11,246 research outputs found

    Formal verification of an ARM processor

    Full text link

    Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties

    Get PDF
    In this paper, we formally verify security properties of the ARMv7 Instruction Set Architecture (ISA) for user mode executions. To obtain guarantees that arbitrary (and unknown) user processes are able to run isolated from privileged software and other user processes, instruction level noninterference and integrity properties are provided, along with proofs that transitions to privileged modes can only occur in a controlled manner. This work establishes a main requirement for operating system and hypervisor verification, as demonstrated for the PROSPER separation kernel. The proof is performed in the HOL4 theorem prover, taking the Cambridge model of ARM as basis. To this end, a proof tool has been developed, which assists the verification of relational state predicates semi-automatically

    Formal verification of a software countermeasure against instruction skip attacks

    Get PDF
    Fault attacks against embedded circuits enabled to define many new attack paths against secure circuits. Every attack path relies on a specific fault model which defines the type of faults that the attacker can perform. On embedded processors, a fault model consisting in an assembly instruction skip can be very useful for an attacker and has been obtained by using several fault injection means. To avoid this threat, some countermeasure schemes which rely on temporal redundancy have been proposed. Nevertheless, double fault injection in a long enough time interval is practical and can bypass those countermeasure schemes. Some fine-grained countermeasure schemes have also been proposed for specific instructions. However, to the best of our knowledge, no approach that enables to secure a generic assembly program in order to make it fault-tolerant to instruction skip attacks has been formally proven yet. In this paper, we provide a fault-tolerant replacement sequence for almost all the instructions of the Thumb-2 instruction set and provide a formal verification for this fault tolerance. This simple transformation enables to add a reasonably good security level to an embedded program and makes practical fault injection attacks much harder to achieve

    First steps towards the certification of an ARM simulator using Compcert

    Get PDF
    The simulation of Systems-on-Chip (SoC) is nowadays a hot topic because, beyond providing many debugging facilities, it allows the development of dedicated software before the hardware is available. Low-consumption CPUs such as ARM play a central role in SoC. However, the effectiveness of simulation depends on the faithfulness of the simulator. To this effect, we propose here to prove significant parts of such a simulator, SimSoC. Basically, on one hand, we develop a Coq formal model of the ARM architecture while on the other hand, we consider a version of the simulator including components written in Compcert-C. Then we prove that the simulation of ARM operations, according to Compcert-C formal semantics, conforms to the expected formal model of ARM. Size issues are partly dealt with using automatic generation of significant parts of the Coq model and of SimSoC from the official textual definition of ARM. However, this is still a long-term project. We report here the current stage of our efforts and discuss in particular the use of Compcert-C in this framework.Comment: First International Conference on Certified Programs and Proofs 7086 (2011

    Obtaining Formal Models through Non-Monotonic Refinement

    Get PDF
    When designing a model for formal verification, we want to\ud be certain that what we proved about the model also holds for the system we modelled. This raises the question of whether our model represents the system, and what makes us confident about this. By performing so called, non-monotonic refinement in the modelling process, we make the steps and decisions explicit. This helps us to (1) increase the confidence that the model represents the system, (2) structure and organize the communication with domain experts and the problem owner, and (3) identify rational steps made while modelling. We focus on embedded control systems
    • 

    corecore