Top-Down Synthesis Method
	6.2.2 Bottom-Up Synthesis Method

	6.3 Petri Net Inspired Synthesis of Sequence Diagrams
	6.3.1 Top-DownSynthesis Method in Sequence Diagrams
	6.3.2 Bottom-Up Synthesis Method in Sequence Diagrams
	6.3.2.1 Part Decomposition Synthesis Method
	6.3.2.2 Special Case Method: Synthesizing Attack Scenarios

	7.1 Significance of time in UML
	7.1.1 Review of UML extensions to include time
	7.1.2 UML 2.1 and timeliness properties

	7.2 Extension of SD2PN to include timeliness properties
	7.2.1 Sequence Diagram metamodel enhancement
	7.2.2 Petri Net metamodel enhancement
	7.2.3 SD2PN Transformation Rules enhancement
	7.2.4 Discussion

	7.3 Using SD2PN for Performance Analysis
	7.3.1 Significance of Performance Analysis in Sequence Diagrams
	7.3.2 Petri Nets and Performance Analysis
	7.3.3 Using SD2PN to allow Performance Analysis in Sequence Diagram

	8.1 Summary of Contributions
	8.2 Future Work
	A.1 Sequence Diagram Fragments to LES
	Message
	Alternative
	Option
	Break
	Parallel

	A.2 Petri Net Blocks to LES
	Message
	Alternative
	Option
	Break
	Parallel

	REFERENCES

	A MODEL DRIVEN APPROACH TO ANALYSIS AND SYNTHESIS OF SEQUENCE DIAGRAMS

