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Abstract. The simulation of Systems-on-Chip (SoC) is nowadays a hot
topic because, beyond providing many debugging facilities, it allows the
development of dedicated software before the hardware is available. Low-
consumption CPUs such as ARM play a central role in SoC. However,
the effectiveness of simulation depends on the faithfulness of the simu-
lator. To this effect, we propose here to prove significant parts of such
a simulator, SimSoC. Basically, on one hand, we develop a Coq formal
model of the ARM architecture while on the other hand, we consider
a version of the simulator including components written in Compcert-
C. Then we prove that the simulation of ARM operations, according to
Compcert-C formal semantics, conforms to the expected formal model
of ARM. Size issues are partly dealt with using automatic generation
of significant parts of the Coq model and of SimSoC from the official
textual definition of ARM. However, this is still a long-term project. We
report here the current stage of our efforts and discuss in particular the
use of Compcert-C in this framework.

1 Introduction

1.1 Simulation of Systems-on-Chip

Systems-on-Chip (SoC), used in devices such as smart-phones, contain both
hardware and software. A part of the software is generic and can be used with
any hardware systems, and thus can be developed on any computer. In contrast,
developing and testing the SoC-specific code can be done only with this SoC, or
with a software executable model of the SoC. To reduce the time-to-market, the
software development must start before the hardware is ready. Even if the hard-
ware is available, simulating the software on a model provides more debugging
capabilities.

The fastest simulators use native simulation. The software of the target sys-
tem (i.e., the SoC) is compiled with the normal compiler of the computer running
the simulator, but linked with special system libraries. Examples of such simu-
lators are the Android and iOS SDKs.

In order to develop low-level system code, one needs a simulator that can
take the real binary code as input. Such a simulator requires a model of the pro-
cessor and of its peripherals (such as UART, DMA, Ethernet card, etc). When



simulating a smart-phone SoC, this kind of functional simulator can be from
1 to 10 times slower than the real chip. These simulators have other uses, for
example, as reference models for the hardware verification. An error in the simu-
lator can then mislead both the software and the hardware engineers. QEMU [2]
is an open-source processor emulator coming with a set of device models; it
can simulate several operating systems. Other open-source simulators include
UNISIM [1] (accurately-timed) and SimSoC [8], developed by some colleagues,
which is loosely-timed (thus faster). Simics [12] is a commercial alternative.
The usual language to develop such simulators is C++, combined with the Sys-
temC [13] and OSCI-TLM [15] libraries.

The work reported here is related to SimSoC.

1.2 The Need for Certification

Altogether, a functional simulator is a complex piece of software. SimSoC, which
is able to simulate Linux both on ARM and PowerPC architectures at a realistic
speed (over over 10 Millions instructions per second), includes about 60,000 lines
of C++ code. The code uses complex features of the C++ language and of the
SystemC library. Moreover, achieving high simulation speeds requires complex
optimizations, such as dynamic translation [2].

This complexity is problematic, because beyond speed, accuracy is required:
all instructions have to be simulated exactly as described in the documentation.
There is a strong need to strengthen the confidence that simulations results
match the expected accuracy. Intensive tests are a first answer. For instance, as
SimSoC is able to run a Linux kernel on top of a simulated ARM, we know that
many situations are covered. However it turned out, through further experiments,
that it was not sufficient: wrong behaviors coming from rare instructions were
observed after several months. Here are the last bugs found and fixed by the
SimSoC team while trying to boot Linux on the SPEArPlus600 SoC simulator.

– After the execution of an LDRBT instruction, the contents of the base register
(Rn) was wrong. It was due to a bug in the reference manual itself; the last
line of the pseudo-code has to be deleted.

– After a data abort exception, the base register write-back was not canceled.
– Additionally, a half-word access to an odd address while executing some

SPEArPlus600 specific code was not properly handled.

Therefore we propose here to certify the simulator, that is, to prove, using
formal methods – here: the Coq proof assistant [5, 3] – that it conforms to the
expected behavior.

This is a long term goal. Before going to the most intricate features of a
simulator such as SimSoC, basic components have to be considered first. We then
decided to focus our efforts on a sensible and important component of the system:
the CPU part of the ARMv6 architecture (used by the ARM11 processor family).
This corresponds to a specific component of the SimSoC simulator, which was
previously implementing the ARMv5 instruction set only. Rather than certifying



this component, it seemed to us more feasible to design a new one directly in
C, in such a way that it can be executed alone, or integrated in SimSoC (by
including the C code in the existing C++ code). We call this new component
simlight [4]. Combined with a small main function, simlight can simulate
ARMv6 programs as long as they do not access any peripherals (excepted the
physical memory) nor coprocessors. There is no MMU (Memory Management
Unit) yet. Integrating it in SimSoC just requires to replace the memory interface
and to connect the interrupts (IRQ and FIQ) signals.

The present paper reports our first efforts towards the certification of simlight.
We currently have a formal description of the ARMv6 architecture, a running
version of simlight, and we are in the way of performing correctness proofs.
The standard way for doing this is to use Hoare logics or a variant thereof. Var-
ious tools exist in this area, for example Frama-C [6]. We chose to try a more
direct way, based on an operational semantics of C; more precisely the semantics
of Compcert-C defined in the Compcert project [10]. One reason is that we look
for a tight control on the formulation of proof obligations that we will have to
face. Another advantage is that we can consider the use of the certified compiler
developed in Compcert, and get a very strong guarantee on the execution of the
simulator (but then, sacrificing speed to some extent4).

Another interesting feature of our work is that the most tedious (hence error
prone) part of the formalization – the specification of instructions – is auto-
matically derived from the reference manual. It is well known that the formal
specification of such big applications is the main weak link in the whole chain.
Though our generators cannot be proved correct, because the statements and
languages used in the reference manual have no formal semantics, we consider
this approach as much more reliable than a manual formalization. Indeed, a mis-
take in a generator will impact several or all operations, hence the chances that
it will be detected through a visibly wrong behavior are much higher than with
a manual translation, where a mistake will impact only one (eventually rarely
used) operation.

Note that after we could handle the full set of ARM instructions, our col-
leagues of the SimSoC team decided to use the same technology for the SimSoC
itself: the code for simulating instructions in simlight, i.e., the current compo-
nent dedicated to the ARM v6 CPU in SimSoC, is automatically derived using a
variant of our generator, whereas the previous version for ARM v5 was manually
written [4].

Fig. 1 describes the overall architecture. The contributions of the work pre-
sented in this paper are the formal specification of the ARMv6 instruction set
and the correctness proof of a significant operation. More precise statements on
the current achievements are given in the core of the paper.

Related Work. A fully manual formalization of the fm8501 and ARMv7 ar-
chitectures are reported in [9] and [7]. The formal framework is respectively
ACL2 and HOL4 instead of Coq, and the target is to prove that the hardware or

4 According to our first experiments, simlight compiled with Compcert is about 50 %
to 70 % slower than simlight compiled with gcc -O0.



microcode implementation of ARM operations are correct wrt the ARM spec-
ification. Our work is at a different level: we want to secure the simulation of
programs using ARM operations. Another major difference is the use of auto-
matic generation from the ARM reference manual in our framework, as stated
above.

The rest of the paper is organized as follows. Section 2 presents the overall
architecture of simlight and indicates for which parts of simlight formal cor-
rectness is currently studied. A informal statement of our current results is also
provided there. Sections 3 and 4 present respectively our Coq formal reference
model of ARM and the (Coq model of) Compcert-C programs targeted for cor-
rectness. A precise statement of our current results and indications on the proofs
are given in Section 5. We conclude in Section 6 with some hints on our future
research directions. Some familiarity with Coq is assumed in Sections 3, 4 and 5.

2 Main Lines of SimSoC-Cert

2.1 Overall Architecture

The overall architecture of our system, called SimSoC-Cert, is given in Fig. 1.
More specifically, we can see the data flow from ARMv6 Reference Manual to
the simulation code. Some patches are needed from the textual version of the
reference manual because the latter contains some minor bugs. Three kinds of
information are extracted for each ARM operation: its binary encoding format,
the corresponding assembly syntax and its body, which is an algorithm operating
on various data structures representing the state of an ARM: registers, memory,
etc., according to the fields of the operation considered. This algorithm may call
general purpose functions defined elsewhere in the manual, for which we provide
a Compcert-C library to be used by the simulator and a Coq library defining
their semantics. The latter relies on Integers.v and Coqlib.v from CompCert
library which allows us, for instance, to manipulate 32-bits representations of
words. The result is a set of abstract syntax trees (AST) and binary coding
tables. These ASTs follow the structure of the (not formally defined) pseudo-
code. Then two files are generated: a Coq file specifying the behavior of all
operations (using the aforementioned Coq library) and a Compcert-C file to be
linked with other components of SimSoC (each instruction can also be executed
in standalone mode, for test purposes for instance). More details are provided
in [4].

The decoding of ARM operations is not considered in the present paper:
this is important and planned for future work, but is less urgent since we were
already able to automatize the generation of intensive tests, as reported in [4]. We
therefore focus first on the algorithmic body of operations. In order to state their
correctness, we need Coq ASTs for the Compcert-C statements of simlight.
The code generator directly generates such ASTs. Another option would be to
work on a generated textual (ASCII) presentation of the Compcert-C code, but
we prefer to avoid additional (and possibly unreliable) parsing step as far as
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Fig. 1. Overall Architecture

possible. We will see in Section 4 that these ASTs are moreover presented in a
readable form using suitable notations and auxiliary definitions.

The whole simlight project is currently well-compiled by Compcert (tar-
geting Intel code) and gcc; moreover validation tests succeed completely with
both simulators. The version of simlight compiled with Compcert can serve as
a reference simulator, but for most purposes the version compiled with gcc is
prefered for its higher speed.

2.2 Stating Correctness Theorems

Let us now present the purpose of the gray box of Fig. 1, which represents our
main target.

The correctness of simulated ARM operations is stated with relation to the
formal semantics of ARM as defined by our Coq library and partly automat-
ically produced by the Coq code generator (the box called “specification” in
Fig. 1). Note that ARM operations are presented in a readable way using suit-
able monadic constructs and notations: apart from the security provided by
automatic generation, this greatly facilitates the comparison with the original
pseudo-code of the reference manual. That said, it should be clear that the ref-
erence semantics of ARM is the Coq code provided in these files. Much effort
has been spent in order to make them as clear and simple as possible.



In contrast, the Coq description of the behavior of corresponding operations
(as simulated by SimSoC – Compcert-C programs) is far more complicated,
though the superficial structure is quite similar. This will be detailed in Section 4.
In particular, the memory model of the latter version is much more complex.
In order to state correctness theorems, we define a relation between an ARM
state represented by the Compcert-C memory model and another ARM state,
as defined by the Coq formal semantics. Essentially, we have a projection from
the former to the latter. Then for each ARM operation, we want a commutative
diagram schematized in Fig. 2.

related

related

projective

projective

operation semantics operation semantics

in Coq in C

State’

State
Coq State

Coq State’

CompCert−C

CompCert−C

Fig. 2. Correctness of the simulation of an ARM operation

For now, our automatic generation tools operate completely, i.e., we have
a Coq formal specification and a Compcert-C simulator for the full instruction
set of ARM V6. About proofs, the relationship between the abstract and the
concrete memory models is available; we can then state correctness theorems for
all ARM operations. The work on correctness proofs themselves started recently.
We considered a significant ARM operation called ADC (add with carry). Our
main theorem (Theorem 1 in Section 5) states intuitevely that the diagram
given in Fig. 2 commutes for ADC. Its proof is completed up to some axioms on
library functions, details are given in Section 5.

3 ARM Model

3.1 Processor Behavior

A processor is essentially a transition system which operates on a state composed
of registers (including the program counter) and memory. The semantics of its
behavior amounts to repeat the following tasks: fetch the binary code at a given
address, decode it as a processor operation and execute it; the last task includes
the computation of the address of the next operation. The two main components
of a processor simulator are then:

– The decoder, which, given a binary word, retrieves the name of an operation
and its potential arguments.



– The precise description of transformations performed by an operation on
registers and memory. In the reference manual of ARM, this is defined by
an algorithm written in “pseudo-code” which calls low-level primitives for,
e.g., setting a range of bits of a register to a given value. Some situations are
forbidden or left unspecified. For ARM processors, this results in a so-called
“UNPREDICTABLE” state. The best choice, for a simulator, is then to stop
with a clear indication of what happens.

Let us illustrate this on a concrete example. Here is the original pseudo-
code of the ADC (add with carry) operation of ARMv6. As most operations of
ARM, this operation has an argument called cond which indicates whether the
operation should be skipped or not. CPSR (Current Program Status Register) and
SPSR (Saved Program Status Register, used for exception handling) are special
registers related to execution modes of ARM; they also contain flags (N, Z, C
and V) relevant to arithmetic instructions. The instruction has four parameters:
S is a bit which specifies that the instruction updates CPSR, Rn is a register for
the first operand, Rd is the destination register, shifter operand specifies the
second operand according to a (rather complicated) addressing mode.

A4.1.2 ADC

if ConditionPassed(cond) then

Rd = Rn + shifter_operand + C Flag;

if S == 1 and d == 15 then

if CurrentModeHasSPSR() then

CPSR = SPSR;

else UNPREDICTABLE

else if S == 1 then

N Flag = Rd[31];

Z Flag = if Rd == 0 then 1 else 0;

C Flag = CarryFrom(Rn + shifter_operand + C Flag);

V Flag = OverflowFrom(Rn + shifter_operand + C Flag);

In the sequel, this version of ADC is referred to as ADC pseudocode.

3.2 Coq Semantics of ARM Operations

Each operation O from the reference manual is mechanically translated to a cor-
responding Coq function named O_Coq. First we define a type state, which is
a record with two fields Proc and SCC (System Control Coprocessor) containing
respectively the components related to the main processor (status register CPSR,
SPSR, other registers...) and the corresponding components related to the copro-
cessor, as well as the ARM memory model. Then we use a monadic style [14]
in order to take the sequentiality of transformations on the state into account.
Beyond the state st, two other pieces of information are handled: loc, which
represent local variables of the operation and bo, a Boolean indicating whether
the program counter should be incremented or not; they are registered in the
following record which is used for defining our monad:



Record semstate := mk_semstate

{ loc : local

; bo : bool

; st : state }.

Inductive result {A} : Type :=

| Ok (_ : A) (_ : semstate)

| Ko (m : message)

| Todo (m : message).

Definition semfun A := semstate -> @result A.

Note that in general, every O_Coq functions terminate with Ok as value. However
for “UNPREDICTABLE” states for example, errors are implicitely propagated
with our monadic constructors for exceptions : Ko and Todo.

We present now the translation of ADC pseudocode. To this effect, we intro-
duce get st, a monadic function giving access to the current state st in its
body, represented by this notation:

Notation "’<’ st ’>’ A" := (_get_st (fun st => A))

(at level 200, A at level 100, st ident).

This yields the following code for ADC Coq:

(* A4.1.2 ADC *)

Definition ADC_Coq

(S : bool) (cond : opcode)

(d : regnum) (n : regnum) (shifter_operand : word) : semfun _ := <s0>

if_then (ConditionPassed s0 cond)

([ <st> set_reg d (add (add (reg_content s0 n) shifter_operand)

((cpsr st)[Cbit]))

;If (andb (zeq S 1) (zeq d 15))

then (<st> if_CurrentModeHasSPSR (fun em =>

(<st> set_cpsr (spsr st em))))

else (if_then (zeq S 1)

([ <st> set_cpsr_bit Nbit ((reg_content st d)[n31])

; <st> set_cpsr_bit Zbit (if zeq (reg_content st d) 0 then repr 1

else repr 0)

; <st> set_cpsr_bit Cbit

(CarryFrom_add3 (reg_content s0 n) shifter_operand

((cpsr st)[Cbit]))

; <st> set_cpsr_bit Vbit (OverflowFrom_add3 (reg_content s0 n)

shifter_operand ((cpsr st)[Cbit])) ])) ]).

4 ARM Operations in Simlight

In the right branch of the overall architecture (Fig. 1), we generate simlight

according to the C syntax given by Compcert. Here, actually we have two pre-
sentations of the corresponding code. The first one is in a C source which is
integrated into SimSoC (see [4] for more details), its contents is:



/* A4.1.2 ADC */

void ADC_simlight(struct SLv6_Processor *proc,

const bool S,

const SLv6_Condition cond,

const uint8_t d,

const uint8_t n,

const uint32_t shifter_operand)

{
const uint32_t old_Rn = reg(proc,n);

if (ConditionPassed(&proc->cpsr, cond)) {
set_reg_or_pc(proc,d,((old_Rn + shifter_operand) + proc->cpsr.C_flag));

if (((S == 1) && (d == 15))) {
if (CurrentModeHasSPSR(proc))

copy_StatusRegister(&proc->cpsr, spsr(proc));

else

unpredictable();

} else {
if ((S == 1)) {
proc->cpsr.N_flag = get_bit(reg(proc,d),31);

proc->cpsr.Z_flag = ((reg(proc,d) == 0)? 1: 0);

proc->cpsr.C_flag =

CarryFrom_add3(old_Rn, shifter_operand, proc->cpsr.C_flag);

proc->cpsr.V_flag =

OverflowFrom_add3(old_Rn, shifter_operand, proc->cpsr.C_flag);

} } } }

This piece of code uses a function called set reg or pc instead of set reg: the
latter also exists in simlight and the function to be used depends on tricky
considerations about register 15, which happens to be the PC. More details
about this are given in Section 4.1.

The second presentation is an AST according to a Coq inductive type defined
in Compcert.

Definition ADC Coq simlight := (ADC, Internal

{| fn_return := void; fn_params :=

[proc -: ‘*‘ typ_SLv6_Processor;

S -: uint8; cond -: int32; d -: uint8; n -: uint8;

shifter_operand -: uint32];

fn_vars := [ old_Rn -: uint32];

fn_body :=

($ old_Rn‘:◦) ‘= (call (\reg‘:◦) E[\proc‘:◦; \n‘:◦] ◦)‘:◦;;
‘if (• (\ConditionPassed‘:◦) E[&((‘*(\proc‘:◦)‘:◦)|cpsr‘:◦)‘:◦; \cond‘:◦] ◦)
then (• (\set_reg_or_pc‘:◦) E[\proc‘:◦; \d‘:◦; ((\old_Rn‘:◦)+•)+•:◦] ◦);;
‘if ((($ S‘:◦)==(#1‘:◦)‘:◦)&(($ d‘:◦)==(#15‘:◦)‘:◦)‘:◦)
then ‘if (call (\CurrentModeHasSPSR‘:◦) E[\proc‘:◦] ◦)
then (call (\copy_StatusRegister‘:◦) E[&(•|cpsr‘:◦)‘:◦; •] ◦)
else (call ($ unpredictable‘:◦) E[] ◦)
else ‘if (($ S‘:◦)==(#1‘:◦)‘:◦)
then ((($ proc‘:◦)|cpsr‘:◦)|N_flag‘:◦) ‘=

(• (\get_bit‘:◦) E[(• (\reg‘:◦) E[\proc‘:◦; \d‘:◦] ◦); #31‘:◦] ◦)‘:◦;;



((($ proc‘:◦)|cpsr‘:◦)|Z_flag‘:◦) ‘=

(((• (\reg‘:◦) • ◦)==(#0‘:◦)‘:◦)?(#1‘:◦)‘:(#0‘:◦)‘:◦)‘:◦;;
((($ proc‘:◦)|cpsr‘:◦)|C_flag‘:◦) ‘=

(• (\CarryFrom_add3‘:◦) E[•; •; (• (•|C_flag‘:◦) ◦)] ◦)‘:◦;;
((($ proc‘:◦)|cpsr‘:◦)|V_flag‘:◦) ‘=

(• (\OverflowFrom_add3‘:◦) E[(• (\old_Rn‘:◦) ◦); •; •] ◦)‘:◦
else skip

else skip |}).

The symbols “◦” and “•” do not belong to the real notations, they stand for
types and sub-terms not represented here for the sake of simplicity. Indeed, an
important practical issue is that Compcert-C ASTs include types everywhere,
hence a naive approach would generates heavy and repetitive expressions at the
places where ◦ occurs, thus making the result unreadable (and space consuming).
We therefore introduce auxiliary definitions for types and various optimizations
for sharing type expressions. We also introduce additional convenient notations,
as shown above for ADC Coq simlight, providing altogether a C-looking presen-
tation of the AST.

We plan to generate the first form from the AST using a pretty-printer. The
following discussion is based on the AST presentation.

4.1 Differences with the Coq Model of ARM Operations

Although the encoding of operations in simlight and in the Coq semantics of
ARM are generated from the same pseudo-code AST, results are rather different
because, on one hand, they are based on different data types and, on the other
hand, their semantics operates on different memory models. Therefore, the proof
that the simulation of an operation in simlight behaves as expected according
to the Coq semantics is not trivial.

In the Coq model of ARM, everything is kept as simple as possible. ARM
Registers are presented by words, the memory is a map from address to con-
tents, the initial value of parameters such as Rn is available for free – we are
in an functional setting, etc. In contrast, simlight uses an imperative setting
(hence the need to store the initial value of Rn in Old Rn, for instance). More
importantly, complex and redundant data structure are involved in order to get
fast speed. For example, a 32 bits wide status register is defined as a data struc-
ture containing, for every significant bit, a field of Boolean type – internally, this
is represented by a byte. A more interesting example is the program counter,
which is the register 15 at the same time. As this register is sometimes used
as an ordinary register, and sometimes used as the PC, the corresponding data
structure implemented in simlight includes an array which stores all the regis-
ters and a special field pc, which is a pointer aliasing register 15. This register
plays an important role in ARM architecture. Its value is used in the may branch

condition for simulating basic blocks [4]. And during the simulation loop, it is
read many times. Note that this special field pc is read-only.

Moreover we have to work with the Compcert memory model of such data
structures. This, model detailed in [11], introduces unavoidable complications in



order to take low-level considerations, such as overlapping memory blocks into
account. Another source of complexity is that, in a function call, a local variable
takes a meaningful value only after a number of steps representing parameter
binding. More details are given in Section 5.

Another important difference is that, in the Coq specification, the semantics
is defined by a function wheras, in Compcert-C, the semantics is a relation
between the initial memory and the final memory when evaluating statements
or expressions.

4.2 Translation from Pseudo-code AST to Compcert-C AST

We describe here the mapping from the pseudo-code AST to Compcert-C AST.
This translation is not only to Compcert-C AST, but more specifically to the
Compcert-C AST for simlight. It makes use of an existing library of func-
tions dedicated to simlight. For example in ADC pseudocode, the occurrence
of CPSR stands for an expression representing the contents of CPSR in the cur-
rent state. But in simlight, this corresponds to a call to a library function
StatusRegister to uint32. The translation deals with many similar situations.

Let us now sketch the translation process. Both the definitions of pseudo-code
AST and Compcert-C AST include inductive types for expressions, statements
and programs. Compcert-C expressions are limited to common programming op-
erations like binary arithmetic operations, type cast, assignments, function calls,
etc. For many constructors of pseudo-code AST the mapping is quite natural,
but others require a special treatment: the ones which are specific to ARM, for
representing registers, memory and coprocessor expressions, invocation of library
functions, or bit range expressions. Those special expressions are translated to
Compcert-C function calls. For example, the pseudo-code expression Reg (Var

n, Some m), designates the contents of register number n with the ARM pro-
cessor mode m. In simlight, this becomes a call to reg m with parameters proc,
n and m.

In summary, the translation of expressions looks as follows:

let rec Transf exp = function

| Reg (e, m) -> Ecall reg m ...

| CPSR -> Ecall StatusRegister to uint32 ...

| Memory (e, n) -> Ecall read mem ...

| If exp (e1, e2, e3) -> Econdition ...

| BinOp (e1, op, e2) -> Ebinop ...

| Fun (f, e) -> Ecall f ...

...

For statements, we have a similar situation. Here, assignments require a spe-
cial attention. For example in ADC pseudocode, there is an assignment CPSR=SPSR.
In simlight, this assignment is dealt with using a call to the function
copy StatusRegister. The corresponding Compcert-C AST embeds this call as
an argument of the constructor Sdo.

In summary, the translation of statements looks as follows:



let rec Transf stm = function

| Assign (dst, src) -> Sdo (Ecall funct ...)

| For (c, min, max, i) -> Sfor ...

| If (e, i1, i2) -> Sifthenelse ...

| Case (e, s, default) -> Sswitch ...

...

In our case, each operation is transformed to a Compcert-C program where
there are no global variables, the function list contains only the function corre-
sponding to the considered ARM operation (let us call it f , it is of course an
internal function), and with an empty main. When the program is called, the
global environment built for this program will only contain a pointer to f .

The translation from pseudo-code AST program to Compcert-C AST pro-
gram has the following shape:

let Transformed program =

{ vars = []

; functs = [ Internal (instr id,

{ fn return = Tvoid

; fn params = ... (* operation parameters *)

; fn vars = ... (* operation local variables *)

; fn body = ... (Transf stm ...) }) ]

; main = empty main }

5 Current Proofs

On both sides, the Compcert-C simlight model and the Coq ARM model,
the state of the processor is expressed by a big Coq term. In the Compcert-C
simlight model, the processor state information is gathered in a data structure
SLv6 Processor, which includes the MMU, the status registers CPSR and SPSR,
the system coprocessor and the registers. In the Coq formal model of ARM, the
processor state is represented by a value of type result, described in Section 3.2.

It is clearly possible to define a projection from a SLv6 Processor M to
a result r. Then we say that M and r are projective-related, denoted by
proc state related M r. The evil is in the details of the different type definitions,
especially for the memory models. Here are the guiding ideas. Once a function
such as ADC Coq simlight is called, parameters are allocated in memory, and a
local environment is built. This local environment contains the mapping from
identifiers to a memory block reference. For a variable of type struct, such as
the ARM processor, the environment only yields an entry pointer to the struc-
ture. Here, the type information generated for our Compcert-C AST is needed
in order to find fields inside Compcert-C memory, and to retrieve the processor
model. The main function used there from Compcert is load. Its arguments are
a memory M , a block b, an offset ofs and the type τ of the value to be loaded
from b at ofs. Other variables who have a simple type like int32, are directly
accessed by their identifier from the environment.



Let us now consider a specific instance of Fig. 2, applied to ADC. We choose
it first because it is a typical ARM operation, which involves various ways of
changing the processor state, and arithmetic calculations. Moreover, all data-
processing operations have a very similar structure. If we prove the correctness
of the simlight implementation of ADC, we can expect to automate the proofs
for the others data-processing operations.

The proof exploits the formal operational semantics of Compcert-C, which
is defined as a transition system

G,E ` 〈piece of code〉,M t⇒ out,M ′

where G represents the global environment (constants) of the program, E rep-
resents the local environment, M and M ′ represent memory states, t is the
trace of input/output events and out is the outcome. In our case, the piece of
code is ADC Coq simlight, and the trace of input/output event (t) is empty:
all function calls are internal calls. Compcert-C offers two kinds of operational
semantics: small-step and big-step semantics. The latter is better suited to our
needs because the statement of correctness, along the diagram in Fig. 2, relates
states before and after the execution of the body of an operation. The precise
statement of our theorem is as follows.

Theorem 1. Let M and M ′ be the memory contents respectively before and
after the simulation of ADC Coq simlight; similarly, let st and st′ be the state
of ARM in its formal model. If M and st are projective-related, as well as the
arguments of the call to ADC, then M ′ and st′ are projective-related as well.
Formally, if:

– proc state related M (Ok st)
– similarly for the arguments of ADC

– G,E ` ADC Coq simlight,M
t⇒ out,M ′

then proc state related M ′ (ADC Coq (arguments, st)).

In the Coq formal model of ARM, transitions are terminating functions re-
turning a result of type result, as defined in section 3.

The proof process is driven by the structure of the operation body. Step by
step, we observe the memory changes on the Compcert-C side and the state
changes on the Coq side, and we check whether the relation still holds between
the current Compcert-C memory state and the Coq state. To this effect, we apply
theorems on load/store functions from Compcert [11]. Proof by computation
does not work because the types involved are complex – they embed logical
information – and many definitions are opaque.

In ADC Coq, conditional expressions and function calls for getting values have
no side effect on the state. On the Compcert-C side, declaring a local vari-
able in a function has no impact on the memory model of the processor. The
state may only change when a function for setting values is called, like set reg,
copy StatusRegister, or assignment of bits in register fields. Such calls will



return a new memory state on the Compcert-C side and a new Ok state on the
Coq side. We use small-step semantics for such steps.

Now we need some lemmas for these proof steps. Lemmas can be organized
into four kinds. We give an instance of each kind.

Lemma 1. The conditional expression S==1 has no effect on Compcert-C mem-
ory state:

if G,E ` conditionC?a1 : a2,M
E0⇒ vres,M ′,

then M=M’.

Lemma 1 is easy to prove by some inversions. All lemmas of this kind have been
discharged.

Lemma 2. The conditional expression S==1 has the same result in the Compcert-
C model as in the Coq model:

if G,E ` conditionC?a1 : a2,M
E0⇒ vres,M ′:

- and if is true vres, then conditionCoq = true
- and if is false vres, then conditionCoq = false.

To prove lemma 2, we need to apply small-step semantics, to check the type of
S and the value of the Boolean result vres. Note that in Compcert-C, non-zero
integer, non-zero floats and non-null pointer can be interpreted as the Boolean
value true, which adds some complexity in the proof.

The proof is by case analysis according to the type of vres. As the expression
involves a parameter (S), the projective relation about this parameter between
Compcert-C memory and the formal model of ARM is required.

All lemmas of this kind have been discharged.

A lemma of the two next kinds is stated for each simlight library function
which changes the state, e.g., set reg.

Lemma 3. If proc state related M (Ok st),

and if G,E ` set regc(proc, reg id, data),M
E0⇒ vres,M ′,

then proc state related M ′ (set regCoq st).

For the moment, such lemmas are considered as axioms on the library. In order
to be properly stated, we need the Compcert-C ASTs of such library functions,
which are not automatically generated. We have 6 lemmas/axioms of this kind
for ADC.

The next lemma is stated for a given call to set reg in the body of the
function ADC Coq simlight and a parameter P of ADC Coq simlight which is
not used as an argument of set reg.

Lemma 4. After the call to set reg, the value of P remains unchanged:

if G,E ` set regc(proc, reg id, data),M
E0⇒ vres,M ′,

then P (M) = P (M ′).

Lemma 4 can be proved with the help of theorems of Compcert on “load after
store”. A typical proof step looks like:



Original ARM ref man (txt) 49655
ARM Parsing to an OCaml AST 1068
Generator (Simgen) for ARM and SH with OCaml and Coq pretty-printers 10675
Generated C code for Simlight ARM operations 6681
General Coq libraries on ARM 1569
Proof script on ADC 1461

Table 1. Sizes (in number of lines)

If we store a value v on block b (store(M1, τ, b, ofs, v) = M2), then
the contents of block b′ remains unchanged (load(τ ′,M2, b′, ofs ′) =
load(τ ′,M1, b′, ofs ′)) for any type τ ′ and offset ofs ′, which makes the
accesses disjoint (b′ 6= b or ofs + |τ | ≤ ofs ′ or ofs ′ + |τ ′| ≤ ofs).

As for lemmas 3, we need additional axioms on simlight library functions.

Our current result is that, with the help of these lemmas, we have a complete
correctness proof for ADC (Theorem 1). Theorem 1 and all the lemmas are in the
file correctness_ADC.v5.

The whole proof structure of this theorem and all twenty lemmas of kinds
1 and 2 were completed within 2 weeks. The 10 remaining lemmas, of kinds 3
and 4, should require a similar effort. Here, we first need to generate Compcert-C
ASTs for the relevant library functions using the C parser available in Compcert.

6 Conclusion

The trust we may have in our result depends on the faithfulness of its statement
with relation to the expected behavior of the simulation of ADC in simlight.
It is mainly based on the manually written Coq and C library functions, the
translators written in OCaml described in Section 2 (including the pretty-printer
for Coq), the final phase of the Compcert compiler, and the formal definition of
proc state related .

The current development is available online5. Figures on the size of our cur-
rent development are given in Table 1.

In the near future, we will extend the work done on ADC to all other oper-
ations. The first step will be to design relevant suitable tactics, from our expe-
rience on ADC, in order to shorten a lot the current proof and make it easier to
handle and to generalize. We are confident that the corresponding work on the
remaining ARM operations will then be done much faster, at least for arithmeti-
cal and Boolean operations.

Later on, we will consider similar proofs for the decoder – as for the body
of operations, it is already automatically extracted from the ARM reference
manual. Then a proven simulation loop (basically, repeat decoding and running
operations) will be within reach.

5 http://formes.asia/media/simsoc-cert/



In another direction, we also reuse the methodology based on automatic
generation of simulation code and Coq specification for other processors. The
next one which is already considered is SH4. In fact, the same approach as the
ARMv6 has been followed, and a similar Coq representation can currently be
generated from the SH4 manual. Moreover, as the SH pseudo-code is simpler
than the ARM, we are hence impatient to work on its equivalence proof.
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