748 research outputs found

    Formal Verification of Plastic User Interfaces Exploiting Domain Ontologies

    Get PDF
    This paper presents a formal model to check the interaction plasticity on a user interface (UI). An interaction is seen as an implementation (achievement) of a user task by means of interaction devices and modes of a given platform. The interaction plasticity is the ability of UI to support several interactions to perform the same task. In this work, two task models, containing different sets of interactions, are observed to check if they describe interactions that perform the same task. Each task model is represented by a labelled state-transitions system (lts). Due to the use of different interaction modes and devices, the obtained lts have different set of labels. Weak bi-simulation relationship is revisited to handle these transition systems by defining a relation on labels. This relation is borrowed from an ontology of interaction modes and devices. Model checking techniques are set up to automatically establish such a bi-simulation. A case study is used to illustrate how the approach works

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Ontology-based solutions for interoperability among product lifecycle management systems: A systematic literature review

    Get PDF
    During recent years, globalization has had an impact on the competitive capacity of industries, forcing them to integrate their productive processes with other, geographically distributed, facilities. This requires the information systems that support such processes to interoperate. Significant attention has been paid to the development of ontology-based solutions, which are meant to tackle issues from inconsistency to semantic interoperability and knowledge reusability. This paper looks into how the available technology, models and ontology-based solutions might interact within the manufacturing industry environment to achieve semantic interoperability among industrial information systems. Through a systematic literature review, this paper has aimed to identify the most relevant elements to consider in the development of an ontology-based solution and how these solutions are being deployed in industry. The research analyzed 54 studies in alignment with the specific requirements of our research questions. The most relevant results show that ontology-based solutions can be set up using OWL as the ontology language, Protégé as the ontology modeling tool, Jena as the application programming interface to interact with the built ontology, and different standards from the International Organization for Standardization Technical Committee 184, Subcommittee 4 or 5, to get the foundational concepts, axioms, and relationships to develop the knowledge base. We believe that the findings of this study make an important contribution to practitioners and researchers as they provide useful information about different projects and choices involved in undertaking projects in the field of industrial ontology application.Fil: Fraga, Alvaro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vegetti, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Leone, Horacio Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Multi-perspective modelling for knowledge management and knowledge engineering

    Get PDF
    ii It seems almost self-evident that “knowledge management ” and “knowledge engineering” should be related disciplines that may share techniques and methods between them. However, attempts by knowledge engineers to apply their techniques to knowledge management have been praised by some and derided by others, who claim that knowledge engineers have a fundamentally wrong concept of what “knowledge management” is. The critics also point to specific weaknesses of knowledge engineering, notably the lack of a broad context for the knowledge. Knowledge engineering has suffered some criticism from within its own ranks, too, particularly of the “rapid prototyping ” approach, in which acquired knowledge was encoded directly into an iteratively developed computer system. This approach was indeed rapid, but when used to deliver a final system, it became nearly impossible to verify and validate the system or to maintain it. A solution to this has come in the form of knowledge engineering methodology, and particularly in the CommonKAD

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

    Get PDF
    Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost-effective, rapid, and revolutionary design of fit-for-purpose materials, components, and systems. Although the vision focused on aeronautics and space applications, it is believed that other engineering communities (e.g., automotive, biomedical, etc.) can benefit as well from the proposed framework with only minor modifications. Finally, it is TTT's hope and desire that this vision provides the strategic guidance to both public and private research and development decision makers to make the proposed 2040 vision state a reality and thereby provide a significant advancement in the United States global competitiveness

    A virtual factory for smart city service integration

    Get PDF
    Tese de Doutoramento em Informática (MAP-i)In the context of smart cities, governments are investing efforts on creating public value through the development of digital public services (DPS) focusing on specific policy areas, such as transport. Main motivations to deliver DPS include reducing administrative burdens and costs, increasing effectiveness and efficiency of government processes, and improving citizens’ quality of life through enhanced services and simplified interactions with governments. To ensure effective planning and design of DPS in a given domain, governments face several challenges, like the need of specialized tools to facilitate the effective planning and the rapid development of DPS, as well as, tools for service integration, affording high development costs, and ensuring DPS conform with laws and regulations. These challenges are exacerbated by the fact that many public administrations develop tailored DPS, disregarding the fact that services share common functionality and business processes. To address the above challenges, this thesis focuses on leveraging the similarities of DPS and on applying a Software Product Line (SPL) approach combined with formal methods techniques for specifying service models and verifying their behavioural properties. In particular, the proposed solution introduces the concept of a virtual factory for the planning and rapid development of DPS in a given smart city domain. The virtual factory comprises a framework including software tools, guidelines, practices, models, and other artefacts to assist engineers to automate and make more efficient the development of a family of DPS. In this work the virtual factory is populated with tools for government officials and software developers to plan and design smart mobility services, and to rapidly model DPS relying on SPLs and components-base development techniques. Specific contributions of the thesis include: 1) the concept of virtual factory; 2) a taxonomy for planning and designing smart mobility services; 3) an ontology to fix a common vocabulary for a specific family of DPS; 4) a compositional formalism to model SPLs, to serve as a specification language for DPS; and 5) a variable semantics for a coordination language to simplify coordination of services in the context of SPLs.No contexto das cidades inteligentes, os governos investem esforços na criação de valor público através do desenvolvimento de serviços públicos digitais (DPS), concentrandose em áreas políticas específicas, como os transportes. As principais motivações para entregar o DPS incluem a redução de custos administrativos, o aumento da eficácia dos processos do governo e a melhoria da qualidade de vida dos cidadãos através de serviços melhorados e interações simplificadas com os governos. Para garantir um planeamento efetivo do DPS num determinado domínio, os governos enfrentam vários desafios, como a necessidade de ferramentas especializadas para facilitar o planeamento eficaz e o rápido desenvolvimento do DPS, bem como ferramentas para integração de DPS, reduzindo altos custos de desenvolvimento e garantindo que os DPS estejam em conformidade com as leis e regulamentos. Esses desafios são exacerbados pelo fato de que muitas administrações públicas desenvolvem o DPS sob medida, desconsiderando o fato de que os serviços compartilham funcionalidade e processos de negócios comuns. Para enfrentar os desafios, esta tese concentra-se em aproveitar as semelhanças dos DPS aplicando uma abordagem de Software Product Lines (SPL) combinada com métodos formais para especificar modelos de DPS e verificar propriedades. Em particular, introduz o conceito de uma fábrica virtual (VF) para o planeamento e desenvolvimento rápido de DPS num domínio de cidade inteligente. A VF compreende ferramentas de software, diretrizes, modelos e outros artefatos para auxiliar os engenheiros a automatizar e tornar mais eficiente o desenvolvimento de uma família de DPS. Neste trabalho, a VF é preenchida com ferramentas para várias partes para planear e projetar serviços de mobilidade inteligente (MI), e modelar rapidamente o DPS com base em SPLs e técnicas de desenvolvimento baseadas em componentes. Contribuições específicas da tese incluem: 1) o conceito de VF; 2) uma taxonomia para planear serviços de MI; 3) uma ontologia para fixar um vocabulário comum para uma família específica de DPS; 4) um formalismo composicional para modelar SPLs, e servir como uma linguagem de especificação para DPS; e 5) uma semântica variável para uma linguagem de coordenação para simplificar a coordenação.This work was funded by FCT – Foundation for Science and Technology, the Portuguese Ministry of Science, Technology and Higher Education, through the Operational Programme for Human Capital (POCH). Grant reference: PD/BD/52238/201

    Semantic enrichment of knowledge sources supported by domain ontologies

    Get PDF
    This thesis introduces a novel conceptual framework to support the creation of knowledge representations based on enriched Semantic Vectors, using the classical vector space model approach extended with ontological support. One of the primary research challenges addressed here relates to the process of formalization and representation of document contents, where most existing approaches are limited and only take into account the explicit, word-based information in the document. This research explores how traditional knowledge representations can be enriched through incorporation of implicit information derived from the complex relationships (semantic associations) modelled by domain ontologies with the addition of information presented in documents. The relevant achievements pursued by this thesis are the following: (i) conceptualization of a model that enables the semantic enrichment of knowledge sources supported by domain experts; (ii) development of a method for extending the traditional vector space, using domain ontologies; (iii) development of a method to support ontology learning, based on the discovery of new ontological relations expressed in non-structured information sources; (iv) development of a process to evaluate the semantic enrichment; (v) implementation of a proof-of-concept, named SENSE (Semantic Enrichment kNowledge SourcEs), which enables to validate the ideas established under the scope of this thesis; (vi) publication of several scientific articles and the support to 4 master dissertations carried out by the department of Electrical and Computer Engineering from FCT/UNL. It is worth mentioning that the work developed under the semantic referential covered by this thesis has reused relevant achievements within the scope of research European projects, in order to address approaches which are considered scientifically sound and coherent and avoid “reinventing the wheel”.European research projects - CoSpaces (IST-5-034245), CRESCENDO (FP7-234344) and MobiS (FP7-318452

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin
    corecore