
Xuan Liu and David Furrer
Pratt & Whitney, East Hartford, Connecticut

Jared Kosters and Jack Holmes
Nexight Group, Silver Spring, Maryland

Vision 2040: A Roadmap for Integrated, Multiscale 
Modeling and Simulation of Materials and Systems

NASA/CR—2018-219771

March 2018

https://ntrs.nasa.gov/search.jsp?R=20180002010 2019-08-30T12:59:34+00:00Z



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated 
to the advancement of aeronautics and space science. 
The NASA Scientific and Technical Information (STI) 
Program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Officer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI Program provides access 
to the NASA Technical Report Server—Registered 
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS)  thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of significant 
scientific and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers, but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientific 

and technical findings that are preliminary or of 
specialized interest, e.g., “quick-release” reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis.

 

• CONTRACTOR REPORT. Scientific and 
technical findings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA.

 
• SPECIAL PUBLICATION. Scientific, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and 
technical material pertinent to NASA’s mission.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question to help@sti.nasa.gov
 
• Fax your question to the NASA STI 

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658
 
• Write to: 

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

 



NASA/CR—2018-219771 3

Vision 2040:
A Roadmap for 

Integrated, Multiscale 
Modeling and Simulation 
of Materials and Systems

Prepared under Contract NNC15BA06B



Acknowledgments

This Vision 2040 Roadmap was prepared under the direction of Dr. Xuan Liu, Senior Materials Engineer, Pratt & Whitney, and  
Dr. Steven M. Arnold, Technical Lead: Multiscale/Multiphysics Modeling, Structures and Materials Division, NASA Glenn 
Research Center. Additional input and leadership was provided by Dr. Edward Glaessgen, Dale Hopkins, and Dr. John Lawson 
of NASA; Dr. Andrew Boyne, Dr. David Furrer, Dr. Rajiv Naik, Jaime O’Connell, and Dr. Vasisht Venkatesh of Pratt & Whitney;  
Dr. Dennis Dimiduk and Michael Jackson of BlueQuartz Software and Dr. Sean Donegan, formerly of BlueQuartz and now of the 
Air Force Research Laboratory; Dr. Jianzheng Guo and Dr. Mark Samonds of ESI Group; Dr. Jonathan Gosse, Dr. Kady Gregersen, 
and Dr. Mostafa Rassaian of Boeing Research & Technology; Dr. Michael Glavicic, Joseph Rasche, and Dr. Andrew Ritchey 
of Rolls-Royce; Dr. Sergei Burlatsky and Dr. Rajesh Kumar of United Technologies Research Center; and Dr. Tresa Pollock of 
University of California Santa Barbara. The report would not be possible without the contributions of nearly 200 volunteer experts 
who attended workshops, served on expert panels, reviewed draft documents, and provided thoughtful input and guidance; these 
experts are listed in Appendix C. Special thanks are extended to Dr. Hyunsun Alicia Kim of University of California, San Diego; 
Dr. David McDowell, Georgia Institute of Technology, Dr. Mike Shepard of MTS Systems Corporation; and Stephen W. Smith of 
NASA Langley Research Center for their significant contributions. Nexight Group supported the overall Phase 2 work and prepared 
this document; Jared Kosters, Jack Holmes, Julianne Puckett, Ross Brindle, Melissa Allen, Annie Best, and Dr. Changwon Suh 
are the primary contributors. Additional thanks are extended to the American Institute of Aeronautics and Astronautics (AIAA); 
the International Association for the Engineering Modelling, Analysis and Simulation Community (NAFEMS); and The Minerals, 
Metals & Materials Society (TMS) for hosting the expert workshops that provided essential input to this report.

Available from

Trade names and trademarks are used in this report for identification 
only. Their usage does not constitute an official endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by expert reviewers.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/



Table of Contents

About This Study 1

Who Should Read This Report 2

How to Read the Report 3

Ensuring Long-Term Study Relevancy 3

Vision 2040 Overview 4

The Vision for 2040 4

Vision 2040: A Transformative Step Forward 5

The Vision Strategy 8

The Path Forward 14

Major Study Recommendations 17

References 20

Detailed Vision 2040 Findings 21

Key Elements 24

Key Element 1 Models and Methodologies  26

Key Element 2 Multiscale Measurement and Characterization Tools and Methods  43

Key Element 3 Optimization and Optimization Methodologies 59

Key Element 4 Decision Making and Uncertainty Quantification and Management 75

Key Element 5 Verification and Validation  87

Key Element 6 Data, Informatics, and Visualization  94

Key Element 7 Workflows and Collaboration Frameworks  112

Key Element 8 Education and Training  122

Key Element 9 Computational Infrastructure  135

Appendix A Multidisciplinary Engineering Challenges (MECs) 145

Appendix B Case Studies 153

Appendix C Contributors 162

NASA/CR—2018-219771 iii





NASA/CR—2018-219771 1

Over the last few decades, advances 
in high-performance computing, new 
materials characterization methods, 
and, more recently, an emphasis 
on integrated computational 
materials engineering (ICME) and 
additive manufacturing have been 
a catalyst for multiscale modeling 
and simulation-based design of 
materials and systems* in the 
aerospace industry. While these 
advances have driven significant 
progress in the development 
of aerospace components and 
systems, that progress has been 
limited by persistent technology and 
infrastructure challenges that must be 
overcome to realize the full potential 
of integrated materials and systems 
design and simulation modeling 
throughout the supply chain. 
In support of the NASA Aeronautics Research 
Mission Directorate (ARMD) Strategic Implementation 
Plan (SIP), the Transformational Tools and Technology 
(TTT) Project under the Transformative Aeronautics 
Concept Program (TACP) sponsored a study to 
define a potential 25-year future state required 
for integrated, multiscale modeling of materials 
and systems (e.g., load-bearing structures) to 
accelerate the pace and reduce the expense of 
innovation in future aerospace and aeronautical 
systems. Through a series of surveys, workshops, 
and validation exercises, this study called upon 

About This Study

the combined expertise of over 450 contributors 
(250 as anonymous survey respondents) from 
throughout the materials science and engineering 
supply chain, nearly 200 of whom volunteered 
their time to provide input and insight to this study. 
Together, they identified not only the critical technical 
and cultural challenges/gaps facing the multiscale 
modeling community but also nine core technical 
work areas (Key Elements). These Key Elements 
must be matured to build within the aerospace 

sector the collaborative digital environment (i.e., 
tools, resources, practices, and people) necessary 
to efficiently, cost-effectively, and accurately design, 
manufacture, and certify future aerospace systems in 
the year 2040. This work was then reviewed by nine 
expert panels, one per Key Element, with an average 
of 10 non-team-member specialists. Through a series 
of working sessions spanning more than six months, 
the panelists vetted and enhanced the definition, 
state of the art, and all gaps and recommended 
actions within their respective Key Elements to 
ensure completeness and technical accuracy. In 
addition, they worked collectively to determine the 
criticality and priority of all the gaps and actions and 
then voted unanimously to endorse the findings of 
this study, demonstrating the true consensus nature 
of its content and recommendations.

Industry
44%

Academia
35%

Govt  
Agency

14%
National Lab

6%

Professional Society/
Trade Organization

1%

FIGURE 1 VISION 2040 CONTRIBUTORS BY AFFILIATION 
(NEARLY 200 TOTAL WORKSHOP AND PANELIST 
CONTRIBUTORS)

*Systems is used here to broadly represent entities that need to meet specific requirements to achieve a given purpose.  A specific example is that of 
a load-bearing system which is often referred to as a structure whereas a system that stores energy may be identified as a battery.  This also includes 
entities that are multifunctional in nature that manage stress, temperature, electric, magnetic, and radiation fields simultaneously.  In this report 
system will more often be utilized in the context of load-bearing or structural applications.
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The 2040 vision study has been completed in two 
major phases. In the inaugural Phase 1, project 
partners Pratt & Whitney; BlueQuartz Software; 
ESI Group; Rolls-Royce; Boeing; University of 
California, Santa Barbara; and United Technologies 
Research Center worked with workshop and 
survey participants and the aforementioned 
supply-chain stakeholders to develop a community 
consensus vision for the state of integrated, 
multiscale modeling of materials and systems in 
the year 2040, as well as initial recommendations 
for the kinds of research and development (R&D) 
necessary to achieve it. In the subsequent Phase 
2 portion of the study, a team comprising Pratt & 
Whitney, Nexight Group, BlueQuartz Software, ESI 
Group, and NASA technologists worked to build 
a community consensus strategy that aligned 
the vision with current capabilities and future 
technology development and implementation 
goals for aerospace and aeronautical systems. The 
resulting 2040 vision state, critical gaps, actions, 
and major recommendations contained in this report 
do not represent the vision of any one individual 
organization. Rather, this vision reflects a broad 
community consensus built from contributions of 
the nearly 450 volunteer experts from industry, 
government, and academia who contributed their 
expertise during two years of work to produce this 
report (see Appendix C for a more complete list of 
known contributors).

To achieve the collaborative environment (ecosystem)
called for in this 2040 vision, new kinds of data, 
data-sharing, and data analytics tools, advances 
in modeling capabilities, greater interoperability, 
updated collaborative approaches, common 
standards, and a shift in culture and human factors 
are necessary to set the industry on a path to more 
cost-effective discovery, design, and manufacture of 
future aerospace systems. 

Who Should Read This Report
While this 2040 vision for integrated, multiscale 
modeling of materials and systems is critical to 
enabling innovative future aerospace and aeronautical 
systems design, development, and application 
capabilities, this document is intended to provide far-
reaching value for all U.S. agencies pursuing advanced 
engineering and manufacturing. Prioritizing future 
research and development initiatives based on the 
pathways and recommendations defined in this report 
will encourage more rapid and revolutionary advances 
in materials design, enabling a significant increase in 
the United States’ global competitiveness.

In particular, the following stakeholders may benefit 
from this report:

 ■  Funding managers at U.S. agencies pursuing 
advanced engineering and manufacturing 
programs or building infrastructure for the U.S. 
scientific enterprise may find inspiration or direction 
in this report. Such people may find value in 
particular in this report's recommendations and 
recommended actions, which define opportunities 
for R&D projects and programs that will advance 
multiscale modeling and simulation capabilities in 
mission-critical areas. 

 ■ Corporate leaders responsible for materials and 
process development, manufacturing and supply 
chains, and product certification should seek to 
understand how the integrated tools and practices 
contained within the proposed collaboration 
environment could lead to increased efficiency, 
reduced cost, and business growth, and build 
programs to support progress toward the vision. In 
addition to embracing the recommendations and 
actions, leading companies should strengthen their 
internal capabilities to address identified critical 
gaps, as well as adopt and promote the new tools, 
methods, and other technologies called for throughout 
the report. Together with their supply chain partners, 
these companies should also strive to prioritize and 
commercialize the capabilities that will emerge in the 
pursuit of the Vision 2040 end state.  

 ■ Researchers in industry, government, and 
academia who are building new characterization, 
modeling, optimization, and simulation tools 
and technologies; developing materials data 
resources; or otherwise working to advance the 
state of multiscale modeling of materials and 
systems will find value in each Key Element’s 
current state of the art assessments and specific 
recommendations. Researchers may find particular 
value in the critical gaps and recommended 
actions, which highlight scientific areas where 
additional research effort is needed to advance the 
state of the art (see Table 5 and each Key Element 
section in the Findings section of this report).

 ■ Educators training the current and next generation 
of scientists, designers, and engineers should 
review this report to identify ways that curricula 
and training courses should evolve to meet 
tomorrow’s needs. Because workforce and cultural 
issues are at the heart of Vision 2040, the future 
workforce will require training not only in key skill 
sets but also new ways of grasping and embracing 

About This Study
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the multidisciplinary and lifecycle nature of the 
envisioned end state. Therefore, educators will be 
particularly interested in the detailed Education 
and Training Key Element, which outlines a 
series of actions that can help transform current 
curricula, courses, and approaches. 

How to Read the Report
Because of the breadth of detailed information 
included in this report, funding managers, corporate 
leaders, researchers, and educators may find it 
helpful to focus their attention on specific areas.

Vision 2040 Overview
Includes a detailed breakdown of the 2040 vision and 
its end state characteristics, as well as the strategy 
for encouraging shifts in the current paradigm to 
enable more rapid and revolutionary changes within 
the materials design community. Also outlines the 
most critical challenges that must be overcome to 
achieve the envisioned ecosystem, as well as a set of 
recommendations and priority actions that, undertaken, 
can move the broader materials science and engineering 
community along the pathway to 2040. 

 ■ Best for: Funding Managers, Corporate Leaders, 
Researchers, Educators

Detailed Vision 2040 Findings
Offers a detailed definition and analysis of each of 
the nine core work areas identified by the roadmap. 

Each section includes an assessment of the current 
state of the art, a view of the envisioned 2040 end 
state, and comprehensive lists of all identified gaps 
and panel-vetted recommended actions organized 
by cross-cutting streams that illustrate the similarities 
shared by each work area.

 ■ Best for: Researchers, Educators

Ensuring Long-Term Study 
Relevancy
Since the Vision 2040 Roadmap forecasts more than 
20 years into the future, it should be considered 
a living document, periodically re-evaluated and 
revised to remain current and relevant. To ensure 
the continued community consensus that is vital 
to achieving the end state, NASA, with input and 
support from the scientific community, should 
regularly revisit this roadmap as needed to provide 
updates not only within each Key Element work area 
but also with regard to

 ■  Pacing of proposed development based on time, 
difficulty, and expense

 ■  Efficacy of established metrics

 ■ Emergence of disruptive technologies

 ■ Changes in the legal, regulatory, and/or funding 
landscapes.

About This Study
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Vision 2040 Overview 

Integrated, multiscale modeling 
of materials and systems is an 
emerging field that combines new 
and existing methods from a broad 
range of scientific disciplines to 
design and develop new materials, 
components, structures, processes, 
and systems concurrently. 
These methods rely on iterative, 
predictive approaches that integrate 
experiments and simulations to 
elucidate the behavior and response 
mechanisms of materials at various 
length- and time-scales. Multiscale 
modeling approaches rely on 
methods and tools that closely 
align with ICME and the Materials 
Genome Initiative (MGI), which aim 
to reduce the time and cost required 
to move materials from discovery to 
application [1]. 

The Vision for 2040
The future vision targets the use of computational 
materials tools and techniques that, combined 
with structural and systems engineering tools and 
associated “digital tapestry”**, will enable cost-
effective, rapid, and revolutionary design of fit-
for-purpose materials, components, and systems, 
be they structural or functional. Creating an 
adaptive collaboration environment that integrates 
the efficient and cost-effective use of multiscale 
modeling and simulation approaches is essential to 
the design and production of the hardware, tools, 

and other critical aeronautics technologies that will 
advance NASA’s mission goals and the goals of 
other relevant agencies and industry stakeholders. 
Additionally, such an integrated multiscale materials 
and structures collaboration environment has the 
potential to have pervasive impacts on materials and 
systems (structural) engineering and manufacturing 
beyond the aerospace industry.

NASA and its partners envision other engineering 
communities (e.g., automotive, biomedical) also 
benefiting from this new framework. By leveraging 
the foundational elements and customizing them 
for their unique needs, other industries can also 
begin to address their own materials and structures 
challenges more efficiently and accurately. 
Formalizing infrastructure that enables linkage of 
materials models, component design, and structural 
analysis is critical for realizing the 2040 vision [2].

2040 Vision Statement
The project team worked together with key leaders, 
stakeholders, and subject matter experts to define a 
vision for the future of integrated multiscale modeling 
of materials and structures in the year 2040. The 
vision represents decades of combined work in 

2040 Vision 
A cyber-physical-social 
ecosystem that impacts the 
supply chain to accelerate 
model-based concurrent design, 
development, and deployment of 
materials and systems throughout 
the product lifecycle for 
affordable, producible aerospace 
applications.

**Phrase used by Dennis Little, Vice President of Space Systems, Lockheed Martin in a July 2016 Design Engineering article entitled “The Digital 
Thread: A Digital Stitch in Time.”
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Vision 2040 Overview

computational science and engineering, ICME, 
design, structural analysis, and component lifing.

To effectively guide future research and development 
activities, the team and its partners developed an 
expanded summary of the 2040 vision statement that 
articulates a set of ideal functions and features of 
the envisioned cyber-physical-social ecosystem for 
integrated multiscale materials and systems modeling 
and simulation:

 ■ Interdisciplinary frameworks that demonstrate and 
incentivize collaborative research endeavors and 
support new and disparate engineering disciplines 
with transformative collections of skills in materials 
science, data analytics, computational methods, 
and integrated engineering design.

 ■ Modular (interoperable) frameworks designed 
with open interface standards for variable-fidelity 
models at various length scales, streamlined data 
polling and aggregation, validation-ready modeling 
environments, and integrated design of models and 
experiments.

 ■ Agile, flexible computational tool supply chains that 
rapidly adjust to focused project support needs 
and new computational software and hardware 
development.

 ■ High-bandwidth networks, software platforms, 
and commodity computing for widespread, 
simultaneous access to computational resources 
and architectures.

 ■ Educational programs and tracks that explicitly 
leverage industry-relevant technologies to facilitate 
learning, strengthen competencies, and impart 
multidisciplinary capabilities for next-generation 
engineers and materials scientists. 

Equipped with these functions and features, the 
future cyber-physical-social ecosystem will have the 
following impacts on the supply chain:

 ■ Modeling and simulation tools for materials, 
process, design, chemistry, structural analysis, 
physics-based performance, and manufacturing 
will seamlessly interact to predict the co-evolution 
of microstructure and properties throughout the 
entire supply chain from raw material to individual 
component/part to system level.

 ■ Computationally-linked model-based definitions 
of materials, processes, components, and 
manufacturing will exist with associated 
measurements and uncertainties required to 
calibrate, verify, and validate predictions, as well as 
inform critical decision points.

 ■ Concurrent optimization of multidisciplinary and 
ICME-based workflows will include systems-based 
approaches to problem formulation, coupling 
of multiple scales and physics, and use of non- 
deterministic factors throughout the research and 
development continuum, from conceptual materials 
design to intended in-use application to product 
disposal and reuse.

 ■ Capture, analysis, dissemination, feedback, 
and maintenance of all necessary or relevant 
experimental and virtual data and metadata 
corresponding to all spatial and temporal scales 
will happen seamlessly throughout the complete 
lifecycle.

 ■ Interactive digital information/knowledge 
management solutions and integrated security 
access controls for protecting proprietary 
information will be readily accessible to engineers 
who will have the appropriate skills to manage and 
exploit the infrastructure for advanced aerospace 
systems from cradle to cradle.

Characteristics of the 2040 End State
To achieve this ambitious vision, the desired 
ecosystem of 2040 must embody the set of 
characteristics shown in Table 1. These six 
characteristics describe the goals, features, and 
impacts of the envisioned end state. To ensure 
the relevancy of the content in this roadmap, each 
gap and recommended action ties to one or more 
of these characteristics, depending on which 
characteristic it is preventing or supporting. These 
end-state characteristics act as a guide to help steer 
collaborative research and development efforts 
toward the 2040 vision.

Vision 2040: A Transformative 
Step Forward
Achieving Vision 2040 will require a significant, 
sustained investment in research, development, 
demonstration, coordination, and workforce 
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END STATE 
CHARACTERISTIC 

DEFINITION

Accessible

The ecosystem will be tailorable to roles and skill levels so that models, methods, best practices, 
tools, workflows, and information are widely accessible and available to appropriately skilled 
engineers and non-engineers including manufacturers, compliance officers, academic students, 
and supply-chain specialists.

Adaptive

The ecosystem will encompass models that will 1) incorporate physics, chemistry, and 
microstructural information at appropriate scales; 2) adapt to varying levels of empirical or physics-
based fidelity; 3) support nimble zooming-in and zooming-out of scales to examine lower-level 
features or systems-wide attributes of interest; and 4) use highly informative lifecycle (meta)data 
with sufficient pedigree, provenance, and quality to enable re-use of materials and manufacturing 
models in future component and systems designs. The ecosystem will use adaptable software 
packages for leveraging modern high-performance computing (HPC) hardware of 2040, and will 
operate within a flexible and efficient computational paradigm that balances speed and accuracy 
trade-offs to resolve scales and models in the design and analysis of aerospace applications.

Interoperable

Platforms within the ecosystem will be interoperable, and will rely on standards, best practices, 
common formats, and “plug & play” functionalities to seamlessly link scale-specific models, test 
protocols, characterization methods, and all associated Key Elements both within and across 
physical and computational workflows.

Robust

The models in the ecosystem will be more physically, mechanistically, and phenomenologically 
based than those used in today’s engineering design methods, and will rely on robust toolsets, 
instruments, data infrastructures, and network architectures that 1) provide accurate predictions 
(with quantified uncertainty) of behavior over a range of environmental conditions; 2) endure 
disruptions and/or readily respond to variable and uncertain inputs/parameters; 3) yield reliable 
analytical results and design solutions; and 4) improve overall understanding of underlying 
physics, mechanisms, and phenomena.

Traceable

The ecosystem will possess knowledge management systems that enable consistency, traceability, 
and reusability of nomenclature, data, and information throughout the lifecycle including inception, 
design, manufacture, certification, operation, end-of-life, and disposal.

User Friendly

The ecosystem will use platforms with advanced user interfaces to provide intuitive direction, 
role-specific guidance, and task assistance to 1) guide engineers through the concurrent selection 
of models, length scales, and time scales for location-specific materials behavior throughout the 
component; 2) visualize modeling outputs in multiple formats; 3) facilitate the integration of newly 
available models; and 4) ensure compliance throughout the product lifecycle.

TABLE 1  END STATE CHARACTERISTICS

development activities over the next two decades. 
While the resources needed are sizable, the 
transformative advances in the way materials and 
systems are designed, produced, and deployed 
will deliver even greater returns. Ultimately, the 
future ecosystem will strengthen the capabilities 
and competitiveness of U.S. aerospace and 
manufacturing sectors in several ways: 

 ■ Increased reusability of materials data and 
computational design work. One report by Granta 
Design Limited found during an international survey 
that 40% of materials test data was used once 
and then discarded [3]. The 2040 ecosystem will 
avoid such data loss and eliminate the need for 
duplication of effort. Doing so will radically increase 
the efficiency of the U.S. materials innovation 
endeavor by freeing and/or saving millions of 

Vision 2040 Overview
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TABLE 2  DESIGN PARADIGM, TODAY VS. 2040

TODAY 2040

DESIGN OF MATERIALS AND SYSTEMS IS DISCONNECTED. 
There are two distinct design viewpoints: designing systems/
components with materials, and designing the materials 
themselves. The first approach uses material properties 
based on empirical factors or test data to design systems 
and components, while the latter focuses on designing a 
specific material (e.g., microstructure, process) to achieve 
the desired properties and response for a given application. 
Today, scientists and engineers design materials and systems 
separately, rather than treating materials properties as variables 
in a single, concurrent design process.

DESIGN OF MATERIALS AND SYSTEMS IS INTEGRATED. 
Designing with materials and the design of materials will be 
intimately connected, enabling the concurrent design and 
optimization of the material, system, and manufacturing process. 
This approach will allow for model-based materials and process 
definitions to be fully incorporated spatially into system and 
component design and structural analysis [2]. Manufacturability, 
physics behavior, and recycling/disposal will be considered 
factors from the beginning of the design phase.

dollars of resources to obtain actual value-added 
data and simulations instead of redundant work. 

 ■ Federated information management architectures 
and schema that connect disparate and 
geographically decentralized repositories, including 
public and private resources, through interoperable 
data formats, ontologies, standards, and protocols.

 ■ Improved return on investment on engineering 
tools and efforts. Incorrect materials data and 
substandard models of materials and/or systems 
limit the effectiveness of significant investments 
made by U.S. government agencies and businesses 
into computational engineering tools. By 
establishing a collaborative ecosystem that provides 
traceable, pedigreed data; verified, validated 
models; and reliable linkage tools to translate across 
length and time scales, the 2040 ecosystem will 
enable designers throughout the entire supply chain 
to use the best resources available to produce 
improved designs. 

 ■ Integrated “smart” testing that leverage models 
and simulations, and multi-objective optimization 
approaches to help minimize costly, time-
consuming delays from excessive physical testing.

 ■ Collaborative, multidisciplinary environments 
that bridge conventionally siloed experts and design 
stages throughout the product lifecycle, including 
across discipline, organization, and sector (e.g., 
aerospace, automotive). Achieving this level of 
collaboration will require both technical and cultural 
advances called for in this report and can yield 

cross-industry adaptation that increases overall U.S. 
engineering and manufacturing competitiveness. 

 ■ Substantially expanded design space and 
manufacturability using novel multiscale 
optimization approaches, including more 
probabilistic, path-dependent approaches 
to modeling of material properties. Such 
approaches are particularly important to additive 
manufacturing, in which material properties are 
entirely path-dependent.  

 ■ Faster time to market by enabling new designs, 
developed more rapidly and accurately through 
modeling and simulation, to transition easily and 
seamlessly from concept to reality (manufacturing 
and certification).

 ■ A highly skilled U.S. workforce equipped with 
the skills necessary to capture the full value of 
integrated, multiscale materials and structures 
modeling and experimental approaches will ensure 
the United States remains the destination of choice 
for global engineering and manufacturing firms 
adopting leading-edge approaches to materials and 
systems design and innovation.

The 2040 vision describes a new digital paradigm 
for designing, optimizing, and certifying materials, 
systems, and manufacturing processes in a 
concurrent manner. Understanding the envisioned 
design paradigm of 2040 and how it differs from the 
general design landscape of today, as described in 
Table 2 below, is the first step in pursuit of achieving 
the proposed vision.

Vision 2040 Overview
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The Vision Strategy
Scope
The 2040 vision targets a broad range of materials 
for aerospace and aeronautic systems and 
structures. These materials include but are not 
limited to

 ■ Functional materials

 ■ Energy conversion materials

 ■ Advanced metallic materials

 ■ Ceramic matrix composites (CMCs)

 ■ Polymer matrix composites (PMCs)

For each of these materials, there are two 
predominant design viewpoints:

1 Designing with materials (i.e., the structural 
analyst viewpoint): The traditional approach of 
using experimentally measured material properties 
to design and produce systems/components based 
on application-specific requirements.

2 Designing the materials (i.e., the materials 
scientist/engineer viewpoint): Researching and 
discovering materials capabilities—in terms of 
process-structure-property relationships—and 
exploiting them as variables in the design of existing 
or emerging materials with tailored performance 
characteristics that fit spatially defined features and 
requirements for specific applications.

***Reusability is the degree to which both content (experimental or computational data) and systems can be readily exploited in an independent 
fashion, particularly where a new instance is implemented or used. This ensures that the content and system do not rely on instance-specific 
methods and services to function as expected.

†Enlargement of design/material space implicitly demands revolutionary enhancements in manufacturing approaches (e.g., additive manufacturing) to 
ensure producibility of these new materials with these properties.

TODAY 2040

STAGES OF THE PRODUCT DEVELOPMENT LIFECYCLE 
ARE SEGMENTED. The outputs of each stage are handed off 
as inputs to the next (often requiring manual reworking), with 
each stage typically representing a different silo of expertise that 
seldom communicates or collaborates with the others. Product 
development is therefore viewed as a linear process rather than 
an iterative, concurrent one.

STAGES OF THE PRODUCT DEVELOPMENT LIFECYCLE ARE 
SEAMLESSLY JOINED. Multidisciplinary project environments 
will enable greater collaboration and communication among 
experts and organizations at each stage, allowing for a faster, 
more efficient iterative product development process. A unified 
representation of data and knowledge with managed uncertainty 
will be shared throughout the supply chain to facilitate greater 
transparency and understanding.

TOOLS, ONTOLOGIES, AND METHODOLOGIES ARE 
DOMAIN-SPECIFIC. Engineers and technical communities 
frequently describe data, taxonomies, and schemata in ways that 
are specific to their organizations or areas of expertise. This 
often prevents connectivity and interoperability of tools and 
platforms and inhibits fruitful collaboration across disciplines and 
stages of the product development lifecycle.

TOOLS, ONTOLOGIES, AND METHODOLOGIES ARE USABLE 
ACROSS THE COMMUNITY. The use of standards, common 
language, and interoperable tools will ensure accessibility, 
reusability***, and ease of information flow among individuals, 
tools, projects, domains, and organizations.

MATERIALS PROPERTIES ARE BASED ON EMPIRICISM. 
Practitioners use experimental (often costly) tests to generate 
design curves that represent materials properties. Unlike model-
based definitions that provide dynamic outputs, empirical design 
curves are static and unable to concurrently change with the 
design of components or processes. Materials data is often 
generated a decade or more in the past and not rapidly updated. 
As a result, long lead times separate research and design.

MATERIALS PROPERTIES ARE VIRTUALLY DETERMINED. 
Practitioners will use model-based definitions and no longer 
rely solely on empirical testing to determine the properties of 
a material. As a result, materials properties will be dynamic 
outputs that respond to changes in the design process†. 
Characterization will be less expensive and require significantly 
less time, as the need to validate models will drive the 
requirements for generating materials data. Validated models will 
define the "design space" for materials definitions and account 
for uncertainty in all application spaces.

PRODUCT CERTIFICATION RELIES HEAVILY ON PHYSICAL 
TESTING. Industry predominantly uses simulation to support a 
“building-block” approach to product certification that requires 
expensive physical testing at each step.

PRODUCT CERTIFICATION RELIES HEAVILY ON 
SIMULATION. Simulation will be performance-based at the 
system level and integral to certification, supported by physical 
testing only when necessary. Certification will also extend 
to software packages and the associated data for validating 
materials of application-specific components.

Vision 2040 Overview
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Although these viewpoints are not mutually 
exclusive, the 2040 vision strategy aims to 
create a cyber-physical-social ecosystem that 
marries these approaches into one concurrent, 
transformational digital paradigm. The new 
paradigm, in alignment with the goals of ICME 
and the Materials Genome Initiative, provides the 
foundation for industry—and the broad materials 
science and engineering (MSE) community—to 
design and optimize materials, systems, and 
manufacturing processes in a concurrent manner. 
This vision is bold, but the benefits are substantial. 
Creating an ecosystem that supports this new 
concurrent digital paradigm throughout the entire 
supply chain demands a structured, multidisciplinary 
approach to transcend key technical and cultural 
barriers facing the multiscale materials and systems 
modeling community.

The future ecosystem will introduce a variety of 
transformative changes with respect to today’s 
design paradigm. Some of those paradigm shifts 
include

 ■ Unified representations of data and knowledge 
that are interpretable across applications and 
domains, and shared throughout the supply chain 
and product lifecycle

 ■ Federated information management 
architectures and schema that connect disparate 
and geographically decentralized repositories, 
including public and private resources, through 
interoperable data formats, ontologies, standards, 
and protocols

 ■ Collaborative, multidisciplinary environments 
that bridge conventionally siloed experts and 
design stages throughout the product lifecycle

 ■ Dynamic, “fit-for-purpose” materials and 
system design with uncertainty quantification and 
management (UQ+M), manufacturing trade-offs 
analyses, and risk assessments conducted in real 
time

 ■ Substantially expanded design space and 
manufacturability using novel multiscale 
optimization approaches

 ■ Materials and systems designs that readily 
connect across length and time scales

 ■ Integrated “smart” test plans that leverage 
model simulations and multi-objective optimization 
approaches to help minimize costly, time- 
consuming delays from excessive physical testing.

Perhaps the most influential impact permitted by 
the future ecosystem is the incorporation of model-
based definitions into the design and structural 
analyses of systems and components [2]. Model-
based definitions—which specifically apply to 
materials, processes, and components—are a 
major feature of the 2040 vision and the foremost 
representation of industry’s transition into a “digital 
thread” infrastructure of the future. The incorporation 
of model-based definitions is already playing a major 
role in shaping the multiscale modeling landscape by

 ■ Transitioning the broad community from 2D 
static engineering drawings to 3D dynamic, 
computationally-linked models

 ■ Promoting a “digital thread” infrastructure that 
streamlines decision making through seamless 
inter- and intra-organizational communication and 
enhanced [meta]data accessibility and discovery

 ■ Replacing static, empirically-based property 
specification minima and design curves with 
collections of property-specific models—across 
length and time scales—that provide dynamic, 
process-dependent, and spatially-defined outputs 
throughout the system/component design

 ■ Supporting decision making throughout and 
beyond the system/component lifecycle to help 
ensure regulatory and organizational compliance— 
which can involve decades of data for certain 
aerospace applications.

Model-based definitions, which dynamically 
respond to component design changes, are 
digital specifications that link geometric features, 
microstructure, microstructural evolution mechanisms, 
and location-specific properties with manufacturing 
process paths. They integrate material models with 
rapidly evolving codes across design disciplines and 
are a powerful tool for adjusting sensitive variables 
and rapidly optimizing component designs. Maturing 
model-based material, process, and component 
definitions [4,5]—in combination with the Key 
Elements—will be crucial to maturing the 2040 vision 
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as they will enable advanced system architectures 
and innovative designs for greater fuel efficiency, 
higher performance, and lower life cycle costs.

Though not explicitly mentioned, disruptive 
manufacturing technologies—such as additive 
manufacturing (AM)—are not excluded from 
the scope of this study. In fact, the ability to 
manufacture producible designs using advanced 
manufacturing technologies drives the need for the 
2040 ecosystem and encourages the development 
of a new concurrent digital design paradigm. As the 
ecosystem matures, the consequences of disruptive 
technologies are likely to motivate a periodic 
reassessment of the specific role of advanced 
manufacturing methods in reshaping the 2040 vision.

The broad aerospace industry is firmly positioned 
to be the chief beneficiary of the 2040 ecosystem. 
While the space sector contends with extreme costs 
and risks associated with extreme environments, 
weight sensitivities, and the need to enhance 
product quality and safety, the aeronautical sector 
manages component lifecycles that span decades. 
Despite the focus on aerospace applications, the 
design paradigm of the 2040 ecosystem is actually 
applicable to nearly all materials systems and 
industries outside of aerospace. As the multiscale 
materials and systems modeling community 
implements the 2040 vision, other industries will 
inevitably adopt pieces of the multiscale modeling 
framework to accelerate design and analysis, 
collaborate across disciplines, increase the value of 
their work, and secure a competitive advantage.

Key Elements
The Vision 2040 strategy identifies nine 
interdependent Key Element (KE) work domains to 
organize not only the technical and cultural hurdles 
facing the multiscale modeling community but also 
the recommendations for pre-competitive research 
and development efforts to enable the 2040 vision. 
These core technical areas emerged from a broad 
examination of existing tools, techniques, and 
capabilities that are used across stakeholder groups 
for multiscale design and analysis of materials and 
systems. Together, these Key Elements represent 
a community-consensus foundation for fulfilling 
the 2040 vision for the entire supply chain. Table 3 

provides a brief description of the domain of work 
that takes place within each of these Key Elements; 
more robust descriptions are provided in the next 
section of this report. The technologies associated 
with each Key Element are interrelated and will grow 
increasingly interconnected in the future, eventually 
coalescing to form the proposed 2040 end state. 
Figure 2 provides a visual representation of this 
integration from today, when these Key Elements 
are siloed, to 2040, when they will be seamlessly 
integrated into a single, interconnected ecosystem.

Advancing technology within these Key Elements 
will ensure that the researchers and engineers of 
the future will have the training and access to the 
technological infrastructure and tools necessary to 

 ■ Efficiently and accurately predict and simulate 
the performance (e.g., behavior and properties) 
of a design, including innovative designs that 
incorporate new materials and multifunctional 
aspects specifically designed to meet the 
performance requirements

 ■ Establish, implement, and utilize specifically 
tailored experimental and virtual test programs to 
identify, manage, and mitigate risks

 ■ Establish and/or improve the level of confidence in 
a design

 ■ Manage the flows of information among all 
elements (e.g., models, tools, people) required to 
complete, manufacture, and certify an aerospace 
component/system.

While significant progress has been made over the 
past 20 years within industry to enhance and advance 
system/structural design and analysis technologies and 
the associated “digital thread” (e.g., Bell Helicopter’s 
digital product journey‡), connection of this structural 
paradigm viewpoint with that of the design of materials 
paradigm, with all its potential impact, is still lacking and 
will require more work. Consequently, the authors of this 
report purposefully focused more attention on the issues 
surrounding multiscale modeling of materials and the 
infusion of the associated technologies (e.g., model-
based definitions) into the systems design/analysis 
paradigm. As a result, the content of this report is more 
biased toward computational materials science and 
engineering than systems/structural design and analysis. 

‡Jeff Cloud, Chief Engineer and Product Manager AW609 Tiltrotor, Bell Helicopter, Aviation Week Network presentation entitled “Creating the 
Ecosystem Behind Systems: Leveraging a Model-Based Enterprise”, Sept 2016
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TABLE 3  KEY ELEMENT DESCRIPTIONS

KEY ELEMENT

END STATE 
CHARACTERISTICS WITH 
MOST CONNECTIONS TO 
GAPS AND RECOMMENDED 
ACTIONS

Models and Methodologies
All models and methods, at all length scales, whether phenomenological, 
physics-based, data-driven, deterministic, or probabilistic. Also concerned with 
methods and protocols to characterize and validate models.

 

Robust Interoperable Adaptive

Multiscale Measurement and Characterization 
Tools and Methods
Methods, practices, and measurement devices for observing, defining, and 
characterizing material and structural response and underlying causational 
mechanisms as associated with deformation, damage, and failure.

Robust Accessible Interoperable

Optimization and Optimization Methodologies
Computational/numerical approaches and mathematical formalizations for 
optimizing or improving the performance of products, materials, structures, 
manufacturing processes, and design workflows for given applications.

 

Robust Adaptive Accessible

Decision Making and Uncertainty Quantification 
and Management
The investigation, characterization, and management of uncertain or variable inputs 
to quantify prediction confidence, enhance the design process, enable optimal 
decision making for new material and component design, facilitate materials and 
component certification, and enable a response to regulatory requirements.

Traceable Robust Accessible

Verification and Validation
Methods/practices associated with verification of algorithms and validation of 
models. Accessible User Friendly Robust

Data, Informatics, and Visualization
All aspects associated with the electronic capture, analysis, archival, 
maintenance, dissemination, and visualization of material and system data and 
metadata, whether experimental or simulation, at all length scales.

Traceable Accessible User Friendly

Workflows and Collaboration Frameworks
Technologies associated with workflows and collaboration functions, both 
physical (e.g., human, organizational) and computational. Accessible User-Friendly Traceable

Education and Training
All aspects of curriculum development, education, and training opportunities for 
preparing the current, emerging, and future workforce in the capabilities and skills 
needed to realize and utilize the Vision 2040 end state.

Accessible Robust Interoperable

Computational Infrastructure
All computer hardware, firmware, software, networks, platforms, and HPC 
architectures required to support the 2040 vision. Adaptive

 

Accessible Robust
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6. Data, Informatics, & Visualization

7.  Workflows & Collaboration  
Frameworks

8.  Education & Training

9.  Computational Infrastructure

1. Models and Methodologies

2.  Multiscale Measurement &  
Characterization Tools and Methods

3.  Optimization &  
Optimization Methodologies

4.  Decision Making and Uncertainty 
Quantification and Management

5.  Verification & Validation

2040

Figure 2   Each Key Element will need to overcome various gaps and challenges to become fully integrated with the 
others to achieve the vision for 2040. Collaboration and shared purpose across Key Elements will help 
make product design and development faster, more efficient, and more cost-effective in the envisioned 
interconnected environment of 2040.

2017

Linkage with NASA Technology Roadmaps 
and Other Community-Wide Efforts
The collaborative goals of the vision are not just 
applicable to the U.S. aerospace sector but also 
the international communities focused on modeling 
and simulation of materials and systems. Various 
organizations have conducted similar, prior or parallel 
efforts [6] that identified overlapping challenges 
and paths forward that support the findings in this 
report. One such example is the UK SimBest Project 
[7], which set out to evaluate industry best practice 
and research state of the art for the high value-
added manufacturing community to achieve greater 
efficiency savings and competitive advantages. 
The SimBest project surveyed efforts across eight 
technical areas—similar to this roadmap’s nine Key 
Elements—in seven industrial sectors, including 
aerospace. While the project was not as broad in 
scope as the Vision 2040 Roadmap, the gap analysis 
between state-of-the-art capabilities and current 
industry best practices and future needs are in line 
with the findings of this report. The primary difference 

between these prior efforts and this one is that Vision 
2040 calls for the holistic integration of materials, 
structural, and systems design and simulation 
needs within individual companies and, eventually, 
throughout supply chains. Prior studies looked 
primarily at similar technical challenges from either a 
materials or structures/systems perspective. 

The Vision 2040 Roadmap is consistent with NASA’s 
ARMD objectives, which recognizes six Strategic 
Thrusts that affect the aviation industry, the nation, 
and the world [8]:

1 Safe, efficient growth in global operations
Enable the continued development of a 
modernized air transportation system that will 
achieve greater capacity and operational efficiency 
while maintaining or improving current and future 
safety and other performance measures.

2 Innovation in commercial supersonic aircraft
Advance technologies to overcome the major 
environmental and efficiency barriers to market 
innovation in supersonic transport to both advance 

‡Jeff Cloud, Chief Engineer and Product Manager AW609 Tiltrotor, Bell Helicopter, Aviation Week Network presentation entitled “Creating the 
Ecosystem Behind Systems: Leveraging a Model-Based Enterprise”, Sept 2016
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transcontinental and intercontinental transportation 
and maintain U.S. leadership in aviation systems.

3 Ultra-efficient commercial vehicles
Enable future generations of subsonic fixed wing 
and vertical lift commercial aircraft that lessen 
environmental impacts (e.g., noise, harmful 
emissions) while maintaining safety and improving 
operating economics.

4 Transition to alternative propulsion and energy
Enable the use of alternative fuels and foster a 
fundamental shift to innovative aircraft propulsion 
systems that have the potential to produce very 
low levels of carbon emissions relative to the 
energy used.

5 Real-time, system-wide safety assurance
Lead research into technology advances (sensors, 

networking, data mining, prognostics, etc.) to help 
demonstrate the feasibility of integrated, system-
wide safety assurance (i.e., recognize safety 
risks as they develop in real time and implement 
strategies to prevent them from becoming issues).

6 Assured autonomy for aviation transformation
Advance new technologies in automation and 
autonomy for the safe integration of Unmanned 
Aircraft Systems (UAS) into the National Airspace 
System (NAS), verification and validation of 
innovative systems, advanced human-machine 
harmonization, and highly reliable trusted systems.

This report also aligns well with agency roadmaps 
published by NASA’s Office of Chief Technologist 
in 2015. The NASA Technology Roadmaps [9] 

comprise a set of 15 distinct technology areas 
(TAs) that span a wide range of technologies and 

TABLE 4   LINKAGES BETWEEN NASA TECHNOLOGY ROADMAPS AND THE VISION 2040 ROADMAP

Most relevant to the Vision 2040 Roadmap is the content of the roadmaps for TA 11: Modeling, Simulation, Information 
Technology and Processing and TA 12: Materials, Structures, Mechanical Systems and Manufacturing.  Within TA 11 
and 12, the technology areas that are most closely aligned with the content of the Vision 2040 Roadmap, include:

11.1.2 GROUND COMPUTING
Includes exascale supercomputing and data storage, as well as quantum, cognitive, and other types of advanced computing 
for Big Data analysis and high-fidelity physics-based simulations for Earth and space science, as well as aerospace research 
and engineering. 

EXASCALE SIMULATION
Develops physics-based exascale environments that are needed to support the emerging requirements of multifaceted 
mathematics in complex systems, such as algorithms and analysis of methodologies for multi-scale and multi-physics 
simulation. These environments extend simulation performance and capability, the ability to seamlessly generate 
representative meshes, and the ability to numerically validate exascale data from various sources in near-real time.

11.3.5

UNCERTAINTY QUANTIFICATION AND NONDETERMINISTIC SIMULATION METHODS
Identifies, classifies, models, and propagates all forms of uncertainty present in a system to enable understanding and 
management of their impact on system performance, robustness, reliability, and safety.

11.3.6

MULTISCALE, MULTIPHYSICS, AND MULTIFIDELITY SIMULATION
Develops methods needed to represent physical processes at operative length and time scales and unify best-physics 
representations across multiple disciplines. 

11.3.7

VERIFICATION AND VALIDATION
Provides technologies needed to ensure that numerical solutions are correct and properly represent governing physical 
processes. Validation is heavily dependent on technologies for experimentation and measurement found throughout the 
other roadmaps.  

11.3.8

INTELLIGENT DATA UNDERSTANDING
Provides the ability to automatically mine and analyze datasets that are large, noisy, and of varying modalities, including 
discrete, continuous, text, and graphics, and extract or discover information that can be used for further analysis or decision 
making.  

11.4.2

COMPUTATIONALLY DESIGNED MATERIALS
Computational design of materials covers three major areas: prediction of life, design of materials with tailored or 
improved properties, and guided experimental validation. Improved properties and predictable performance will decrease 
developmental and operational costs while improving safety.  

12.1.2

DESIGN AND CERTIFICATION METHODS
Incorporation of model-based materials, manufacturing, and structural design methods with rational testing approaches to 
improve design and certification capabilities such as cost, schedule, and structural integrity.  

12.2.2
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capabilities needed to support the NASA mission 
during the next 20 years. In addition to a discussion 
of each technology, required capability, related 
state-of-the-art and performance goals, context is 
provided by the addition of representative NASA 
missions for which the technology is relevant. Most 
relevant to the Vision 2040 Roadmap is the content 
of the roadmaps for TA 11: Modeling, Simulation, 
Information Technology and Processing and TA 
12: Materials, Structures, Mechanical Systems 
and Manufacturing. Specific links between those 
roadmaps and this one are noted in Table 4.

The Vision 2040 Roadmap is also consistent with 
materials-related elements of an internal NASA 
capabilities assessment developed during 2014 
and 2015. The Materials Capability Leadership 
Team (MCLT), led by the NASA Technical Fellow 
for Materials and his deputies and consisting of 
members from each of the NASA centers, developed 
recommendations related to computational 
materials (CM). One of those recommendations was 
to recognize CM as an important materials sub-
discipline by formulating an agency-funded, focused 
activity to develop CM tools for space exploration, 
given that CM methods will accelerate materials 
design and process development, reduce extent 
of material testing, and lead to physics-based life 
prediction (reliability) methods. Additionally, the 
team recommended that this sub-capability be well 
leveraged by current Department of Energy (DOE), 
Department of Defense (DoD), and National Institute 
of Standards and Technology (NIST) CM efforts.

These agency-wide planning efforts, together with 
numerous planning activities undertaken at NASA field 
centers during the past decade, come from the vision 
of the NASA research staff. In relation, this Vision 2040 
Roadmap provides additional depth and perspective 
from the larger computational materials and structural 
community and offers a perspective on the future of 
the field that is consistent with these previous space-
technology-oriented study recommendations and 
directions.

The Path Forward
Creating the interconnected ecosystem described in 
Vision 2040 is an ambitious goal. Focused, sustained, 

collaborative efforts by government, industry, and 
academia will be required to address the gaps and 
actions identified in this report (described in detail in 
each of the Key Element sections) to achieve this new 
level of interoperability for the aeronautics and space 
community, resulting in faster, more efficient, and more 
cost-effective innovation in materials and designs. 
Only by working collaboratively as a broad scientific 
and engineering community to address the gaps and 
recommended actions described in this report will 
the U.S. aerospace sector capture the full promise 
and benefits of interoperable integrated, multiscale 
modeling of materials and structures. 

Critical Gaps and Recommended Actions
Gaps are the technical and cultural§ challenges across 
industry, government, and academia that prevent the 
realization of the 2040 vision. These gaps—including 
underdeveloped technologies, poor data management 
practices, and workforce skill deficiencies—provide 
a baseline for identifying the technical and cultural 
actions needed to advance each Key Element toward 
the envisioned end state. As part of the study, a total of 
118 gaps across all Key Elements were collected. Each 
expert panel prioritized its associated Key Element's 
gaps through a voting process, with the gap receiving 
the largest number of votes being identified as that Key 
Element’s critical gap. The Vision 2040 Study identifies 
several of the most significant obstacles (or gaps) from 
the Key Elements that stand in the way of the future 
ecosystem (see Table 5).

Each of the study’s Key Elements also generated a 
series of time-based recommended actions (a total of 
180 across all Key Elements) for overcoming the key 
technical and cultural challenges/gaps to achieve the 
2040 end state. These recommendations reflect the 
professional assessments of stakeholders from across 
the multiscale modeling and simulation community 
and encompass activities such as conducting basic 
research, improving existing technologies, and 
implementing community-wide standards. The study 
panelists identified, again through a voting process 
within each Key Element, a subset of high-priority 
recommended actions that will have the greatest 
impact on overcoming key challenges and realizing 
the future ecosystem.

 §Note, history has indicated that cultural gaps/changes are by far the most difficult barriers to address regarding the successful creation and 
implementation of a new paradigm (“culture eats strategy every time”).
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Because the future is difficult to predict, there are 
many potential pathways to overcome the critical 
gaps identified in Table 5, as well as the others 
outlined in detail in each of the Key Element sections 
of this document. The color coding of each Key 
Element further illustrates how multiple actions from 
different Key Elements can be combined to close a 
given gap. These recommended actions should be 
strictly regarded as a possible strategy to address 
the closure of each Key Element’s critical gap while 
approaching the 2040 end state. As the multiscale 
modeling and simulation landscape continues to shift 
due to emerging or disruptive technologies, certain 
gaps may necessitate additional or alternative action 
and approaches not listed in Table 5.

Each recommended action listed in Table 5 has been 
reduced to a short-form summary description for 
brevity; the full description of the recommendations 
for each action may be found by following the 
mapping number for the corresponding Key Element 
recommended action table in the Detailed Vision 
2040 Findings section of the report. For example, 
details for the action labeled (5.3) may be found in the 
third row of the table for Key Element 5, Verification 
and Validation.

Multidisciplinary Engineering Challenges 
(MECs)  
This report identifies a set of multidisciplinary 
engineering challenges (MECs). These MECs are 
problems that have never been holistically solved 
before and require advances in multiple Key Elements 
to fully solve. Focused R&D programs designed to 
address these MECs could deliver distinct, nearer-
term value to the aerospace community by providing 
useful, real-world engineering solutions to important 
challenges while also tangibly advancing several 

Key Elements toward the longer-term Vision 2040. 
Brief descriptions of each proposed MEC are listed 
below; detailed descriptions of each can be found in 
Appendix A.

1 Mitigation of high-temperature environmental 
damage, oxidation, and hot corrosion of high-
temperature turbine engine components

2 Development and optimization of polymeric matrix 
composites for aerospace applications

3 Design and lifing of aerospace components 
with 20 percent weight reduction using location-
specific design methodologies, including tailoring 
of component properties using chemistry or 
microstructural modifications

4 Optimization of structures and materials for 
mitigation of thermomechanical fatigue

5 Design and development of unique materials such 
as shape memory alloys and high-entropy alloys in 
aerostructures and components

6 Automated readaptation and updating of computer 
software suites to infrastructure changes (moving 
away from manual recoding of software to take 
advantage of new computer architectures such as 
GPUs or CPU+GPU)

7 Development and optimization of ceramic matrix 
composites for aeronautic applications 

8 Application of microstructure definition tools and 
methods to enable model-based material and 
probabilistic component definitions

9 Electrification of aircraft propulsion
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KEY 
ELEMENT CRITICAL GAP PRIORITY ACTIONS END STATE 

CHARACTERISTICS

1
Underdevelopment of physics-
based models that link length and 
time scales for relevant material 
systems

Multiscale V&V methods (5.6)

Integration of uncertainty across scales (1.13)

ICME-based fast process models (1.21)

Multiscale models for rare-events/nucleation (1.22)

Information framework for 3D/4D model dev. (2.11)

Models for key uncertainty sources (1.23)

2
Inability to conduct real 
time characterization and 
measurement of structure and 
response at appropriate length 
and time scales

Real-time measurement methods (2.14)

Real-time visualization for experiment modeling (6.15)

Lifecycle data: automated ingestion and storage (6.23)

Protocols: link characterization, test data, models (2.10)

3 Lack of reliable optimization 
methods that bridge across scale

New optimization formulation methods (3.13)

Education modules: data analytics tools/methods (8.2)

Optimization methods with uncertainty incorporated (3.11)

Coupled multiphysics and optimization methods (3.5)

Surrogate models for large scale optimization (4.15)

4
Existing models and software 
codes are not designed to 
compute input sensitivities and 
propagate uncertainties to enable 
UQ 

Benchmark characterization methods (2.3)

Optimization methods with uncertainty incorporated (3.1)

UQ: sensitivity analysis methods (4.19)

Holistic test methods (2.16)

Models for key uncertainty sources (1.23)

5 Lack of guidelines and practitioner 
aids for multiscale/multiphysics 
(e.g., ICME) V&V

Best practices: data collection (5.7)

Multiscale V&V standards and definitions (5.1)

Student resources: industry V&V data (8.8)

V&V training (5.2)

Holistic test methods (2.16)

6
No widely accepted community 
standards or schema for 
materials information storage and 
communication methods

Workflow data modeling: automation, recognition, tagging (7.1)

Training: informatics framework interpretation & integration (6.21)

Best practices: data federation (6.1)

Best practices: defining multidisciplinary ontologies (6.3)

7
Lack of open, community/
industry standards defining inputs/
outputs, needed functionality, data 
quality, model maturity levels, 
etc. for smooth operation in the 
envisioned ecosystem

Access-controlled example workflows (7.9)

Best practices: multi-domain workflows (7.16)

Data quality and model maturity standards (7.21)

Access-controlled adaptive file formats (6.2)

8
Education/training does not bridge 
the gap between “essential” or 
“fundamental” knowledge and 
industrially relevant skills

Education/Training: decision/UQ approaches (4.7)

New computational certifications programs/tracks (8.14)

Workforce transition training for students (8.5)

V&V training (5.2)

Student access to equipment/facilities (8.6)

9
Lack of support, or adequate 
business models, for code 
development and maintenance, 
particularly for software used in 
engineering applications

Modernize existing codes (9.6)

Best practices: multi-domain workflows (7.16)

Web platform for code benchmarking (5.3)

Open-source/alternative code writing tools (8.3)

Early-stage collaborative code development (9.4)

Initiative: support key modeling software tools (9.8)

2018 2020 2025 2030 2035 2040

TIME FRAME

Accessible Adaptive Interoperable Robust Traceable User Friendly

TABLE 5   CRITICAL GAPS AND PROPOSED RECOMMENDED ACTIONS 
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Major Study Recommendations
As previously noted, creating the interconnected ecosystem described in Vision 2040 will require sustained 
efforts by government, industry, and academia, working independently and collaboratively. The following 
overarching recommendations provide high-level suggestions for how to organize such efforts and position the 
United States to make meaningful progress toward the vision. 

RECOMMENDATION #1
Federal agencies and industry 
both should fund sustained 
R&D programs to address 
the critical gaps and actions 
identified in this report. 

By establishing dedicated research programs associated with the 
Key Elements outlined herein, NASA and other federal agencies can 
accelerate closure of the critical gaps necessary to make the 2040 
vision a reality. NASA should also establish public-private consortia and 
convene periodic community workshops associated with these Key 
Elements to address critical needs and assess progress between now 
and 2040. Other funding organizations should also seek to align their 
R&D programs to address the gaps and actions in this report in a manner 
that not only supports their own missions but also furthers the overall 
progress of the United States’ capabilities and competitive advantages.

RECOMMENDATION #2: 
NASA and other relevant 
federal agencies should 
form an interagency 
coordinating body to not 
only affect alignment of 
federal investments but also 
coordinate those federal 
investments with industry 
investments to ensure 
government, industry, and 
academia work in concert to 
achieve the 2040 vision. 

The vision is far too ambitious and important to be addressed in a 
fragmented way; the data, knowledge, and tools developed under 
the effort will have broad value beyond NASA’s mission and the 
aerospace sector. A coordinated federal strategy will be required to 
help mobilize the significant financial, human, and facility resources 
needed to achieve Vision 2040. NASA and other relevant agencies 
should persistently identify and fund development specifically 
in focus areas in which it has unique resources (e.g., expertise, 
experimental/characterization facilities, existing software codes 
and tools) or needs not addressed by another agency’s activities. 
One possible mechanism is for NASA to establish a Model-Based 
Innovation Ecosystem (MBIE) working group to lead, guide, and 
establish the necessary collaborations with key research partners and 
industrial stakeholders within the broader engineering communities to 
champion the recommendations of this Vision 2040 Roadmap. 

RECOMMENDATION #3: 
NASA and other federal 
agencies should engage 
with government, industry, 
and academic stakeholders 
to develop an agreed-upon 
interoperability framework for 
the envisioned ecosystem, with 
emphasis on data-exchange 
mechanisms. 

NASA and other federal agencies (e.g., NIST) should establish 
interagency design standards and protocols to enable federated 
data infrastructure. These standards should explicitly address data 
ontologies and semantics necessary to permit communication across 
materials and system related disciplines and across associated 
length and time scales, as well as robust information management 
infrastructure to link experimental and simulation data at various 
length scales. NASA and NIST can encourage the adoption of this 
framework by developing best practices for data management 
and analytics, and disseminating conforming tools and processes 
throughout the relevant supply chains. Additionally, to extract the 
greatest value from investments in materials research, NASA should 
support the development of tools, for its and its partners’ use, that 
capture and preserve materials data to enhance reproducibility, 
enable reusability, and allow in-depth analysis and visualization. 
Moreover, where possible, NASA and its partners should make 
databases and models widely available and encourage researchers 
to apply artificial intelligence and machine-learning tools to the 
datasets to pursue new insights.

Vision 2040 Overview
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RECOMMENDATION #4: 
NASA should partner with 
other government agencies 
and professional societies to 
identify and pursue benchmark 
materials, systems, and 
applications to focus early 
efforts on addressing critical 
gaps and actions identified in 
this report. 

These benchmarked examples should include all data required for 
using the material within an application as well as for the digital 
thread or footprint for data and tool use (e.g., all time- and length-
scale dependent data and documented tools and models describing 
the processing, structure, property, and performance relations 
for the application). Developing these benchmark examples will 
highlight any new or overlooked data, visualization, integration, and/
or modeling needs, as well as provide needed validation datasets 
for emerging and/or disruptive technologies. Additionally, such an 
approach would allow research teams to avoid duplication of effort, 
build upon others’ work, collaborate in more meaningful ways, 
and directly compare work done across teams, as well as create 
opportunities for advancing both data repository and data mining 
science by encouraging the compilation and comparison of multi-
group data and efforts. 

RECOMMENDATION #5: 
NASA and other government 
agencies (e.g., NIST) should 
lead a coordinated effort 
to produce, maintain, and 
disseminate “gold-standard” 
datasets with which the 
community can develop, 
characterize, verify, validate, 
and certify datasets, models, 
tools, and other aspects of the 
2040 ecosystem. 

NASA should apply its in-house expertise and world-class facilities 
to capture, analyze, maintain, and widely disseminate materials 
and systems information and knowledge throughout government, 
industry, and academia. An even larger, more diverse dataset could 
also be produced by NASA's coordinating with and leveraging the 
additional expertise and facilities of other government laboratories. 
By championing the dissemination of this data, through controlled 
and/or open access venues, NASA and its partners can facilitate 
independent model validation throughout the materials and design 
community. “Gold standard” datasets of material properties can 
also be highly valuable for advancing manufacturing process 
simulation capabilities. Plus, as the “gold standard” datasets grow, 
researchers can adapt and apply artificial intelligence (AI)/machine 
learning (ML) approaches to find new insights into materials and 
structural design based on the open data. Finally, significant 
portions of these datasets should be held in reserve as “blind” 
tests to enable accurate and authentic assessment of models and 
their uncertainties.  

RECOMMENDATION #6: 
NASA and its partners 
should lead demonstration 
projects that document and 
publicize the broad benefits 
(e.g., cost savings) of model-
based concurrent design, 
development, and deployment 
of materials and systems. 

Initially, NASA should work with partners to document existing, 
relevant case studies that demonstrate cost savings or other 
advantages, even if such case studies only incorporate a subset 
of the envisioned ecosystem (e.g., only multiscale material 
modeling without structural simulation). The primary purpose of 
the demonstration projects should be to document and publicize 
the benefits of using specific elements of the ecosystem for 
product design and development, rather than simply advancing 
the toolsets. Therefore, the projects should not involve restricted 
(e.g., International Traffic in Arms Regulations [ITAR]-controlled) 
information; the MECs may offer potential topics because they 
target high-interest challenges that require an innovative approach 
to previously unsolved problems. Additionally, these projects would 
be valuable for educators for identifying and showcasing tools and 
processes for conducting integrated materials and system design.

Vision 2040 Overview
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RECOMMENDATION #7: 
NASA and other relevant 
federal agencies (i.e., National 
Science Foundation [NSF], 
DOE, DoD, and others) 
should increase fundamental 
research efforts to develop, 
characterize, and validate 
improved physics-based and 
data-driven materials models 
and implementation of model-
based material and process 
definitions.

Specifically, these efforts should seek to

 ■ Improve constitutive models (particularly those associated with 
nonlinear phenomenon), including first principles calculations and 
molecular dynamics/Monte Carlo atomistic modeling with density 
functional theory-based interatomic potentials.

 ■ Improve measurement techniques at small size scales (e.g., in 
situ techniques for composite materials) to improve the ability to 
characterize and validate constitutive models, particularly under 
multiaxial loading scenarios. 

 ■ Use the improved measurement techniques to perform exploratory, 
characterization, and validation tests and provide uncertainty 
quantification (UQ) results for the improved constitutive models 
with levels of precision and accuracy not previously possible.

RECOMMENDATION #8 
NASA and other federal 
agencies should work with 
industry, academia, and 
professional societies to 
update education and training 
programs to reflect the skills 
needed to achieve the 2040 
vision and develop a highly 
skilled future materials science 
and system engineering 
workforce and implementation 
of model-based material and 
process definitions. 

Specifically,

 ■ NASA should partner with all federal agencies engaged with 
the materials science engineering value stream to ensure 
expanded educational opportunities and sustained educational 
effectiveness within multiscale materials and structures modeling 
and simulation for engineering design and manufacturing (e.g., 
establish Collaboration Institutes of Education and Training [CIETs], 
encompassing different areas of multiscale modeling, to offer degree 
and/or certificate programs in computational materials and system 
engineering). 

 ■ NASA, in collaboration with the deans of leading colleges of 
engineering, should incentivize faculty to incorporate additional 
mathematics and statistics requirements into materials science 
and engineering undergraduate engineering curricula to better 
train graduates to apply multiscale modeling-based approaches to 
materials and systems design. 

 ■ NASA and other federal agencies should initiate a comprehensive 
campaign promoting engineering careers in computational materials 
science, simulation, and design, including fellowship and internship 
opportunities, as well as the development of the necessary 
educational and research infrastructure.

RECOMMENDATION #9 
NASA, with support from 
academia and professional 
societies, should stimulate 
widespread cultural change 
by encouraging researchers to 
meaningfully share and work 
collaboratively on the data and 
models needed to increase 
progress toward the 2040 
vision. 

NASA should strive to foster a multidisciplinary as well as 
transformative digital culture that integrates computational science 
and engineering, computer science and software engineering, and 
materials and manufacturing science. Simultaneously, universities 
should train the new workforce generation emphasizing this 
collaborative and digital culture. NASA should begin by establishing 
clear incentives for the community to share and contribute data and 
models to public and/or public/private databases. Federal agencies 
should also seek ways to encourage long-term thinking in the 
development and maintenance of testing and analysis infrastructure 
within government labs. Lastly, researchers should be afforded 
easier access to existing resources, support for learning to use those 
resources, and incentives for investing the time needed to do so.

Vision 2040 Overview
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RECOMMENDATION #10 
NASA and other federal 
agencies should support the 
growth of small businesses 
working in ICME to strengthen 
U.S. manufacturing 
competitiveness and establish 
U.S. leadership in this 
emerging field. 

NASA should provide resources to ensure small businesses remain 
informed about the Vision 2040 effort and associated funding 
opportunities, including increased use of the Small Business 
Innovative Research (SBIR) and Small Business Technology Transfer 
(STTR) programs. NASA should also monitor innovative companies 
to help build connections between emerging capabilities of ICME-
based businesses and critical gaps or actions called for in this report. 
NASA should support small businesses seeking to engage in the 
collaborative ecosystem by emphasizing the need for user-friendly 
platforms with easy data-sharing and collaboration capabilities. To 
help guide this effort, NASA should work with other federal agencies 
to identify and clarify specific or potential issues relating to export 
control requirements or related issues. Finally, federal agencies with 
high-performance computing resources should facilitate access 
to those resources by small businesses investigating problems of 
interest to the Vision 2040 effort.

RECOMMENDATION #11 
NASA should engage with 
academia and industry 
stakeholders to regularly 
update this study and/or 
conduct follow-up studies 
to ensure the full realization 
of a cyber-physical-social 
ecosystem with a knowledge-
based platform that is usable 
by human designers. 

Vision 2040 calls for the integration of computational materials 
engineering and systems/structural design. Given the collective 
expertise of the stakeholders engaged in the study, this report 
addresses computational materials engineering extensively but 
requires additional work to further address the systems/structural 
design and analysis side of the envisioned ecosystem. By regularly 
revisiting the vision study and seeking input from the broad 
community, NASA can ensure the continued relevancy and value 
of this study. It is also important to acknowledge that the path 
forward must continually adapt based on the requirements for such 
a knowledge-based platform as identified by materials scientists, 
design practitioners, researchers, and computer scientists.

Vision 2040 Overview
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Key Elements
The Vision 2040 strategy identifies 
nine interdependent Key Element 
work domains to organize the 
technical and cultural hurdles 
facing the multiscale modeling and 
simulation community, as well as 
recommendations for pre-competitive 
research and development efforts 
to enable the 2040 vision. These 
core technical areas emerged from 
a broad examination of existing 
tools, techniques, and capabilities 
used across stakeholder groups for 
multiscale design and analysis of 
materials and systems. Together, 
these Key Elements represent a 
community-consensus foundation for 
fulfilling the 2040 vision for the entire 
supply chain.

1  Models and Methodologies

2  Multiscale Measurement and Characterization 

Tools and Methods

3  Optimization and Optimization Methodologies

4  Decision Making and Uncertainty Quantification 

and Management

5  Verification and Validation

6  Data, Informatics, and Visualization

7  Workflows and Collaboration Frameworks

8  Education and Training

9  Computational Infrastructure

Contributors to the 2040 vision established 
detailed descriptions of the Key Elements to 
define the boundaries of the efforts required to 
endorse the future ecosystem. The Key Elements’ 
nine expert review panels comprised a range of 
stakeholder groups* and backgrounds** to capture 
the multifaceted nature of these broad technical 
areas—each providing a unique perspective on how 
the Key Elements will bring the broader community 
closer to the 2040 end state. Since the Key Elements 
are not mutually exclusive and may be classified in 
different ways, their functions will naturally overlap. 
Nevertheless, all nine Key Elements will coalesce to 
form the proposed 2040 end state.

Detailed Vision 2040 Findings

List of roles and 
functions within 
the scope of the 
Key Element

Definition
Current State 

of the Art
2040 End 

State
Gaps Recommended 

Actions

Relationships 
with Other 

Key Elements

Detailed summary 
of current 
technologies 
associated with 
the Key Element 

Description of 
the capabilities 
required to 
achieve the 
envisioned design 
and simulation 
landscape of 2040

Technical and 
cultural challenges 
preventing the 
realization of the 
2040 vision

Prioritized set of 
recommended 
actions with 
estimated 
funding levels 
and timelines to 
completion

The two-way 
relationships 
between the 
Key Element in 
question and the 
other eight Key 
Elements

FIGURE 3   THE SIX SECTIONS OF EACH KEY ELEMENT

1 2 3 4 5 6
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*academia, government, and industry

**modelers; experimentalists; specialized practitioners; researchers; design, materials, and structural engineers

Detailed Vision 
2040 Findings

Each of the nine Key Elements is divided into six 
sections, described in Figure 3. 

To help the Key Elements coalesce into the 2040 
end state, the roadmap defines 10 common themes, 
or crosscutting streams, to help organize the gaps 
and recommended actions. These streams aim to 
show similarities among the challenges facing the 
various disciplines within the multiscale modeling 
and simulation community and the actions needed to 
overcome them:

1 Data Management: The Data Management 
stream deals with the capture, storage, 
description, and tracking of materials data and 
metadata, including data pedigree, provenance, 
ontologies, and collection modalities. 

2 Data Analytics and Visualization: The Data 
Analytics and Visualization stream addresses the 
analysis and representation of data, including data 
mining and manipulation, artificial intelligence, 
machine learning, and uncertainty quantification. 

3 Information Sharing and Reusability: The 
Information Sharing and Reusability stream 
focuses on the inter- and intra-organizational 
flow of information along the supply chain and 
throughout the product development lifecycle. 
It also encompasses information security (e.g., 
intellectual property [IP] protection, export 
controls) and availability (e.g., public databases, 
open source codes). The term "information" 
extends beyond data and metadata to 
include codes, methods, tools, assumptions, 
uncertainties, and any other shareable knowledge. 

4 Multidisciplinary Collaboration: The 
Multidisciplinary Collaboration stream covers 
gaps and recommended actions that explicitly 
require the convening of experts, stakeholders, 
and domains (i.e., industry, government, and 
academia). Collaboration can take the form 
of consortia, workshops, or communication 
pathways and platforms among disparate groups 
that design, develop, or deploy aerospace 
materials and systems.

5 Institutional Paradigms: The Institutional 
Paradigms stream includes gaps and 

recommended actions that deal with traditional 
modes of working and operating in industry, 
academia, and government. This primarily 
includes challenges related to cultural and 
organizational inertia, and the potential strategies 
to overcome them. In general, institutions are 
slow-moving systems that resist change—from 
companies and universities to the people that 
work within them.

6 Benchmarking and Business Case: The 
Benchmarking and Business Case stream 
focuses on assessing and demonstrating current 
or emerging technologies and approaches. 
Assessments—such as validation, feasibility 
determination, or economic analysis—involve 
using standards to evaluate results, establishing 
benchmarks or example problems, and examining 
return on investment (ROI) via feasibility 
determination or economic analysis. 

7 Scalability and Computational Efficiency: 
The Scalability and Computational Efficiency 
encompasses aspects of the ecosystem that 
address computational speed, complexity, 
and demand. This includes interfacing with 
HPC architectures, utilizing surrogate models, 
and developing more efficient or balanced 
computational methods.

8 Linkage and Integration: The Linkage 
and Integration stream covers gaps and 
recommended actions that deal with explicit 
linkages of models, methods, tools, instruments, 
databases, and spatiotemporal scales. Topics 
include compatibility, interoperability, and data 
fusion. Although similar to the Information Sharing 
and Reusability stream, Linkage and Integration 
focuses on non-human integration.

9 Input/Output Confidence and Reliability: The 
Input/Output Confidence and Reliability stream 
addresses the accuracy and robustness of 
inputs and outputs. This includes understanding, 
quantifying, or elucidating variables, constraints, 
uncertainties, and outputs from simulations, tools, 
and knowledge management systems.

10 Behavior of Materials and Structures: The 
Behavior of Materials and Structures stream 
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focuses on enhancing scientific understanding 
of the properties and physics associated 
with materials, structures, and processes. 
This includes materials characterization, 
response modeling, behavior mechanisms, and 
manufacturing environments.

Although the recommended actions are categorized 
into crosscutting streams, they are not limited 
to closing single gaps within the same stream. 

Detailed Vision 
2040 Findings

Pursuing a recommended action represents a 
step toward realizing the 2040 end state and may 
address multiple gaps, across both streams and 
Key Elements.  The gaps and actions presented in 
the tables in each of the Key Element sections that 
follow are each tied to the six characteristics of the 
2040 end state (accessible, adaptive, interoperable, 
robust, traceable, and user-friendly) to highlight which 
attribute(s) of the envisioned 2040 ecosystem they 
are either preventing or enabling.
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Key Element 1: 

Models and Methodologies

Deterministic and probabilistic 
mathematical models and 
numerical algorithms for 
elucidating, predicting, and/
or representing the physics 
and range of expected 
behavior (chemical, electrical, 
thermomechanical, environmental, 
etc.) of materials at specific length 
and time scales, and across 
scales for various material and 
aerospace applications

Establishing physics-based and/
or data-driven mathematical 
relationships that define process-
structure-property-performance 
relationships of materials, thereby 
permitting the assessment of 
process-related materials reliability 
issues while effectively reducing 
trial and error approaches in 
materials design

Methods and protocols to identify, 
characterize, and validate model 
input/output parameters, both 
single and multiscale, relative to 
experimental data

1 2 3

Definition
This Key Element encompasses the following:

Current State of the Art
Role
Models permit studying the usage of materials and 
systems (e.g., structures) beyond those that are 
readily accessible through experiments. Models 
provide fully revealed results, yet approximate in-
reality responses; experimentally measured responses 
represent full reality (environmental states, material 
conditions, etc.), yet provide only partially revealed 
results since only a subset of the full dimensional 
space is typically available. In today’s design 
paradigm, this Key Element plays a central role 
in mathematically (i.e., using constitutive models) 
representing the behavior of materials in all system-
level computer simulations—the majority of these 
being performed using the finite element method—
regardless of organization.

When designing a given system, macro-level, 
continuum models are traditionally used to represent 
material behavior, whereas when designing “fit-

for-purpose” materials or desiring to understand 
why a material behaves the way it does, lower 
length scale models—either continuum based (e.g., 
micromechanics), mesoscale or atomistic scale 
models—are used depending upon the material 
under investigation. Hierarchical materials structure 
information tied to models is not an explicit part of 
today’s design and manufacturing paradigm. Thus, 
materials modeling is viewed fundamentally as an 
endeavor to develop constitutive relationships (e.g., a 
mathematical description describing the relationship 
between stress and strain, or applied fields and 
response fields) through a detailed understanding 
of the microstructural features that drive material 
responses, which then requires the observation and 
modeling of the material at each of the relevant scales 
of interest. A key purpose of integrated and multiscale 
materials and structures modeling—which is almost 
exclusively performed in research organizations—is 
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to perform many times more instantiations of possible 
engineering designs than can be physically realized. 
Yet, within the current design paradigm, only isolated 
modeling and simulation methods are used to gain 
fundamental understanding, while empirical testing 
is used to evaluate material behavior and to deduce 
performance for both manufacturing and engineering 
design. There are few established standards taught 
across the spectrum.

Summary
Today’s multiscale modeling paradigm develops 
single-scale methods and then seeks to pass 
parameters between scales, usually in a “bottom-up” 

(i.e., small scales to larger scales) fashion. Materials 
process engineers rely on finite element method 
(FEM)-based simulations tools that contain models 
for heat transfer, mechanics, and selected nonlinear 
materials behavior such as composites cure kinetics 
and properties, metal solidification, and finite-strain 
metal plasticity. Current development processes 
for such software incorporate lower scale physics 
based on semi-empirical understanding of materials 
and/or extrapolations based on large experimental 
datasets. These physics descriptions are typically 
parameterized across scales to run efficiently in 
the model or toolset. Selected parameters can 
be obtained using ab initio methods validated 
by experiments when available, while others are 
obtained from specialized experiments and materials 
characterization. The “computational supply chain” 
for the few models currently available has been 
synopsized for the multiscale modeling context in a 
recent TMS report [1]. The modeling and simulation 
supply chain supports well-developed simulation 
codes under various brand names for process 
modeling and macroscale structures analysis, 
including selected established and emerging tools for 
materials chemistry, alloy composition and kinetics.

Figure 1.1(a) depicts multiscale materials modeling 
from the materials physics, chemistry, mechanics, 
and materials engineering communities. This 
notional SoA view indicates single-scale simulation 
methods and implies data or information passing 
between scales, usually from the bottom up. The 
most advanced treatments consider methods for 
adaptively passing information between scales or for 
operating simulations at different scales by region of 
the domain that adapt in real time (e.g., the quasi-
continuum method [2]). Additionally, Figure 1.1(b) 
depicts modeling method length scales as a function 
of the time scale that they access. The depictions 
are approximate and dependent upon the specific 
materials being studied and the specific simulation 
degrees of freedom. 

Finite element, finite difference, and computational 
fluid dynamics methods are mainly macroscopic 
continuum methods, although they have many niche 
applications at other scales. The methods shown 
as gray box with dashed borders are methods 
for equilibrium conditions or mean-field methods 
that offer no spatially resolved information. They 

FIGURE 1.1   TODAY’S MULTISCALE MODELING 
PARADIGM (A) AND COMMON MODELING 
METHODS TO ADDRESS THESE REGIMES 
OF INTEREST (B)

(a)

(b)

Key Element 1

QM = quantum mechanics (e.g., density functional theory, 
quantum chemistry); MD = molecular dynamics and 
accelerated molecular dynamics; KMC = kinetic Monte 
Carlo; DDD = discrete dislocation dynamics; CP-FEM = 
crystal plasticity finite element method (includes related 
spectral methods); ATAT = alloy theoretic tool kit; and 
CALPHAD = calculation of phase diagrams
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are intended to provide equilibrium information or 
average behavior. ATAT and CALPHAD methods are 
both examples of equilibrium methods. The reader 
is referred to the TMS multiscale modeling report for 
more extended descriptions of these methods [1].

The following sections discuss a more detailed review 
of models and methods applicable to the atomistic 
scale, mesoscale, and continuum scale.

ATOMISTIC SCALE 

Electronic Structure, Density Functional Theory (DFT)
The most accurate and complete representations 
of the chemistry and molecular-level aspects of 
materials come from electronic structure methods 
where the atomic ions and electrons are explicitly 
included in the calculations [3]. Many of these 
methods, which have their origins in computational 
chemistry, are now routinely applied to materials. 
Electronic structure methods are required to evaluate 
material properties which depend on electronic 
behavior (e.g., band gaps, ionization potentials, 
optical spectra, electronic conductivity). In addition, 
these methods provide a high-accuracy description 
of ionic behavior, permitting the determination of 
crystal lattice properties such as lattice constants, 
phonon spectra, and elastic constants. These 
approaches, often called “first principles” or “ab 
initio” methods, represent approximate solutions 
to the quantum Schrödinger equation. They can 
be applied to arbitrary material compositions (i.e., 
they are “transferable”) without the need for further 
inputs or fitting parameters. However, this high 
degree of accuracy and generality creates a high 
computational expense resulting from including the 
electronic degrees of freedom in the problem; each 
electronic structure calculation computes the density 
of electrons throughout the material.

The most widely used ab initio method is Density 
Functional Theory (DFT), which expresses physical 
quantities, such as energy, as an approximate 
functional of the electron density function. 
This has proven to be a remarkably robust and 
computationally efficient approximation to the 
full quantum equations and has opened the door 
to treating significantly more complex systems 
than were able to be treated before. In addition to 
developments in the method, high performance 
software packages (e.g., VASP, ab initio, Quantum 
Expresso [4]) have matured significantly, making 
DFT a standard, widely used, and widely accessible 
tool for computational materials modeling. While 

early DFT studies were limited to a handful of atoms, 
current DFT computations can be performed on 
hundreds of atoms. Innovations in linear scaling 
methods [5] and other advanced approaches are 
expected to push that boundary into the thousands 
of atoms and higher in the near future. DFT methods 
need improved accuracy for certain classes of 
materials such as wide-band gap materials and 
highly correlated electron systems.   

Another area which has begun to benefit from ab 
initio methods is computational thermodynamics [6]. 
The ability to compute accurate phase diagrams and 
other equilibrium properties (precipitates, diffusion, 
etc.) is critical for material design and processing. 
CALPHAD is a widely used phenomenological 
model that can generate phase diagram relatively 
quickly; however, CALPHAD requires large, carefully 
constructed, and experimentally derived input 
databases, and has a mixed record of predictive 
ability [7]. By definition, CALPHAD methods do 
not have established experimental databases. 
More recently, ab initio-based computations of free 
energies that use a combination of DFT, quasi-
harmonic approximations, and cluster expansions 
have enabled first-principles, parameter-free 
evaluation of phase diagrams at 0 K (zero Kelvin) 
or ground state. This approach has been most 
successful when used for alloy development 
and design. The computational expense of such 
approaches has limited the complexity of possible 
alloys considered (e.g., the number of components). 
However, these limitations can be addressed through 
innovations in methods, computer power, software, 
and other areas. Further methodological work is 
needed for this approach to capture fully anharmonic 
effects and to treat mechanically unstable phases. 
A related approach with dramatically lower 
computational cost uses CALPHAD in conjunction 
with first principles methods [8]. Specifically, ab initio 
methods can be used to generate input parameters 
for CALPHAD, relaxing the necessity to obtain such 
parameters from experiments. This dual approach 
combines benefits of both methods: improved 
predictive ability with low computational expense.

Classical Molecular Dynamics and Monte Carlo
For applications that focus on the collective behavior 
of the atomic ions rather than the electrons, simulation 
methods that rely on classical mechanics using 
empirical interatomic potential energy function, rather 
than the solution of the Schrödinger equation, have 

Key Element 1



NASA/CR—2018-219771 27

proven very successful in describing the behavior of 
large systems of up to trillions of atoms in a crystal 
[9], and for a time period of up to 1 millisecond in 
protein folding simulations [10]. Trading the accuracy 
of the quantum mechanics for the simplicity of 
the classical mechanics at the level of atoms and 
molecules provides increased computational 
efficiency and enables massive parallelism of the 
calculations, solving problems in a variety of areas 
(e.g., thermodynamics of solids and liquids, transport 
properties, phase transitions, mechanical and 
thermomechanical properties at microscale, protein 
folding, self-assembly). Two major classes of classical 
atomistic methods are the molecular dynamics (MD) 
[11] and Monte Carlo (MC) methods [12].

Within MD, atomic-scale trajectories are evolved 
by solving the classical, dynamical equations of 
motion (i.e., Newton’s Second Law) for the atomic 
“particle.” In addition to accurately describing the 
kinetics of system evolution and non-equilibrium 
dynamics, an extensive theoretical formalism derived 
from statistical mechanics permits determination 
of a detailed set of properties from the particle 
trajectories, including thermodynamics, transport 
coefficients, mechanical response, thermal 
conductivity, and electrochemical processes.

The different types of MD approaches are 
distinguished by their definition of a particle and 
how the forces are computed. In classical MD, 
for instance, the particle is typically an individual 
atom and the corresponding interatomic forces 
and energies are obtained from an interatomic 
potential energy function which must be derived and/
or fit to a database of properties either measured 
experimentally or computed with more fundamental 
methods such as DFT. Conceptually, the classical 
interatomic potential can be considered as being 
derived from an ab initio energy function where the 
electronic degrees of freedom have been integrated 
out. The result is a theory of atomic nuclei interacting 
via an energy function that captures both effective 
electronic (e.g., chemical bonding) as well as direct 
inter-atomic (i.e., nuclear) interactions. In reality, 
interatomic potential energy functions are rarely 
derived from first principles. Rather, they are more 
often postulated based on intuition and/or experience.

Instead of following atomic trajectories, MC methods 
randomly sample the configurational space of the 
system using the classical Boltzmann probability 
distribution of the system states with respect to 
the system energy. In the process of sampling, 
statistical quantities such as density of states and 
transition probabilities are used to directly determine 
the thermodynamics behavior of the system. MC 
methods are helpful in cases where the system 
dynamics are very slow, such as in solid solutions or 
dense entangled polymer networks where following 
atomic trajectories may take a prohibitively long 
time to explore a statistically meaningful part of the 
configurational space. Modern parallel computers 
allow simulation of multiple replicas of a system for 
much faster statistical sampling. Another benefit 
of MC methods is that they rely on only energy 
calculations, not interatomic forces, which helps 
simplify the computations.

Selection and derivation of appropriate interatomic 
potentials is a major challenge for MD/MC simulations. 
Potential energy functions must be parameterized for 
every chemical species being simulated and for all 
possible inter-chemical interactions for any system 
of interest. Such parameterizations, in general, do 
not exist for arbitrary chemical compositions, and are 
only available for a relatively small class of chemical 
elements. Simulations typically involve no more than 
two to three chemical species at a time, and there is a 
hierarchy of possible functional forms for interatomic 
potentials of varying accuracy, complexity, and 
computational expense. To date, parameterization of 
specific potentials has not been standardized, which has 
often resulted in a large number of different parameters 
sets for the same system and the same potential form. 
Furthermore, different parameterizations may be fit 
to different physical properties and therefore have 
differing levels of fidelity depending on the system and 
properties being simulated. A few “general purpose” 
potentials have been developed for organic systems 
(e.g., CHARM, OPLS), but these potentials often fail for 
applications beyond those originally envisioned. One 
important example is organic electrolytes for batteries 
where polarization effects from the ionic salts are not 
easily accommodated. Clearly, an application-specific, 
efficient, and systematic methodology is needed to 
generate appropriate potentials. MD/MC methods have 
proven most useful for parametric studies to investigate 
mechanisms in models of materials systems.
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One recent development in this field is the 
construction of classical potentials (or force fields) 
by multi-dimensional interpolation between the 
energies in a massive DFT database (usually tens of 
thousands of atomic configurations). This is achieved 
by applying machine-learning (ML) approaches 
such as artificial neural networks [13]. The ML 
potentials are significantly slower than the traditional 
potentials, but they are orders of magnitude faster 
than straight DFT calculations. For simulations within 
the configurational domain of the training dataset, 
the accuracy of ML potentials can approach that 
of DFT calculations [14]. However, for new atomic 
configurations outside the training dataset, the 
accuracy of energy predictions is usually very poor. 
In the future, the accuracy of the extrapolation could 
be improved by combining the purely mathematical 
ML potentials with physics-based models of atomic 
bonding, such as bond-order potentials. 

In addition to limitation on fidelity and chemical 
generality, and in spite of the significant progress in 
the computational efficiency achieved in the classical 
atomistic simulation, there is a need to be able to 
simulate experimentally relevant length and time 
scales. Impressive progress has been made recently 
in pushing both of these boundaries—accelerated 
MD methods, for example, have made longer time 
scales more accessible for selected systems [15]. 
However, considerable work remains to push these 
limits further and increase their applicability.

Ab Initio Molecular Dynamics; Reactive Force Fields
The surplus of possible potentials used in classical 
MD simulations can be circumvented to some 
extent by combining different ab initio methods (e.g., 
DFT with MD simulations, or ab initio molecular 
dynamics [AIMD]). In this approach, DFT supplies 
high accuracy interatomic forces that can be used 
for dynamical simulations without the need for an 
interatomic potential. The result is an accurate, 
highly transferable approach for materials of 
arbitrary chemical composition, though this incurs 
a high computational expense. In addition, current 
AIMD simulations are limited to hundreds of atoms, 
whereas classical MD has been used for systems 
of up to a billion atoms. Increases in computer 
power and innovations in software efficiency (e.g., 
scalability, parallelization) will continue to increase 
the number atoms that can be simulated with AIMD. 
However, classical, well-parameterized potentials will 
still be needed to consider increasingly complex and 
increasingly realistic systems of interest.

Classical MD simulations permit interatomic 
interactions (e.g., chemical bonds) that respond to 
their environment; however, they are limited in that 
bonds cannot be created or broken as occurs in 
chemically reacting systems. AIMD, on the contrary, 
allows for that reactive flexibility (though at high 
computational expense). Reactive force fields offer one 
approach to include bond breaking/formation events 
in classical simulations. Perhaps the most widely used 
reactive force field currently is ReaxFF (“reactive force 
field”), although others are under development [16].

Coarse Grained Molecular Dynamics; Dissipative 
Particle Dynamics
Another class of MD methods that attempt to 
access larger system sizes and longer time scales 
are “coarse grained” models [17]. In this class of 
methods, the notion of a particle is generalized to 
represent a collection of atoms. These methods can 
include united atom models where a generalized atom 
represents a specific chemical group (e.g., a –CH2, 
CH3, aromatic ring) for organic systems. Further 
abstractions, for example, include bead-spring 
models for polymers. With these models, the polymer 
is represented by a chain of single beads connected 
by relatively simple (e.g., harmonic) interactions. In 
addition to the advantage of computational efficiency, 
this class of models permits complicated systems to 
be decoupled and to have their individual attributes 
studied individually. For example, polymer material 
complexity comes from the combination of subtle 
chemical interactions and complex architectural 
effects due to polymer chain entanglement or network 
structure. The chemical and architectural effects can 
be decoupled by using a bead-spring approach to 
study different architecture in one set of simulations, 
while relying on an “all-atom” classical MD to consider 
more detailed chemical interactions.

An extreme case of coarse graining is Dissipative 
Particle Dynamics (DPD) [18]. In DPD, a particle can 
represent clusters ranging from several atoms up to 
hundreds of atoms. This class of methods extends 
particle dynamics into the mesoscale regime and 
provides a link between fully atomistic methods and 
quasi-continuum approaches for viscoelastic solids, 
fluids, and others. DPD is also highly advantageous 
for its faster dynamics due to the soft potential 
functions used. This permits the DPD beads to 
overlap and quickly move from one state to the other 
because they can partially pass through the other 
DPD beads in the systems.
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MESOSCALE

Computational materials science at the mesoscale 
enables description of phenomena that cannot be 
accurately or efficiently simulated using either continuum 
or atomistic approaches. Unlike continuum descriptions 
where there is no material length scale, mesoscale 
descriptions typically include a length scale often 
related to dominant physical features within the material. 
Depending on the phenomena being considered, these 
length scales are typically on the order of a fraction of a 
micron to about a hundred microns.

An example of the differences between representations 
of a single class of phenomena is metal plasticity. 
Variants of plasticity theory include discrete dislocation 
dynamics (DDD), strain gradient plasticity, and crystal 
plasticity (CP-FEM). At length scales on the order of 
tens of microns or less, DDD can be used to simulate 
the generation, motion, accumulation, and annihilation 
of individual dislocations and systems of dislocations 
in an otherwise elastic medium. At somewhat larger 
length scales (tens to hundreds of microns) where 
homogenization of the effects of dislocations is 
required but where gradient effects dominate plastic 
mechanisms near discontinuities, strain gradient 
plasticity can be used to describe plastic deformation 
near a crack tip or in the presence of small precipitates. 
Finally, at even larger length scales that are relevant to 
deformation of individual grains (hundreds of microns 
to millimeters), crystal plasticity can be used to study 
plastic slip within a polycrystal that might contain tens, 
hundreds, or even thousands of grains.

Figure 1.2 below contains a summary of several 
commonly used mesoscale modeling methods that 
can be used to describe various physical phenomena. 
The current state of the art and breadth of application 
varies for each of these methods.

CONTINUUM-SCALE

Continuum models and methods constitute the 
foundation of computational analysis for representing 
material and system (in particular, structural) behavior, 
either linear or nonlinear. In essence, what delineates 
a structure from a material (i.e., the substance of 
which a body is composed) is the presence of a 
boundary. The structure’s behavior is dependent upon 
the boundary as well as the material(s) that comprise 
it. In continuum mechanics, the material response to 
a given input is described by a constitutive model; 
the simplest example of this is Hooke’s Law for linear 
elasticity (s = Eε; that is, the stress tensor is linearly 
related to the strain tensor by the stiffness tensor). 

System analysis, whether for simulation or 
optimization, relies heavily upon continuum-level 
constitutive models to represent material behavior 
throughout a given body. In the case of structural 
analysis, for instance, analytical solutions are only 
available for simple geometries, whereas numerical 
solutions (e.g., finite difference, finite element [FE]) 
are more widely used to handle arbitrary geometries 
and boundary conditions. Displacement-based FE 
analysis is currently the dominant numerical platform 
for solving continuum boundary value problems 
(BVPs). For instance, the structural analysis and 
design community typically uses FE-based simulation 
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METHOD SOME CHARACTERISTICS APPLICATIONS REFERENCES

Discrete dislocation plasticity or 
dislocation dynamics

Dislocations are treated as line singularities in an 
elastic solid

Deformation, texture, 
fracture in metals

19-26

Nonlocal plasticity or gradient 
plasticity

Material length scale is incorporated directly into 
constitutive description

Deformation, texture, 
fracture in metals

27-36

Crystal plasticity
Continuum plasticity that considers plastic slip with-
in individual grains of a crystalline material (length 
scale included in strain gradient crystal plasticity)

Deformation, texture, 
fracture in metals

37-46

Cellular automata
Transformation rules are applied to the sites of a 
lattice to determine the state of a site as a function 
of its prior state and the state of its neighbors

Solidification, recrystal-
lization

47-52

Phase field methods
Based on thermodynamics and kinetics principles 
with material properties introduced by phenomeno-
logical parameters

Grain growth, recrystal-
lization, phase transfor-
mation, deformation

53-57

Monte Carlo Potts model
Approximates a polycrystalline microstructure by 
assigning an integer ‘‘spin” to each lattice site with 
contiguous sites of the same spin composing a grain

Grain growth, re-
crystallization, phase 
transformation

58-63

FIGURE 1.2   COMMONLY USED MESOSCALE MODELING METHODS



NASA/CR—2018-219771 30

codes for solving thermal, mechanical, and/or 
acoustic BVPs. The design engineers and analysts 
typically use linear, small-strain analysis (i.e., elastic 
models), while nonlinear analyses are used by experts 
and only when there are issues with selected designs 
that require higher fidelity. This is true for both quasi-
static and dynamic analyses. 

The current focus, with respect to the various 
commercial FE platforms (e.g., Abaqus, ANSYS, 
NASTRAN, LS-DYNA), is to include enhanced 
phenomenological-based deformation, damage, and 
lifing models, and incorporate multiphysics (e.g., 
combinations of structural, thermal, fluid/acoustic, 
electric, chemical/environmental) into these codes. 
There have been significant efforts to improve 
interoperability with other toolsets within the discipline 
(e.g., computer-aided design [CAD] and computer-
aided engineering [CAE]) and across other disciplines 
(e.g., computational fluid dynamics [CFD] codes) 
and various workflow engines and platforms (e.g., 
Isight, MATLAB). 3D Experience (Dassault Systèmes 
Simulia) [64], Digital Enterprise (Siemens) [65], and 
Discovery Live (ANSYS) [66] are three examples of 
next generation commercial solution platforms, while 
COMSOL [67] is an example of a state-of-the-art 
multiphysics analysis platform. 

Although it is beyond the current scope to conduct a 
complete review of the state of the art regarding the 
solution of structural or system level boundary value 
problems, it can be said that the solution portions 
dealing predominately with force and motion (i.e., 
stress and infinitesimal or finite strain) have reached 
a significant level of maturation. Two examples of 
ongoing development in this field that focus on 
improving the FE method are: 

 ■ Reduced-order modeling techniques (e.g., proper 
orthogonal decomposition [POD] [68]) to scale 
down the dimensionality of a large set of simulation 
equations, and 

 ■ The extended finite element method (XFEM) [69] 
to allow traditional FE platforms to model both 
internal and external boundaries—holes, inclusions, 
or cracks—without requiring the mesh to conform 
to these boundaries. 

These efforts aim to significantly enhance solution 
robustness and speed.

Conversely, the constitutive model formulation 
(which connects forces and motion) remains an 
important and active area of research. Current 
commercial solutions predominately use constitutive 
models to represent a material at an integration 
point within the FE method. The ability to insert 
user-definable constitutive and failure models within 
most commercial codes (e.g., the UMAT routine 
within Abaqus) is proof of the variety of constitutive 
formulations. 

At the core of continuum-based constitutive modeling 
is the concept of a homogeneous volume element of 
material over which the conjugate fields (e.g., stress 
and total strain) are assumed uniform. The material 
point does not explicitly account for any internal 
details (i.e., microstructure) within the material, such 
as inclusions, grains, or molecular arrangement. The 
effects of these details are accounted for implicitly 
through mathematical, thermodynamically consistent 
constructs that adhere to postulates of objectivity, 
physical admissibility, equipresence, and locality 
[70-72]. The most advanced nonlinear, continuum 
level, constitutive models to date are categorized 
as internal state variable (ISV) models, wherein 
both path-dependent, hereditary deformation (e.g., 
viscoelastoplasticity [73]) and damage (e.g., of the 
stiffness or strength degradation type) behavior 
are incorporated into the corresponding evolution 
equations [74-75]. The majority of these models, 
although often referred to as physics-based and 
motivated by underlying physical mechanisms, 
remain phenomenological in nature, as many of the 
associated model parameters require calibration 
or correlation with experimental response curves 
and are not explicitly associated with a given 
material mechanism, structure, or property. This is 
particularly true for anisotropic, effective (macro-
level), constitutive, damage, and failure models 
wherein the macroscopic anisotropy is a byproduct 
of different phases or inclusions at a lower length 
scale. Regarding models for composite materials, for 
instance, the various directions must be characterized 
through extensive composite testing, as they do 
not, by definition, consider what is happening in 
each constituent (e.g., fiber/inclusion, matrix) at the 
appropriate physical scale. 

Further, continuum constitutive models, whether 
isotropic or anisotropic, have proven to be well suited 
to predicting deformation response, although their 
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ability to predict damage evolution and life remains 
problematic. This is understandable since failure 
mechanisms are influenced to a greater extent by 
underlying, lower-length scale features, which are by 
definition ignored. Fortunately, damage/life models can 
be enriched by linking with lower length scale features 
and modeling approaches while retaining the ability to 
interface with large-scale FE analyses of systems and 
applications. For example, in the case of composite 
materials or polycrystalline metals, researchers often 
desire to explicitly link the constitutive response of a 
material point (i.e., the continuum volume element) 
with internal, lower length scale features or details. 
To accomplish this, they require an additional theory 
beyond standard continuum mechanics (e.g., a 
micromechanics theory) where the effective behavior 
of the heterogeneous material is determined based on 
the behavior and interaction of the constituent phases 
(e.g., fiber and matrix in the case of composites, 
or grains in the context of polycrystalline metals), 
the respective volume fractions, and geometrical 
arrangements. Such approaches can be classified 
as multiscale, continuum-based methodologies that 
enable transitions of scales from the constituent-, 
to meso-, to macroscale through homogenization 
(i.e., up-scaling) and localization (i.e., down-scaling) 
procedures affiliated with a repeating unit cell (RUC) 
or representative volume element (RVE). In this way, a 
composite’s effective behavior (be it linear or nonlinear) 
computed via micromechanics [76] can then be 
treated as a material point in higher-scale analyses. 

Currently, micromechanics-based material and 
structural analyses take place regularly within 
research organizations—see NASA Glenn’s MAC/
GMC (Micromechanics Analysis Code based on the 
Generalized Method of Cells) software [77]—and 
are present within commercial codes (e.g., Digimat 
[78], Autodesk HELIUS Composite [79] and Altair 
HyperWorks composite [80], and other software 
solutions [81]). However, such multiscale modeling 
techniques (see Case Study 1, Appendix B) are not 
routinely used by structural analysts/designers in 
industry because of lack of familiarity and accepted 
practice, increased complexity of analysis, and a 
design space limited to the linear thermoelastic 
regime. Although micromechanics grants access to 
both global and local fields (which enhances solution 
fidelity), the ultimate accuracy of such approaches is 
limited by the accuracy of the local (i.e., constituent) 

constitutive models (either deformation or damage), 
which are subjected by default to in situ multiaxial 
and non-proportional thermomechanical loading. 
It is imperative that such constitutive models be 
adequately verified and validated under complex 
loading conditions, yet this is not currently being done.

Finally, continuum models are now applied in 
various manufacturing processes that incorporate 
physics-based or semi-physics-based materials 
models. The aerospace sector, for instance, has 
used advanced forging simulations at the continuum 
level while incorporating physics-based materials 
models to design materials for manufacturing turbine 
components.

HYBRID APPROACHES

Hybrid models are defined herein as concurrent 
multiscale modeling techniques in which discretized 
continuum methods (e.g., finite element method 
[FEM]) are coupled with various types of atomistic 
methods (e.g., molecular static [MS] or molecular 
dynamic [MD]; see Case Study 2, Appendix B). 
Partitioned-domain methods is a specific type of 
hybrid approach wherein a body is divided into 
fully defined (both spatially and parametrically) 
independent coarse-scale regions (i.e., regions 
treated by continuum mechanics), and fine-scale 
regions (i.e., regions treated by atomistic methods 
such as MS or MD) [82, 83]. Such separation enables 
one to balance efficiency and fidelity in a more 
pragmatic manner. An essential feature of multiscale 
modeling approaches is the way communication 
is handled in the interface between the continuum 
and atomistic regions. Generically, the interface 
region (see Figure 1.3) is divided into two sub-
regions: a “handshake” zone and a “padding zone.” 
The size and nature of these zones depends on 
the specific type of multiscale modeling method. 
For non-equilibrium or dynamic methods, known 
complications in the interface zone may include 
spurious wave reflections caused by impedance 
mismatches between fine-scale and coarse-scale 
models or ghost forces that result from coupling 
local and non-local systems (e.g., FEM to MD, 
respectively). Furthermore, the thermal motion of 
atoms in the atomistic region of a coarse-scale grid 
can create entropy-like contributions which artificially 
affect the dynamics of coarse-scale models. In 
addition, different scales (particle versus continuum) 
may have different definitions of fundamental 
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quantities (e.g., stress, temperature), causing further 
complications. While static partitioned-domain 
methods and their associated errors are reasonably 
well established, dynamic models still require 
clarification [84].

According to Tadmor and Miller [71], there are four 
primary ways in which partitioned-domain methods 
differ:

1 The governing formulation, which can be 
subdivided into “energy-based” or “forced-based” 
approaches.

2 The coupling boundary conditions between the 
continuum and atomistic regions, which can be 
subdivided into “strong compatibility” and “weak 
compatibility”, both being applied within the so-
called padding region (see Figure 1.3).

3 The handshake region, wherein the transition 
can be abrupt with no handshake region or can 
exist and provide a gradual transition from the 
atomistic to continuum model.

4 Treatment of the continuum region itself, be 
they based on FEM, “meshless” methods (see 
[82,85]) or “coarse-grained molecular dynamic” 
(CGMD) [86], with the FEM being the most 
prominent approach in the literature.
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Figure 1.4 summarizes a number of static methods 
for crystalline solids according to these four 
attributes [87]. 

Other multiscale “hybrid” approaches for 
coupling methods at various length—and perhaps 
more importantly, time scales—are actively in 
development [99-102]. These include 

1 MS or MD methods and quantum calculations 
such as solid date density functional theory (DFT) 
(see extensive review by Bernstein et al. [103])

2 Full MD simulation with CGMD [104] and material 
point method coupled with molecular dynamics 
(MPM-MD) [105] in the area of amorphous 
polymers.

3 Coupled quantum mechanics (QM) and molecular 
mechanics (MM) models for developing a detailed 
quantum mechanical understanding of chemical 
reactions in complex molecules (see reviews by 
Sherwood et al [106], Friesner and Guallar [107], 
and Senn and Thiel [108] for biological systems). 

Enhancing hybrid multiscale modeling techniques 
requires the development of an interoperable 
framework for coupling models and methods, that 
span both lengths and time scales, to efficiently 
and accurately analyze various materials (i.e., 
beyond pristine crystalline solids with “ordered” 
lattices that conform with the Cauchy-Born rule) 
contained within large scale structures or systems.

FIGURE 1.3   SCHEMATIC OF GENERIC 
PARTITIONED-DOMAIN PROBLEM

Continuum Region

Padding Zone

Handshake Zone

Atomistic Region
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FIGURE 1.4   SUMMARY OF STATIC PARTITIONED-DOMAIN METHODS 

METHOD REF.
GOVERNING 

FORMULATION

COUPLING 
BOUNDARY 

CONDITIONS
HANDSHAKE

CONTINUUM 
MODEL

Quasicontinuum (QC) 88 Energy-based Strong None Cauchy-Born

Coupling of Length Scales 
(CLS)

89 Energy-based Strong None Linear Elasticity

Bridging Domain (BD) 90 Energy-based Weak
Linear mixing of 
energy

Cauchy-Born

Bridging Scale Model (BSM) 91 Energy-based Weak/Strong Mix None Cauchy-Born

Composite Grid 
Atomistic Continuum Method 
(CACM)

92 Iterative Energy-based Weak (avg. atomic positions) None Linear Elasticity

Cluster-energy 
Quasicontinuum (CQC-E)

93 Energy-based Strong None
Averaging of atomic 
clusters

Finite Element Atomistics 
Method (FEAt)

94 Force-based Strong None Cauchy-Born

Coupled Atomistics and Dis-
crete Dislocations (CADD)

95 Force-based Strong None
Nonlinear, nonlocal 
elasticity

Hybrid Simulation Method 
(HSM)

96 Force-based Weak (avg. atomic positions)
Atomic Avg. for 
nodal B.C.

Nonlinear Elasticity

Concurrent Atomistic to 
Continuum (AtC

97, 98 Force-based Strong
Linear mixing of 
stress and atomic 
force

Linear Elasticity

2040 End State

Simulations will fully link with models of materials 
structure and responses at multiple scales, allowing 
designers to conduct part- and system-level 
predictions informed by high-fidelity atomistic 
calculations. Such calculations will be enabled by 
highly parallelized code for multiphysics simulations 
that make effective use of exascale and beyond. 
As a result, developers will be able to tailor the 
microstructure and kinetics responses of materials 
at various scales to suit application-specific 
requirements. Furthermore, in 2040 models will allow 
exploration of materials and structures under loads 
and environments well beyond those accessible 
in laboratories, such as high Mach-number flight 
regimes, meteoric/atomic oxygen bombardment, or 
re-entry ionization conditions. 

In 2040, model building will start with an informatics-
based identification of gaps and limitations in prior 
model frameworks. Autonomous “bots” will then 
select among models and suggest structure, input 
parameters, and response protocols needed for 
parameterization while informing users about the 
predictive limits of the models. 

Additionally, new classes of process simulation 
models will exist, perhaps based on large-
scale data correlation and analysis, to provide 
revolutionary understanding and control of advanced 
manufacturing processes and products, including 
additively manufactured parts.
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Gaps
The following gaps lie within five of the roadmap’s 10 crosscutting streams, with the Linkage and Integration 
and Behavior of Materials and Structures streams containing the majority. Linking models to tools, 
databases, and other models presents a significant challenge, as does the ability to model complex physics 
at various scales. These gaps have a strong connection with the 2040 end state characteristic of robustness, 
and to a lesser extent, interoperable and adaptive. To create a robust ecosystem, the community’s 
understanding of mechanisms and phenomena associated with materials and structures needs to take a 
considerable leap forward.

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INFORMATION SHARING AND REUSABILITY

Limited accessibility to common repositories for models and methods

Metadata tends to remain with simulation results of niche applications, and is seldom 
available for sharing across modeling platforms

Lack of comprehensive material property database (e.g., physical, thermal, temperature, 
and strain-rate-dependent metallurgical properties)

• Limited availability of fundamental materials datasets at various scales precludes effective 
V&V and calibration

SCALABILITY AND COMPUTATIONAL EFFICIENCY

Increasing microscale model complexity and computational expense inhibits 
characterization and validation of experiments at a higher length scales

• Lack of experimental methods to verify models at small length and time scales

Models that simulate systems behavior are commonly based on simplified linear 
approximations, and do not continuously adapt to unforeseen by-products which can lead to 
inaccurate results

Reliance on large databases and empirical formulations limits predictive accuracy of 
computational thermodynamics methods (e.g., CALPHAD, constitutive models)

LINKAGE AND INTEGRATION

Models do not seamlessly link to actual certification analysis requirements (e.g., stiffness, 
strength, spectrum fatigue)

• Models only manually support the certification process

V&V and UQ are typically addressed after the model development and calibration process 
rather than concurrently

• Difficult to propagate uncertainty between spatiotemporal scales

Existing frameworks and models lack the adaptability to rapidly incorporate latest theories

Limited interaction between “top-down” engineering requirements and “bottoms-up” 
performance modeling

• Multiscale/hierarchical/concurrent approaches are poorly defined and do not integrate 
manufacturing-process-performance

• Lack of useful automatic methods for linking models and passing information between 
scales

TABLE 1.1: MODELS AND METHODOLOGIES GAPS AND IMPACTED 2040 CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly  Critical
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GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INPUT/OUT CONFIDENCE AND RELIABILITY

Models and software packages lack robustness and user-friendliness

• Commercial software packages often do not have robust materials databases integrated

BEHAVIOR OF MATERIALS AND STRUCTURES

 Underdevelopment of physics-based models that link length and time scales for relevant 
material systems
• Difficult to incorporate physics that connect lower length scales to higher length scales
• Multi-component diffusion models are underdeveloped

Lack of formal methods for defining model representative volume elements (RVEs)

• No strong consensus on which RVEs are most representative of processes of interest
• RVE methods do not sufficiently account for cracks/discontinuities and hierarchical 

microstructures

Lack of fast process models for predicting materials properties

Underdevelopment of models that simulate materials response against harsh environments 
(temperature, wear, radiation, etc.) or operating conditions (i.e., insufficient data to support 
these models)

Inadequate models for simulating failure, nucleation, and non-equilibrium conditions (e.g., 
solid/liquid phase change)

Underdevelopment of atomistic models that simulate thermal behavior, chemical reactions, 
and electron transfer across time scales and phases with respect to specific operating 
conditions
• Fitting system-dependent interatomic potentials for atomistic simulations is too labor-

intensive to permit efficient materials design and discovery
• Lack of rigorous uncertainty quantification and predictive power in fundamental atomistic 

models

Establish model building block approach for multiscale modeling methods and tools
• Linkage with classical experimental building block approach
• Include framework/guidelines for model parameter estimation at various length scales

Key Element 1
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Recommended Actions
The following recommended actions lie within eight of the roadmap’s 10 crosscutting streams, with the most 
actions (including high priority) under Linkage and Integration and Behavior of Materials and Structures. 
These are the same streams that contain the majority of the gaps for this Key Element. These recommended 
actions focus on developing new models and facilitating the linking of model inputs and outputs. The 
recommended actions have the strongest ties to the robust, adaptive, and interoperable characteristics of 
the 2040 end state.

TABLE 1.2 MODELS AND METHODOLOGIES RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$   0.5-2M/year $$$   2-5M/year $$$$   >5M/year

Key Element 1

 High Priority

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA ANALYTICS AND VISUALIZATION

(1.1) Develop calibration tools that incorporate V&V and 
UQ methods to automatically fit model parameters

$

(1.2) Deploy machine learning (ML) approaches to enable 
development of models that predict materials behavior

$$$$

INFORMATION SHARING AND REUSABILITY

(1.3) Create manufacturing process-structure-property 
databases to inform models that simulate extreme 
conditions

$$$$

(1.4) Define model (and data) usage and IP issues to 
facilitate interoperability and sharing

$$

INSTITUTIONAL PARADIGMS

(1.5) Increase transparency of assumptions used in 
models

$

BENCHMARKING AND BUSINESS CASE

(1.6) Ensure models can calculate cost vs. performance to 
allow economic tradeoff studies

$

(1.7) Collect case studies of successes and failures to 
illustrate value of modeling to industry (especially subject 
matter experts

$$

SCALABILITY AND COMPUTATIONAL EFFICIENCY

 (1.8) Enhance micromechanics-based modeling 
approaches to take advantage of HPC architectures and 
enable analysis of large-scale problems

$$$

 (1.9) Foster user capability to selectively trade accuracy 
(fidelity) for speed in order to optimize computational 
efficiency
• Combine composition approaches with surrogate models 

to automatically refine the surrogate (e.g., DOE ExMatEx 
Project)

$$$$
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Key Element 1

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

SCALABILITY AND COMPUTATIONAL EFFICIENCY, CONTINUED

(1.10) Develop novel computational methods (e.g., 
wavelet-based calculations) and other multi-time scaling 
techniques to enable lower length-scale or fast time scale 
physics in modeling activities

$$

(1.11) Develop a robust environment for interoperable 
open source and commercial codes

$$

LINKAGE AND INTEGRATION

 (1.12) Tie models to experimental measurements 
for V&V benchmarking activities and development of 
fundamental 3D/4D datasets
• Link results to certification analysis

$$$$

(1.13) Develop consistent methodologies for integrating 
uncertainty from various sources into methods and/or 
models across scales

$$$$

(1.14) Identify input-output requirements to enable “hand-
shaking” between scale-specific models

$$

(1.15) Launch a digital platform (e.g., automated expert 
system) that guides the selection and linkage of models 
(within and across length scales) to form multiscale 
workflows for specific problems
• Automated expert systems with tutorials, supported by 

digital libraries or marketplaces of multiscale models
• Create functional model units by combining necessary 

models

$$$$

(1.16) Enable small spatiotemporal models with robust 
connections between microscale properties and higher 
length scale performance characteristics

$$

(1.17) Link process model results to structure design $$$

(1.18) Develop accelerated dynamic modeling methods 
across length scales from atomistic to macro scale 
to enable modeling of experimental time scales at 
appropriate length scales

$$

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

(1.19) Create best practices for defining model fidelity and 
boundary conditions
• Define process windows in models (i.e., controllable 

variables associated with specific performance criteria)

$$$$

(1.20) Develop industry-wide methods for systematic 
design and use of material mechanisms

$
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Key Element 1

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

BEHAVIOR OF MATERIALS AND STRUCTURES

 (1.21) Create fast process models that:
• Simulate materials behavior at vastly different length 

scales within the same system
• Permit highly accurate prediction of materials 

microstructure and properties
• Integrate computational materials engineering/design 

approach

$$$

 (1.22) Develop/enhance predictive models at different 
length scales that simulate rare events and nucleation

$$$$

 (1.23) Develop physics-based models that address key 
sources of uncertainty in physical understanding

$$$$

 (1.24) Develop methods to automatically generate 
interatomic potentials to enable molecular dynamic 
simulations of arbitrary reactive and non-reactive systems

$$

(1.25) Establish a statistics-based approach for defining 
hierarchical RVEs of models based on response testing 
protocols and characterization methods
• Incorporate into educational curricula to teach best 

practices for quantifying stochastic variations across 
scales of hierarchical materials structures

• Enable support for future/unforeseen paradigms/
methodologies

• Develop process-specific RVE approaches, or enable 
matching of processes and RVEs

$$

(1.26) Develop models for discontinuous phenomena 
(e.g., damage and fracture models)

$$$

(1.27) Develop and validate high fidelity models for 
homogeneous and heterogeneous systems (e.g., 
constitutive damage, fracture, fatigue, and creep models)

$$$$

(1.28) Enhance image-based modeling/tools for 
heterogeneous regions and data capture to feed 
computational tools

$$$$

(1.29) Develop automated methods for generation of 
chemical kinetic models from reactive MD simulations and/
or computational chemistry to simulate corrosion, catalysis, 
chemical processing, etc.

$$

(1.30) Develop computational thermodynamics methods 
based on ab initio methods for the complete phase 
diagrams of materials of arbitrary composition including 
solid-solid transformations, melting, precipitates, etc.

$$

(1.31) Develop non-equilibrium simulation methods to 
accommodate large property gradients (temperature, 
voltage, time evolution, etc.)

$$
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Relationships with Other Key Elements
The Models and Methodologies Key Element will coordinate across core technical areas to mature modern computational 
and statistical physics methods, and robust analytical tools for the selection and linkage of multiscale variable-fidelity 
models within a system-based reciprocity framework.**

Key Element 1

OTHER KEY 
ELEMENTS

TABLE 1.3 EXAMPLE INTERRELATIONSHIPS OF KE1 (MODELS AND METHODOLOGIES) AND OTHER KEY ELEMENTS

**Reciprocity relationships describe measured properties and mechanisms in terms of mutually dependent connection among models, 
simulation codes, characterization protocols, and manufacturing methods.

KE2  
Multiscale Measurement 
and Characterization 
Tools and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE1
Models and 
Methodologies 

Create forward models of 3D/4D characterization tools to maximize 
information reliability and model parameter estimation

Experimentally replicate simulations, identify mechanisms 
and scale transitions, and provide data for model parameter 
characterization and validation

Enhance optimization algorithms for expanded design space via 
coupled multiscale/-physics models

Forward modeling of 3D/4D characterization tools to bound 
measurement uncertainty and error

Create industry-wide standards, protocols, and model formats to 
enable V&V tool and method applications

Generate cost-benefit models for collaborative activities

Produce multiscale modeling educational platforms, and translation 
of academic models with interoperability and user-friendly 
interfaces

Catalyze scalable computations via reduced order/simplified 
models

Provide model-based material hierarchies that define data 
structures

Validate models via concurrent companion modeling

Illuminate errors, bound error propagation, and enable model-
based material and probabilistic component definitions

Couple design problems for cross-scale modeling tool integration 
and increased solution and sensitivity analysis reliability

Define materials structures; enable capture, analysis, and 
dissemination of all relevant data; and integrate data-driven models 
via informatics framework

Use collaboration frameworks for joint development and validation 
of  models, and automate linking and execution of disparate 
models

Form frameworks for managing/accessing modeling results and 
governing simulation speed-accuracy tradeoffs 

Develop and deploy educational modules for multiscale/multiphysics 
computational methods, industry-relevant ICME models, and 
methods for government regulator acceptance of ICME approaches
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Key Element 2: 

Multiscale Measurement and 
Characterization Tools and Methods

Methods, practices, and devices 
for measuring, observing, defining, 
and characterizing

• Physical and chemical makeup 
and properties of a material 
within a given volume as well 
as its response to stimulus such 
as processing and thermal, 
mechanical, electromagnetic, 
and environmental loading

• Operative response (e.g., 
deformation and damage) 
mechanisms in response to 
simple and complex loading 
conditions (e.g., uniaxial, 
multiaxial, uniform, or gradient 
loading conditions)

Establishment of the underlying 
mechanisms inherent in or 
foundational to development 
of process-structure-property-
performance relationships of 
materials and structures

Exploratory, characterization, 
and validation measurements 
associated with the identification 
and assessment of concepts 
and models at specific and/
or transitioning length and time 
scales for the explicit purpose of 
establishing and improving models 
and the engineering simulation 
framework

1 2 3

Definition
This Key Element encompasses the following:

Current State of the Art
Role
Multiscale measurement and characterization 
tools and methods refer to the approach, planning, 
and execution of experimental activities, both 
physical and computational, to establish robust 
multiscale modeling tools and methods. Physical, 
experimental investigations are foundational to 
physics-based material mechanism identification, 
model development, characterization, validation, 
and establishment of model uncertainty within the 
systems paradigm. While physical experiments fully 
represent and partially reveal reality, models fully 
reveal yet only approximate reality. Consequently, 
judicious use of both is required to maximize benefits 
while minimizing costs.

A systems-based approach to multiscale materials 
and structural modeling is required to ensure rapid, 

complete, and well-understood mechanistic 
modeling tools and methods. Experimental plans 
are either driven by the development of new 
mechanistic models or based on uncertainty 
exhibited in existing models, which drive the need 
for special, focused characterization of a material 
and representative models. These plans guide 
experimentation, either physical or computational, 
that is “for purpose,” specifically for exploratory 
testing, focused characterization for specific 
purpose, and validation of mechanisms and models.

Summary
Characterization Instruments and Techniques
Professor Philip Withers, at the University of 
Manchester, United Kingdom, devised a convenient 
depiction of the current state for multiscale 
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instrumentation that has been adapted, as shown in 
Figure 2.1. Figure 2.1 [1] depicts current capabilities 
for obtaining materials structure and mechanical 
testing characterization data across scales. The 
left axis of the figure shows three major types of 
information that may be needed (i.e., analytical 
information, three dimensional material structure 
information, and machining methods for preparing 
test and evaluation samples.) The bottom axis of 
the figure shows the associated length scales. 

Accordingly, each method is plotted to show the 
length-scale range over which data may be obtained. 
The figure is not a complete depiction of methods; 
however, it does depict the SoA for readily obtainable 
and selected developmental methods.

There has been a remarkable expansion in available, 
reliable tools for both destructive and non-destructive 
evaluation of hierarchical material structures and 
properties extending to the atomic level. Today, 
one can quantitatively characterize chemical 
information at the atomic scale for many materials 

and likewise obtain materials structure information 
in 3 or 4 dimensions. Methods will become routine, 
rapid, quantitative, and cost-effective  over the 
next twenty-five years and include new methods 
for filling the mesoscale gap. Further, methods 
such as dynamic transmission electron microscopy 
and synchrotron-based X-ray methods will expand 
access to time-resolved materials data and chemical 
reactions at nanoscales and beyond. Although these 
new tools and methods will become standard over 

time, methods and tools will experience continuous 
innovation.

Selected techniques that are expected to provide 
particularly important information for models are 
identified by a framed box within some of the 
characterization domains. Neither dynamic material 
behavior under thermochemical or other imposed 
field environments, nor the modeling frameworks 
needed for their use, are depicted. Those frameworks 
are under-developed today, but may be radically 
expanded over the next 25 years. Further, the 

Key Element 2

FIGURE 2.1: SYNOPSIS OF MATERIALS AND STRUCTURES CHARACTERIZATION INSTRUMENTATION FRAMEWORK OF 
TODAY, TAKEN AFTER P. WITHERS ET AL. [1].
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community does not have, as of yet, a holistic and 
structured data methodology, simulation suite, or 
materials analytics and machine-learning framework 
that is integral to these experimental methods. 

Over the last decade, nano-to-microscale testing 
methodologies for mechanical behavior emerged, 
as did an understanding of phenomena at those 
scales [2-5]. These methods permit a probe of 
certain mechanistic behaviors of materials at small 
scales and a parametrization of models for coarse-
scale predictions [6,7]. The methods led to direct 
measurements of scale-free dislocation responses for 
metal plasticity and a deeper understanding of these 
scientific challenges [8-13].

Also noteworthy is the emerging suite of tools for 
non-destructive characterization that includes high-
energy X-ray diffraction microscopy (HEDM) and 
related techniques [14-16]. Today, highly specialized 
SoA methods permit one to non-destructively probe 
the internal 3-dimensional spatial evolution, and 
even the 4-dimensional time evolution, of grain 
structure of crystalline solids across scales, using 
near-field HEDM (nf-HEDM), diffraction contrast 
tomography (DCT) and dark-field X-ray microscopy 
[17-19]. Today’s emerging technologies can provide 
3-dimensional grain structures at voxel resolutions 
of about 1-3 micrometers (µm) and grain-averaged 
stress tensors for loaded materials at scales of  
~40 µm or greater using the far-field HEDM method 
(ff-HEDM) [20]. The methods were demonstrated as 
concurrent measurements, which included the use 
of computed tomography contrast to detect opening 
up and propagation of cracks during loading. While 
beam-line energy, detectors, and data reconstruction 
and interpretation algorithms are currently limited to 
materials having average grain sizes in the range for 
30-100 µm, cross-section samples that are within ~1 
millimeter (mm), microscale voxel dimensions, and 
time scales of minutes to hours, they are expected to 
improve over the next twenty years. These methods 
will be expanded to broader spatiotemporal domains, 
potentially ranging from tens of nanometer (nm) 
voxel sizes up through multiple millimeter sample 
dimensions. Once the methods are coupled to 
real-time material and experiment simulation and 
machine learning, they will provide unprecedented 
capabilities for model construction, evaluation, and 
validation. These advanced X-ray methods, together 
with advancements in multiscale response testing, 

will open entirely new capabilities that follow form 
and flow into direct representations of microstructure 
within a computational model. They will also enable 
the use of statistically representative microstructural 
models to assess the distribution of properties 
associated with the variation of microstructure. 

Emerging sensor data streams provide indicators 
for materials characterization and possible model 
development. Though their analyses are not yet 
tied to models for materials and processes, recent 
progress suggests that these data streams will be 
particularly valuable for additive manufacturing 
(3D-printing) processes [21]. Manufacturing settings 
typically have broad suites of non-destructive 
evaluation (NDE) methods available for flaw or 
heterogeneity detection. These are being developed 
via models that incorporate 3D material structure for 
non-destructive materials characterization—going 
well beyond conventional NDE methodologies.

However, dramatic advancements in instrument 
capability and techniques bring associated 
escalations of instrument cost and, thereby, reduced 
access to these capabilities across the materials 
and structures community. The current trend is for 
advanced characterization methods to exist within 
highly specialized centers of excellence and for these 
centers to be managed in a similar way to current 
facilities (e.g., synchrotron–based X-ray or neutron 
scattering facilities). By 2040, much of the needed 
characterization for models will likely have to take 
place at “beam-lines” while working with specialized 
experts, perhaps operating within consortia of 
specialized practitioners. A recent example of this is 
the NSF Materials Instrumentation Platforms (MIPs) 
program, where centers of excellence provide access 
to specialized equipment with professional support 
staff (e.g., providing access to equipment that can 
model crystal growth of compounds for functional 
materials applications).

Challenges to advanced materials instrumentation 
occur with software and “big data.” Some 
experiments produce so much data that 6-12 months 
are required solely to process and analyze the data, 
which is at odds with the high-throughput design 
process. In addition, the wide variety of materials 
taxonomy and metadata structure across the suite 
of instruments creates a bottleneck when attempting 
to analyze their data. This barrier can be resolved 
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using instrumentation consortia and advanced 
software that can easily translate data formats and 
build data provenance in an automated fashion. 
For 3D and 4D data, “in-line” data analysis and 
reconstruction would also permit more efficient use of 
instruments and easier analyses of the large datasets 
that are generated in these instruments. There are 
still basic research issues that limit the merging of 
data collected on a given material with different 
instruments, despite the fact that parallel/correlated 
“data channels” would substantially enhance the 
understanding of a wide spectrum of materials 
phenomena. Finally, given that datasets will continue 
to increase in size and resolution as computer 
architectures continue to advance, mechanisms 
for sharing data and workflows for processing the 
data will need to be developed (see Case Study 3, 
Appendix B). Lessons learned from the biology and 
astronomy communities should be leveraged.

Experimental Methods and Plans
Currently, the first step in devising an experimental 
plan is to identify or propose physical mechanisms 
that control the behavior within a material—usually 
a selected mechanism that may or may not account 
for the multiscale aspects of a material behavior. In 
this respect, experiments are designed to isolate 
given mechanisms at a prescribed scale, or to 
assess quantities—such as deformation fields or 
damage statistics—that encompass aggregated 
mechanisms at the scale of measurement. To confirm 
the mechanism within a material, a simulation 
of a material behavior based on the modeled 
mechanism(s) is performed and evaluated. For 
this procedure, it is critical to understand both 
experimental and model assumptions, including the 
material structure definition and how the measured 
fields are represented in the models (i.e., how the 
models predict the measured fields).

Next, materials are tested for controlled materials 
structure and external testing boundary conditions 
under an assumption of the initial conditions of the 
materials state, which is fed back to the models 
(illustrating the “reciprocity” between these aspects). 
An assessment of the experimental results relative to 
the model predictions provides insight into the validity 
of the proposed model. This approach can also assess 
the structure and application domain of the proposed 
mechanism, with the model providing guidance for 
specific structure and test conditions to study.

The overwhelming majority of today’s materials tests 
are performed using one-dimensional (or uniaxial) 
normal or torsional loads comprising simple one- or 
two-load segments (e.g., tensile, creep, relaxation, 
cyclic). Test samples are easy to machine and require 
minimal quantities of materials, and test rigs are 
readily available. The loads and strains are generally 
uniform in the gage section—or at least assumed to 
be so—and are therefore easy to calculate. These 
tests facilitate basic materials characterization  and 
estimation of model parameters for design and 
analysis purposes. Unfortunately, the majority of 
components operate in more complex (multiaxial) 
stress and strain states. Moreover, realistic 
applications of parts and components involve 
frequent temperature changes/gradients and other 
environmental effects (e.g., oxidation, erosion). All 
of these conditions act simultaneously on the part, 
greatly affecting material behavior and expected 
life. Consequently, it is highly problematic to shift 
from material models based on uniaxial data to 
predicting component responses under true service 
conditions. Current models are typically insufficient 
for predicting life and deformation—especially 
outside of the elastic regime—when evaluated under 
multiaxial or non-proportional loading, and other 
complex combinatorial states (e.g., temperature, 
environment). Materials with initial and/or evolving 
textures or anisotropic properties (e.g., composite 
materials) cause additional complications such as 
specimen preparation, instrumentation requirements, 
the required amount of uniaxial testing, and the 
complexities of the models themselves.

As a result, the current testing paradigm is 
expanding to include a diverse range of conditions to 
aid in the exploration, characterization, verification, 
and validation of material behavior models. 
Examples may include sequential loading sequences 
(i.e., multiple loading segments) and combined 
test types (e.g., creep-fatigue, load history effects, 
thermal cycling), while measuring strains in various 
directions (via full-field) and monitoring damage 
development. Rather than conducting hundreds 
of common (e.g., tensile) tests, it may be more 
suitable to conduct a few well-conceived tests to 
characterize and vigorously exercise the model 
(assumptions, functional forms, etc.).

Key Element 2
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There is a significant need to conduct multiaxial 
validation tests (e.g., axial-torsion, in-plane biaxial 
tests) at both the coupon and sub-element levels. 
Simple tests, such as bend tests, have limited value 
as they only measure single point displacement 
and may inadvertently introduce multiaxial stress 
states. Actual values within the sample are assumed 
to be uniform and based on simple beam theory 
calculations. However, multiaxial tests require special 
load frames and are therefore much costlier than their 
standard uniaxial counterparts. Internal pressurization 
can invoke other unique stress states, but is rarely 
used (particularly at high temperatures) due to safety 
concerns regarding high-pressure fluids. 

Moreover, sample machining for multiaxial tests 
is an order of magnitude more expensive than 
uniaxial tests, and requires much greater quantities 
of materials. For example, in-plane biaxial samples, 
which are often cruciform in shape, require 
complicated designs to minimize premature failures 
in areas of high stress concentration. For simple 
metallic systems, samples can cost up to $10,000 
each. Non-metallic materials, which are often 
fabricated into near net shapes, can be even costlier 
even though such tests rarely involve heating and 
atmospheric controls. Stress and strain rates are 
extremely difficult to determine, and must otherwise 
be derived using finite element analysis (FEA) and/
or measured (in the case of strain) using full field 
photogrammetry. Because of this, multiaxial tests 
are considered pseudo-structural tests, requiring 
concomitant resources for both testing and data 
analysis, yet they are a crucial next step in bridging 
the gap between uniaxial coupon and full-scale 
component data and modeling. 

A similar importance can also be given to benchmark 
testing and sub-component tests (e.g., structural 
members, plates, shells, discs) whose data output is 
extremely valuable for model verification. Because 
these tests are highly specialized and expensive, 
access to such data is rare. The 2040 effort should 
emphasize concerted efforts in testing complicated 
or combinatorial modes, developing new associated 
test methods, and widely distributing the results 
to directly benefit the multiscale materials and 
structures modeling community. Actual mixed-mode 
component test data, which is often scarce and 
proprietary, would yield enormous benefit to the 
community for its ability to confirm the accuracy of 
material behavior models and methodologies.

Experimental plans and test methods are covered 
in the Verification and Validation (V&V) Key 
Element, wherein decision making and uncertainty 
quantification (UQ) management further support the 
development of experimental plans. If a response 
mechanism is confirmed, it may be sufficient for 
a qualitative end purpose and providing direction 
for material and/or process optimization or control. 
For quantitative application of a mechanistic 
model, specific material properties or parameters 
are needed to support calibration of the proposed 
model, as most models are simplifications of the 
entire physics-based process. Achieving higher 
accuracies and lower uncertainties requires 
increased experimentation. The proposed model 
and methodology, which includes the appropriate 
V&V approach and UQ tools, drives the quantity and 
specific type of physical experimentation. Greater 
knowledge about input sensitivities is crucial for 
designing efficient experimental plans, enhancing 
model UQ, and reducing unnecessary testing.

Systematic application of experimental methods 
guides the development of multiscale models as 
well as the physical test methods needed to quantify 
and validate underlying physics-based mechanisms. 
New mechanisms can be activated under specific 
material structure and environmental conditions. 
Exposing materials to the unique environments 
and conditions (e.g., times, temperatures, loads) 
of other design spaces can lead to the discovery 
of previously unreported behavioral mechanisms. 
As use environments become more extreme, the 
materials evolution becomes more extreme, and 
so must the experimental plans evolve to assess 
these new conditions. These discoveries are guided 
by characterizing materials at new application 
spaces and comparing behavior to that predicted 
from proposed mechanism models. As model 
predictions deviate from measured experimental 
results, the proposed model is either incorrect or 
does not completely describe the actual behavior 
for the material at differing operating conditions. 
This experimental method and approach drove 
the discovery that micro-twinning in nickel-based 
superalloys was the rate-limiting mechanism at 
application temperatures above those previously 
characterized and modeled [22]. Focused 
metallographic experimentation was required in 
this example to identify the mechanism, which 
established a model that can now be used to predict 
creep behavior when this mechanism is operative.
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Similarly, experimental methods linked proposed 
models and careful material characterization in a 
fuel cell case study (see Case Study 2, Appendix B). 
The desired macroscopic behavior of the polymer 
membrane fuel cell drove the experimental plan to 
characterize and validate proposed models that 
described the mechanisms at atomistic, molecular, 
microstructure, and macrostructure levels.

A systematic approach for the design of new 
materials based on the previous Defense Advanced 
Research Products Agency (DARPA)-sponsored 
Accelerated Insertion of Materials (AIM) program is a 
formalization of the Processing-Structure-Property-
Performance relationship [23]. Figure 2.2 shows one 
example approach in a formalized map, which may 
be called an “Olson Diagram.” In this example, a 
steel material can be designed using the definition 
of mechanisms that relates structure to properties, 
and then using models that relate processing to 
structure. The models guide the experimental method 
development to screen applicable alloying elements 
and material structure. These models are multiscale 
and link to structural models for component 

application and optimization. This formalization of 
alloy design provides a systematic approach to 
define required experimental methods for both model 
application and physical testing activities.

By linking modeling and physical experimentation, it 
is possible to rapidly screen material, process, and 
structure space by design of critical experiments. 

Critical experiments provide insight into whether 
desired mechanisms are active in a material 
that is being designed. Additionally, advanced 
characterization tools and methods are supporting 
efficient and cost-effective experimental methods 
to achieve the development or optimization of a 
material. High-throughput testing methods are 
being effectively linked to computational modeling 
methods, such as multi-component diffusion couples 
[24-26], gradient chemistry samples, and gradient 
structure samples (e.g., gradient solution heat 
treatment bars or Jominy End Quench Test bars [27]). 
The ability to rapidly develop large quantities of data 
that can be used to validate models and operative 
mechanisms further refines experimental methods.

FIGURE 2.2 EXAMPLE OF AN OLSON DIAGRAM
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Experimental methods, though strictly thought of 
as addressing the design and development of new 
materials or models, can also be applied to quality 
control and component and process validation. The 
aerospace community has begun using physics-
based models to predict the critical-to-performance 
structure and properties on a component location-
specific basis. This linked model and physical 
testing approach for component qualification and 
certification can provide a cost-efficient experimental 
method that enables further understanding of the 

production component, the manufacturing process, 
and the applied model. The experimental plan for 
component qualification can provide data to update 
the physics-based model through Bayesian updating 
methods [28,29]. This experimental method and 
analysis approach has been refined for application 
within an ICME framework under a U.S. Air Force-
sponsored Foundational Engineering Problems (FEP) 
project for bulk residual stress modeling, prediction, 
physical development, and validation in nickel-based 
disk components [30].

Characterization for Hierarchical Systems Reciprocity
Within today’s industry settings, both materials 
structure and response characterization are 
somewhat detached from multiscale modeling 
environments. Materials testing data for models 
is often produced following ASTM standard. 

experimental test protocols developed outside of 
symbiotic models of the physics being evaluated and 
countless company-proprietary or industry-preferred 
methods for empirically evaluating materials’ 
macroscopic aspects [23]. These data form the basis 
for statistical and other analyses to arrive at “design 
allowables,” or handbook materials property “curves” 
(i.e., models) for design. This is a static process that 
neither readily adapts to advances in simulation or 
information technologies, nor dynamically captures 
the hierarchical microstructure aspects of materials. 

The static nature of current day processes presents an 
obstacle for “location-specific” materials definitions 
and for wide-spread design and implementation of 
multifunctional or hybrid materials and structures for 
aeronautics systems. To capture the hierarchical nature 
of materials processes, today’s design paradigm either 
treats phenomena at single scales, or attempts to 
configure processed samples in ways that represent 
changes to the material at particular scales. For 
composites, one often tests configurations at multiple 
single scales in relative isolation from behaviors at 
higher or lower scales, ultimately relying upon full-scale 
component and system testing for qualification in the 
absence of models. Within today’s multiscale framework 
for materials, the hierarchical aspects of materials and 
their structures are largely inferred rather than explicitly 
tied to models and characterization with established 
hand-offs across the scales. There is no established 
engineering basis for other methodologies.

FIGURE 2.3: SYSTEMS RECIPROCITY RELATIONSHIP PARADIGM
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Having objective, structured and hierarchical methods 
based on reciprocity between models, structure 
characterization, and response, it is natural to extend 
the reciprocity relationships into the broader engineering 
framework over the next 10-20 years. A similar 
paradigm forms the basis for systems biology [31,32]. 
Figure 2.3 captures these extended relationships 
by showing that fully integrated information from 
manufacturing, materials structure, and measured 
materials responses, and between structure definition, 
measured responses, and engineering design, can 
both follow the notion of structure-property reciprocity. 
Today’s SoA functions by passing some information 
along the lower pathway of Figure 2.3, flowing from 
manufacturing to measured responses and up through 
to design. Over time, organizing the information flow 
and coupling hierarchical definitions for the materials 
and the engineered structure will lead to broader 
information flow throughout the system. In this sense, 
the multiscale engineering system (See Case Study 1, 
Appendix B), from design to manufacturing, becomes 
tractable within a systems reciprocity framework that 
focuses and manages the models, simulations codes, 
characterization protocols, and manufacturing methods.

The proposed systems paradigm has an analogy to 
current-day navigation systems (e.g., Google Maps). 
Those systems organize spatial information in a 
hierarchical way that permits the user to observe 
greater fidelity by focusing over differing scales of 
geography. That framework permits the management 
of image data contained in the “street views,” or 
the locations of businesses and other database 
information tied to hierarchical geography. The 2040 

vision systems reciprocity paradigm will be analogous 
in that spatiotemporal materials structure information, 
from local chemistry to macroscopic engineering, will 
tie to the engineering design. However, the multiscale 
materials and structures modeling challenge is larger 
in terms of scope and complexity of the information 
being managed; examples include CAD drawings, 
hierarchical materials structure information—defined 
by models and chemistry information—as well 
as models tensorial and response field data and 
testing results. The complexity and size suggests 
that hierarchies of systems will need to be built and 
advanced as unit entities for design. Over time, these 
will merge to complete the system. In so doing, 
multiple modeling approaches to the same data and 
experiments will be compared and stochastically 
combined, using stochastic model fusion methods as 
is done in SoA weather forecasting.

Over the coming decade, expanding the systems 
reciprocity relationships methods will have important 
impacts on the multiscale framework. Currently, the 
missing component is the vital role of hierarchical 
systems structure for building the relationships. 
Within the new paradigm, materials hierarchical 
structure gives way to “systems structure” to include 
the structure contained in the digital data associated 
with manufacturing and engineering design, as is 
done in additive manufacturing. In this sense, the 
new materials spatiotemporal-structure-centric 
reciprocity paradigm builds on the analogous schema 
to current-day geospatial data and analysis methods 
at much higher levels of information complexity.

FIGURE 2.4 MULTISCALE MATERIALS AND STRUCTURES PARADIGM
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Over many years, increasing levels of machine based 
data management, model building, and design 
optimization will lead to convergence of cyber and 
physical systems within a common framework. 
Figure 2.4 suggests that artificial intelligence and 
autonomous systems will emerge as the focal 
point for the framework wherein the materials, 
manufacturing parameters, and optimal design are 
almost entirely managed by autonomous decision 
making, leaving the engineering design process open 
to focus on engineering constraints for the system 
rather than on the details of selected hardware part 
or component manufacture. Indeed, such systems 
are currently being explored for biological systems 
and selected materials challenges [33,34].

2040 End State
In 2040, characterization tools and methods will 
integrate seamlessly with modeling and simulation 
tools to deploy and exploit experimental work more 
efficiently and, at times, autonomously. Researchers 
and designers will use a formalized, standard 
approach for experimental methods that link with 
models, simulation, and physical characterization 
methods. For example, quantitative representative 
volume element (RVE) frameworks will benefit from 
expanded reciprocity relationships that include 
the response models, experimental tests, and 
characterization methods. Modeling and data 
frameworks will fully integrate with response testing 

and hierarchical structure characterization, so that 
models may be used to bound the characterization 
descriptor sets and protocols. Materials analytics 
and machine-learning frameworks will become 
integral to characterization methods, in part by 
establishing forward models of characterization 
methods and use-modes within a characterization 
protocol. 

Experimental tools will incorporate advanced 
methods to sense and autonomously acquire data 
within characterization instruments. For example, 
modeling tools will interact with experimental testing 
rigs to enable real-time, iterative modifications of 
experiments, model parameter characterization, 
and simulation outputs. Automated data collection 
will include a structure or framework for correlating 
data from different methods (e.g., chemical, 
crystallographic, deformation data) as well as across 
length and time scales. 

Designers will benefit from the significantly enhanced 
realism of virtual design, including being able to 
accurately forecast a structure’s lifetime, enabled 
by the ability to instantiate many stochastically 
equivalent realizations of a material’s internal 
spatiotemporal hierarchy in models, and to use 
them in simulations for reliable forecasting. Such 
simulations will be accurate even at extreme-value 
conditions that are difficult to measure experimentally.
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Gaps
The following gaps lie within six of the roadmap’s 10 crosscutting streams, with the Input/Output 
Confidence and Reliability stream containing the most gaps. Accounting for and establishing confidence in 
measurements and characterization data is a fundamental challenge for this Key Element. These gaps have 
the strongest ties to the robust and accessible characteristics of the 2040 end state. To realize a robust 
model-based ecosystem by 2040, inputs to and outputs from characterization tools must be well-understood.

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INFORMATION SHARING AND REUSABILITY

Sharing and integration of materials lifecycle data is costly and generally not incentivized 
across the materials and structures research community

INSTITUTIONAL PARADIGMS

Graduate students and industry practitioners have limited access to and use of existing 
sophisticated characterization/testing frameworks:
• Equipment costs and set-up times are prohibitive
• Advancements in instrumentation/capabilities exceeds the number of specialized experts 

in both the equipment and methodologies

SCALABILITY AND COMPUTATIONAL EFFICIENCY

Materials instrumentation/software generates substantial volumes of data, requiring 
excessive data processing time 
• E.g., one week of synchrotron data requires 6-12 months of data processing

LINKAGE AND INTEGRATION

Insufficient 3D/4D characterization methodologies for comparing simulation outputs to 
equivalent characterization results

No standard protocols for linking quantitative data from standard characterization and test 
methods with models

No standard protocols or methods for defining models with respect to their corresponding 
physical specimens
• By integrating the procedures and including both destructive and non-destructive 

characterization of the initial and tested specimens, the means exist to define the material 
behavior within validated models

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

 Inability to conduct real time characterization and measurement of structure and 
response at appropriate length and time scales
• Limited ability to do real-time detection, tracking, and measurement of failure initiation/

evolution at earliest stages to generate dynamic validation data for physics-based models

Lack of statistical characterization approaches for monitoring variability (i.e., as sources of 
uncertainty)

Variability between characterization instruments precludes the accurate and reliable 
measurement of residual stress states and some thermophysical and thermochemical 
fundamental quantities of systems across scales

TABLE 2.1 MULTISCALE MEASUREMENT AND CHARACTERIZATION TOOLS AND METHODS GAPS AND IMPACTED 2040 
CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly  Critical
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GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INPUT/OUTPUT CONFIDENCE AND RELIABILITY, CONTINUED

Lack of standard procedures for using the broad spectrum of available filters and parameters 
available across characterization instruments

Certain datasets used in mechanics models cannot be measured or may not be available via 
small-scale/fundamental computations (e.g., molecular dynamics)
• No acceptable or tested approaches for making inferred measurements

BEHAVIOR OF MATERIALS AND STRUCTURES

Lack of routine practices for accurately characterizing mixed mode failure behavior (e.g., 
delamination, crack growth) in advanced complex materials systems

Underdevelopment of nano-to-microscale testing methodologies:
Challenging to test dynamic material behavior at short time scales or lifetime-limiting 
mechanisms at large time scales
• Underdeveloped methods for investigating fracture and crack propagation due to 

incomplete understanding and control of both initial material conditions and test boundary 
conditions

Key Element 2
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Recommended Actions
The following recommended actions lie within six of the roadmap’s 10 crosscutting streams, with the most 
actions (including high priority) under Linkage and Integration and Behavior of Materials and Structures. 
Strategies to advance this Key Element toward the 2040 end state focus on developing and improving test 
and characterization methods and ensuring the outputs from these methods integrate with the modeling 
framework. The recommended actions have the strongest ties to the robust, interoperable, and accessible 
characteristics of the 2040 end state.

TABLE 2.2: MULTISCALE MEASUREMENT AND CHARACTERIZATION TOOLS AND RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$   0.5-2M/year $$$   2-5M/year $$$$   >5M/year

Key Element 2

High Priority

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA ANALYTICS AND VISUALIZATION

 (2.1) Develop and integrate analytical tools (e.g., 
machine learning and autonomous systems technology) or 
software packages to support large-scale characterization 
datasets
• Examine industry practices across bioinformatics 

community

$$$$

(2.2) Explore statistical methods that use process-structure 
data to represent extreme-value responses of materials in 
predictive models

$$

BENCHMARKING AND BUSINESS CASE

 (2.3) Benchmark capabilities and relative accuracies of 
current/emerging characterization methods—in terms of the 
mechanisms controlling materials behavior—to provide means 
of validating predictions of proposed mechanistic models 
• Publish results to enable assessment of new 

characterization 

$$$

(2.4) Assess and demonstrate commonalties of multiscale 
modeling frameworks, methods, and protocols across 
materials classes
• Common frameworks address competitive nature of 

structural materials within application domains

$$$

SCALABILITY AND COMPUTATIONAL EFFICIENCY

(2.5) Improve software capabilities for conducting 
systematic assessments of models and experiments 
relative to quantified uncertainty

$$$

LINKAGE AND INTEGRATION

 (2.6) Foster characterization, modeling methods, and 
approaches for reliably establishing correlations between 
coupon specimens and hierarchical materials structures
• Cultivate standards for quantitatively defining hierarchical 

materials structure within the context of models

$$$$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

LINKAGE AND INTEGRATION, CONTINUED

 (2.7) Identify key 3D/4D characterization tools and 
create forward models for all instrumentation apparatuses
• Demonstrate/quantify enhancements in speed and 

quality of information

$$$$

 (2.8) Establish common procedures for merging 
multimodal data gathered from multiple instruments

$$

 (2.9) Integrate in-service environmental effects and 
chemical reactions into modeling capabilities

$$$

(2.10) Establish protocols for linking quantitative 
characterization and response test data with models

$$

(2.11) Define a framework that permits direct integration 
of 3D/4D materials information into current and emerging 
physics-based models

$$$

(2.12) Expand forward modeling approach to NDE 
methodologies by coupling direct measurement of 
structure with models of hierarchical structure and NDE 
interrogation signals/modes

$$$

(2.13) Incorporate response models into the structure-
response reciprocity relationships of quantitative model 
frameworks

$$

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

 (2.14) Enable real-time sensing telemetrics 
and measurement methods to obtain and analyze 
spatiotemporal response fields of interest (as opposed to 
post-failure microscopy, sectioning, characterization and 
imaging)

$$$

(2.15) Formalize model-based methods to determine the 
quantitative data required to validate constitutive models 
and mechanisms (e.g., polycrystalline deformation) 

$$$

BEHAVIOR OF MATERIALS AND STRUCTURES

 (2.16) Establish test methods by material class and 
length scale for exploration, characterization, and model 
validation: 
• Investigate fundamental mechanisms and dynamic 

materials behavior
• Characterize material response under extreme 

environmental conditions
• Identify material-specific properties and quantify model 

input parameter sensitivities

$$$

 (2.17) Establish test facilities to advance accelerated 
lifetime tests for simulating highly complex loading 
scenarios (e.g., thermal, mechanical, electrical, chemical)

$$$$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

BEHAVIOR OF MATERIALS AND STRUCTURES, CONTINUED

(2.18) Adopt standardized simulation methods to 
hierarchically define and bound models
• Couple methods with measurement protocols
• Determine best practices and protocols for controlling 

initial and test boundary conditions

$$$

(2.19) Formalize a series of RVE/SERVE methods and 
define their applicability within the various hierarchical 
domains:
• Explore approaches for scale separation conditions that 

invalidate RVE-based approaches 
• Identify mean-field conditions
• Extend into overlapping scales

$$$

(2.20) Examine solutions for treating damage accumulation 
and life-limiting attributes of structures

$$

(2.21) Develop advanced experimental methods for 
characterizing reaction kinetics that influence the 
manufacturing process (e.g., kinetics controlling chemical 
vapor deposition [CVI] process)

$$$

(2.22) Improve high-energy X-ray methods and respective 
models and validation methodologies
• Use pedigree measurements to develop sufficient, 

affordable lab-scale measurement techniques

$$$$
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Industry-relevant competencies in simulation code design for current and future computational infrastructure

Relationships with Other Key Elements
This technical area will work in concert with the other Key Elements to develop analytical methods, machine 
learning frameworks, autonomous systems technologies, and formalized approaches to intimately connect models, 
hierarchical systems structures, and test protocols in support of model development and validation. 

Key Element 2

TABLE 2.3 EXAMPLE INTERRELATIONSHIPS OF KE2 (MULTISCALE MEASUREMENT AND CHARACTERIZATION TOOLS 
AND METHODS) AND OTHER KEY ELEMENTS

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE2 
Multiscale 
Measurement 
and 
Characterization 
Tools and 
Methods

Experimentally replicate simulations, identify mechanisms and scale 
transitions, and provide data for model parameter characterization 
and validation

Create forward models of 3D/4D characterization tools to maximize 
information reliability and model parameter estimation

Collect key data to support simplified modeling optimization 
methods at the engineering design level

Deliver data for model input sensitivity assessments, efficient 
experimental designs, and enhanced model UQ

Enable integrated parameter sensitives and error propagation 
studies for enhanced model validation

Provide systems-based materials structure paradigms that define 
local workflow connections

Develop in-line data analysis and reconstruction methods for 
efficient use of measurement/characterization instruments

Support linked experimental data generation and computational 
analysis

Provide experimental/characterization systems-based material 
hierarchies that define data structures

Assess physical and computational method linkages, and optimize 
experimental plans to support V&V

Introduce probabilistic methods for structural characterization and 
component analysis

Provide virtual multiscale optimization of engineering designs and 
methods for model parameter estimation at various length scales

Provide informatics framework to house characterization and 
response data to facilitate integration and application of machine 
learning tools

Accelerate materials characterization via automated generation and 
execution of coupled physical/computational workflows

Support linked experimental data generation and computational 
analysis

Translate systems-based characterization for models approach for 
classroom curricula and laboratory courses
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Key Element 3: 

Optimization and Optimization 
Methodologies

1

Definition
This Key Element encompasses the following:

Computational/numerical approaches and mathematical formalizations for finding the minimum or maximum 
performance (solution) of products, materials, structures, manufacturing processes, and design workflows for 
given applications. This includes the development and use of reduced order methods and surrogate models 
suitable for optimization.

Current State of the Art
Role
The role of optimization is to integrate the wide range 
of research advances identified in this document and 
maximally exploit them in engineering designs. The 
complexity of multiscale and multiphysics structural-
material systems means that design based on human 
intuition alone is likely to be highly challenging. 
Consequently, optimization is critically needed to aid 
the creativity and intuition of the design processes. 
The Optimization and Optimization Methodologies 
Key Element focuses on two primary research 
questions: (1) how to formulate an optimization 
problem that results in meaningful design, and (2) 
how to solve the optimization problem such that the 
optimum solution(s) is(are) found. Here, the plural 
form of solutions is intentionally used to recognize 
that engineering design problems are likely to have 
multiple solutions, thereby permitting a range of 
design options and their implications. Optimization is 
essentially a design tool that provides insight into the 
design space and assists the creativity and intuition 
of a design engineer.

In the context of engineering design, the three 
primary components to consider are structural 
design, material design/selection, and manufacturing/

processing. A structure is at the top scale, requiring 
multiple functionalities and commonly subject to 
multiphysics and multidisciplinary environments with 
the associated performance objective and constraint 
functions. These multiphysics functionalities can be 
provided by the top-scale structural design and/or 
lower-scale material design. In this sense, material 
design (i.e., "designing the materials" paradigm) 
is subject to the functional requirements defined 
at the structural scale. In other words, optimum 
material properties are dictated by the functional 
requirements of the structure that one or more 
materials constitute. The material design is thus 
optimized for a particular target property (or set of 
properties) determined by the needs at the structural 
scale. This paradigm is a significant departure from 
the traditional material design/selection philosophy 
wherein a specific material is selected for a given 
property or set of properties (e.g., conductivity or 
stiffness), is maximized or minimized so as to best fit 
applications in general rather than optimize or tailor 
the material for the specific applications. The other 
significant contributor to engineering design, which 
was not typically considered during an early design 
phase, is manufacturing and material processing. 
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While advanced manufacturing technology enables 
more complex multiscale features to be built, the 
resulting material properties can vary, depending on 
the geometrical features as well as manufacturing 
techniques and processing parameters. This means 
manufacturing techniques and processing parameters 
and the variability associated with them need to be 
considered during design to ensure the safety and 
reliability of the resulting structures. It is therefore clear 
that design of modern structural-material systems 
is a highly coupled multiphysics multiscale problem, 
often involving complex and emergent behaviors well 
beyond human intuition. Consequently, determining 
how to formulate an optimization problem to reflect 
these complex design needs and to define a design 
space that will allow an optimization method to find a 
useful design solution are key research questions. It 
is noted that an optimization problem may involve a 
wide variety of considerations including full product 
life cycle, supply chain management, overall profit, 
and functional performance. Some of the research 
questions, particularly in management and processes, 
have long been considered under the heading of 
Operations Research, expanding the scope to applied 
mathematics, management, finance, and artificial 
intelligence. For the purpose of this document and in 
balance of the key elements identified in the NASA 
2040 vision, the discussion will be focused on design 
optimization. However, this does not mean that the 
research advances in Operations Research and their 
potential integration with design optimization should 
be excluded.

STRUCTURE

MANUFACTURINGMATERIAL

OPTIMIZATION

FIGURE 3.1 ROLE OF OPTIMIZATION Given the formulation of the optimization problem, 
the other main research question is how to solve an 
optimization problem (i.e., optimization methodology). 
These two research questions are separated here 
for the simplicity of the discussion but, in practice, 
are intimately linked and usually considered together 
as a design space is defined by the problem 
formulation and the characteristics of the design 
space indicates a suitable optimization methodology. 
The optimization problem arising here is likely 
to be a large-scale, nonlinear, non-convex, and 
computationally expensive simulation that connects 
multiple scales and physics. Therefore, given these 
computational challenges and the difficulties of 
accurately representing the true engineering design 
problem, substantial research needs exist associated 
with optimization methods.

More specifically, optimization research encompasses 
the following:

 ■ Optimization formulation and methods for coupling 
multiple scales to simultaneously design an 
integrated material-structural system, thereby 
enabling materials to be tailored to the specific 
functional and performance requirements defined 
at the structural scale. 

 ■ Optimization formulation and methods to 
integrate manufacturing and processing such 
that manufacturing/processing parameters are 
considered directly as design variables and 
constraints, using the process-structure-property 
model.

 ■ Optimization methods that will create multiple and 
unintuitive new designs (independent of the initial 
designs) to aid the engineers revolutionizing the 
future designs (e.g., topology optimization).

 ■ Scalable computational frameworks for multiscale 
and multiphysics optimization (e.g., Dassault 
Systèmes 3DExperience Platform).

 ■ Fundamental mathematics for optimization and 
numerical methods.

 ■ Optimization problem formulation and 
mathematical/computational methods to account 
for uncertainties in the physical systems as well as 
in the numerical models propagated across scales, 
including reliability-based robust optimization.

Key Element 3
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 ■ Simulation and modeling suitable for sensitivity 
analysis and optimization, including physics-based, 
data-driven, and surrogate models.

 ■ Recognizing that many engineering problems 
are ill-posed, algorithms to assist the engineers 
to define a meaningful design problem and/or 
dynamically evolving the problem definition as 
optimization “learns” about the design space. 

Summary
There has been a substantial body of research 
in multiscale and multiphysics modeling where, 
given a specific design, the behavior of interests is 
analyzed. In contrast, optimization aims to determine 
a design given the specific behavior of interests. 
To this extent, optimization can be considered the 
inverse of modeling but there has been surprisingly 
little research in this area. However, engineering and 
design optimization has been an active research area 
for the last five decades or so and the following will 
discuss them.

STRUCTURAL OPTIMIZATION

Structural optimization can be interpreted in two 
ways: (1) it optimizes a structural configuration* or 
(2) it considers structural mechanics as the driving 
physics and assumes that the primary functionality 
is load-carrying. Design optimization finds its root 
in structural optimization to mean both (e.g., truss 
cross-sectional sizing optimization) for the minimum 
weight subject to a stress constraint.

One of the first structural optimization works 
was published in 1904 and established optimum 
truss lay-outs for a few structural configurations 
[1]. As the computational power grew with the 
introduction of the finite element method, modern 
structural optimization initiated in the 1960s with 
truss optimization [2]. The complexities grew to 
shape optimization where the boundary shapes 
are optimized then to topology optimization. 
Structural optimization includes truss, shape, and 
other optimization where the driving physics and 
functionality are mechanical load-carrying and 
the design space is parameterized such that the 
configuration does not fundamentally change. 
Consequently, the final solution is dependent on 
the initial design, and the potential gain is relatively 
limited. Parameterization here can be cross-sectional 
areas of a truss [3,4], thickness of each plate 

element in a continuum model hence the optimum 
thickness variation of a 2D structure [5], shape of 
the boundaries [6], and geometric sizing variables 
[7]. Structural optimization, aside from topology 
optimization, is considered a mature approach. 

TOPOLOGY OPTIMIZATION

Topology optimization, although quite general, can 
be considered a subset of structural optimization, 
although much research has applied it to many 
different physics other than structural mechanics. 
Many research questions in topology optimization 
remain unresolved, with a high level of low TRL 
activities still current. There are several commercial 
software packages that use topology optimization 
in structural mechanics (e.g., OptiStruct, ANSYS, 
NASTRAN, Abaqus, and Genesis), but their 
application in engineering practice is somewhat 
immature. The rise of additive manufacturing (AM) 
is fueling interest in topology optimization as an 
ideal design method. A distinguishing characteristic 
of topology optimization is the ability to change 
topology, sizing, and shape of a part or component. 
Hence, it is considered the most general form of 
design optimization for achieving a final solution 
independent of the initial solution. This means the 
potential gain can be substantial and the resulting 
design can be unintuitive and revolutionizing.

The most popular problem formulation for topology 
optimization is the minimization of strain energy 
subject to the maximum volume constraint [8-10]. 
One reason for this is that this is a relatively well-
behaved problem and the Michell Structures [1] 
(still used extensively for validation purposes) can 
be used to benchmark and validate the methods 
being developed. Topology optimization has been 
developed to investigate optimum designs under 
a wide range of physics characterized by the 
objective and constraint functions. They include 
piezoelectric [11], photonic [12-13], acousto-elastic 
[14], electrothermal [15], fluid-structure [16,17], 
aero-elastic [18], natural frequency(ies) [19]), stress, 
[20,21], compliant mechanism [22], nonlinearity [23]. 
Topology optimization has also been extended to 
simultaneously optimize additional design variables 
such as location of Dirichlet boundary conditions 
[24] and graded material distribution [25]. Buckling 
is a constraint that is still considered challenging 
despite its prevalence as a failure mechanism in 
many engineering applications [26]. The availability 
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*That is, with geometrical variables such as cross-sectional geometry dimensions of truss members or shape and layout of a structural configuration.
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of these various functions in engineering practice 
via commercial software has lagged and thus the 
uptake of various topology optimization in industry 
has been slow.

There are two classes of topology optimization 
methods. One is based on density where each finite 
element’s density is considered a design variable 
and the density can be penalized to yield a near 
black-and-white solution by material interpolation 
schemes, commonly used being SIMP [27] or RAMP 
[28]. This density-based method arose from the 
homogenization-based method in 1988 and is the 
more mature of the two classes of the methods, 
hence it is found in all commercial software. An 
advantage of the density-based methods arises 
from this maturity in that it is reasonably well-
understood and has been demonstrated to work 
well in a wide range of challenging single and multi-
physics problems. Numerical instabilities such as 
the checkerboard formation is well-understood and 
is commonly circumvented by applying sensitivity 
or density filtering. A disadvantage of the density-
based methods, however, is that solutions often 
have a staircase (jagged) representation of structural 
boundaries, which may require smoothing to properly 
capture behavior for boundary-dominated physics 
(e.g. stress and/or fluid flow along a boundary) 
and for integration with CAD packages. Existing 
commercial efforts have shown varying degrees 
of success to integrate a suite of software into a 
framework to enable a seamless design workflow. 
For example, Dassault Systèmes—which owns 
CAD, simulation, and optimization IP—offers a bi-
directional link between the optimized topology and 
the parametric geometry. While research needs to 
continue to develop a robust software solution, it is 
important to note the multi-faceted dimensions to 
integrate traditionally disparate science/engineering 
software with issues such as licensing, business 
models, end-users, and supply chains.

The other class of topology optimization is boundary-
based topology optimization [29]. Today, the most 
popular approach is level set-based topology 
optimization [30-32] in which there are several 
variations. The level set method primarily employs 
the level set implicit function to represent the 
boundaries and uses the level set equation based on 
advection to smoothly move the boundaries. Since 
the structural boundary is directly moved, a clear 

boundary definition is available (i.e., no gray elements 
without penalization), and smooth boundaries mean 
no staircase representation. Thus, there is no need 
for post-processing, and the level set method can 
offer a natural representation of the design solution 
within the solid modeling/CAD and manufacturing 
environment—although rigorous investigations have 
yet to be conducted. It has also been shown that 
filtering is not needed since no checkerboards are 
formed. The finite elements can now be cut by a 
boundary and research is on-going to develop a 
suitable general purpose computational mechanics 
method for the analyses of the Eulerian structural 
discretization. This can be done adaptively or on a 
fixed mesh, as is typically done with density-based 
methods. As the boundary methods were introduced 
after the density-based methods and are considered 
less mature and somewhat more difficult, they have 
yet to be widely adopted within commercial software 
packages. However, efforts within the open MDAO 
community [33] are beginning to make the level set 
topology optimization available beyond the academic 
research community. Yet, additional fundamental 
research still remains to make the methods more 
reliable and robust.

It is worth commenting on the mesh dependency of 
topology optimization. Several papers claim mesh 
independence through numerical treatments such 
as filtering in the density-based methods. As the 
boundary-based methods allow partial elements to 
be removed, they too show reduced sensitivity to 
mesh. While efforts are seen in topology optimization 
to reduce the mesh dependency, it remains mesh 
dependent, as expected, since finite element 
methods employ discretization and the sensitivities 
are fundamentally dependent on the mesh. For 
further details on the status of topology optimization 
research, readers should review references [34-36] as 
well as [37] for details of the various methods under 
consideration.

In recent years, there has been some interest in 
topology optimization accounting for specific 
constraints associated with additive manufacturing 
[38]. Two constraints have been studied extensively 
in the literature. The first is the overhang constraint 
where the layer-by-layer construction means a 
poorly supported structural feature with a low acute 
angle cannot be reliably manufactured. Additive 
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manufacturing currently builds a supporting structure 
which can be eliminated after manufacturing. Many of 
the topology optimization approaches aim to impose 
a geometry constraint that limits the overhang angle, 
eliminating the need for supporting structures and 
thereby reducing the need for post-processing, 
material usage, and build time [39-46]. The other 
constraint is the length scale control where additive 
manufacturing cannot build small structural features. 
Again, this is considered as an additional geometry 
constraint in topology optimization [47-52]. 

While active research efforts have seen some 
successes in many structural optimization problems 
demonstrating the revolutionizing potential and 
capabilities, their applications in engineering 
industry have been surprisingly limited, indicating 
that further research is needed to translate the 
academic research into practice. In addition, many 
outstanding challenges still require low-TRL research, 
including topology optimization considering coupled 
multiphysics, nonlinearities, buckling, transient, and 
manufacturing constraints.

MATERIAL OPTIMIZATION

There have been optimization studies dedicated to 
exploring the material design space for a range of 
materials, including graded materials with gradient-
based properties [25], systems with two or more 
discrete materials [53], and architected or periodic 
or lattice-structured materials [12,54]. Architected 
materials were especially relevant in the context 
of metamaterials (i.e., materials with properties 
not commonly found in nature). Despite existing 
research activities focused on demonstrating low-
TRL feasibility, few have successfully transitioned to 
engineering design practice.

Optimization methods for fiber-reinforced composite 
materials, which are predominantly used in structural 
mechanics applications, are widely available in a 
range of commercial software packages. These 
optimization methods encompass two-dimensional 
fiber composites (i.e., optimizing straight fiber 
angles, stacking sequence, thickness, and number of 
plies [13, 55-59]) and two-dimensional two-steered 
fiber composites with continuously varying fiber 
orientation angles [60-62]. Few research studies 
address the design and optimization of three-
dimensional composites.

Research in lower length scale optimization of 
materials is scarce (i.e., material microstructure, grain 
level, and lower [63-64]), including attempts to link 
their design to the continuum-level scale.

MULTIDISCIPLINARY DESIGN OPTIMIZATION/
MULTIPHYSICS OPTIMIZATION

Coupled Multidisciplinary Design Optimization (MDO) 
has been developed under systems engineering. 
Actives areas of research have focused on the 
mathematics and science of coupling complex 
and often conflicting multidisciplinary needs in 
engineering systems design as well as the associated 
computational environment. Such MDO approaches 
are now common practice in industry outside the 
materials domain (see [65] for a comprehensive 
summary of MDO methods). Most MDO studies do 
not consider that materials as an integral element 
of optimization. However, it is anticipated that some 
generic methodologies and coupling frameworks 
would be applicable to structural-material system 
optimization. MDO is accessible via a range of tools:

1 Isight & Simulia Execution Engine [66]: Used 
to combine multiple cross-disciplinary models 
and application together into simulation process 
flows, automate their execution across distributed 
computational resources, explore the resulting 
design space, and identify the optimal design 
parameters subject to required constraints.

2 General purpose optimization methods available 
in other commercial software like MATLAB [67], 
R [68], and SAS [69] are not used except in rare 
cases in industry. Specific tie-ins to FEM software 
such as Abaqus [70] require specific codes to be 
written for materials of interest using physics at 
the level of interest.

3 Some optimization tools exist in design-specific 
software like Siemens NX PLM (e.g., for geometry 
optimization [71]), but these are still emerging and 
often not used; even when they are used, they can 
only handle simplified models. More complicated 
situations, especially taking into account material 
behaviors, cannot be optimized in the current state.

4 Software for visualizing the large magnitude of 
data produced by optimization studies does exist 
but is almost unknown and not used (Tecplot 
Chorus [72] and its competitors).
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5 Optimization frameworks such as OpenMDAO 
which builds the foundation for MDO on an 
advanced HPC environment. This library of 
solvers and optimizers, written in Python, allows 
implementation and solution of various problems 
quickly in an environment that manages the user’s 
models.

6 Tools for optimizing complex geometries (mesh-
morphing). There are on-going initiatives to 
develop these tools (e.g., Air Force Research Labs 
initiatives like the PACE consortium).

In the context of material and structural design, 
the term multiphysics is more commonly used 
than multidisciplinary. Coupled multiphysics 
topology optimization has been demonstrated in 
a wide range of single-scale designs, including 
piezoelectric [11], photonic [12-13], acousto-
elastic [14], electrothermal [15], fluid-structure 
[16-17], and aero-elastic [18] materials.

High-fidelity multiphysics and multiscale methods 
with integrated optimization features for searching 
high-dimensional-parameter spaces have received 
surprisingly little attention, despite successful 
research results at low TRLs. In general, high fidelity 
methods offer opportunities to explore a greater 
dimensional design space which is proportional 
to the expected performance gain and a level of 
reliable and creative design solutions. This is, of 
course, at the expense of computational resources 
(i.e., efficiency). Consequently, this is a critical area 
of fundamental research which, if successful, will 
enable designers to take advantage of sophisticated 
modeling techniques.

RELIABILITY AND ROBUST OPTIMIZATION

Optimization for uncertainties can be classified into 
two general categories: reliability optimization and 
robust optimization. Reliability-based optimization 
presents uncertainties as constraints with quantified 
probabilities (e.g., failure), while robust design 
optimization aims to find a solution insensitive to 
uncertainties. Both are commonly employed in 
practice for conducting low-fidelity, low-dimensional 
design optimization [73]. 

In the context of large-scale topology optimization, 
reliability-based topology optimization (RBTO) was 
first introduced by Kharmanda and Olhoff [74] to 
treat probabilistic constraints. The objective function 

remained deterministic. The RBTO research primarily 
considers the loading magnitude and direction of 
uncertainties as well as the material properties in the 
context of structural mechanics [74-80]. In contrast, 
less effort has been seen in the area of robust 
topology optimization.

A popular approach to robust topology optimization 
is to approximate the random field of uncertainties as 
a set of discrete cases. Because the applied loading 
is often considered to be the uncertain parameter, 
this approach is sometimes referred to as the multi-
load formulation. This transforms a stochastic 
problem into a deterministic one with multiple 
conditions, which the existing topology optimization 
methods are equipped to solve [81-83]. An alternative 
to the multi-load approach is to minimize the worst 
case, which turns the optimization into a min-max 
problem [84-89]. While generating a safe design, this 
approach can lead to an overly conservative solution.

Research has shown that fast and efficient methods 
are possible for some classes of problems in 
topology optimization. Moreover, the results indicate 
that the topological solution can fundamentally 
change due to the presence of uncertainties [83]. 
However, this has not been applied beyond the 
academic demonstrative studies. Further research to 
consider generalized uncertainties and formulating a 
fast and reliable method have not continued and they 
are generally not accessible in engineering practice.

SURROGATE MODELING AND REDUCED ORDER 
MODELING

Surrogate modeling, metamodeling, and Reduced 
Order Modeling (ROM) [90] refer to methods typically 
used for reducing computational cost of highly 
expensive analyses or simulations. This is particularly 
relevant in the design optimization context where an 
analysis is required at every iteration as the design 
is modified and optimized. In cases where a single 
analysis can take hours or even days, repetitive 
applications of such evaluations make optimization 
prohibitive. Surrogate modeling or ROM offers an 
efficient way to estimate the response so that an 
optimum solution can be found. 

There are a variety of surrogate modeling 
methodologies [91], with Kriging [92] and Radial 
Basis Function (RBF) [93] more commonly seen in 
structural optimization. Example applications have 
been seen in crashworthiness modeling involving 
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highly nonlinear dynamic finite element analyses [94], 
optimization of helicopter rotor blades [95], rocket 
propulsion components [96], or shape optimization 
of an aircraft engine nacelle [97]. The fundamental 
principle of surrogate modeling is to estimate the 
response from the known responses. This means 
the success of using a surrogate model in the 
context of optimization is critically dependent on the 
availabilities of responses; this approach suffers from 
the curse of dimensionality with its computational 
cost rapidly increasing with large datasets and high 
dimensional spaces. Discontinuities can present 
challenges to a surrogate model. Adding to this, the 
surrogate model can contain numerical oscillations, 
meaning that the response estimates may be 
reasonable but the gradients may not be. Many 
surrogate-based modeling optimization approaches 
employ a gradient-free optimizer such as a genetic 
algorithm and particle swarm optimization. These two 
factors limit the utilization of surrogate modeling to 
lower-order (i.e., a low number of design variables) 
optimization problems.

Surrogate modeling techniques like RBF poorly 
handle discontinuities and are computationally 
expensive with respect to larger datasets. Until 
sensor technologies became more prevalent in 
manufacturing operations, data were collected 
in smaller experiments. Today, machine learning 
algorithms can help to create surrogates of tens of 
billions of rows of data, and hundreds of features 
(including field data).

If surrogate modeling is to be utilized in large-scale 
optimization, substantial low TRL research is needed 
to efficiently build and adapt a high-order surrogate 
model together with reliable sensitivity estimations.

OPTIMIZATION PROBLEM FORMULATION

While it is clear that there are huge gaps in 
knowledge that require TRL 1 fundamental research 
to enable the NASA 2040 vision, the literature survey 
so far has also revealed that substantial research at 
low TRL has not translated to engineering practice. 
One reason is that engineer design problems 
are ill-posed and the solution is a function of the 
optimization problem definition. Although the majority 
of optimization research assumes that an engineer 
knows how a problem should be formulated, this 
is far from the reality. Without the knowledge of 
specialists, there is little information available on how 

to iterate and reformulate the optimization problem 
when the first attempt does not yield a meaningful 
solution [98]. This challenge will only be compounded 
in complex multiscale problems with emergent 
behavior and coupled nonlinear multiphysics.

Emerging research has demonstrated an algorithm 
that revises and updates an optimization problem 
as optimization progresses [99-100]. While only a 
handful of papers with demonstrations on simple 
low-order problems currently exist, the results are 
promising. Further research in this area is critical 
to ensure that low TRL research in optimization 
translates and is employed effectively in practice.

MULTISCALE OPTIMIZATION

While there has been a considerable amount of 
research in developing numerical multiscale models 
(i.e., predicting behavior or performance of a design 
—both material and structural—or configuration), 
there has been little research in inverse of multiscale 
models or optimization (i.e., determining the 
design configuration for the optimum behavior or 
performance). In particular, it is apparent that a 
structural shape and configuration is dependent not 
only upon the applied loading, but also on material 
properties (i.e., material performance), thus making the 
material performance an integral part of structural or 
functional design. Consequently, the design or tailoring 
of the material properties depends on the optimum 
target properties which can only be deduced from the 
specific performance requirements of the structure. 
This means it is critically required to intimately couple 
the "design with" and "design the" paradigms (see 
Case Study 4, Appendix B). The lack of studies in 
crossing the structural scale to the material scale 
has been widely recognized but, without this link, the 
optimum material properties cannot be communicated 
to the materials design so the meaningful tailoring 
of material microstructure, for example, cannot be 
achieved. There have been a few recent research 
studies in multiscale optimization linking the 
structural scale to architected material using topology 
optimization [101-105]. Results show that topology 
optimization is a promising approach in incorporating 
high-fidelity methods and enabling the exploration 
of the largest design space. They also show that the 
real benefits of multiscale design arise in coupled 
multiphysics problems with conflicting needs.
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Such research, although still in its infancy, suggest 
that these challenges need to be addressed at the 
fundamental (low) TRL level. To date, unfortunately, 
there has been no research to attempt to link the 
structural scale design to the scale below the 
architected material or to consider manufacturing 
constraints or material variabilities. There have been 
few attempts to consider coupled multiphysics in 
multiscale optimization. Therefore, low TRL research is 
a critical need for developing multiscale optimization.

2040 End State
By 2040, optimization will seamlessly tie materials 
science to design, processing, and manufacturing. 
Engineers will regularly use optimization 
methodologies to design material-structures 
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systems that integrate computational multiscale 
modeling and multiphysics simulations to optimize 
fit-for-purpose materials and their associated 
components/structures/vehicles. Uncertainty in 
material properties, manufacturing processes, and 
operating environments will be readily accounted 
for in design optimization. Expanded metrics will 
include sustainability (both environmental and 
economic) and end-of-life requirements for recycling 
and cradle-to-cradle use of materials and structures. 
At universities and national laboratories around the 
world, an engaged research community will focus 
on developing optimization methods, using an 
active forum to exchange open-source models, best 
practices, and benchmark problems.
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Gaps
The following gaps lie within five of the roadmap’s 10 crosscutting streams, with the Input/Output Confidence 
and Reliability stream containing the most critical gap. While scalability is a noteworthy barrier that precludes 
optimization tools and methods from handling an increasing number of design parameters and vast amounts 
of generated data, the most significant challenge facing this Key Element is the inability to substantiate 
confidence and reliability in optimized design solutions. These gaps have the strongest ties to the adaptive and 
robust characteristics of the 2040 end state. The adaptiveness of the envisioned ecosystem will depend on the 
ability of optimization tools and methods to efficiently handle design problems of varying levels of complexity.

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

DATA MANAGEMENT

Limited ability to manage vast datasets generated by real-time optimization searches and 
make subsequent decisions about the results
• Lacking advanced visualization and post-processing techniques needed for agile decision 

making

INSTITUTIONAL PARADIGMS

Limited understanding of how to formulate optimization problems and sensitivity analyses in 
concurrent design of materials and structures

SCALABILITY AND COMPUTATIONAL EFFICIENCY

Inadequate scalability of methods for optimization under uncertainty for high-fidelity, high-
dimensional problems
• Optimization methods do not sufficiently address uncertainty propagation across multiple 

scales

Insufficient computational/numerical methods and fundamental mathematics to reliably solve 
problems with a reasonable level of computational resources.
• Optimization is too computationally intensive for numerical models that are incompatible 

with intrusive optimization methods (e.g., gradient-based optimization)

LINKAGE AND INTEGRATION

Limited modularity of high-fidelity models inhibits integration with other models in 
computational supply chains
• No existing multiscale design optimization framework that accounts for manufacturability 

constraints at each scale

High-fidelity process models do not successfully incorporate the influences of manufacturing 
processes on material behavior/structural performance into optimization formulations

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

Lack of robust optimization methods/routines for multiscale modeling of emergent material 
behavior (e.g., time-dependent effects, microstructural evolution, discontinuities)

 Lack of reliable optimization methods that bridge across scales (e.g., topology 
optimization for multiple length scales, physics, and functionalities)
• Incorrect and unverified outputs from complex simulation can corrupt optimization runs

TABLE 3.1 OPTIMIZATION AND OPTIMIZATION METHODOLOGIES GAPS AND IMPACTED 2040 CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly Critical
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Recommended Actions
The following recommended actions lie within seven of the roadmap’s 10 crosscutting streams, with the most 
actions (including high priority) under Scalability and Computational Efficiency. Many of these recommended 
actions are centered on speeding up optimization approaches and establishing best practices so that 
optimization routines are consistent across the community. The recommended actions have the strongest tie to 
the robust, accessible, and adaptive characteristics of the 2040 end state.

TABLE 3.2 OPTIMIZATION AND OPTIMIZATION METHODOLOGIES RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$   0.5-2M/year $$$   2-5M/year $$$$   >5M/year
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High Priority

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

MULTIDISCIPLINARY COLLABORATION

 (3.1) Develop or adopt a standard set of open-source 
materials and structural analysis models to encourage 
collaboration within and between industry and academia

$$

(3.2) Develop training programs in optimization methods 
for industrial materials and structures design

$

BENCHMARKING AND BUSINESS CASE

(3.3) Determine industry-accepted guidelines for 
determining optimization methodologies by problem 
classes (e.g., optimization-by-shopping, gradient-based 
optimization methods, sensitivity analyses, robust design 
optimization)

$

 (3.4) Create benchmark optimization problems to 
provide industry with a means to evaluate optimization 
algorithms with multiple performance requirements

$$

SCALABILITY AND COMPUTATIONAL EFFICIENCY

 (3.5) Combine high-fidelity multiphysics methods with 
optimization approaches to search high-dimensional 
parameter spaces

$$$

 (3.6) Develop models that are designed from the 
ground up for efficient derivative computation, to enable 
multiphysics optimization

$$

 (3.7) Improve the scalability of surrogate-based 
optimization methods to solve computationally intensive 
and high-dimensional design problems at an accelerated 
pace

$$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

SCALABILITY AND COMPUTATIONAL EFFICIENCY, CONTINUED

 (3.8) Enable human-in-the-loop optimization approaches $$

(3.9) Incorporate automatic verification of model 
assumptions as an optimization constraint

$$

(3.10) Establish best practices for the development and 
use of emulators/surrogates to speed up optimization and 
improve model accuracy over design space of interest

$$

LINKAGE AND INTEGRATION

 (3.11) Establish/improve practices for incorporating 
uncertainty into optimization methods

$$

(3.12) Determine best practices for incorporating 
processed-property interactions into process models

$$

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

 (3.13) Create and/or articulate a set of new/improved 
optimization methods and problem formulation approaches 
for coupled multiscale material-structural systems 
including specific classes of materials or commons types 
of modeling problems

$$

(3.14) Develop set of approaches for validating optimum 
solutions:
• How/why the optimizer arrived at the solution
• Determine whether the solution meets the user 

requirements
• Sensitivity analysis of constraints/variables 

$$

(3.15) Improve and promote best practices for optimizing 
manufacturing time and cost

$$

BEHAVIOR OF MATERIALS AND STRUCTURES

(3.16) Formulate appropriate models and analysis 
methods for sensitivity analysis suitable for optimization

$$

(3.17) Improve optimum layup strategies for advanced 
materials (e.g., composite architectures)

$$
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Relationships with Other Key Elements
Critical to adopting ICME, this area will draw upon the other Key Elements to enable algorithms and computational 
frameworks that expand the materials/systems design space, support decision making with uncertainty, budgets, permit 
interoperability with advanced HPC environments, and increase the ubiquity of optimization formulations methods across 
disciplines and organizations.
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TABLE 3.3 INTERRELATIONSHIP OF KE3 (OPTIMIZATION AND OPTIMIZATION METHODOLOGIES) AND OTHER KEY ELEMENTS
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE3 
Optimization 
and 
Optimization 
Methodologies

Couple design problems for cross-scale modeling tool integration and 
increased solution and sensitivity analysis reliability

Enhance optimization algorithms for expanded design space via 
coupled multi-scale/-physics models

Provide virtual multiscale optimization of engineering designs and 
methods for model parameter estimation at various length scales

Support optimization algorithms with integrated UQ information for 
enhanced decision making

Foster model-based optimization routines for V&V activity planning 
and selection

Link design problems for efficient workflow construction

Establish industry criteria and benchmark problems to explicitly 
describe optimal designs

Automate code optimization for optimal performance with 
computational infrastructure

Deliver optimization algorithms that retain and expand knowledge 
of previously solved problems

Calibrate and validate estimated uncertainty in optimization routines

Provide manufacturing constraints with integrated uncertainties for 
readily manufacturable solutions

Collect key data to support simplified modeling optimization 
methods at the engineering design level

Build common data infrastructure, standardized data formats, and 
multidimensional visualizations for improved optimization routines

Develop interdisciplinary collaboration tools for holistic multiscale 
systems-level optimization

Standardize computational environments to enhance multiscale/
multiphysics optimization and stimulate collaboration

Create clear education and training modules incorporating best 
practices in optimization at university and industry level
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Current State of the Art
Role
Technological advances in novel characterization 
methods and high-performance computing have 
allowed engineers to model increasingly complex 
multiphysics simulations of materials and structures 
at various length and time scales. Because of this 
growing reliance on high-fidelity computational 
modeling approaches for the design of materials 
and structures, formalized approaches that establish 
confidence in the results of modeling predictions are 
needed. These methods are crucial for mitigating risk 
and driving highly consequential decision making.

Experimentation, characterization, computational 
modeling, and other aspects of engineering design 

Key Element 4: 

Decision Making and Uncertainty 
Quantification and Management

use inputs and constraints under a state of uncertainty 
to bound activities and drive decision making. As 
part of the future engineering design framework, 
uncertainty quantification and management can 
reduce design variations, avoid costly downstream 
design modifications, and ultimately ensure that 
a chosen design approach results in a consistent, 
reliable end product.

Summary
UNCERTAINTY QUANTIFICATION IN DESIGN

While much of aerospace design still relies on 
traditional deterministic methods that fail to account 
for uncertainty in high-fidelity modeling, design 

Methods for cataloging 
uncertainties and their sources 
such as parameter values, model 
form in representing physics, 
and experimental protocols 
and methods used to produce 
validation datasets

Tools, methods, and protocols to
• Enable the accurate evaluation and management of material, component, and/or system-based design options in 

the presence of various sources of uncertainty in both simulations and experiments
• Reach a sufficient level of design accuracy without foregoing computational efficiency within a reasonable cost 

and uncertainty budget
• Replicate the stochastic nature/behavior of materials and structures
• Incorporate uncertainty variables or inputs into risk-averse decision strategies

1

Methods for quantifying, tracking, 
and managing the magnitude 
and propagation of uncertainty 
throughout the time and length 
scales associated with models 
and decisions that must be made 
regarding both materials and 
structures for a given application

2 3

Definition
This Key Element encompasses the investigation, characterization, and management of uncertainty (both 
aleatoric and epistemic) to quantify prediction confidence, enhance the design process, enable optimal decision 
making for new materials and component designs, facilitate materials and component certification, enable 
responses to regulatory requirements, and support maintenance planning and system retirement. This includes

Objective methods and 
approaches for informing critical 
decision points throughout the 
design process in the presence of 
uncertainty

4
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practices are changing in response to pressure 
from customers, management leaders, and quality 
management organizations within industry. These 
new design practices, for both experiments and 
computational simulations, take advantage of 
modern computing tools and frameworks to more 
effectively account for uncertainty during design.

Traditional design methods are largely deterministic; 
inputs and design features are treated as fixed values 
akin to blueprint-nominal geometry in hardware, 
Gaussian distributions are often used to express 
variable model parameters, and fixed assumptions are 
coupled with simple yes/no criteria to determine if the 
design meets the specific requirements. If requirements 
are met, the design proceeds to testing and eventual 
production. Cost and time constraints drive a persistent 
need to minimize the degree of pre-production 
testing. Yet, in traditional deterministic design, testing 
is considered the last chance to evaluate—and 
subsequently mitigate—any variation or uncertainty 
in the nominal design prior to the production stage. 
Unfortunately, if unnoticed, the impacts of significant 
variations or uncertainties can ultimately result in costly 
fixes or corrections—especially if a technology has 
reached a production-level stage. Moreover, concurrent 
development of new or improved materials is largely 
out of sync with the rate of next-generation product 
designs and prototypes; the uncertainties associated 
in each of these endeavors are largely uncoupled and 
unquantified.

Even in cases when a designer attempts to account 
for uncertainty using conservative assumptions 
(e.g., two or three standard deviations), undesirable 
scenarios are still not explicitly modeled, captured, 
or explored, especially for high-fidelity simulations of 
complex features or in-service conditions. Undetected 
uncertainties can lead to a range of undesirable 
outcomes, from slightly exceeding tolerable design 
limits to major out-of-specification errors. This inability 
to fully reveal or quantify uncertainty has motivated 
the aerospace industry to pursue more modern design 
approaches and paradigms.

By and large, designers assume that fixed inputs are 
nominal or conservative, although there is often no 
real data to support such labels. In fact, a designer’s 
assumption may actually be over- or under-
projected. In the case of a conservative assumption, 
a design may over-perform with respect to meeting 

design qualifications, leaving the designer with a 
missed opportunity to use less costly materials or 
manufacturing methods without sacrificing required 
performance. Similarly, designs that demonstrate 
an improvement in other key metrics like weight, 
manufacturability, or repairability may be mistakenly 
classified as not meeting performance requirements.

By embracing and building upon recent advances 
in uncertainty quantification (UQ), designers can be 
in a better position to modify materials designs and 
respond to new product needs without experiencing 
delays or interruptions to the development process. 
While deeply dependent on modification to the 
status quo of design practices, the appropriate use 
of UQ can help avoid such design problems. For 
design in the presence of uncertainty, the designer—
usually working with a team of experts representing 
multiple disciplines within a common or relatively 
similar design field—establishes a model (typically 
as a statistical distribution) of the uncertainties, 
variations, and measurement errors for each major 
design parameter. The design team examines how 
interdependent processing steps affect and often 
compound uncertainties. For example, in part 
geometry, uncertainty may be modeled as blueprint 
tolerance limits. For environmental parameters, it 
may be defined using historical data from aircraft 
operators or, in the absence of any data, expert 
experience and judgment. Design teams may also 
estimate “model uncertainty” depending on the 
outputs of interest, such as fatigue life or maximum 
temperature. This type of uncertainty is often 
accounted for by testing alternative versions of the 
same design model or by comparing model output 
to data collected in the physical world for calibrating 
physics-based computer models. 

After defining “suitability representative models,” 
designers use analysis methods like Monte 
Carlo simulations and/or design of experiments 
methodologies to evaluate all possible combinations 
of design parameter values to determine which ones 
satisfy design requirements. The primary objective is 
to estimate the percentage of parts for a given design 
that will or will not meet design requirements and by 
how much.

Figure 4.1 depicts a comparison of traditional and 
next-generation design methods. The latter design 
approach accounts for uncertainty in experiments, 
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model forms, and model parameters used in the 
forward estimation of outputs based on a set of 
given inputs. Accounting for uncertainty requires 
intensive use of computational resources—often for 
the process of iterative design—and frequently uses 
parallel computing to execute computer codes on 
high-performance systems for optimum efficiency.

There are additional advantages to designing 
with uncertainty. After considering all possible 
combinations of inputs into models or metamodels, 
designers can use this data to compare options 
and identify an “optimal” design (based on the 
discretion of the designer). The data can also be 

used to conduct local or global sensitivity analyses 
to understand variabilities present in design 
model inputs or in the materials processes and 
manufacturing methods. Designers may also use the 
data to run a sensitivity analysis to rank uncertain 
inputs in the design model to elucidate their unique 
impacts on final design performance. These sensitivity 
analyses can help designers evaluate the feasibility 
of single-point optimal designs versus robust designs 
less sensitive to variations of design inputs [1]. Since 
failure may occur at the joint or interface between two 
parts, is it necessary to comprehend the uncertainty 
around a part as well as the bonded system.

The major OEMs in the aerospace sector, as well as 
many of their suppliers, already use design tools that 
account for uncertainty (e.g., design of experiments, 
Monte Carlo simulations, sensitivity analyses). However, 
these tools are most often used in one-off projects or 
small pockets of design activities; the practice is not 
yet become a standard design practice, with no well-
established guidelines or requirements. Although there is 
some effort to standardize the practice of accounting for 
uncertainty in design, no requirements currently exist in 
the aerospace sector (references [2] and [3] detail OEM 
efforts to address uncertainty quantification in design).

DECISION MAKING WHILE ACCOUNTING FOR 
UNCERTAINTY

To date, some progress has been made to establish 
decision-making methods and practices that 
account for uncertainty in design, with several major 
companies having engaged in design of aerospace 
components (e.g., aircraft gas turbine design), 
including General Electric, Pratt & Whitney, and Rolls-
Royce. Remarkably, systems-level design approaches 
that consider uncertainty are less developed than the 
field of uncertainty quantification. Numerous means 
to quantify uncertainty are under active development, 
including Gaussian pseudo-likelihood representations, 

FIGURE 4.1 SIMPLIFIED COMPARISON OF TRADITIONAL DETERMINISTIC DESIGN MODELING APPROACHES WITH 
THOSE THAT ACCOUNT FOR UNCERTAINTY
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Bayesian updating/learning approaches, Markov 
chains for uncertainty propagation, fuzzy set and 
interval probability representations, information 
uncertainty in coarse-graining, and others [4-8]. When 
the Air Force Research Lab (AFRL) teamed up with the 
aforementioned aerospace companies in an initiative 
known as the PACE (Probabilistic Analysis Consortium 
for Engines) consortium, they universally agreed on 
a key opportunity: “lack of methods and procedures 
for developing design criteria and requirements 
that are intended to apply to models with built in 
uncertainty quantification.” The work being pursued 
under the PACE consortium on this topic is breaking 
new ground and will ultimately play an influential role 
in transforming the way that designers create and 
manage both part-level and system-level design 
criteria to account for uncertainty in design.

Designing in the presence of uncertainty requires 
engineering systems-based approaches to quantify, 
budget, and manage uncertainty throughout the 
process (i.e., preliminary design exploration, materials 
design and development, product manufacture, 
prototyping, and detail design) to help facilitate early-
stage assessments of downstream risk and cost. 
The concept of ICME is based on facilitating decision 
support for materials design and development (see 
Case Study 4, Appendix B) regardless of whether 
designers use highly predictive computational 
methods and tools (e.g., DFT, molecular statics/
dynamics), highly calibrated methods and tools (e.g., 
finite element method, computational fluid dynamics), 
or discrete modeling of defects in materials. Several 
other challenges in ICME-based design approaches 
require further attention [9].

References [1] and [10-11] cover current SoA 
in decision support for materials design and 
development for next generation-competitive 
products. QuesTek Innovations LLC developed and 
advanced an approach for the concurrent design of 
materials for specific application requirements [12] 
based on Olson’s pioneering top-down materials 
design foundations [13]. The approach embraces 
a classical preliminary design process followed by 
detailed design—employing first principles modeling 
and thermodynamic databases—to suggest feasible 
candidate materials solutions that offer potential to 
meet ranged sets of performance requirements. With 
limited experimental prototyping and subsequent 
analysis, the approach typically uses several design 
iteration loops to converge on satisfactory solutions, 

then facilitates design trade-offs by considering 
multiple performance objectives and constraints (e.g., 
strength, environmental degradation). Engineering 
finite element analyses of components provide 
bounds on operating conditions of stress, for 
example, while considering realistic 3D models of 
microstructure to assess inherent material variability 
and its effect on responses of interest.  

Multiscale modeling is not equivalent to materials 
design but rather serves the latter by providing 
quantitative decision support as necessary [9-
10]. Hierarchical rather than concurrent multiscale 
modeling methods are typically pursued and 
generally preferred due to the considerations for 
specific scales and mechanisms when providing 
quality decision support. When linking various 
models via concurrent multiscale modeling schemes 
(i.e., two-way, bottom-up, and top-down), the 
uncertainty expressed at different length and time 
scales is generally high. The materials modeling 
community has not adequately addressed the 
quantification and propagation of uncertainty 
through model chains. Model-based design 
approaches for reducing uncertainty, which range 
from high-fidelity models to surrogate, or reduced 
order models (ROMs), emphasize the key physical 
principles that play the biggest role in driving decision 
support for the materials design and development 
process [14]. Experiments often play a key role 
in process-microstructure and microstructure-
property relationships, and it is essential to quantify 
uncertainty in both experimental protocols and 
surrogate model interpretation of experimental 
results, with data science methods increasingly 
playing a role in this regard [15].

Materials design and development approaches 
for expressing uncertainty in both models and 
experiments are rapidly evolving and providing a 
way to track the propagation of uncertainty from 
material process route through material structure and 
properties. Materials properties are mapped onto 
ranged sets of multiple performance requirements, 
subject to design constraints, to search for feasible 
design solutions. Typically, feasible solutions represent 
a Pareto frontier from which each user or designer 
can select a solution based on variability, uncertainty, 
and preference. The monograph by McDowell et al. 
[1] clearly defines materials design as an extension of 
engineering systems design methods that makes use 
of compromise decision support problems for multiple 
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design objectives. Approaches can range from 
tracking uncertainty propagation in materials design 
and development (as demonstrated in the DARPA AIM 
program [16]), to compiling uncertainty propagation 
distributions for projected performance based on 
uncertainty in design variables [17-18], to extensions 
of Taguchi-based robust design (i.e., lack of sensitivity 
of responses or design targets to process variables 
[1,11,19]). Recent examples of the Inductive Design 
Exploration Method (IDEM) approach [1,19] have 
considered the design of ultra-high-performance 
concrete [20] and other applications [21].

2040 End State
By 2040, there will be robust, probabilistic risk 
assessment and uncertainty quantification for 
material and process design across all length and 

Key Element 4

time scales. Computationally guided systems will 
manage materials, manufacturing parameters, and 
optimal design using automated decision making 
that provide quantified levels of uncertainty. This will 
allow the design process to focus on engineering 
constraints for the system rather than the details 
of selected part or component manufacture. The 
autonomous systems will quickly deliver answers 
to prevent designers from waiting for prolonged 
periods of time to rapidly achieve the desired results. 
Quantified and trusted understanding of uncertainty 
will reduce the required amount of qualification and 
certification testing, accelerate time to delivery, and 
reduce costs. Higher confidence levels in materials-, 
component-, and system-level assessments will 
facilitate optimum maintenance schedules, reduce 
risks of failure, and avoid unnecessary costs.
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Gaps
The following gaps are spread throughout all 10 of the roadmap’s crosscutting streams, with the most critical 
gap falling within the Data Analytics and Visualization stream. One common theme throughout this Key 
Element is a lack of methods and protocols for understanding, quantifying, and documenting uncertainties 
throughout the design process. The identified gaps have the strongest ties to the accessible, robust, 
and traceable characteristics of the 2040 end state. Access to common UQ methods and protocols is a 
requirement to establishing the ecosystem of the future.

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

DATA MANAGEMENT

Lack of standards or common formats for presenting and documenting the inputs and 
outputs of decision-making processes (i.e., assumptions, data inputs, models employed, 
uncertainties, critical decision points)

DATA ANALYTICS AND VISUALIZATION

 Existing models and software codes are not designed to compute input sensitivities and 
propagate uncertainties to enable UQ

Lack of standards/best practices for decision making and for quantifying and presenting 
uncertainties in data across multiple time and length scales

INFORMATION SHARING AND REUSABILITY

Limited availability of material and process datasets with documented uncertainty to use as 
parametric inputs for informing both deterministic and non-deterministic models

Industry is reluctant to reveal UQ and/or calibration data/methods for fear of liability

MULTIDISCIPLINARY COLLABORATION

Decision making and UQ methods are largely inaccessible and/or poorly communicated to 
others across engineering fields

INSTITUTIONAL PARADIGMS

Lack of engineers and scientists trained in data-analysis, decision making, and UQ 
management practices, including modeling approaches to stochastic modeling and 
statistically based methodologies

BENCHMARKING AND BUSINESS CASE

Lack of available benchmarking studies on existing decision-making tools

Lack of methods/tools that examine the business cases for making decisions throughout the 
design process

SCALABILITY AND COMPUTATIONAL EFFICIENCY

Calculations accounting for uncertainty are computationally expensive

TABLE 4.1 DECISION MAKING AND UNCERTAINTY QUANTIFICATION AND MANAGEMENT GAPS AND IMPACTED 2040 
CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly  Critical

Key Element 4
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GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

LINKAGE AND INTEGRATION

Lack of systematic data fusion methods for combining and weighting multiple sources of 
information into single states of knowledge to inform decision making

Need for established systems/protocols for quantifying and defining tolerable levels of 
uncertainties and errors at each step of the design process

Lack of clear and consistent terminology for differentiating uncertainties from errors in 
models and algorithms

Inability to quantify uncertainty when multiple model types and experimental datasets are 
employed to predict material properties and responses

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

Lack of established protocols or best practices for selecting UQ methods based on design 
requirements

Insufficient databases of known uncertainties (e.g., at individual scales) that support 
propagation of uncertainty through multiple scales

Insufficient tools for assessing the reliability of probabilistic modeling outputs

BEHAVIOR OF MATERIALS AND STRUCTURES

The ability of UQ analytical methods to quantify confidence in the prediction of material and 
component behavior across length scales and at all levels of complexity is limited by:
• Computational inefficiencies
• Mathematical inconsistencies of multiscale modeling algorithms
• Gaps in physical understanding of materials, data, and measurement capabilities

Limited understanding of uncertainty related to manufacturing environment variability

Sources of uncertainty related to material implementation and joint stress state (joints, 
interfaces, multiaxial loading failures, etc.) are inadequately understood

Key Element 4
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Recommended Actions
The following recommended actions lie within nine of the roadmap’s 10 crosscutting streams, with the most 
actions (including high priority) under Data Analytics and Visualization, Benchmarking and Business 
Case, and Input/Output Confidence and Reliability. The Data Analytics Stream also contains the critical 
gap for this Key Element. These recommended actions focus primarily on developing new methods for 
decision making and UQ and improving existing ones. The recommended actions have the strongest ties to 
the robust, traceable, and user-friendly characteristics of the 2040 end state.

TABLE 4.2 DECISION MAKING AND UNCERTAINTY QUANTIFICATION AND MANAGEMENT RECOMMENDED ACTIONS 
AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$   0.5-2M/year $$$   2-5M/year $$$$   >5M/year

Key Element 4

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA ANALYTICS AND VISUALIZATION

 (4.1) Establish decision-making strategies and/
or toolsets for highly complex environments that draw 
upon principles from diverse fields/specialties including 
risk analysis, decision support, and reasoning under 
uncertainty

$$$

 (4.2) Devise novel UQ methods that use low-fidelity 
physics based surrogate models to balance computational 
efficiency with convergence accuracy 

$$

(4.3) Devise novel methods for interpreting large 
uncertainties that are intrinsically generated by 
computationally inexpensive surrogate-based models

$$$

(4.4) Investigate creative approaches (e.g., machine 
learning) for interpreting, visualizing, and summarizing 
quantified uncertainties and decision-making processes

$$$

INFORMATION SHARING AND REUSABILITY

(4.5) Consider establishing requirements to quantify and 
disclose uncertainty levels for particular applications (e.g., 
FAA regulations)
• Requires highly controlled protocols for disclosing 

information

$$

MULTIDISCIPLINARY COLLABORATION

(4.6) Coordinate with existing standards committees 
(DoD, national labs, professional societies, academia, etc.) 
to establish standards and methods of communicating 
uncertainty among various multiscale modeling approaches 
including molecular dynamics (MD), computational fluid 
dynamics (CFD), and structural mechanics

$$

High Priority
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

MULTIDISCIPLINARY COLLABORATION, CONTINUED

(4.7) Convene representatives across industry, 
government, and academia to adapt/modernize 
engineering educational curricula and training modules 
to strengthen workforce expertise in decision-making/UQ 
approaches
• Seek alternative pathways—outside of curricula—to teach 

UQ approaches

$$

INSTITUTIONAL PARADIGMS

(4.8) Integrate methods into materials science and 
engineering curricula to teach lifetime predictive 
approaches to minimize maintenance errors and risks

$$

(4.9) Coordinate and execute a plan to incorporate advanced 
statistics into university curricula to establish UQ and error 
propagation as standardized workflow components

$$

BENCHMARKING AND BUSINESS CASE

(4.10) Leverage existing efforts to develop open standards 
for documenting and presenting the decision-making 
process

$$

(4.11) Identify key uncertainties that are missing from 
design considerations but are present—or arise—in 
manufacturing environment (e.g., variability of hole size/
placement/ovality in design versus manufacturing)

$$

(4.12) Generate a set of publicly available benchmark UQ 
problems with varying levels of fidelity and make accessible to the 
broad modeling and simulation communities

$$

(4.13) Conduct a technoeconomic analysis for integrating 
common UQ issues into product design and develop 
training modules to encourage adoption of methods/
approaches:
• Provides risk assessments, return on investment (ROI), 

and cost estimates based on failure probabilities
• Define minimum acceptable levels of UQ within 

reasonable cost levels

$$

SCALABILITY AND COMPUTATIONAL INFRASTRUCTURE

 (4.14) Establish a framework for developing numerical 
UQ approaches that appropriately scale with advanced 
parallel HPC architectures

$$

(4.15) Develop techniques to build well-trained surrogate 
models for large-scale optimization of materials/
components for novel applications 

$$$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

LINKAGE AND INTEGRATION

 (4.16) Develop decision/UQ tools that link experiments 
with corresponding simulations
• Apply existing UQ approaches to complex multiscale 

simulations for conducting risk assessments
• Create a platform that incentivizes the integration of novel 

UQ methods in production software packages

$$$

(4.17) Develop inverse UQ toolsets that identify unknown/
influential input parameters and calibrate their values to 
match simulations to experimental datasets

$$

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

 (4.18) Advance existing UQ computational tools to 
enable automated determination of required experiments 
to reach target levels of uncertainty with respect to model’s 
predictive capability
• E.g., Determining the number of additional data points 

required to have enough quantified uncertainty needed to 
make a decision

$$

 (4.19) Improve methods for analyzing the sensitivity of 
various UQ sources across length and time scales and 
throughout the product lifecycle

$$$

 (4.20) Develop new design of experiments (DoE) 
approaches that improve data yield and usability to 
increase UQ confidence for multiscale modeling 
approaches

$$$

(4.21) Develop criteria to support screening of bad/
undesirable experimental test results (caused by errors, 
impurities, etc.)
• Start by collecting/generation base sets of data to build 

screening methods

$$

(4.22) Define multi-parameter decision making objectives $

BEHAVIOR OF MATERIALS AND STRUCTURES

(4.23) Create physics-based stochastic multiscale models 
to inform the development of advanced UQ algorithms
• Model-generated outputs provide distributions of 

materials behavior and service conditions

$$$$
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Industry-relevant competencies in simulation code design for current and future computational infrastructure

Relationships with Other Key Elements
The Decision Making and Uncertainty Quantification and Management Key Element will serve the future ecosystem 
by facilitating the transition from deterministic to probabilistic modeling methods, providing frameworks for error and 
uncertainty propagation across scales, improving the process of decision making, and simplifying regulatory compliance.

Key Element 4

TABLE 4.3 EXAMPLE INTERRELATIONSHIPS OF KE4 (DECISION MAKING AND UNCERTAINTY QUANTIFICATION AND 
MANAGEMENT) AND OTHER KEY ELEMENTS
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE4 
Decision 
Making and 
Uncertainty 
Quantification 
& Management

Illuminate errors, bound error propagation, and enable model-based 
material and probabilistic component definitions

Forward modeling of 3D/4D characterization tools to bound 
measurement uncertainty and error

Introduce probabilistic methods for structural characterization and 
component analysis

Provide manufacturing constraints with integrated uncertainties for 
readily manufacturable solutions

Establish probabilistic methods for quantifying errors between 
simulation and experimental data

Streamline automated workflow tools via common standards and 
protocols for uncertainty quantification, management, and reporting

Offer academic courses on V&V experimental testing and 
evaluation grounds

Investigate computationally efficient and cost-effective methods for 
achieving sufficient design accuracies

Employ feedback systems to provide data quality markers, 
substantiate data quality, or identify data generation needs

Inform V&V/UQ tools to assess linkages and approaches for 
enhanced experimental design

Support optimization algorithms with integrated UQ information for 
enhanced decision making

Deliver data for model input sensitivity assessments, efficient 
experimental designs, and enhanced model UQ

Provide automated uncertainty prediction tools and novel 
visualizations of uncertainty

Employ characterization, uncertainty prediction, and activity-
tracking tools for autonomous decision making

Exploit parallel software frameworks and computer architectures for 
uncertainty quantification and propagation

Train graduates in probabilistic methods for uncertainty 
quantification and propagation
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Key Element 5: 

Verification and Validation

Validation is the process of 
determining the degree to which a 
model accurately represents reality 
(the experiment) within the range 
of intended use. 

1 2

Definition
This Key Element encompasses methods/practices associated with verification of algorithms and validation of 
models.

Verification can be defined as finding and 
eliminating errors in numerical algorithms/
codes and evaluating the solution accuracy 
of numerical methods against design 
requirements by comparing with highly 
accurate or closed-form benchmark solutions.

Current State of the Art
Role
Verification ensures that a model is correctly 
numerically implemented and is conducted by 
checking model inputs and outputs with simplified or 
benchmark example cases. Verification is followed 
by validation, in which the physics implemented 
in the model is assessed by checking accuracy of 
predictions against experimental measurements. 
For integrated systems with multiple linked models 
or sub-models, each model is verified and validated 
to the required level using a hierarchical approach. 
Uncertainty in model inputs, boundary conditions, and 
outputs, along with experimental errors, are assessed 
to the accuracy level required by a given organization.

Today, modeling applications are migrating from 
being strictly deterministic to probabilistic in nature, 
requiring increased use of formalized verification 
and validation (V&V) tools and frameworks. V&V is a 
common “language” among engineering disciplines 
that deploy computational methods and as such 
is a requirement for material and system modeling 
acceptance and multidisciplinary application.

V&V tools and methods are currently critically under-
used across industry, from suppliers of raw materials 
through the OEMs. Of the companies surveyed as 
part of this initiative, only 12.5% used what they 
would describe as a “defined” process for V&V. The 
remainder of those surveyed all indicated that some 
verification and validation work occurs, at least 
irregularly, in their organizations but none of it was 
consistently performed or formally defined.

Summary
V&V STANDARDS/PROTOCOLS

To date, the Institute of Electrical and Electronics 
Engineers (IEEE) has published a standard for 
System and Software Verification and Validation, 
initially published in 1998 and revised in 2004 and 
again in 2012 [1,2]. Similarly, the American Institute 
of Aeronautics and Astronautics (AIAA) developed 
guidelines for the V&V of computational fluid 
dynamics (CFD) simulations in 1998 [3,4], which 
subsequently led to the development of the V&V 
guide published in 2006 by The American Society of 
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Mechanical Engineers (ASME) for solid-mechanics 
models [3,4]. The U.S. Air Force sponsored an 
assessment of V&V activities between 2010 and 2012, 
which led to the development and publication of V&V 
guidelines and recommendations for the materials 
community [2]. However, this publication was only 
known to one in four of the participants in the Vision 
2040 V&V workshop. The American Welding Society 
(AWS) proposed standardization for V&V of computer 
code-based welding models [5], which referenced the 
much more generic ASME work. Among the Vision 
2040 V&V workshop participants, only one in three 
were aware of the ASME and Air Force guidelines. 
In short, these existing guidelines were completely 
unknown to the majority of the Vision 2040 workshop 
participants before they deliberately researched V&V 
methods in general industries.

Within the broader community of model developers 
and users there has been an overall lag in the 
implementation of existing V&V methods and 
protocols. Unlike established material testing and 
characterization methods, found as ASTM standards 
embraced throughout the world, V&V standards have 
not been extensively adopted.

Although some V&V tools, methods, and guidelines 
exist, new ones are needed that are suitable for 
emerging multiscale/multiphysics models. Engineers 
have an immediate need to use these models and 
to have them fully verified and validated. This means 
new V&V practices and technologies need to be 
created, verified and validated themselves, and 
taught to workers, all in parallel with multiscale/
multiphysics model development.

V&V SOFTWARE TOOLS & METHODS

Methods for model validation/calibration have 
developed rapidly in both academia and industry 
over the last 10 years. Many industries have called 
for rigorous, probabilistic methods that can quantify 

the bias(es) between models and real-world observed 
data, as well as calibrate the sets of possible input 
values to a model that best align to the real-world 
data [6]. Work at the University of Sheffield in the 
UK [7] and by Sandia National Laboratories [8,9] in 
the United States in particular have shaped these 
methods and created early-adopter tools for applying 
them. Now, professional software developers like 
SmartUQ are creating more powerful tools to apply 
these methods across industry [4] in the wake of 
successes such as Southwest Research Institute’s 
DARWIN suite [10] for probabilistic analysis and 
application of models.

Additionally, some recent initiatives have 
demonstrated the extensive use of V&V in solving 
foundational engineering problems (FEPs). One 
example is the U.S. Air Force’s FEP program [11], 
which focused on developing and demonstrating 
ICME infrastructure to incorporate bulk residual 
stress into manufacturing, design, and structural 
analysis of aeroengine disks. Methodologies were 
developed and demonstrated for verifying and 
validating OEM process models linked with supplier 
materials and structural analysis tools.

2040 End State
By 2040, V&V will wrap around the entire simulation 
infrastructure, including experimental methods 
and characterization tools. A widely accepted V&V 
framework will be fully established with standards 
and protocols for multiscale modeling. The 
framework will necessitate the use of V&V tools is 
not only a standard but also a requirement for all 
simulations. V&V will thus be encoded into modeling 
and simulation processes directly, such that only 
validated models/methods will be used to make 
predictions. As a result, next-generation aerospace 
platforms will be designed, validated, manufactured, 
and certified in far fewer years.

Key Element 5
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Gaps
The following gaps lie within five of the roadmap’s 10 crosscutting streams, with the Benchmarking and 
Business Case stream containing the largest number of gaps. The central challenge to establishing a 
community-wide framework for verifying and validating models, software, and systems is a lack of widely 
accepted guidelines and benchmarks to facilitate the adoption of new and existing multiscale/multiphysics V&V 
practices. These gaps have the strongest tie to the accessible characteristic of the 2040 end state. Without an 
accessible V&V framework, the 2040 end state cannot be achieved. 

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INFORMATION SHARING AND REUSABILITY

Lack of readily available training on existing V&V tools and methods for multiple experience 
levels

MULTIDISCIPLINARY COLLABORATION

Insufficient communication pathways between modelers and experimentalists (e.g., 
communication via metadata)

INSTITUTIONAL PARADIGMS

Lack of graduates trained in ICME and V&V entering the workforce, and lack of 
opportunities to apply their knowledge 
• Limited university courses covering V&V

BENCHMARKING AND BUSINESS CASE

Absence of publications containing quantitative data on the savings potential of applied V&V 

Lack of V&V risk assessment and UQ for ICME models

Inaccurate perception of V&V—and collection of experimental data—as a too time-
consuming and resource-intensive to be value-added

Lack of standard benchmark problems and example V&V approaches
• E.g., End-to-end example problem provided by ASME V&V committee

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

 Lack of guidelines and practitioner aids for multiscale/multiphysics (e.g., ICME) V&V
• V&V methods are not well known among the materials science and engineering 

community, and engineers do not know how to use them in the context of single and 
multiscale materials modeling

• Experiments performed for model validation are not well understood

Emerging V&V methodologies/ approaches are immature and underdeveloped
• Lack of application-specific V&V methods

TABLE 5.1 VERIFICATION AND VALIDATION GAPS AND IMPACTED 2040 CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly Critical

Key Element 5
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Recommended Actions
The following recommended actions lie within six of the roadmap’s 10 crosscutting streams, with the most 
actions affecting Input/Output Confidence and Reliability. Quantifying and assessing confidence and 
reliability in models and data is the main purpose of V&V during product design and deployment. Many of the 
recommended actions call for establishing community-wide practices and approaches for building out the 
V&V framework. The recommended actions have the strongest ties to the accessible, robust, and user-
friendly characteristics of the 2040 end state.

TABLE 5.2 VERIFICATION AND VALIDATION RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$  0.5-2M/year $$$   2-5M/year $$$$   >5M/year

Key Element 5

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA MANAGEMENT

 (5.1) Develop, approve, and actively support the 
development of V&V standards for hierarchical and/or 
complex models
• Establish minimum requirements and definitions for V&V 

of multiscale materials models   

$$$$

INSTITUTIONAL PARADIGMS

 (5.2) Develop training modules to teach V&V 
approaches throughout the design process (i.e., 
structural component to materials & processes to model 
development)
• Teach systems paradigm that integrates theory and 

experiments for concurrent model development and 
validation

$$$

BENCHMARKING AND BUSINESS CASE

(5.3) Create a web-based platform to host code verification 
benchmarking activities

$$

SCALABILITY AND COMPUTATIONAL EFFICIENCY

 (5.4) Develop V&V-friendly model formats and/or 
surrogate model structures so V&V can be “designed in” 
from the start

$

LINKAGE AND INTEGRATION

(5.5) Accelerate multiscale V&V data collection efforts 
starting at lower length scales

$$$

(5.6) Explore multiscale-compatible V&V approaches 
capable of comparing small samples to larger parts

$$$

High Priority



NASA/CR—2018-219771 91

Key Element 5

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

 (5.7) Establish best practices for data collection 
techniques for high quality model emulation and/or 
calibration data

$

(5.8) Establish best practices for mathematical/statistical 
approaches to calibrating models against experimental 
data and available analytical solutions

$

(5.9) Develop best practices for generating and validating 
flexible parametric models and surrogate models for 
complex geometries

$

(5.10) Determine best practices for screening the quality 
of V&V repository data

$$

(5.11) Enable a “backward simulation” validation capability $$
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Industry-relevant competencies in simulation code design for current and future computational infrastructure

Relationships with Other Key Elements
Verification and validation practices are vitally important to establishing suitability of algorithms and prediction accuracy of 
models. Serving as an essential conduit for experimental methods, characterization tools, and models, this Key Element 
will pervade data collection techniques and automated workflow tools, enabling an industry-wide ICME framework that 
streamlines product certification and boosts overall adoption of computational models.

Key Element 5

TABLE 5.3 EXAMPLE INTERRELATIONSHIPS OF KE5 (VERIFICATION AND VALIDATION) AND OTHER KEY ELEMENTS
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE5 
Verification & 
Validation

Validate models via concurrent companion modeling

Create industry-wide standards, protocols, and model formats to 
enable V&V tool and method applications

Assess physical and computational method linkages, and optimize 
experimental plans to support V&V

Calibrate and validate estimated uncertainty in optimization routines

Inform V&V/UQ tools to assess linkages and approaches for 
enhanced experimental design

Establish widely accepted V&V standards and protocols to 
streamline automated workflow tools

Offer academic courses at V&V experimental testing and 
evaluation facilities

Verify peta- and exascale computing algorithms

Employ feedback systems to provide data quality markers, 
substantiate data quality, or identify data generation needs

Establish probabilistic methods for quantifying errors between 
simulation and experimental data

Foster model-based optimization routines for V&V activity planning 
and selection

Enable integrated parameter sensitives and error propagation 
studies for enhanced model validation

Establish minimum requirements, common definitions, and readily 
accessible high-pedigree datasets for model validation

Automate workflow tools to incorporate and simplify V&V practices

Provide hardware/software frameworks for managing/accessing 
experimental datasets for V&V

Increase total graduates trained in ICME model validation
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Key Element 6: 

Data, Informatics, and Visualization

Data and Informatics
All aspects associated with the electronic capture, analysis, archival, maintenance, and dissemination of material 
data* related to experiments, simulation, and applications:
• Methods and technology for gathering, manipulating, storing, retrieving, mining, and analyzing data to extract 

new knowledge from existing information (i.e., data analytics)
• Technologies for accessing, aggregating, and sharing structured/unstructured data from geographically 

disparate locations
• Information and knowledge management systems required to seamlessly and automatically connect 1) 

experimental, simulation, and manufacturing materials and structural data at different length scales; and 2) 
toolsets and best practices within and across users, organizations, data sources, and structural applications

1

Visualization
Technologies for representing/displaying data and analytical results across time and length scales to enable 
the comprehension of information, gain new insights, and inform decision-making2

Definition
This Key Element encompasses the following:

*Material data includes both data and metadata. Data are the outputs from a physical experiment, computer simulation, or analytical model. 
Metadata is “data of data” that describes the data resource, format of the data resource, and the administrative rights associated with the data.

Current State of the Art
Role
Information management (in the form of material 
property data and simulation management) plays 
a key role in today’s design paradigm, particularly 
in highly regulated industries like aerospace, where 
the need to establish a “gold standard” for material 
data is paramount. Although data repositories 
(experimental, material property, simulation) exist, 
they are often siloed and company/department 
specific: connection within a given organization—and 
most assuredly along the supply chain—is limited 
at best. Companies that have established a digital 
thread and accompanying digital culture are reporting 
high payoff in terms of efficiency increases and cost 
savings; however, to date progress has occurred on 
either the material or structures side of the house 

with only limited connection between the two. 
Visualization goes hand-in-hand with information 
management, transforming raw data into a form 
interpretable by designers, engineers, and decision 
makers. In today’s world, icons, graphical user 
interfaces, and smart devices are exploding in use 
around the globe. 

Summary
JOURNEY OF DATA MANAGEMENT

Transitioning from “paper” to digital representation 
has been ongoing for decades, with some technical 
communities being earlier adopters of the various 
technologies than others (e.g., system design and 
simulation vs. materials), with software evolving to 
manage this digital footprint. For example, early on 
disparate collections of structured data associated 
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with specific topic areas like cost, manufacturing, 
computer-aided design (CAD), computer-aided 
engineering (CAE), material properties (MAT), etc. 
appeared (Figure 6.1), yet this data was largely 
unmanaged and had minimal associated metadata, 
traceability, and searchability. Then product data 
management (PDM) software designed to manage 
CAD data and simulation data management (SDM) 
designed to manage CAE data emerged, followed 

by Product Lifecycle Management (PLM) for 
managing and integrating engineering data and 
processes as well as business and manufacturing 
processes from cradle to grave. Soon after that 
came Material Lifecycle Management (MLM) systems 
designed to manage MAT data with their own unique 
requirements. Now the generalization to information 
management – associated with explicit data (know 
what) – and the even more challenging area of 
knowledge management – associated with tacit, or 
hidden, data (know how) – is underway. Note that 
knowledge is defined as information with intrinsic 
value, implications, or connections (e.g., insight, 
intuition, skills); experience; and other knowledge 
that has not been formally shared. The design, 
implementation, and deployment of these broadly 
termed information/knowledge management systems 
remain today the focal point of on-going research 
and development efforts. The supporting methods, 
tools, and approaches for these types of data 

infrastructures all fall under an emerging discipline 
called Data Science and Informatics [1,2]. 

Because no one-size-fits-all solution is anticipated, 
the concept of creating a digital ecosystem of 
federated (highly interconnected) components is 
advancing, a recent example being the Industrial 
Internet of Things (IIoT) [3]. It is this desire to share 
and interact with data/information/knowledge 
within and among varied and often times disparate 
disciplines and skill sets, throughout the entire 
supply chain, which makes the development and 
deployment of such an ecosystem challenging. This 
is particularly true for the materials and structural 
modeling and simulation communities, in which 
the interaction of complex physics over multiple 
length and time scales makes the absorption, 
comprehension, utilization, and retention of 
this multifaceted data/information/knowledge 
problematic. Furthermore, in highly regulated 
industries, such as aerospace and defense, in 
which certification and liability issues are prominent, 
additional complications arise associated with 
traceability and version and access control. For 
example, aerospace companies must maintain the 
supporting information used to certify an aircraft 
for operation throughout its lifetime, as well as the 
manufacturing records of flight critical components. 

Significant government-sponsored initiatives/
projects (both national [4-6] and international [7-
9]) and private/public consortia [10-14] have been 
established over the past 15 years in an attempt to 
accelerate the creation of this “digital tapestry” [15] 
for materials and structural engineering: 

 ■ The objective of the LOTAR International 
Consortium [10] is to develop, test, publish, and 
maintain standards for long-term archiving (LTA) 
of digital data, such as 3D CAD and PDM data. 
These standards will define auditable archiving 
and retrieval processes. LOTAR International’s 
membership includes leading OEMs and suppliers 
from the aerospace and defense industry from the 
EU and the Americas.

 ■ The Materials Data Management Consortium 
(MDMC) [11] has been working for over 15 
years to develop tools and methods to support 
material data management and retrieval for 
use in engineering design and structures. The 

FIGURE 6.1 INFLUENCE AND INTERACTION OF 
VARIOUS MATERIALS AND SYSTEM ENGINEERING 
SOFTWARE PRODUCTS. 

Key Element 6
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consortium is focused on building and continuously 
enhancing data management systems and 
applications, establishing best practices in material 
data information management, and developing 
community-accepted data schemas for the Granta 
family of materials data products [20].

 ■ FIBERS [12] is an industry-led polymer composites 
consortium, funded by NIST, to develop a 
technology roadmap that identifies shared 
technical obstacles and defines pathways toward 
manufacturing advances to enable scale-up of 
cost-effective, high-volume production processes.

 ■ TOICA [13] is the latest in a series of EU-funded 
projects, coordinated by Airbus, consisting of 32 
partners from eight countries to understand the 
evolution of behavioral Digital Aircraft dataset from 
concept to certification. TOICA focuses on the 
thermal behavior of the whole aircraft. 

 ■ The SimBest project [14], funded by Innovate UK, 
is focusing on gathering and disseminating best 
practice in the use of simulation and modeling tools 
for engineering design simulation in high value-
added manufacturing. 

One critical outcome of these initiatives has 
been the engagement and focus of professional 
societies (AIAA, ASM, ASME, NAFEMS, and TMS), 
associations (ASD-STNN, AIA, PDIES, ProSTEP), 
standardization bodies (NIST, ISO, ASTM, ASD-
SSG), and regulatory bodies (FAA, EASA) on this 
development process, resulting in a number of 
published studies (see [16-19]).  

DATABASES AND DATA INFRASTRUCTURE

Currently, a number of materials-oriented databases 
and infrastructures, both open and commercial, 
exist. These databases span various length scales, 
from atomic to macroscale, and provide essential 
input to material models, whether atomic potentials 
or material properties. For example, at the atomic 
scale, several new databases/repositories have 
been established to house interatomic potentials 
and the output of ab initio calculations [21-25]. 
Combined, the three databases [23-25] contain 
fundamental material property information for over 
1 million compounds based on primarily 0 K (zero 
Kelvin) calculations. CALPHAD [26] is an approach to 
develop multicomponent descriptions for a variety of 

phase-based properties including the Gibbs energy 
(allowing phase equilibria calculations), diffusion 
mobilities, molar volume, and elastic constants [27]. 
This approach has been used to develop a variety 
of open-source and commercial multicomponent 
thermodynamic and diffusion mobility databases that 
are frequently used by industry to integrate materials 
design approaches. More recently, database efforts 
have expanded to include molar volume data. 
Citrine Informatics has developed a public platform 
that supports data-driven materials and chemistry 
research [28]. There are also a number of engineering 
property databases, such as MatWeb [29], Granta 
Design [30], MatNavi [31], and MAPTIS [32]. A key 
feature missing, however, in these property-centered 
databases, as well as most proprietary in-house 
databases, is a rigorous description of the associated 
material microstructure and the connection to 
associated processing parameters, making 
processing-microstructure-property relations difficult 
to establish. Such relationships (information) are 
extremely important, as they enable cost-effective, 
fit-for-purpose modification of these materials as well 
as provide crucial insight for material innovation. An 
attempt to link simple measures of microstructure 
features (data and metadata) with mechanical 
material properties and performance response 
as well as enable multiscale modeling within an 
information management workflow and toolset 
was demonstrated by NASA GRC with the Granta 
MI installation [20] and has since been adopted 
by the MDMC [11] and incorporated into its ICME 
schema (see Case Study 4, Appendix B). Also, while 
some tools for tracking and creating detailed digital 
microstructures now exist (e.g., DREAM3D [33]; see 
Case Study 3, Appendix B), the resulting detailed 
digital descriptions have yet to be tightly incorporated 
within commonly available data infrastructures.

Open data repositories for experimentally obtained 
data are also emerging, driven by efforts such as the 
Materials Genome Initiative (MGI) [34] which calls 
for platforms to exchange materials data as well as 
a decentralized infrastructure. Notable examples 
are the NIST Repositories [35], the Materials Data 
Facility at the University of Illinois [36], the Materials 
Commons at the University of Michigan [37], and 
the Computational Materials Data Network hosted 
by ASM International [38], and the HyperThought 
system at AFRL [39]. Efforts to capture, document, 
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and share transient/dynamic material properties 
during processing are just beginning to emerge. 
For example, Worcester Polytechnic Institute (WPI), 
University of Connecticut, SUNY Buffalo, and 
ASM International are establishing the Center for 
Materials, Modeling, and Manufacturing Data aimed 
at generating transient materials property data that 
is applicable for manufacturing process simulation. 
The commercial Granta data management products 
are generally, but not exclusively, intended for internal 
organizational use and enable the establishment 
of corporate in-house material data information 
warehouses with both access and version control. By 
contrast, the AFRL-sponsored Metals Affordability 
Initiative has developed and launched an access-
controlled, cloud-based data management and 
sharing repository called MAIhub [40], which is only 
accessible to member organizations but can house 
export controlled materials data. This first-of-its-
kind repository for aerospace materials data paves 
the way for secure sharing of materials data among 
industrial, academic, and government collaborators.

Whether for internal data management systems or 
global data infrastructures, an important emerging 
paradigm in best practices for the management of 
technical data is the FAIR principles [41], guidelines 
that define what it means to make data Findable, 
Accessible, Interoperable, and Reusable to help 
technologists be good stewards of scientific and 
engineering data. 

 ■ Findable has two key components: unambiguous 
identification of data through a Universal Resource 
Identifier, such as a digital object identifier (DOI), 
and discoverability of data through a search 
function such as with natural language. NIST has 
been at the forefront of providing guidance and 
technology that support the FAIR principles in 
materials and is currently piloting a web-based 
tool, the Material Resource Registry (MRR) [42], 
that will provide a means of discovering coarse-
grained data-oriented resources. This tool uses 
relatively simple standards by which users can 
expose their data resources to the MRR and make 
them discoverable through the internet. NASA is 
also piloting similar functionality with a system 
called Digital World, which provides registries of 
domain-specific resources (datasets, code, etc.).

 ■ Accessible is relatively self-explanatory, while 
Interoperable denotes readability by both human 
and machine and compatibility with other data 
formats. Currently, the HDF5 file format [43] 
appears to be the leading candidate for encoding 
complex material data due to its open and 
hierarchical structure [44]. 

 ■ Reusable means that data contains sufficient 
metadata to be contextually well-defined for a 
specific purpose. Here, NIST’s Materials Data 
Curation System (MDCS) provides a structured 
means for capturing, describing, sharing, and 
transforming material data into a structured format 
that is XML-based, which is both human and 
machine readable. The data is organized using 
user-selected templates encoded in XML Schema 
[45]. While data schemata are emergent within the 
materials community, they are still relatively rare.

At present, most devices used to characterize 
or measure a material produce a proprietary or 
manufacturer-unique data format, replete with non-
standard terms to describe the data and metadata 
fields. Much effort is still required to simplify and 
speed the workflow to take data from experiment or 
simulation through storage, discovery, and reuse. The 
development and adoption of open data standards 
and formats, starting with characterization, testing, 
and processing equipment, is an essential first step in 
creating these workflows. Manufacturers encountered 
this same issue in extracting data in a common, 
readable format from manufacturing equipment. 
NIST sponsored and established a consortium called 
MTConnect [46] to develop common standards for 
interfacing with manufacturing equipment.

Capture of the relevant data and the metadata 
associated with a given part through its lifecycle 
(“data provenance”), including material, design, 
manufacture and use data, provides a complete 
“digital thread” that describes and defines a 
component in a reusable digital format. This holistic 
approach to data capture is emerging as the new 
philosophy for materials data management and 
control. As data is collected on a given material 
and component and is analyzed relative to other 
components with a common material type, increased 
knowledge and understanding about the behavior of 
the underlying material can be developed. This data-
driven “cradle-to-cradle” design system approach 
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to data capture and reuse is enabling materials and 
manufacturing models to be created and validated 
that support current and future component and 
systems designs.

No centralized standards for the communication 
or storage of materials information currently exist. 
In terms of data storage, no clear community 
standards have developed to store materials data, 
like the Flexible Image Transport System (FITS) 
in astronomy [47]. Common file formats enable 
easier data sharing but must also contain proper 
access controls, in the case of proprietary data. 
Significant cultural challenges also exist, most 
notably the lack of a community-accepted ontology 
for the communication of materials information. 
The lack of a common language is driven by the 
diversity of materials systems. Defining common 
ontologies would allow researchers from disparate 
materials fields to more easily communicate across 
materials problem spaces [48]. Numerous other 
technical communities such as biology, biomedicine, 
astronomy, and earth sciences are in various stages 
of developing and adopting ontologies as a way of 
fully describing the potential data within a domain. 
Ontologies provide organization to the concepts in a 
domain by formally naming and defining the types, 
properties, and interrelationships of entities. By 
building these interrelationships through a network 
graph, the data become interpretable by a computer, 
allowing complex relationships between data to be 
discovered. In addition, ontological approaches to 
data management allow much greater discovery 
and interoperability between platforms, making 
traditional rigidly structured databases redundant. 
As a component of semantic-based technologies, 
ontologies can be described through a Resource 
Description Framework (RDF), enabling the concept 
of “linked data” across a network. AFRL has 
sponsored development of a semantic tool called 
MatOnto [49] to tie data, processes, and concepts 
together. Further investigation of the various 
applications of semantic database tools and methods 
will help provide insight into the future direction of 
this technology.

Lastly, government-sponsored research programs 
have begun to require development of Data 
Management Plans (DMP). DMPs are intended to 
promote good data stewardship during and after a 

research program by defining the types of data to be 
generated, the required metadata, and the formats 
used to capture and transmit data, as well as storage, 
access, and security strategies and policies. These 
practices help ensure a program runs smoothly by 
clearly communicating the why, what, when, who, 
and how of data and its transfer within a program. 
Additionally, DMPs can help ensure the long-term 
preservation of data for reuse in other programs. 
Furthermore, the practice of presenting valuable 
digital data through a peer-reviewed journal article, 
which is already commonplace in some technical 
disciplines, is gaining traction in materials science 
and engineering (e.g., Integrating Materials and 
Manufacturing Innovation, Scientific Data, Data in 
Brief). The key issues – how technical publications 
and their supporting research data must be bound 
together in a rational fashion – that need to be 
considered as the community develops an approach 
to data archiving supporting publications, were 
recently discussed by Ward et al. [50]. 

MATERIAL INFORMATICS (DATA ANALYTICS)

Performing physics-based analytical models 
on materials systems is a classic way to apply 
understanding of materials behavior for the 
acceleration of design. This approach involves using 
existing physical understanding or approximation to 
extract new, useful information concerning materials 
systems. A complementary method involves deriving 
new knowledge from the structure of existing 
information. This approach, which is fueled by the 
widespread adoption of computational systems, is 
often termed informatics. This approach to extracting 
new knowledge about materials represents a new 
paradigm compared to historical methods, expanding 
upon the foundation of experiments and physics-
based models and simulations [51]. Informatics, due 
to its nature, involves significant computation and 
understanding of the theory behind communication of 
information [51-53].

Advances in networked communications and search 
algorithms have led to remarkable opportunities 
for the discovery and sharing of materials data. In 
particular, increasing the availability and accessibility 
of high-quality materials data across different length 
and time scales is an essential requirement for 
multiscale materials and structural modeling [54]. It 
is critical to be able to discover, manipulate, mine, 
manage, analyze, and share scientific and engineering 

Key Element 6



NASA/CR—2018-219771 99

data in an easy and efficient way [55].  Unfortunately, 
there has been only limited utilization of this data, 
due to the lack of suitable data repositories [27], 
standards, and incentives for sharing.

The primary objective of materials data analytics is 
to extract high-value information (e.g., processing-
microstructure-property-performance relationships) 
from available compilations of materials datasets. 
This information can be particularly difficult to obtain; 
for example, a materials microstructure and evolution 
can span a multitude of length and time scales and 
have a variety of complex details (e.g., random 
defects and disorders). As an added complication, 
microstructural details often only exist as micrograph 
images, requiring conversion into some form of digital 
signature in order to use modern image-analysis tools 
[56]. These conversion methods (i.e., identification 
of key descriptors) are still an active area of research 
[57-59]. The reconstructing of full 3D representations 
from the typical 2D images that most measurement 
techniques provide is another challenge area. Data 
analytic and data mining tools and techniques [60] 
(e.g., noise filtering, uncertainty quantification, 
patter recognition, regression analysis, and machine 
learning) exist in various commercial packages as 
well as software repositories [61-63].  However, 
adopting/transforming these techniques as well as 
other big data technologies [64,65] to aggressively 
interrogate material datasets and the associated 
material simulation results to glean the required 
processing-microstructure, microstructure-property 
relationships will be a major challenge in building the 
2040 ecosystem. Kalidindi and De Graef [1] provide a 
description on how material data corresponds to the 
five Vs (volume, velocity, variety, veracity, and value) 
of big data and how practitioners in material data 
science and informatics can interact with it.

The Materials Data Facility (MDF) provides a flexible 
data storage and sharing platform with control over 
content access [66]. While MDF provides a needed 
function for data sharing, it does not currently 
extend strongly into data mining for knowledge 
discovery. The Materials Project is attempting to 
bridge this gap by providing open-source workflow 
management for generation and manipulation of 
materials property data, especially those associated 
with molecular compound search and discovery [67]. 

However, the Materials Project is far from spanning 
the required breadth and scope of multiscale 
materials and structures modeling. Alternatively, 
some small businesses, such as Citrine Informatics 
and selected development aspects of the Granta 
database system, have also attempted to bridge 
this gap by providing forward-facing databases 
that enable materials informatics driven by machine 
learning [68]. The Citrine approach involves ingesting 
generally unstructured data, such as patents and 
publications, and extracting unitary measures [68]. 
A crucial gap in current approaches is the lack of 
inclusion of spatially defined materials data (akin to 
the Google Maps concept). Current implementations 
for approaching materials informatics generally focus 
on thermomechanical or structure measurements, 
such as tensile strength, melting point, or band 
structure. The spectrum of materials data is generally 
far broader, however, with significant amounts of 
data, especially evaluation and inspection data, 
being spatially located on a part geometry. Finally, 
it is not currently common practice to upload or 
access research or industrial data on a decentralized 
storage network. Since the strength of the informatics 
framework should scale with the information it 
ingests, obtaining community involvement is critical.

VISUALIZATION

Data visualization aims to communicate data clearly 
and effectively through graphical representation. Data 
visualization techniques are also utilized to discover 
data relationships that are otherwise not easily 
observable by looking at raw data. Han et al. [60] 
review the basic concepts of data visualization and in 
particular discuss several representative approaches, 
including pixel-oriented techniques, geometric 
projection techniques, icon-based techniques, and 
hierarchical and graph-based techniques.

In consumer markets (internet, video games, and 
entertainment), technologies are being developed to 
provide increasingly immersive virtual experiences. 
Some examples include the advent of WEBGL [69-
71], consumer televisions with 3D capabilities [72], 
holographic and volumetric displays that allow 3D 
projections from any viewing angle [73], augmented 
reality applications for mobile devices [74], and 
user interfaces with voice commands (e.g., Siri and 
Cortana).

Key Element 6



NASA/CR—2018-219771 100

Figure 6.2 shows an example of state-of-the-art 
visualization technology. Here, an ESI software 
engineer uses a head-mounted display and virtual 
reality gloves to evaluate satellite assembly. Many 
open-source visualization and commercial tools are 
also available today and play an important role in 
communicating complex (often high-dimensional) 
data. Open-source tools such as 

 ■ ParaView [75] (and the variant TomViz [76]), Avizo 
[77], and MeshLab [78], used for interactive 
exploration of gridded or meshed volumetric data

 ■ Commercial simulation software such as Abaqus 
[79] and ANSYS [80] 

 ■ Analysis software such as MATLAB [63] and 
Mathematica [81] 

have built-in capabilities to generate rich 
visualizations for volumetric data, as well as a wide 
array of plots and graphs. 

These visualization tools and methods are being 
embraced by the aerospace design, manufacturing, 
and maintenance communities, relative to the study 
of ergonomic aspects of human-machine or human 
activity assessment. Similarly, research efforts are 
ongoing to apply visualization tools and methods to 
system operation, such as the ability of an engineer 
to enter into the computed flow-path of a turbine 
engine to visualize geometry, flow, and boundary-
layer interactions during a simulated operating 
condition. The multiscale and multi-dimensional 
aspects of material, structures, and system design 
and optimization make it challenging for humans to 
visualize by historical static snapshots.

The materials community is rapidly embracing 
3D structure characterization. Tools, such as 
DREAM3D [33], are supporting visualization of 
SERVE and other hierarchical and multimodal data 
in a concurrent fashion. The hierarchical nature 
of those tools is expanding as they become more 
akin to the Google Maps analogy (see Key Element 
2, Multiscale Measurement and Characterization 
Tools and Methods). This approach of representing 
and visualizing microstructures enables engineers 
to assess wide ranges of statistically equivalent 
structures not possible in other methods. These 
tools are allowing new and extreme microstructures 
to be visualized and assessed relative to modeled 
performance.

Data fusion methods are emerging to allow 
visualization of data from disparate sources and 
can support zoning or categorizing materials within 
a component volume with unique combinations of 
statistically equivalent characteristics. Microstructural 
analysis in 2D/3D is a crucial part of the current 
visualization paradigm. Image analysis techniques 
are necessary to turn 2D/3D information into data 
that can be used to test or validate microstructure-
sensitive models.  A multitude of image analysis 
software codes currently exists, with ImageJ [82] 
being one of the most common in the materials 
community, notwithstanding its biology-focused 
inception. However, one of the greatest challenges 
is the segmentation of images for any further post-
processing because human intervention in the 
segmentation of 2D/3D images for analysis provides 
a large source of error and inconsistency.  Adaptive 
image-analysis techniques are only emerging, as 
characterization methods become higher and higher 
“resolution.” Additionally, multimodal data (e.g., 
chemical, crystallographic, and structural) collected 
by multiple detectors with different sampling volumes 
and inherent distortions poses some unique problems 
for visualization of materials data that often do not 
exist in other fields. These challenges limit the current 
quantitative visualization of materials and their 
usefulness in the chain of multiscale modeling.

Despite the relative prevalence of advanced dynamic 
visualization technologies in the consumer market, 
these technologies have not yet taken hold in the 
aerospace materials industries, in which analysis 
and interaction with software technologies is mostly 

FIGURE 6.2 EXAMPLE OF SOA VISUALIZATION 
TECHNOLOGY: ESI'S IC.IDO VIRTUAL REALITY SOFTWARE 
WITH HTC VIVE HEAD-MOUNTED DISPLAY.

Key Element 6



NASA/CR—2018-219771 101

done on two-dimensional displays (e.g., flat monitor 
screen and part prints). Modern computer-aided 
design (CAD) systems represent geometries in three 
dimensions but are still limited by two-dimensional 
displays. There are opportunities for the materials 
and structures communities to learn from other 
engineering disciplines how to visualize materials 
mechanisms, such as dislocation generation 
and damage generation as a function of material 
chemistry, structure, component geometry, and 
application loading paths.

Computer agents and assistances are in their infancy 
and will need to be improved, personalized, and 
standardized by the community. As data is linked, the 
favored set of commands for data and representation 
will need to be stored, reviewed, shared, and built 
upon in an easy to use/reuse way. Agents can be 
thought of as a detective, gathering information for 
you and sometimes taking action. Assistances can 
be thought of as butlers, mostly handling your own 
things and information.

Harnessing the promise of advanced materials 
design concepts such as Integrated Computational 
Materials Engineering requires the design practitioner 
to be comfortable with manipulating, analyzing, 
and mining large amounts of material data. Unlike 
current databases which are largely textual and 
tabulated, materials databases in the near future 
will also contain spatial and temporally resolved 
microstructure information (potentially from multiple 
imaging modalities), local (spatial) and global property 
data, thermodynamic data, and metadata detailing 
the history of the sample, etc. In addition, this is 
likely to be a blend of experimental characterization 
and testing as well as modeling and simulation 
data. Because human designers, unlike machine 
learning algorithms, are not adept at developing 
correlations and recognizing patterns in complex, 
high-dimensional data environments, they will require 
new visualization tools that can work along with the 
data science tools to provide abstractions of data 
that may be viewed in a small number of dimensions 
(3 spatial plus temporal evolution).

Historic analogues in materials science are 
thermodynamic abstractions such as phase 
diagrams, continuous cooling curves, and Ellingham 
diagrams, as well as the well-known Ashby plots [83] 
for materials selection. The general idea behind these 

diagrams is the presentation of multidimensional data 
projected into some intuitive (with a little training) 
space defined by key design variables, which allows 
a designer to explore complex data relationships 
in a simple visual environment. The challenge in 
developing general abstractions for future material 
design applications is the heterogeneous nature of 
the material data and the extreme dimensionality of 
the datasets. Unlike the historical examples given 
above, where the form of the correlation in the data 
is a priori specified by the governing physics and 
the axes of the diagrams have a physical meaning, 
we will be relying on correlations developed through 
machine learning to extract a physical understanding 
of the system. This presents challenges for 
visualization, as the tools must be general and 
flexible while reducing the data down to a small set of 
essential correlations.

Work in this area is still largely in the nascent stages. 
Work from Fullwood et al. [84] on microstructure 
sensitive design advanced the idea of a 
microstructure design space and a microstructure 
hull, which spanned the space of possible material 
states. However, this work was limited to material 
descriptors that had a well-defined compact 
spectral representation (such as the generalized 
spherical harmonic description of crystallographic 
texture in polycrystalline materials). More recently 
Sundararaghavan and Zabaras [85-87] and Niezgoda 
and Kalidindi [88,89] explored dimensionality 
reduction approaches such as kernel principal 
component analysis to define a general materials 
design space, develop property relationships in this 
space, and visualize microstructure data. Such digital 
representation of the material microstructure will be a 
key feature of the 2040 vision ecosystem.

2040 End State
By 2040, automated workflows will feed the data 
infrastructure, in which pedigree, provenance, and 
quality metadata is attached to all data. The FAIR 
principles of data stewardship will be practiced 
throughout the community, facilitated by community-
developed vocabularies, schemata, and ontologies, 
as well as open data standards and formats, publicly 
accessible data-translation tools, and modern and 
open APIs. The infrastructure will accommodate 
all types of materials (metals, ceramics, polymers, 
biomaterials, etc.) and composites of each. Mining 
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this wealth of data collected throughout the lifecycle 
will reveal new materials knowledge. Additionally, 
data-transfer protocols and encryption technologies 
will allow visibility and easy sharing without 
compromising proprietary information. 

Visualization of multidimensional data using 
immersive 3D displays, which can be manipulated 
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with audio commands and motion feedback, will be 
commonplace. It will be possible to “zoom in and 
out” to visualize phenomena across scales, such as 
crack propagation simulation all the way down to the 
grain scale. Visualization will be more collaborative, 
allowing engineers and scientists to interact with their 
data and each other in the same visual space.
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Gaps
The following gaps lie within seven of the roadmap’s 10 crosscutting streams, with the Data Analytics and 
Visualization stream containing the largest number of gaps. Analyzing and representing data is a major 
part of this Key Element, and many emerging capabilities need to be incorporated into the modeling and 
simulation framework. These gaps have the strongest ties to the traceable, accessible, and user-friendly 
characteristics of the 2040 end state. Accessibility and user-friendliness depend largely on the ease with 
which people interact with their data, while information traceability is at the heart of an interconnected cyber-
physical-social ecosystem. 

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INFORMATION SHARING AND REUSABILITY

 No widely accepted community standards or schema for materials information storage and 
communication methods

No consensus on how to define comprehensive material pedigree short of tabular or key-
value structures

Insufficient descriptions of materials compositions (e.g., impurity levels, defect evolution)

Approaches for tracking metadata and data pedigree are not widely available

Poor data storage, transfer, and retrieval times prevent ability to conduct real-time/remote 
multiscale visualization

Tool and code obsolescence threatens the integrity of the digital thread
• Difficult to ensure old versions are maintained or updated  

DATA ANALYTICS AND VISUALIZATION

Lack of community-accepted practices or standards for mining and quantifying complex 
materials information and datasets between experiments and models

Many materials information frameworks are not sufficiently developed for compatibility with 
state-of-the-art data analysis and management technology

Human involvement in thresholding and segmentation limits the suitability of 2D/3D/4D 
images for analysis

Limited ability to capture and represent time dependent data (4D)

Limited ability to represent translucency among multiple layers of data

Deep Learning and Machine Learning (ML) techniques are not implemented across MS&E 
disciplines, and across length scales

Workforce not sufficiently trained in data science, machine learning, programming, and 
analysis
• Not yet accepted as vital aspect of materials and structures engineering disciplines

TABLE 6.1 DATA, INFORMATICS, AND VISUALIZATION GAPS AND IMPACTED 2040 CHARACTERISTICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly Critical
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GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INFORMATION SHARING AND REUSABILITY

Need for decentralized, accessible data storage network 
• Lack of approaches for dealing with data ownership issues (e.g., IP and legal) 

Lack of user-friendly (i.e., user can easily retrieve correct information in correct format at 
correct time) infrastructure that accommodates linkage between relational and non-relational 
databases for storing both disparate and wide-ranging material geometries and information 
types  
• Lack of sufficient security access controls

Lack of easy access to data precludes the appreciation, use, and adoption of data-driven 
models (e.g., fast acting surrogates) over physics based models within the materials 
community 
• Volume and variety of datasets makes them difficult to move

MULTIDISCIPLINARY COLLABORATION

Lack of data/nomenclature translators for more effective interaction between different 
communities
• Limited dissemination of existing translators

INSTITUTIONAL PARADIGMS

User-friendly, interactive visualization used in other communities have not yet been adopted 
in materials science and engineering

BENCHMARKING AND BUSINESS CASE

No sustained funding or stewardship model for ensuring the continuity of the computing 
hardware infrastructure (upload, storage, communication, etc. of materials data) within a 
materials information infrastructure

Rewards/incentives for better management of data are nearly non-existent

LINKAGE AND INTEGRATION

Insufficient inclusion of spatially-defined materials data throughout material lifecycle, 
including evaluation and inspection data (i.e., spatial location on part geometry)
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Recommended Actions
The following recommended actions lie within seven of the roadmap’s 10 crosscutting streams, with the 
most actions under Data Management and Data Analytics and Reliability. These recommended actions 
aim to build an interconnected data and informatics infrastructure through common databases, formats, data 
management practices, and enhanced visualization capabilities. As with the gaps for this Key Element, the 
recommended actions have strong ties to the accessible and traceable characteristics of the 2040 end state. 

TABLE 6.2 DATA, INFORMATICS, AND VISUALIZATION RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$  0.5-2M/year $$$   2-5M/year $$$$   >5M/year
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ACTION

2040 CHARACTERISTICS TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA MANAGEMENT

 (6.1) Establish schema standards and 
protocols to enable federated data infrastructure 
comprising both public and private sources 
• E.g., open architectures, APIs, semi/

unstructured data formats, and microservice 
development

$$

  (6.2) Establish/recommend common, open, 
and adaptive file formats with proper access 
controls to enable easier data retrieval, sharing, 
and archival

$$

(6.3) Define a structured approach to building 
ontologies, and define common ontologies/
semantics to permit communication across 
materials-related disciplines 
• Assure the approach represents the 

spatiotemporal hierarchy innate to materials 
and structures engineering practices

$$

(6.4) Implement standardized data collection 
modalities for a given metric of interest with 
bounded uncertainty

$$

(6.5) Develop tools and templates for guiding 
the building of robust data management plans

$

(6.6) Create a meaningful definition and 
representation of “pedigree” both structurally 
and visually

$

(6.7) Create a set of benchmark datasets to 
better define microstructures and facilitate more 
quantitative results 

$

(6.8) Develop data/nomenclature translators $$

High Priority
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ACTION

2040 CHARACTERISTICS TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA ANALYTICS AND VISUALIZATION

 (6.9) Develop and standardize fast-acting 
machine learning (e.g., natural language 
processing), data mining, and data analysis 
approaches and incorporate them into model 
development for cohesive materials data 
analysis 
• Apply techniques to “learn” data schemata
• Use ML to quantify level of confidence in 

statistical model-based prediction results
• Direct collaboration with experts in computer 

science and machine learning to drive 
symbiotic development

$$

(6.10) Develop methods to quantify the quality 
of data

$$

(6.11) Develop adaptive 2D/3D/4D 
microstructural segmentation techniques to 
reduce human error and boost quantitative 
visualization of materials and structures

$$

(6.12) Enhance the accuracy and speed of 
visualization of unstructured, high dimensional 
data (e.g., through translucency) to show 
relationships between multiple layers of data

$$

(6.13) Design immersive 3D displays for 
increased data interaction 
• Significant potential in additive manufacturing 

design

$$

(6.14) Create user-friendly, easy to learn 
interfaces using the latest in natural user 
interface technology (voice, gestural, etc.)

$$

(6.15) Develop real-time visualization (e.g., 
“auto-pilot”) for condition-based real-time 
monitoring of experiments

$$

INFORMATION SHARING AND REUSABILITY

 (6.16) Establish specific community (e.g., 
academic, government, industry) incentives 
for contributing data and models to public 
databases

$$

(6.17) Fill in missing experimental data (basic 
thermodynamic and kinetic properties)

$$$$

(6.18) Encourage community acceptance of 
decentralized storage and transfer of materials 
information

$
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ACTION

2040 CHARACTERISTICS TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

MULTIDISCIPLINARY COLLABORATION

(6.19) Seek inputs and lessons learned 
from other communities (e.g., biology, 
astronomy, etc.) for developing a large-scale 
cyberinfrastructure

$

INSTITUTIONAL PARADIGMS

 (6.20) Require all NASA contractors, staff, 
and grantees to engage in best practice data 
management

$

 (6.21) Teach the current and emerging 
workforce how to properly interpret information 
from the materials informatics framework, and 
integrate the information into the research and 
design processes

$$$

INSTITUTIONAL PARADIGMS

 (6.22) Adopt and increase use of advanced 
visualization techniques, whether they are 
physical displays (e.g., powerwalls) or virtual 
displays (VR or AR headsets) 
• Demonstrate best-in-class nD techniques and 

document benefits to build business case for 
adoption

$$

LINKAGE AND INTEGRATION

 (6.23) Automate the ingestion and storage of 
materials lifecycle data 
• Automatic direct uploading of materials data 

and associated metadata from characterization 
equipment and simulations (integrate with 
equipment and vendor formats)

$$$

(6.24) Enable the automatic co-registry and 
co-sampling of hierarchical materials data (to 
enable fusion of spatiotemporal data) from 
corresponding topologies to drive correlative 
analyses

$$

(6.25) Advance characterization techniques and 
experimental methods to collect high-throughput 
experimental data across length and time scales 
and enable merging of multimodal data for 
visualization

$$$
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Relationships with Other Key Elements
Data, Informatics, and Visualization is a broad yet vital Key Element that operates as the focal point for data stewardship, 
comprehension, and knowledge extraction. This technical area contributes to other Key Elements by focusing on the 
capture and management of lifecycle data, autonomy of data ingestion methods, ease and security of data transfer, and all 
efforts that increase the value, maintainability, reusability, interoperability, and accessibility of data.

Key Element 6

TABLE 6.3 EXAMPLE INTERRELATIONSHIPS OF KE6 (DATA, INFORMATICS, AND VISUALIZATION) AND OTHER KEY ELEMENTS 
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE6 
Data, 
Informatics, & 
Visualization

Define materials structures; enable capture, analysis, and 
dissemination of all relevant data; and integrate data-driven models 
via informatics framework

Provide model-based material hierarchies that define data 
structures

Provide informatics framework to house characterization and 
response data to facilitate integration and application of machine 
learning tools

Build common data infrastructure, standardized data formats, and 
multidimensional visualizations for improved optimization routines

Provide automated uncertainty prediction tools and novel 
visualizations of uncertainty

Provide knowledge capture framework to support data modeling 
tools for automated workflow data recognition and capture

Automate software conversion of formats, provenance, and 
database building for robust data generation across research 
instrumentation

Incorporate machine learning methods into high-level HPC 
programming frameworks for hardware interoperability

Establish minimum requirements, common definitions, and readily 
accessible high-pedigree datasets for model validation

Employ feedback systems to provide data quality markers, 
substantiate data quality, or identify data generation needs

Deliver optimization algorithms that retain and expand knowledge 
of previously solved problems

Provide experimental/characterization model-based material 
hierarchies that define data structures

Employ feedback systems to provide data quality markers, 
substantiate data quality, or identify data generation needs

Facilitate cross-organizational/cross-sector low-cost rapid data 
generation

Supply HPC programming tools and frameworks for transferring/
accessing large distributed datasets

Offer educational modules in image processing, machine learning, 
and statistical methods
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Key Element 7: 

Workflows and Collaboration 
Frameworks

Workflows refer to the flow of physical and/or 
computational activities and associated data/information 
through a linked string of functions/steps.
• A workflow is a plan or schedule of operational 

steps to perform an overall activity which informs 
how and when data, instructions, and input/output 
requirements must be handed off to subsequent 
operations. This includes a focus on usability 
and interoperability requirements toward smooth, 
seamless operations.

Collaboration frameworks refer to the flow of 
information, analysis results, or shared tools between 
internal or external individuals/organizations.
• Collaboration frameworks are the platforms or 

organizational structures that help inform human 
interaction, enable the creation of extended 
workflows, and help people, groups, and 
organizations achieve clearly defined outcomes. 
These frameworks facilitate the integration of models 
and simulation infrastructure with the performance 
of experiments, characterization process, and data 
infrastructures through workflow developments.

1 2

Definition
This Key Element encompasses technologies associated with workflows and collaboration functions. 

Current State of the Art
Role
Workflows and collaboration frameworks are 
highly interrelated and critical to aerospace 
discovery, design, and development. Currently, 
workflow frameworks establish a methodical path 
for the execution of individual steps toward the 
accomplishment of a particular task. The task can be 
of limited complexity—like the execution of a single 
test or computational activity—or it can be extremely 
complicated, such as the development of an entire 
aerospace system. It is useful to consider a workflow 
framework as a knowledge capture and transfer 
mechanism that establishes best practices for a 
particular task. Workflows are critical for physical 
characterization processes where multiple, complex 
testing and analysis functions are performed, as well 
as for computational methods where data, models, 
and analysis tools are linked together for a specific 
sequence of operations. Workflows can and should 
evolve as better processes are discovered and 
improved tools become available.

Collaboration frameworks define how human capital 
is organized and establishes the basis for how 
people, teams, and organizations interact, sometimes 
including other collaboration tools and practices. 
Collaboration frameworks today include intra-
organizational networks (e.g., design groups, project 
and product teams) and inter-organizational networks 
(e.g., government-industry consortia, industry-
based consortia, industrial supply chains). The 
tendency toward formally established collaborative 
frameworks increases as the scope and complexity 
of an entity’s mission increases. Alternatively, smaller, 
more focused organizations seeking maximum 
agility might favor an informal/ad-hoc collaborative 
framework. A collaboration framework can provide 
the organizational underpinning for the execution of 
increasingly complicated workflows.
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Summary
WORKFLOWS

Most existing workflows do not encompass the 
complete development and verification/validation 
process for a material, system, or subelement. 
Similarly, many workflows do not integrate 
computational and physical aspects particularly 
well. Computational and physical workflows 
currently support the iterative experimentally 
intensive workflow for materials development and 
implementation. Computational workflows, where 
they exist, are largely limited to individual modeling 
and analysis tools employed at specific points along 
the timeline from research to preliminary design, 
process scale up, detail design, or component/
system lifing. Similarly, physical workflows for 
characterization of materials and manufacturing 
of components or systems are largely manually 
developed virtual or hardcopy routers that direct 
and track the operational steps within a series 
of operations. Workflows that combine physical 
(experimental) and computational aspects are not 
as common but do exist, often within organizational 
design and engineering practices.

Workflows support identification, tracking, and 
capture of generated data from each operational 
step. There are many tools that support automated 
generation, execution, and tracking of workflows, 
including commercial and proprietary laboratory 
information management systems (LIMS), software 
that facilitates workflows for a particular string 
of experiment and/or analysis (e.g., LabVIEW [1], 
SIMULINK [2]), and software that enables linkage of 
other models and tools (e.g., Isight [3]).

Database and optimization software is being 
established with certain post-processing workflows 
embedded into the code functionality, such as the 
GRANTA MI software suite. Database software 
companies have recognized the need to link material 
characterization workflows with data collection 
and archival activities. These linked functions and 
the associated pedigree/provenance information 
are bringing the “no cost of data capture” and “no 
data loss” goals closer to reality. Many optimization 
software tools and codes developed for specific 
model simulation efforts are expanding to include 
optimization functions as automated internal 
workflow capabilities. 

The generation of effective workflows is often 
facilitated by the existence of and reference to 
standards established by professional standards 
development bodies or government organizations 
such as ASTM [4], ISO [5], ASME, SIE, NIST, and 
others. These standards document specific practices, 
terminology, and more, providing valuable building 
blocks for complex workflows. Although the majority 
of these established standards reference physical/
experimental procedures, standards that establish 
computational procedures exist, as do standards that 
connect physical and computational procedures.

COLLABORATIVE ENVIRONMENTS

Intra-organizational collaboration across design, 
materials, manufacturing, and quality disciplines 
within organizations can be readily accomplished 
today. However, the community has yet to truly 
recognize the value and benefits from collaboration 
and the formal linkage of tools and methods. 
While grassroots collaborative efforts can be quite 
successful, faster, more meaningful progress is 
realized when senior leadership recognizes the value 
of collaborative environments and provides resources 
and prioritization for these activities. Leadership can 
advocate for and invest more heavily in collaborative 
environments when results are demonstrated in a 
quantitative way. Well-defined demonstration efforts 
that can demonstrate quantitative business and 
technical benefits can be quite useful in winning 
organizational support, while poorly defined or overly 
ambitious collaboration demonstration efforts can 
produce ambiguous results or fail entirely.

Incentives are required to encourage sharing of 
resources, data, and methods among individuals 
and/or organizations. This incentive is often cost 
savings from cost-sharing development efforts 
across consortia. Through collaboration efforts, 
data, tools, and methods will become available 
to the members of consortia. The most effective 
collaborations are found where the targeted topics 
are pre-competitive or when different organizations 
partner to take on critical problems that are beyond 
the resources of any single organization. The benefits 
from the collaboration of groups of organizations are 
substantially based on cost sharing from the shared 
development efforts performed with a collaboration 
network. There are also other tangible benefits that 
arise from disparate organizations coming together 
for a common purpose where one organization is 
specialized in one element of the collaboration goal 
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and other organizations are specialized in others. 
There may be proprietary information and intellectual 
property constraints, but the benefits and ability to 
collaborate can override these challenges. 

Industrial and government-sponsored consortia 
have been successful in the organization of these 
collaborations. One notable aerospace example 
is the Metals Affordability Initiative (MAI). The 
MAI consortium comprises 16 aerospace original 
equipment manufacturers (OEMs), component 
manufacturers, and metals producers. This 
consortium has achieved a tremendous record of 
technology transfer and cost-reduction impact. 
The MAI infrastructure can serve as a model for 
collaboration of competing entities where project-
related experimental and computational data and 
methods development can be shared. A digital 
framework for efficient collaboration, called the 
MAI-Hub, has been developed and deployed 
successfully within this consortium program and 
the Vision 2040 end state expects that analogous 
frameworks will be available throughout aerospace 
engineering. However, what is not clear at the present 
time is the longer-term viability and sustainability 
of such networks, especially for those that span 
organizations. Just as for the data and informatics 
infrastructures or the call for open software and 
model building, there are no established business 
models or government commitments for sustaining 
such enterprises.

Technologies are continuing to evolve to support 
safe and effective collaboration throughout the 
supply chain, for both hardware (components) and 
computational collaboration networks. Supply-
chain-type collaboration networks that enable 
transmission and sharing of digital data, tools, 
and methods are starting to emerge. Historical 
methods for collaboration within a supply chain were 
defined by direct human interaction in a “concurrent 
engineering” approach. Commercial business 
solutions offered by companies such as SAP and 
its competitors can offer significant automation for 
routine supply chain/logistical collaborations. In 
many organizations, routine purchase of established 
materials and defined components is entirely 
automated based on a “demand signal” that is 
manually triggered or automated, allowing for efficient 
supply chain collaboration to support systems 

during their lifecycle.  Digital security and protection 
of intellectual property and sensitive information 
(e.g., classified, export controlled) are also critical 
concerns inside collaborative networks. Advanced 
encryption technologies are readily available (if 
export controlled), as are permissions frameworks 
that allow people and systems collaborative access 
to only appropriate information. Methods to safely 
share digital information and interact virtually 
between organizations are emerging and continuing 
to advance, as evidenced by tools like Vanderbilt-
Forge or Semantic Web [6], though there are some 
limitations based on organization-specific issues of 
network security relative to IP and export control. 

Establishing collaborative environments in which 
fundamental data can be jointly developed and 
cost-shared will enable rapid, cost-effective 
databases that the entire community or set of 
collaborating organizations (consortium) can 
use equally. This approach enables competitors, 
suppliers, and customers to work together in a 
way that is mutually beneficial and not directly 
product related or product competitive in nature. 
One example of an emerging collaborative network 
relevant to the 2040 roadmap goals is the Center 
for Materials Processing Data (CMPD). In the 
CMPD, Worcester Polytechnic Institute (WPI), along 
with the University of Connecticut, the University 
of Buffalo, and ASM International, is leading an 
effort to create a consortium for the generation of 
materials data required for manufacturing process 
model development, calibration and validation. 
Processing-space-relevant data, such as diffusivity, 
reaction rates, flow stress, viscosity, and thermo-
physical properties, is very difficult to generate and 
locate in the open literature. This unique type of 
data center will provide a way for organizations to 
collaborate to generate dynamic data that supports 
foundational materials models and not final properties 
for unique proprietary components and product 
forms.  Publishing companies and technical journals 
are moving toward models of open data with DOI 
identifiers, though platforms for storing and sharing 
large datasets have yet to be developed.

COLLABORATION TECHNOLOGIES

A large number of technologies already exist to 
facilitate collaboration, many of which are used 
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routinely, yet their collaborative value is taken for 
granted (e-mail, shared calendars, texting, web 
meetings, social media). Other examples include 
platforms for multi-user editing of documents 
(Wikipedia/wikis) and platforms for crowd-sourcing 
for information (Reddit, Quora, chat groups, etc.) and 
technology solutions (InnoCentive). 

Semantic technologies are another family of 
emerging approaches that have the potential to 
dramatically improve the collaboration between 
humans and machines. Semantic approaches utilize 
communications frameworks that define entities 
and their relationships in a way that allows reuse of 
properly coded information in unanticipated ways, 
sometimes well beyond the original intended use 
or purpose. Semantic approaches are particularly 
powerful because the discovery and reuse can be 
done by computers working semi-autonomously.

Another emerging collaboration technology relevant to 
the Vision 2040 scope is multi-user CAD, in which a 
single computational model can be open and worked 
on by many engineers from disparate disciplines at 
the same time. This enabling technology is being 
applied to next- generation turbine engine designs 
and has the ability to link multiscale materials and 
structural models to a single component/system 
model within a fully digital collaboration environment. 
This technology, like visualization technology (see 
Key Element 4), is largely based in multi-user gaming 
systems, in which game users across the globe 
can interact at the same time in a single model 
environment. Over time these technologies should 
extend across the multiscale systems framework, 
permitting detailed hierarchical materials and 
manufacturing information, represented in models, to 
influence designs (see Case Study 3, Appendix B).

Multi-user CAD will continue to evolve into an 
environment where design, structures, materials, 
and manufacturing engineers can simultaneously 
add discipline-specific models that can be executed 
in a self-assembling optimization configuration. 
This system will enable continuous analysis and 
enhancement of one set of linked models that can 
then drive the re-application of other linked models. 
An example may be the linkage of a lifing model to a 
component parametric solid model. Simultaneously, a 
materials engineer can attach a model-based material 
definition and a manufacturing engineer can attach 

a model-based process definition. Upon execution 
of a parametric optimization process by a design or 
systems engineer, the multi-user CAD model will pull 
from the geometry model, process model, materials 
model, and structural analysis model to establish the 
optimal component geometry for the specific objective 
function. If an engineer modifies any of the attached 
models, the defined optimization functions can be 
automatically initiated. This multi-user, multidisciplinary 
model environment will be fully established and part of 
daily functions in the year 2040.

There are examples of limited capability inter-
organizational infrastructures for collaboration, 
such as the MAI (Metals Affordability Initiative) 
MAI-Hub [7]. Inter-organizational collaboration 
begets additional challenges since protection of IP 
and linking very different standards of practice add 
complexity. 

2040 End State
Tools will automate the generation, maintenance, and 
execution of coupled physical and computational 
workflows to support fast and efficient material 
characterization and model verification and 
validation. Workflows will be an integral part of all 
processes, embedded into the code functionality of 
information/knowledge management systems and 
optimization software. Linked workflows will bring the 
goals of “no cost of data capture” and “no data loss” 
closer to reality.

Collaboration frameworks will be the standard 
workspaces that manage the outputs of research, 
development, and engineering enterprise. These 
frameworks will leverage and share the collective 
capabilities and resources within the aerospace 
community (OEMs, suppliers, government, and 
academia). They will be fully integrated with 
informatics and machine-learning tools to facilitate 
engineering design. Multi-user, multidisciplinary 
model environments will be fully established with 
optimization functions that automatically initiate when 
models are changed.
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Gaps
The following gaps lie within six of the roadmap’s 10 crosscutting streams, with the Data Management 
stream containing the largest number of gaps, including the most critical gap. Similar to the Data, Informatics, 
and Visualization Key Element (KE6), improving data management is a major challenge for developing 
workflows and collaboration frameworks. The proposed gaps have the strongest ties to the traceable and 
accessible characteristics of the 2040 end state. Traceability and accessibility are the primary goals of this 
Key Element, with workflows and collaboration frameworks aiming to connect people, organizations, and the 
information they need. 

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

DATA MANAGEMENT

 Lack of open, community/industry standards defining inputs/outputs, needed functionality, 
data quality, model maturity levels, etc. for smooth operation in the envisioned ecosystem

Limited ability to automate the identification and collection of workflow-generated data (e.g., 
context-based data tagging and application)

Difficulty in knowing what data is required at different modeling scales

INFORMATION SHARING AND REUSABILITY

Adoption of collaboration tools is constrained by fear of loss of IP (i.e., typically by the 
vendor), liability, and/or export controls

Limited availability of good pedigreed data and models from published journal papers and 
industry/supplier-focused studies

MULTIDISCIPLINARY COLLABORATION

Lack of consistent material data (composition, microstructure, processing, precursor 
materials, etc.) from material manufacturers

BENCHMARKING AND BUSINESS CASE

Insufficient understanding among organizations of ROI for external collaborative network 
participation

LINKAGE AND INTEGRATION

Inability to automate the linking and execution of disparate models and computational 
methods with data from federated databases

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

Lack of error handling and failure recovery tools inhibits workflow resiliency

TABLE 7.1 WORKFLOWS AND COLLABORATION FRAMEWORKS GAPS AND IMPACTED 2040 CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly
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Recommended Actions
The following recommended actions lie within eight of the roadmap’s 10 crosscutting streams, with 
the most actions (including high priority) under the Data Management and Information Sharing and 
Reusability streams. These recommended actions deal with improving methods to track data throughout the 
workflow, while allowing for secure information sharing throughout the product lifecycle and supply chain. 
The recommended actions have the strongest ties to the accessible, user-friendly, and interoperable 
characteristics of the 2040 end state. 

TABLE 7.2 WORKFLOWS AND COLLABORATION FRAMEWORKS RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$  0.5-2M/year $$$   2-5M/year $$$$   >5M/year

Key Element 7

High Priority

ACTION

2040 CHARACTERISTICS TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA MANAGEMENT

 (7.1) Enhance existing ontological and 
semantic tools and standards and/or create a 
data modeling technology to support workflow 
automatic analysis, recognition, and tagging of 
broad set of materials/workflow datasets

$

(7.2) Enable automatic capture and archival of 
physical and computational process workflow data 
• E.g., Simulation process data management

$

(7.3) Boost traceability and reusability of data 
through automated pedigree and provenance 
assignments for various materials data/metadata 
types  
• Must be tamper-proof and likely involve revision 

control and cryptographic technologies

$

(7.4) Develop standard APIs and standards for 
compliant APIs

$

(7.5) Develop, enhance, and use interface 
standards 
• E.g., functional mockup interfaces

$

DATA ANALYTICS AND VISUALIZATION

(7.6) Incorporate informatics and machine-
learning tools into collaboration networks to 
facilitate engineering design and optimization of 
collaborative tools and networks

$

INFORMATION SHARING AND REUSABILITY

 (7.7) Develop access controls (built into 
workflows and collaboration frameworks) to 
protect vendor data; use specific computations 
to limit exposure to risks associated with 
competitive datasets

$
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ACTION

2040 CHARACTERISTICS TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

INFORMATION SHARING AND REUSABILITY, CONTINUED

 (7.8) Provide access to modeling codes, data 
analysis tools, machine learning tools, HPC 
resources, automated workflow linkage tools, 
and simulation tools

$$

(7.9) Provide access to example datasets, 
workflows, and analysis results for initial tool and 
standard development

$

(7.10) Deliver effective tools for inputting project 
data into complex models or analyses (as simply 
as possible)

$$

(7.11) Provide example frameworks for data 
sharing and trading within collaborative 
partnerships and markets

$

MULTIDISCIPLINARY COLLABORATION

 (7.12) Establish a collaborative initiative to 
develop, demonstrate, and deploy automated 
computational tools that link computational 
workflows together

$$$$

(7.13) Develop best practices (testing, 
continuous integration, etc.) for developing and 
using the collaboration framework

$

(7.14) Establish a collaborative initiative to 
develop standards for modular architectures to 
enhance workflow computational tools

$$

INSTITUTIONAL PARADIGMS

(7.15) Push materials manufacturers to adhere 
to material data reporting standards (provided 
by federal agencies, professional organizations, 
etc.)

$$$

BENCHMARKING AND BUSINESS CASE

 (7.16) Select a few real-world problems from 
different technical domains to tackle in an open, 
demonstrational fashion using workflows and 
collaboration frameworks, and present the ROI 
metrics to build business case

$$

(7.17) Conduct a benchmarking study and 
develop an associated analytical tool to quantify 
the benefits of participating in a collaborative 
network

$

(7.18) Develop financial analysis tools to 
support objective analyses of collaboration 
framework benefits

$
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ACTION

2040 CHARACTERISTICS TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

LINKAGE AND INTEGRATION

(7.19) Integrate workflow with UQ tools so the 
workflow is informed by the uncertainty (i.e., 
feedback loop)

$

(7.20) Enable automatic linking of disparate 
models and federated databases

$

INPUT/OUTPUT CONFIDENCE AND STABILITY

(7.21) Develop and implement standards for 
data quality and model maturity levels

$

(7.22) Develop error management systems $
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Industry-relevant competencies in simulation code design for current and future computational infrastructure

Relationships with Other Key Elements
This Key Element focuses on the management and execution of physical and computational activities among Key 
Elements, across disciplines, and throughout the supply chain. Workflows and collaboration frameworks align with 
two of the fundamental pillars of ICME: integration of processes and tools and engineering ingenuity.

Key Element 7

TABLE 7.3 EXAMPLE INTERRELATIONSHIPS OF KE7 (WORKFLOWS AND COLLABORATION FRAMEWORKS) AND OTHER 
KEY ELEMENTS
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE8 
Education and Training

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE7 
Workflows & 
Collaboration 
Frameworks

Use collaboration frameworks for joint development and validation 
of models, and automate linking and execution of disparate models

Generate cost-benefit models for collaborative activities

Accelerate materials characterization via automated generation and 
execution of coupled physical/computational workflows

Develop interdisciplinary collaboration tools for holistic multiscale 
systems-level optimization

Employ characterization, uncertainty prediction, and activity-
tracking tools for autonomous decision making

Facilitate cross-organizational/cross-sector low-cost rapid data 
generation

Provide advanced university instrumentation with collaborative 
frameworks for materials data sharing and virtual materials 
processing

Supply HPC-ready multiscale collaboration frameworks

Automate workflow tools to incorporate and simplify V&V practices

Streamline automated workflow tools via common standards and 
protocols for uncertainty quantification, management, and reporting

Link design problems for efficient workflow construction

Provide systems-based materials structure paradigms that define 
local workflow connections

Establish widely accepted V&V standards and protocols to 
streamline automated workflow tools

Provide knowledge capture framework to support data modeling 
tools for automated workflow data recognition and capture

Enable simultaneous access for global collaboration via high 
bandwidth networks and software platforms

Deliver systems-based training in computational tools and methods, 
and interdisciplinary programs/degrees
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Key Element 8: 

Education and Training

Seamless linkages and common language 
between disparate engineering disciplines through 
multidisciplinary teams and systems-oriented 
approaches to integrated, multiscale materials and 
structures modeling/engineering

1

Definition
This Key Element encompasses all aspects of curriculum development, education, and training 
opportunities for preparing the current, emerging, and future workforce in the capabilities and skills needed 
to realize and utilize the Vision 2040 end state.

Acquiring fundamental science and engineering 
knowledge and multidisciplinary core 
competencies such as critical thinking, gap 
identification, and decision making to name a few

2

Building understanding of current and emerging 
computational methods, modern coding practices and 
experience, collaborative development and version 
control, quality assurance practices, image processing, 
data and machine learning tools, statistical methods, 
and familiarity with standard software packages used 
by industry

3 Identifying and defining industry-relevant skills 
and certification requirements for performing 
specific job functions and bridging across 
disciplines (e.g., experimentation and simulation) 
to develop the existing workforce 

4

Current State of the Art
Role
The role of education and training is to prepare the 
workforce with the fundamental engineering and 
scientific knowledge, computational skills, and 
experimental testing experience for the discovery, 
design, and development of materials, structures, 
and systems. In addition to technical knowledge 
and skills, the current work environment requires 
multidisciplinary teamwork; therefore, education 
and training must also prepare the workforce to 
communicate and effectively collaborate with 
teammates from disparate disciplines. To better 
prepare students for the workforce, current 
engineering education paradigms are increasingly 

moving away from traditional lecture-based learning 
and toward experience-based learning. The 
experiential learning approach focuses on providing 
students hands-on training in applying concepts 
to real-world applications and results in improved 
understanding and retention of new material. Through 
teaching techniques and methods such as flipped 
classrooms, multidisciplinary senior design projects, 
and undergraduate research, education and training 
is trending towards an immersive experience learning 
environment in which students from varying majors 
and concentration areas work together to solve 
problems, create and test designs, and analyze 
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results using the software, first principle methods, 
and experimental testing techniques used in the 
workplace.  Additionally, education does not end 
at graduation. Given the rapid advancement of 
technology, lifelong learning via training throughout an 
entire career is essential to maintaining a workforce 
that is prepared to solve emerging challenges.

Summary
UNDERGRADUATE LEVEL

Over the past few decades, unlike many other 
engineering disciplines, the undergraduate curriculum 
in materials has undergone significant evolution 
as the field broadened from its origins in metals 
and ceramics to include electronic and photonic, 
magnetic, macromolecular, biological, soft matter, 
and other classes of functional materials (e.g., 
sensors, smart materials, coatings, shape memory 
alloys). This historical trend for continued evolution is 
promising from the point of view that modified sets of 
skills and perspectives are a familiar element of the 
materials field. Most curricula consist of core courses 
that cover the fundamentals of materials science 
and engineering across materials classes, including 
structure, properties, processing, and performance. 
Specialty classes on individual material types (e.g., 
metals, ceramics, polymers, semiconductors) come 
later in the curriculum.

The addition of new topics in any curriculum requires 
displacement of others. For example, the classical 
quantum mechanics course, often taught by physics 
departments for engineering students, has been 
replaced by a course on electronic materials in many 
U.S. departments, with some loss of mathematical 
depth. The classic first-year chemistry course has 
in many programs been replaced with a “materials 
chemistry” course, making the chemistry content more 
materials relevant. Senior capstone design courses 
with a significant component of communication are 
now a requirement that has displaced the senior 
research thesis. There are notable efforts to integrate 
computation into the curriculum in the context of 
design and the capstone course [1], but these are not 
yet pervasive. Further, there is some sense that the 
need for software and data skills at the undergraduate 
level is growing, although the degree to which this 
needs to affect curricula and the means by which to 
do so remain unclear.

Undergraduate programs are subject to accreditation 
by the Accreditation Board for Engineering and 
Technology (ABET) in a process that matches 
objectives and outcomes with course content. 
Major curriculum change is slow and difficult, not 
only due to accreditation but also because changes 
require a four-year time period for a single class of 
students to complete before the first impact data 
can be gathered. Because aspects of this may affect 
realization of the Vision 2040 end state, alternative 
educational schemes need to be evaluated.

There are typically several technical electives 
in most undergraduate materials programs in 
which new computationally oriented courses may 
be implemented. Until very recently, textbooks 
appropriate for upper-division undergraduate or 
introductory graduate computational materials 
science and engineering courses have been 
completely lacking. Some textbooks are beginning 
to emerge; for example, a recent book [2] used in 
a number of programs is organized to cover the 
following topics: electronic structure methods, 
interatomic potentials, molecular dynamics, the 
Monte Carlo method, random walks, kinetic Monte 
Carlo, cellular automata, phase field methods, and 
mesoscale dynamics. The emphasis is on basic 
principles rather than commercial packages that 
employ these approaches for solving materials 
problems.

Given the lack of space in the undergraduate 
curriculum, new topics in computation, data, and 
instrumentation are most easily implemented through 
integration with existing core topics. For example, it 
is increasingly common that CALPHAD-type software 
and calculations on phase equilibria are integrated 
with courses on thermodynamics [1]. Figure 8.1 
reports the results of a 2008 survey of a large number 
of universities (mostly in the United States) on the 
software packages used in undergraduate programs 
[3], and a small survey at Pratt & Whitney in 2016. 
Examinations of analogous data from across the 
multiscale engineering domain would be fruitful 
for not only updating the data but also providing 
indicators of the rate of change and commonality of 
tools across the design-materials and manufacturing 
enterprise.
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SOFTWARE 
CATEGORIES

EXAMPLE 
PACKAGES

MATERIALS-
FOCUSED

MECHANICAL/ 
AEROSPACE 

ENGINEERING
REFERENCE

CAD
SolidWorks � � http://www.Solidworks.com/

Inventor � http://www.autodesk.com/products/inventor/overview

Computational 
Thermodynamics

Thermo-Calc � http://www.thermocalc.com

Crystallography CaRine � http://pagespro-orange.fr/carine.crystallography/

Density 
Functional Theory

ABINIT � http://www.abinit.org

PWSCF � http://www.pwscf.org/home.htm

VASP � http://crns.mpi.univie.ac.at/vasp

Finite Element

ANSYS � http://www.ansys.com/

ABAQUS � https://www.3ds.com/products-services/simulia/products/abaqus/

LS-DYNA � http://www.lstc.com/products/ls-dyna

Marc � http://www.mscsoftware.com/product/marc

High-Level 
Programming 
Language

MATLAB � � http://www.mathworks.com/

Python � http://www.python.org/

Materials 
Properties

CES Materials 
Sector � http://www.granatadesign.com/products/ces

Molecular 
Dynamics

LAMMPS � http://lammps.sandia.gov/

NAMD � http://www.ks.uiuc.edu/research/namd

Quantum 
Chemistry

Gaussian � http://www.gaussian.com

Spreadsheet Excel � � http://office.microsoft.com/excel

Symbolic 
Mathematics

Mathematica � � http://www.wolfram.com

MathCAD � http://www.ptc.com/engineering-math-software/mathcad

Visualization 
(data)

Minitab � http://www.minitab.com

JMP � http://www.jmp.com/en_us/software.html

FIGURE 8.1 EXAMPLES OF REPORTED PACKAGES USED IN UNDERGRADUATE ENGINEERING AND MATERIALS-
FOCUSED EDUCATION
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GRADUATE LEVEL

Given the scope of potential topics in the areas of 
modeling and simulation, uncertainty quantification, 
data, informatics, and optimization, M.S. degrees 
with an emphasis in these areas may be a better 
approach. A certificate with an ICME emphasis within 
an M.S. program has recently been established [4] 
that requires five units of core courses (Analytical and 
Statistical Thermodynamics, Phase Transformations, 
Materials Design, Computational Materials, and an 
ICME seminar) plus seven units of electives; to date 
only two or three students per year have elected to 
pursue this academic track. If such certificates are 
oriented more toward manufacturing or to structures 
design and mechanics, both integral to ICME, the 
participation would be higher. Also, if one introduced 
topics such as data analytics/informatics, image 
processing, etc., the participation may be higher from 
further interdisciplinary activities.

At the graduate level, many Ph.D. programs admit 
cohorts of graduate students, more than 50% of 
whom hold undergraduate degrees in other fields 
(e.g., physics; chemistry; and electrical, mechanical, 
chemical, or biomedical engineering [5]). Most 
graduate programs have core courses at the 
graduate level that cover the fundamentals of (1) 
bonding and structure, (2) thermodynamics, and 
(3) kinetics. Beyond the core courses there is much 
greater flexibility for the design and implementation 
of courses that address more specialized aspects 
of materials modeling and simulation, though 
these courses compete with specialty courses on 
specific classes of materials often of interest to 
students who have already decided on a career 
path. Courses on computational materials science 
and engineering, data, optimization, statistics, or 
uncertainty quantification at the graduate level are 
often developed by faculty whose research programs 
have specific needs in these areas. However, 
the overriding requirement that all courses in the 
undergraduate curriculum be offered every year 
often leaves little time for faculty to teach specialized 
graduate courses.

To identify historical trends in materials science 
and engineering education, Banerjee and Briber [6] 
conducted an analysis of the educational background 
of MSE faculty a function of hire date in their most 
current position. 

External driving forces, such as the Materials 
Genome Initiative, have motivated the development 
of an improved infrastructure for integration of 
theory, simulation, and experimentation at all length 
scales. This infrastructure largely appears through 
the research enterprise, through interdisciplinary 
collaborative programs. For example, the National 
Science Foundation has recently developed an 
initiative known as DMREF: Designing Materials to 
Revolutionize and Engineer our Future. This program 
addresses the entire spectrum of materials classes 
and supports collaborative research groups of three 
to five faculty members, along with similar numbers 
of graduate students, with the requirement that the 
research be conducted with a rapid feedback loop 
between new experimental approaches and new 
theory/computation. At the graduate level, newly 
developed tools and codes permeate across research 
groups as students realize the value of new tools 
to their own research problems. Emerging software 
repositories such as GitHub and NanoHub facilitate 
the propagation of new computational tools.

SPECIALIZED TRAINING/COURSES

In recent years, a wide variety of “summer schools” 
(e.g., NSF Summer Institute on Nanomechanics, 
Nanomaterials, and Micro/Nanomanufacturing [7]) 
have been developed to impart more specialized 
skills to students and, in some cases, industry 
personnel. Summer schools are typically two-week 
sessions with 30 – 60 attendees that combine 
lectures (for theory) with hands-on instruction in a 
focused topical area. Examples of summer schools 
that have been conducted with NSF support from the 
International Materials Institutes program (recently 
terminated) include [8]

1 Materials in 3D: Modeling and Imaging at Multiple 
Length Scales

2 First Principles Calculations for Condensed Matter 
and Nanoscience

3 Materials and Structures for Hypersonic Flight

4 Techniques of Surface Sciences and Catalysis 
Nanomaterials

5 Inorganic Materials for Energy Conversion, 
Storage, and Conservation
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6 Computational Materials Science

7 Charged Systems and Solid/Liquid Interfaces

8 Soft Computational Physics and Materials 
Science: Total Energy and Force Methods

9 Thermal Conductivity and Related Transport 
Properties of Oxides

10 Materials Modeling from First Principles: Theory 
and Practice

11 Nanoscale Sciences of Biological Interfaces, 
Architecture Multifunctional Materials and 
Structures

12 Material Interfaces and Integrated Computational 
Materials Education (ICME).

These workshops are largely aimed at senior 
graduate students, postdoctoral researchers, and 
junior professionals. Lecturers at the workshops are 
typically a mix of senior personnel from academia, 
industry, and government laboratories. In addition 
to imparting basic skills, these summer schools 
have the added benefit of developing long-lasting 
professional networks and collaborations on specific 
topics [9]. Because no central repository exists for 
the tools that have been developed for these summer 
schools, a combined summer school/educational 
tool development program represents a significant 
opportunity for the future, enabling web-based 
delivery of educational modules that have undergone 
testing in a training environment.

Another area to address includes the training of 
the current workforce in the aerospace industry. In 
addition to the aforementioned schools and training 
sessions, on-site training is often employed by 
industry to bring advent methods into the workflow. 
Such training sessions can be days or weeks in 
duration, covering topics such as process control 
Six Sigma tools and commercial ICME toolsets (e.g., 
Thermo-Calc, DEFORM, ProCAST). Such training 
sessions may cover the basic utilizations of tools into 
a standard engineering workflow and case studies. 
Often, experts of such tools in the engineering 
organizations will aid in the long-term training and 
troubleshooting of the tools for other employees in 
the organization.

Continuing education programs for employees in 
the engineering and scientific workplace is another 
option that supports long-term education of novel 
fields of research and tool development. Larger 
engineering organizations often incentivize the 
workforce to take additional graduate professional 
degrees to advance their careers and benefit the 
organization as well. These degrees are, in most 
cases, delivered via novel distance-learning tools 
using custom online software written for specific 
universities. As an example, with the recent inception 
of data analytics, machine learning, and advanced 
algorithms, many engineers in various organizations 
are enrolling in such programs utilizing their employee 
benefits of continuing education. Trends such as 
this will bring an enclave of new tools to aid in the 
development of the next generation of aerospace 
products.

INSTRUMENTATION

At the graduate level, materials instrumentation 
is a key element of the research training mission. 
Specialized imaging systems (transmission and 
scanning electron microscopes, atom probes, atomic 
force microscopes, NMR systems), X-ray systems 
(including tomography capabilities), material property 
measurement systems (SQUIDs, mechanical test 
systems, electrical probes and DMMA), to name only 
a few, play a central role in the research mission. 
Students often learn the theory relevant to these 
systems in graduate courses but also receive 
“hands-on” training by faculty and technical staff. 
Because there is rarely any systematic storage or 
annotation of data from these systems, the raw 
data from these instruments is effectively lost once 
students graduate. Advanced instrumentation is both 
developed by faculty and students and acquired 
at great expense from equipment manufacturers. 
Because the instruments are often maintained by 
expert technical staff, the user base often extends 
beyond local university users to industry and 
other academic collaborators. Industry-university 
collaborative research programs are often motivated 
by the unique instrumentation capabilities; this is cost 
effective for industry, as their internal R&D programs 
cannot justify the long-term expense of housing 
specialized instruments or supporting the staff to 
operate them. At present, the cost of acquiring and 
maintaining advanced materials instrumentation 
continues to rise at the same time that federal 
support for instrumentation is rapidly declining.
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Internationally, the emergence of multiple synchrotron 
facilities also highlights a trend toward centralization 
of instruments. Use of these facilities requires that 
investigators identify resources for travel to access 
these opportunities.

2040 End State
By 2040, the workforce will consist of systems-
level thinkers, having strong foundations of 
interdisciplinary fundamentals. Graduating 
students will have had exposure to “industry-
standard” software packages and will be trained 

to use advanced instrumentation along with data 
acquisition, processing, and analysis skills. Students 
will also have access to advanced computational 
resources via the cloud or other future modes of 
computing. The workforce as a whole will have a high 
level of expertise in basic computational methods, 
image processing, data and machine learning tools, 
and statistical methods. Workers will be equipped 
with the understanding to tackle problems at all 
length and time scales, using any class of existing or 
newly created material.
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Gaps
The following gaps lie within six of the roadmap’s 10 crosscutting streams, with the Institutional Paradigms 
stream containing the majority of gaps including the most critical. Creating an educational and training system to 
supply skilled workers that meet the needs of the future requires making changes to well-established academic 
institutions. Shifting such a paradigm is no easy task and stands as the largest challenge for this Key Element. 
The gaps below have the strongest tie to the accessible characteristic of the 2040 end state. The cyber-
physical-social ecosystem of 2040 will need to be much more accessible than it is today, which starts with 
adequately training and educating the workforce. 

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

DATA MANAGEMENT

Substantial discrepancies in the use of key definitions, terminologies, and taxonomies by 
professionals that employ multiscale modeling and simulation across disciplines
• E.g., Physics-based model versus computer simulation model; machine learning versus 

advanced analytics versus data-driven predictive models

DATA ANALYTICS AND VISUALIZATION

University curricula—especially for non-computer science disciplines—are not sufficiently 
imparting undergraduates with the skills needed to transition to industry
• Data analysis
• Code development
• Version control
• Quality assurance
• Familiarity with commercial modeling and simulation software packages

MULTIDISCIPLINARY COLLABORATION

Experimental capabilities are highly varied throughout the supply chain, leading to variations 
in the quality of experiments conducted

Academic researchers and modeling practitioners do not make effective use of open 
access data and data sharing 
• Limited use of collaborative environments (e.g., social networks) to share or disseminate 

data/practices
• Prevents routine use of verification, validation, and benchmarking

INSTITUTIONAL PARADIGMS

 Education/training does not bridge the gap between “essential” or “fundamental” 
knowledge and industrially relevant skills 
• Students lack a complete understanding of the limitations, assumptions, and accuracy 

level of modeling results when learning how to use software and computational 
approaches

Lack of coordination for developing new multidisciplinary graduate-level programs and 
incorporating multiscale materials engineering into traditional materials disciplines

No consensus among university faculty regarding the best/appropriate commercially-
relevant simulation techniques to teach students how to apply basic computational methods

TABLE 8.1 EDUCATION AND TRAINING GAPS AND IMPACTED 2040 CHARACTERISTICS   

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly Critical
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GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

INSTITUTIONAL PARADIGMS, CONTINUED

New courses—including textbooks and computational/data modules—are expensive, 
difficult to integrate with existing courses, and too community- or sector-specific 
• Software licensing costs are prohibitive despite academic discounts

University instruments (e.g., characterization equipment) are often proprietary and 
inaccessible outside of specific research groups due to a lack of investments in common/
standard equipment and codes  
• Instruments lack common data formats, taxonomies, and metadata structures

BENCHMARKING AND BUSINESS CASE

Insufficient business case and/or communication of the educational benefits of multiscale 
modeling and simulation on competitiveness and career development 
• Lack of incentives/investment in computationally-focused programs

BEHAVIOR OF MATERIALS AND STRUCTURES

Current theories and methods for connecting microstructure and properties of structural 
materials (to each other and to models) are too phenomenological and empirical 
• Prevents realization of model-based infrastructure for materials discovery, development, 

and design
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Recommended Actions
The following recommended actions lie within eight of the roadmap’s 10 crosscutting streams, with the most 
actions (including two high-priority actions) falling under the Multidisciplinary Collaboration and Institutional 
Paradigms streams. The only way to enact system-level change in education and training institutions is to 
bring together experts and stakeholders from various disciplines across industry, academia, and government. 
Many of these actions focus on developing educational programs tailored to the multidisciplinary skills 
required in the future multiscale modeling and simulation ecosystem. The recommended actions tie strongly to 
the accessible and robust characteristics of the 2040 end state. 

TABLE 8.2: EDUCATION AND TRAINING RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$  0.5-2M/year $$$   2-5M/year $$$$  >5M/year

Key Element 8

High Priority

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA MANAGEMENT

 (8.1) Develop advanced instrumentation methods/
practices for universities to teach rapid generation and 
analysis of engineering data (multimodal, combinatorial, 
spatial, etc.) and improve algorithms to analyze and 
reconstruct data for student instrumentation use

$

(8.2) Develop focused education and training modules—
including web-based approaches—in data management/
analytics tools and methods, and deploy throughout MSE 
programs (and other engineering programs) in United States 
• Focus on an industry-supported emerging simulation 

platform

$

INFORMATION SHARING AND REUSABILITY

(8.3) Promote use of high quality open source tools as a 
low-cost alternative to using expensive software suites to 
teach code writing and computational approaches 
• Begin with well-documented open source codes to 

permit faster adoption

$

(8.4) Launch a portal to aggregate and share university 
research codes, allowing industry to select codes of interest 
for transition into commercial software packages

$$

MULTIDISCIPLINARY COLLABORATION

 (8.5) Foster multidisciplinary classroom activities/
programs (e.g., senior design projects) to help students 
transition into the workforce and operate effectively across 
fields/disciplines 
• Coordinate a small focus group among major universities 

to identify key interdisciplinary subjects with respect 
to critically needed competencies in the multiscale 
modeling and simulation community 

• Assess the required disciplines that comprise multiscale 
materials systems (physics, chemistry, materials, etc.) 
and study their interactions before developing programs 
and curricula

$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

MULTIDISCIPLINARY COLLABORATION, CONTINUED

 (8.6) Foster academia-industry-national lab partnerships 
to facilitate student learning opportunities and provide 
access to equipment, resources, and facilities
• Various length internships, coordinated senior design 

projects, research programs, etc.

$

(8.7) Create modularized online learning tools and 
remote/distance learning programs that provide concise 
courses/training opportunities in multiscale modeling 
and simulation approaches (e.g., Massive Open Online 
Courses [MOOCs]) 
• Develop virtual collaborative learning communities (e.g., 

through cloud technology combined with technical-social 
networks)

$$

(8.8) Coordinate with industry partners to provide 
prototypical test data (e.g., from outdated/retired 
programs) to teach students how to use experimental 
datasets to validate models

$

INSTITUTIONAL PARADIGMS

 (8.9) Examine novel approaches to educating effective 
engineers and fostering competencies in:
• Continuous/lifelong learning 
• Speculation and innovation 
• Critical thinking 
• Decision making and management of complexity and 

uncertainty

$

(8.10) Develop forward-thinking educational modules that 
teach the impact of information technology, computational 
science, and communication technology in terms of the 
future workforce needs/expectations
• Need to convey expectations of future working 

environments to prepare graduates (e.g., integration of 
cyber-physical-social systems)

$

(8.11) Promote awareness of materials science and 
mechanics of materials subject areas as critically 
important to career development for students in aerospace 
and other engineering programs

$

(8.12) Organize formal training events for employees 
on emerging technologies (equipment, software, 
programming languages, etc.)
• Dedicate resources for university professors and 

government lab researchers to host short workforce 
training visits

$$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

BENCHMARKING AND BUSINESS CASE

(8.13) Conduct feasibility study to ascertain pathways for 
new interdisciplinary programs, engineering degrees, and 
certificates 
• Solicit feedback from industry on the content and quality 

of educational curricula and programs to increase the 
number of well-trained graduates 

• Disseminate survey to benchmark industry needs and 
generate interest

$

SCALABILITY AND COMPUTATIONAL EFFICIENCY

(8.14) Identify new certification programs/tracks to teach 
industry-relevant computational approaches

$

LINKAGE AND INTEGRATION

 (8.15) Develop a comprehensive course/curriculum 
on concurrent design of physical and computational 
experimental methods 
• Teach methods for multiple length and time scales 
• Develop courses for multiple scientific/engineering 

subjects

$

BEHAVIOR OF MATERIALS AND STRUCTURES

 (8.16) Create educational simulation tools with strong 
theoretical foundations to teach students in methodologies 
for predicting properties of structural materials with known 
microstructures 
• Example topics include: cracking, dislocation 

accumulation, complex properties such as fracture, 
yielding, fatigue, corrosion, stress corrosion cracking, 
oxidation, etc.

$$
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Relationships with Other Key Elements
The future ecosystem requires aggressive advancement over the next 25 years to accommodate a considerably different 
set of skills compared with today’s materials and structures engineers, including computational methods, machine learning 
tools, statistical methods, and image processing. Education and Training will encapsulate critical technological and cultural 
transformations across the Key Elements to drive curricula change, novel training opportunities, and targeted instrumentation 
development to help address industry-relevant issues and launch the next generation of modeling and simulation.

Key Element 8

TABLE 8.3 EXAMPLE INTERRELATIONSHIPS OF KE8 (EDUCATION AND TRAINING) AND OTHER KEY ELEMENTS
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE9 
Computational 
Infrastructure

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE8 
Education 
& Training

Develop and deploy educational modules for multiscale/multiphysics  
computational methods, industry-relevant ICME models, and methods 
for government regulator acceptance of ICME approaches

Produce multiscale modeling educational platforms, and translation 
of academic models with interoperability and user-friendly 
interfaces

Translate systems-based characterization for models approach for 
classroom curricula and laboratory courses

Create clear education and training modules incorporating best 
practices in optimization at university and industry level

Train graduates in probabilistic methods for uncertainty 
quantification and propagation

Offer educational modules in image processing, machine learning, 
and statistical methods

Deliver systems-based training in computational tools and 
methods, and interdisciplinary programs/degrees

Build industry-relevant competencies in characterization and 
simulation code design for current and future computational 
infrastructure

Increase total graduates trained in ICME model validation

Offer academic courses at V&V experimental testing and 
evaluation facilities

Establish industry criteria and benchmark problems to explicitly 
describe optimal designs

Develop in-line data analysis and reconstruction methods for 
efficient use of experimental/characterization instruments

Offer academic courses at V&V experimental testing and 
evaluation facilities

Automate software conversion of formats, provenance, and 
database building for robust data generation across research 
instrumentation

Increase access to government lab HPC resources

Provide advanced university instrumentation with collaborative 
frameworks for materials data sharing and virtual materials 
processing
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Key Element 9: 

Computational Infrastructure 

Computer hardware (storage, 
CPU, co-processors, memory, 
backplane), firmware, code 
base, operating systems, 
middleware, application software, 
and the interoperability of these 
components that enable the 
numerical simulation of physical 
phenomena in ways that are useful 
for engineering purposes

1

Definition
This Key Element encompasses the following topics:

High-bandwidth networks and 
software platforms to support 
simultaneous access to enable 
global collaborative engineering

2 HPC architectures and 
frameworks that use parallel/
distributed, neuromorphic, 
quantum, cloud, machine learning, 
etc., processing approaches to 
solve large scale, computationally 
and data-intensive analysis and/or 
optimization problems

3

Current State of the Art
Role
Computational infrastructure is the computer 
hardware and software ecosystem that enables 
the numerical simulation of physical phenomena 
in a way that is useful for engineering purposes. 
Global collaborative engineering requires high-
bandwidth networks and software platforms to 
support simultaneous access, large data transfer, 
and management of real and virtual data across 
geographically disparate organizations.

For ICME to be widely accepted, validated modeling 
tools will require a degree of fidelity that is beyond 
the capacity of the current computational resources 
available to most companies. It is generally 
expected that the evolution of hardware will enable 
widespread access to exascale or exa-FLOPS 
(1018 flops) computing by 2040. This is likely to 
be accomplished with massive parallelization and 
potentially quantum computing. Simulation software 
will have to be highly scalable and adaptable to take 
advantage of this hardware.

Summary
HPC PROGRAMMING TOOLS/FRAMEWORKS

Simulation software is based upon a variety of 

numerical models of physical phenomena, and is thus 
related strongly to the Models and Methodologies 
Key Element (KE1). Modeling codes and suites of the 
future must be programmed to enable them to adapt 
to the ever-changing simulation environments. Yet 
today, only a few modeling codes take advantage of 
current HPC architectures as there is already a lag 
between the implementation of multiscale models and 
simulation infrastructure (see Figure 9.1 for description 
of five available programming languages/tools).

There are efforts underway at a number of national 
labs, universities, and companies to develop a 
higher-level HPC programming language that would 
automatically take care of the lower-level message 
passing and multi-threading issues (see Figure 
9.2). This approach would free up scientists and 
engineers to focus on the physics they are trying to 
model rather than dealing with the often complex 
coding required to achieve high performance on 
heterogeneous computing systems. It would also 
save software companies an enormous amount of 
development time trying to adapt their codes to 
changing computer architectures.
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PROGRAMMING TOOL DESCRIPTION

OpenMPI An open source Message Passing Interface for distributed memory processing (DMP) software [1].

OpenMP
A standard set of compiler directives, or pragmas, for controlling multi-threading, used in shared 
memory processing (SMP) [2].

OpenACC
A standard set of compiler directives and functions for accessing accelerators, such as the Nvidia 
Tesla or Intel Xeon Phi. This is likely to be merged with OpenMP [3].

CUDA
A platform consisting of compiler directives and libraries developed by Nvidia to give access to the 
computing potential of GPU accelerators, like Tesla [4].

OpenCL
Open Computing Language is a programming framework, originated by Apple, to develop code for 
operating on heterogeneous systems of CPUs and accelerators [5].

CHAPEL, Cray

CHAPEL is an open source parallel programming language that originated at Cray while working 
on the DARPA funded High Productivity Computing Systems program, from 2002 to 2012. It is de-
signed to support any parallel paradigm, such as data parallelism or task parallelism, on any parallel 
hardware, including accelerators [6,7].

Cilk Plus, Intel
Cilk was originally developed at MIT and then commercialized as Cilk++ by Cilk Arts. It is now 
developed by Intel with the name of Cilk Plus. It is an extension to C/C++ that supports efficient 
multi-threading (SMP) and vectorization [8,9].

Apache Spark, UC Berkeley
Apache Spark is an API for developing applications with data parallelism on clusters. The original 
impetus was for machine learning and big data analytics. It is being investigated now for managing 
data movement in HPC simulation software [10,11].
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PROGRAMMING TOOL DESCRIPTION

Trilinos Project, Sandia 
National Lab

The Trilinos Project encompasses a number of tools and libraries for facilitating the development of 
parallel capable engineering and scientific programs [12].

Teuchos 
“Provides a suite of common tools for many Trilinos packages. These tools include memory 
management classes such as "smart" pointers and arrays, "parameter lists" for communicating 
hierarchical lists of parameters between library or application layers, templated wrappers for the 
BLAS and LAPACK, XML parsers, and other utilities.” [13]

Kokkos 
“Provides compile time polymorphism via template metaprogramming techniques. Kokkos provides 
multidimensional array containers, and a set of execution patterns that can operate on these array 
containers to perform parallel_for, parallel_reduce, and parallel_scan.” [14,15] The Kokkos package 
has a “shared-memory parallel programming model for data structures and computational kernels” 
which works with OpenMP, POSIX Threads, and CUDA [16].

Epetra 
“Provides the fundamental construction routines and services function that are required for serial 
and parallel linear algebra libraries. Epetra provides the underlying foundation for all Trilinos 
solvers.” [17]

Tpetra 
“Implements linear algebra objects. These include sparse graphs, sparse matrices, and dense 
vectors. Many Trilinos packages and applications produce, modify, or consume Tpetra’s linear 
algebra objects, or depend on Tpetra’s parallel data redistribution facilities.” [16]

FIGURE 9.1 EXAMPLES OF HPC PROGRAMMING TOOLS AND LANGUAGES

FIGURE 9.2 EXAMPLES OF HPC FRAMEWORKS
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The National Strategic Computing Initiative (see Figure 
9.3 for list of participants) was launched in July 2015 
with the objectives of accelerating the creation of an 
exascale computing system and keeping the United 
States at the forefront of HPC technology [22-24].

The National Science Foundation is operating a 
program called Exploiting Parallelism and Scalability 
(XPS) [25]. This program provides funding for 
academic institutions that are doing fundamental 
research on new abstract models and algorithms, 
new programming models and languages, and new 
hardware architectures, compilers, operating systems 
and run-time systems.

HARDWARE

Typical HPC clusters are comprised of rack-mounted 
nodes containing one to four sockets that support 
multi-core CPUs. The nodes also contain RAM, 
interface hardware, usually hard drives, and in 
some instances video cards (i.e., GPUs). The nodes 
communicate to each other through interconnects or 
switches. Standard InfiniBand interconnects between 
cluster nodes currently operate at 100 Gbit/s for 
4X links, with a latency of 0.5 µs. HPC clusters are 
expected to achieve an order of magnitude speed 
increase over the next decade. Solid state drives are 
now available that offer 10x the transfer speeds of 
traditional hard drives, but at 5 to 10x the current cost.

1) Lead Agencies 

DOE, Exa-scale Computing Project

DOD, Big data analytics at NSA

NSF, Hardware technologies

2) Foundational Research 
and Development Agencies

IARPA

NIST

3) Deployment Agencies

NASA

FBI

NIH

DHS

NOAA
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The latest CPU processors from Intel and AMD are 
based on 14 nm lithography, which is significant as 
this determines transistor counts on a single chip, 
the number of compute cores, and memory sizes. 
Processor frequencies have plateaued around 3±0.8 
GHz because of concerns for power consumption 
and heat removal. For example, it is estimated that 
an exascale system built by the early 2020’s would 
likely require 20 to 30 MW of power. Reducing power 

RAJA, Lawrence Livermore 
National Lab

“Defines a systematic loop encapsulation paradigm that helps insulate application developers 
from implementation details associated with software and hardware platform choices. Such details 
include: non-portable compiler and platform-specific directives, parallel programming model usage 
and constraints, and hardware-specific data management.” [18]

“No existing programming model is a clear ‘best choice’ for all architecture considerations. 
Moreover, each model has unique programming characteristics and models are not easily 
interchangeable. Yet, interchangeability is necessary to manage performance portability. RAJA 
enables the use of different programming models in an application without exposing their 
idiosyncrasies to application scientists and without requiring multiple versions of computational 
kernels to be coded to different models.” [19]

CHARM++, University of 
Illinois Urbana-Champaign

“Charm++ is a machine independent parallel programming system. Programs written using this 
system will run unchanged on MIMD machines with or without a shared memory. It provides high-
level mechanisms and strategies to facilitate the task of developing even highly complex parallel 
applications.

Charm++ programs are written in C++ with a few library calls and an interface description language 
for publishing Charm++ objects. Charm++ supports multiple inheritance, late bindings, and 
polymorphism.” [20]

LEGION, Stanford, LLNL, 
Nvidia

“Legion is a data-centric programming model for writing high-performance applications for 
distributed heterogeneous architectures.” “Legion provides abstractions for programmers to 
explicitly declare properties of program data including organization, partitioning, privileges, and 
coherence.” “By understanding the structure of program data and how it is used, Legion can 
implicitly extract parallelism and issue the necessary data movement operations in accordance 
with the application-specified data properties, thereby removing a significant burden from the 
programmer.” [21]

FIGURE 9.3 PARTICIPATING AGENCIES IN THE NATIONAL 
STRATEGIC COMPUTING INITIATIVE
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consumption is an important aspect of future chip 
technologies [26-28]. Consequently, processor 
manufacturers have attempted to compensate by 
increasing the number of cores on a processor. For 
example, the latest Intel Broadwell processor has 
22 cores and 55 MB of cache memory. Fabrication 
facilities for current generation of processors can 
cost around $7B to construct.

Internet bandwidth affects the usability of 
remote cloud computers and the ease of distant 
collaboration. In the United States, it is possible 
to attain speeds of 500 Mbps with the average 
being closer to 60 Mbps. This is typical of Western 
European countries as well. India and China have 
peaks closer to 20 Mbps [29]. According to Nielsen’s 
“Law of Internet Bandwidth”, which has been fairly 
accurate for the past thirty years, by 2040 a typical 
bandwidth will be over 1 Tbit/s, which is 2,000 
times faster than today. If this holds true, internet 
bandwidth will not be the potential bottleneck.

Computational methods widely used in the 
engineering design community today scale poorly 
on current parallel supercomputers. For example, 
explicit FEM codes generally scale well to 1,000 
cores or more. However, implicit FEM simulations 
have trouble scaling well past 128 cores because of 
the need for frequent data exchange between cores. 
It is not unusual for large simulations to take days or 
weeks. This class of problem scales best on shared 
memory architectures, which have fallen out of favor 
in the last decade. Such simulations provide some 
of the greatest challenges to realizing multiscale 
modeling in a standard engineering setting.

The lithography of CPU silicon chips is expected 
to be reduced from the current 14 nm scale to 
5 nm over the next five years. Even at 20 nm, 
manufacturers are running into the quantum effect of 
electron tunneling, meaning they can pass through 
transistors that are supposed to be off. This has led 
to designs such as the finFET where the channel 
and gate of the transistors are built up from the die, 
adding to the manufacturing complexity. There is 
considerable uncertainty about how much further 
beyond 5 nm the silicon based technology can be 
pushed. Also, the costs of fabrication facilities are 
likely to rise from the current $7B price tag to $20B 
over the next five years.
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There are a number of initiatives currently underway 
or planned to extend the life of silicon chip 
technology. One such, previously mentioned, is 
finFET technology, in which the transistor gate 
surrounds three sides of the channel. In the future, 
the gate may surround all four sides, which would 
give greater control of the current at smaller 
lithography scales but would be more difficult to 
manufacture [30,31].

Another concept is the System on a Chip (SOC), 
where the CPU cores, memory, and accelerators are 
all built on the same die, which would dramatically 
increase data transfer rates. There are second 
generation stacked High Bandwidth Memory (HBM2) 
units already in production by Nvidia and AMD. This 
also benefits from much shorter paths over which to 
transfer data, from centimeters down to millimeters. 
There are also designs still in the early stages to 
layer CPUs and memory, which will reduce the data 
paths to micrometers and result in very high power 
densities, which has engendered research on using 
microfluidics both to provide electricity and to extract 
heat [31,32].

There is research underway on more exotic materials 
to replace silicon such as graphene, molybdenum 
disulphide, and black phosphorous in films of one 
or two atomic layers, as well as carbon nanotube 
transistors. All these novel materials show promise 
in the lab, but it is as yet uncertain if they can be 
manufactured at scale [33-37].

Photonics, or optical computing, and quantum 
computing still face some daunting technical 
problems, but, if resolved, there is the possibility for a 
great increase in processing speed and reduction of 
power consumption [38, 39].

While it is possible that a breakthrough advancement 
in computer chip technology could occur in the 
next 25 years making the current massively parallel 
paradigm obsolete, it seems unlikely for at least the 
next decade.

2040 End State
By the year 2040, advances in computational 
infrastructure will greatly increase the speed and level 
of detail at which simulations will run. The evolution of 
hardware will enable widespread access to exascale or 
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exa-FLOPS (1018 FLOPS) computing, possibly through 
massive parallelization and quantum, neuromorphic, 
or other not-yet-discovered modes of computing. 
Software will accordingly scale to take advantage of this 
advanced hardware, with the ability to run on hundreds 
or thousands of parallel processors. 

For industry, user-friendly software toolkits will exist that 
update and optimize simulation codes to run in the new 
exascale computing paradigm. Simulations that take 
weeks to run today will have turnaround times of one 
day or less, saving time and computational expense. 
Simulation will augment and even replace experiments 

in some cases. Other advances in industry and 
academia will include the following:

 ■ Typical bandwidth will exceed 1Tbit/s. 

 ■ Rapid, parallel experimental methods will become 
widely available as standard lab equipment, 
designed to specifically inform complex models.

 ■ Error propagation and uncertainty will become a 
standard practice across the ecosystem (modeling 
and experiment).
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Gaps
The following gaps lie within five of the roadmap’s 10 crosscutting streams, with the Scalability and 
Computational Efficiency stream containing the highest number of gaps. The timeless challenge of 
developing and advancing computational infrastructure is scaling along with the demand of researchers and 
engineers, while maintaining a reasonable level of computational efficiency. Code compatibility and access 
to HPC architectures also loom as significant challenges. These gaps have the strongest tie to the adaptive 
characteristic of the 2040 end state. Adaptability (or flexibility) to run codes and simulations on future hardware 
solutions as they emerge is a crucial aspect of the envisioned ecosystem. 

GAPS
2040 CHARACTERISTICS

AC AD IN RB TR UF

DATA ANALYTICS AND VISUALIZATION

Lack of methods capable of using artificial intelligence/machine learning to improve 
scalability

MULTIDISCIPLINARY COLLABORATION

Disconnect between application domain and computational domain experts inhibits effective 
collaboration

BENCHMARKING AND BUSINESS CASE

 Lack of support, or adequate business models, for code development and maintenance, 
particularly for software used in engineering applications. 
• Software licensing structure not conducive to massive parallelism

SCALABILITY AND COMPUTATIONAL EFFICIENCY

Lack of user-friendly software technology (e.g., new languages, smarter compiler 
technologies) for accessing peta- and exascale computing resources

Slow transition of application software packages to emerging HPC architectures

Programming languages (i.e., structure and user interface) are not optimized for scale-up or 
parallel computational processing

Inadequate adaptability of software to run on current and future hardware solutions 
• Commercial vendors are slow to implement changes that take advantage of existing multi-

core systems or future hardware advances

INPUT/OUTPUT CONFIDENCE AND RELIABILITY

Difficult to match the physics fidelity to the problem at hand, verify the suitability of codes, 
and account for uncertainty across methods

TABLE 9.1 COMPUTATIONAL INFRASTRUCTURE GAPS AND IMPACTED 2040 CHARACTERISTICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly  Critical

Key Element 9
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Recommended Actions
The following recommended actions lie within five of the roadmap’s 10 crosscutting streams, with the 
most actions (including high priority) under Benchmarking and Business Case. Assessing existing and 
emerging technology through round robin testing and business case analysis will help speed up adoption 
and development of promising solutions. Many of these recommended actions call for organizing committees 
or working groups to tackle challenges and align research and development efforts. As with the gaps, the 
recommended actions have the strongest tie to the adaptive characteristic of the 2040 end state. 

TABLE 9.2 COMPUTATIONAL INFRASTRUCTURE RECOMMENDED ACTIONS AND METRICS

AC Accessible AD Adaptive IN Interoperable RB Robust TR Traceable UF User Friendly

FUNDING: $ <0.5M/year $$  0.5-2M/year $$$   2-5M/year $$$$  >5M/year

Key Element 9

High Priority

ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

DATA ANALYTICS AND VISUALIZATION

(9.1) Develop approaches to use technology such as 
machine learning, AI, and cognitive computing to improve 
and implement algorithms on new hardware

$$$

MULTIDISCIPLINARY COLLABORATION

 (9.2) Establish long-term steering/assessment 
committee to review progress against long-term goals, 
note incremental advances, and adjust course as 
computational capabilities change and evolve

$

(9.3) Form a multi-year, community working group to 
develop an open standardized programming model or 
framework that helps users take advantage of existing and 
emerging heterogeneous HPC systems

$

(9.4) Build cross-functional or collaborative organizations 
to bring computational expertise to new and ongoing code 
development early and often

$$$

(9.5) Committees to work with operating system (OS) 
developers to better integrate software into package 
deployments and make more OS's compatible with 
parallel environments and emerging hardware paradigms

$

BENCHMARKING AND BUSINESS CASE

 (9.6) Identify critical and high-quality existing codes to 
target for modernization

$$

 (9.7) Develop baseline assessment and conduct round 
robin testing of existing tools that update and optimize 
simulation codes for peta- and exascale computing

$$$

 (9.8) National effort (government and industry) 
supporting 5-10 key software tools for modeling 
aerospace materials, processes, structures, and 
manufacturing; Includes long term (10-20 years) funding 
and/or a viable business model to maintain the code base

$$$
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ACTION

2040 
CHARACTERISTICS

TIMEFRAME FOR 
COMPLETION

FUNDING
AC AD IN RB TR UF

NEAR
2017-
2022

MID
2022-
2035

LONG
2035+

BENCHMARKING AND BUSINESS CASE, CONTINUED

(9.9) Sponsor annual roadmapping of pre-competitive 
research areas, government funding of pre-competitive 
research and engineering into modeling and 
computational methods for emerging hardware

$

(9.10) Host annual round robin testing of key applications 
to focus development and maximize use of limited 
resources (e.g., computational methods, parallel 
experimental measurements)

$

SCALABILITY AND COMPUTATIONAL EFFICIENCY

 (9.11) Work with hardware suppliers and software 
OS developers to provide benchmarks and standards to 
support the ability for an HPC OS to quickly identify and 
adapt to hardware changes; better “plug and play”

$$

(9.12) Support for adaptive processor allocation on HPC 
architectures (e.g., smart schedulers, real-time micro-
negotiation)

$$

LINKAGE AND INTEGRATION

(9.13) Programming models that enable migratable work 
(e.g., Charm++)

$
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Relationships with Other Key Elements
Each Key Element relies on computational hardware platforms, software tools, and programming frames for 
building and executing simulations, analyzing and sharing data, collaborating across disciplines, and preparing 
the workforce for the 2040 ecosystem. The Computational Infrastructure Key Element provides a foundation for 
the ecosystem to improve the scalability, adaptability, interoperability, and efficiency of both computational and 
physical activities to accelerate the design, optimization, and analysis of aerospace systems and components.

Key Element 9

TABLE 9.3 EXAMPLE INTERRELATIONSHIPS OF KE9 (COMPUTATIONAL INFRASTRUCTURE) AND OTHER KEY ELEMENTS 
Note: Interrelationships among KEs vary. Equal weight should not be inferred.

OTHER KEY 
ELEMENTS

KE1 
Models and 
Methodologies

KE2  
Multiscale Measurement 
and Characterization Tools 
and Methods

KE3 
Optimization and 
Optimization 
Methodologies

KE4 
Decision Making and 
Uncertainty Quantification 
and Management

KE5 
Verification and Validation

KE6 
Data, Informatics, and 
Visualization

KE7 
Workflows and 
Collaboration Frameworks

KE8 
Education and Training

THIS KEY 
ELEMENTINTERRELATIONSHIP

KE9 
Computational 
Infrastructure

Form frameworks for managing/accessing modeling results and 
governing simulation speed-accuracy tradeoffs

Catalyze scalable computations via reduced order/simplified 
models

Support linked experimental data generation and computational 
analysis

Standardize computational environments to enhance multiscale/
multiphysics optimization and stimulate collaboration

Exploit parallel software frameworks and computer architectures 
for uncertainty quantification and propagation

Supply HPC programming tools and frameworks for transferring/
accessing large distributed datasets

Enable simultaneous access for global collaboration via high 
bandwidth networks and software platforms

Increase access to government lab HPC resources

Provide hardware/software frameworks for managing/accessing 
experimental datasets for V&V

Investigate computationally efficient and cost-effective methods for 
achieving sufficient design accuracies

Automate code optimization for optimal performance with 
computational infrastructure

Support linked experimental data generation and computational 
analysis

Verify peta- and exascale computing algorithms

Incorporate machine learning methods into high-level HPC 
programming frameworks for hardware interoperability

Build industry-relevant competencies in characterization and 
simulation code design for current and future computational 
infrastructure

Supply HPC-ready multiscale collaboration frameworks
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Each Key Element contains recommended 
actions that demonstrate potential approaches 
for overcoming critical technical and cultural gaps 
over the next 25 years. To help focus 2040 vision 
research and development efforts and provide useful 
engineering solutions at the same time, the roadmap 
features a series of potential multidisciplinary 
engineering challenges (MECs). These MECs—which 
have not been solved by prior efforts and technology 
applications—represents examples of potential high-
impact activities that align with specific roadmap 
actions across the nine Key Elements.

1
Mitigation of High Temperature 
Environmental Damage, 
Oxidation, and Hot Corrosion of 
High Temperature Turbine Engine 
Components
One of the critical issues that must be addressed 
in the aerospace community is the mitigation of 
environmental attack, oxidation, and corrosion of 
high-temperature materials exposed to aggressive 
environments. A continued avenue to increase the 
efficiencies and capabilities of next-generation gas 
turbines is to increase gas path and turbine inlet 
temperatures. Many of the current designs in high-
temperature regions of aeronautical vehicles and 
engines require multi-layer functional materials that 
can withstand the extreme environments posed 
upon them. Additionally, space launch vehicle 
environments offer unique extreme conditions 
and challenges for today’s thermal barrier system 
materials. As a result of extreme temperatures and 
environmental contamination, such as dust and 
dirt, ceramic and metallic coatings can suffer from 

extensive molten calcia-magnesia-alumino-silicate 
(CMAS) damage while their substrates (metallic or 
ceramic matrix composites [CMCs]) fare no better 
in terms of oxidation and (hot) corrosion attack 
[1]. The mechanisms of deformation and damage 
mechanisms in coated superalloys and CMC 
materials under coupled thermal, mechanical, and 
environmental (oxidizing and moisture) are not well 
understood and have not been integrated into a 
robust system-based analysis and design framework. 
Specific interaction of CMCs and Environmental 
Barrier Coatings (EBCs) under the mechanical and 
environmental conditions must also be realized.

Current efforts to model such phenomena have been 
piecemeal and challenging [2]. Major milestones 
in the aforementioned Key Elements must be 
achieved to implement modeling of damage for high-
temperature materials for the year 2040. Databases 
and data infrastructures must be able to source 
large amounts of data, such as thermodynamic, 
kinetic, and mechanical information, for substrates, 
coatings, and environmental chemistries over a 
wide range of spatiotemporal domains to build the 
foundations for predicting attack probabilistically. 
Advanced experimental methods and testing must 
be derived to simulate conditions where attack 
occurs; high-throughput experimental methods 
should be developed to investigate various substrate-
coating-environmental effects. Additionally, novel 
in situ characterization tools and methods must 
be developed to investigate the effects of these 
inaccessible and harsh environments. Such methods 
may even evolve and drive onboard sensors 
within future aeronautical vehicles for real-time 
monitoring of component health from prediction of 
cumulative damage. Fundamentally, current physics-
based understanding of oxidation, corrosion, and 
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environmental attack is poor for model systems (e.g., 
binary and ternary alloys) and nearly non-existent 
for materials of commercial interest. Extensive 
physics-based understanding must occur between 
now and 2040 to support the next generation of 
gas turbines. The computational framework must 
include a systems-based approach that integrates 
multidisciplinary efforts.
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[1] C.G. Levi, J.W. Hutchinson, M.H. Vidal-Setif, C.A. Johnson, 
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2
Development and Optimization of 
Polymeric Matrix Composites for 
Aerospace Applications
Polymeric matrix composites are critical materials 
for the aerospace industry. Radical changes in this 
type of material relative to manufacturing capabilities, 
costs, and component complexity would come from 
the development of thermoplastic polymeric matrices 
that deform as thermoplastic polymers. While this 
has been previously demonstrated, issues regarding 
environmental stability, processibility, and shelf life 
have yet to be resolved. Application of advanced 
modeling tools is needed to develop a polymer 
system that will fit all performance requirements 
and be resistant to current manufacturing solvents 
and environmental attack. This is a multidisciplinary 
challenge that requires the design of a new material 
system over many length scales. Models that describe 
the mechanisms involved in processing, reaction, and 
behavior are foundationally required, including first 
principles methods through macro-scale models to 
support analysis of required structural requirements. 
This MEC must address the development, 
validation, and application of molecular dynamics 
(MD) simulations or other advanced modeling and 
simulation tools to support polymer design.

Simulation infrastructure efforts will be required to 
manage the experimental methods to establish and 
validate the required models. Tools that allow linking 

of multiscale models and enable use of intrinsic 
materials properties directly at every length-scale will 
need to be established and demonstrated. Data to 
support calibration and validation of each model will 
be required within a framework of a well-established 
experimental workflow, data management plan, and 
database structure.

This MEC would be effectively advanced through 
collaboration among OEMs, universities, and 
government laboratories, such as NASA Research 
Centers. This challenge problem should also be 
targeted at a future NASA airframe and propulsion 
system to further advance fuel efficiency and 
environmental impact.

3
Design and Lifing of Aerospace 
Components With 20 Percent 
Weight Reduction Using Location-
Specific Design Methodologies, 
Including Tailoring of Component 
Properties Using Chemistry or 
Microstructural Modifications
The DARPA AIM program successfully demonstrated 
the capability of radically reducing weight of 
critical rotating components through the linking 
of elements of local microstructure and property 
prediction and control [1]. However, that program 
was less successful in establishing full industry-wide 
acceptance and implementation, substantially due 
to infrastructural challenges relative to integration 
of model-based material and process definitions 
into design optimization and structural analysis 
methods. The infrastructural issues that hindered full 
implementation of location-specific design methods 
for rotors may now be possible with emerging 
tools and methods. An MEC project that aims to 
demonstrate model-based materials definitions 
embedded with design and lifing methods will allow 
the aerospace community to establish standards that 
can be applied to many components and systems.

An MEC program should establish required model-
based material and process definitions for a material, 
process, and component critical to a future NASA 
system and mission. This material could be a new 
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material designed with ICME tools and methods to 
establish the required materials models or a legacy 
material that requires model development and 
calibration to describe the mechanisms that control 
the material’s behavior. Similarly, a manufacturing 
process commensurate with the target component 
will require model development and validation 
and could range from forging, casting, or additive 
manufacturing.

This challenge program would demonstrate and 
establish critical linkages of materials and process 
models with structural and design models and 
methods. System-based optimization processes 
would be performed to establish an optimal model-
based component definition to meet the system 
requirements and challenge goals. This program 
would provide a path to industry standard methods 
for model-based material and process definitions 
in place of traditional, static, empirically-based 
specification minima and design curves.
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4
Optimization of Structures for 
Mitigation of Thermomechanical 
Fatigue
Thermomechanical fatigue (TMF) is a significant 
challenge and failure mode within high-temperature 
aerospace structures. The cyclic nature of high-
temperature component and system operation often 
produces very large thermal gradients and associated 
stresses during transient stages of repeated mission 
operation, whether thermal protection systems (TPS) 
for rockets or turbine airfoils in turbine engines. 
There is a need for further understanding of the 
mechanisms that generate material damage during 
these cyclic processes where thermal and structural 
loads combine in a complicated spatiotemporal array. 
Use of multiscale modeling to establish and model 
the mechanisms for a selected material system will 
be required. Optimizing microstructures to mitigate 
damage formation or the rate of damage formation 
would greatly increase durability and survivability of 
structural components that experience combined 

effects of external applied stresses and simultaneous 
thermal stresses, both in- and out-of-phase.

The design of structures would include optimization 
of system thermal and stress boundary conditions, 
component geometry, and material texture, modulus, 
and strength, all of which can impact the rate of 
damage generation within a component. Models 
that can mechanistically predict thermo-mechanical 
fatigue damage in metallic components are required 
to enable assessment of arbitrary thermo-mechanical 
fatigue cycles for future system and component 
designs. Physics-based fatigue models that enable 
prediction of damage accumulation as a function 
of cycles are also needed. These models must 
include capability of prediction over large time-
scales and must be able to incorporate or eliminate 
mechanisms as the material is cycled through ranges 
of temperature and stress levels. Modeling methods 
that enable current computationally expensive 
calculations to be used in an efficient and accurate 
manner are required in an updated simulation 
infrastructure. This MEC will enable needed effort to 
close critical Vision 2040 gaps and will guide further 
efforts in the direction of the Vision 2040.

5
Design and Development of 
Unique Materials Such as Shape 
Memory Alloys and High-Entropy 
Alloys in Aerostructures and 
Components
Emerging materials hold great promise for many 
applications within the aerospace industry. Unique 
materials that can support unique behaviors can 
be enabling for new system architectures and 
designs. Adaptive structures that respond to 
surrounding application environments can respond 
and support the control and optimization of overall 
system performance. These types of unique “smart” 
materials can range from shape memory materials or 
the emerging area of high-entropy alloys.

An MEC program that defines a unique material 
requirement that would enable new system design 
or application freedoms is proposed. The unique 
behavior may be low coefficient of thermal expansion 
or potential negative coefficient of thermal expansion 
over a specific range of temperature. The unique 
behavior could also involve component shape change 
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as a function of temperature exposure for control of 
airflow or potentially system sealing functions.

This challenge program is aimed at defining and 
exploiting specific known or emerging physics-based 
mechanisms that drive unique material behavior. This 
effort will be required to demonstrate a systematic 
experimental method that could be standardized for 
the selection and application of mechanisms and 
associated models to component and system design 
optimization. While unique material mechanisms, like 
shape memory effects, are starting to be used within 
the aerospace industry [1], this effort would support 
the development of industry-wide methods for their 
systematic design and use.
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6
Automated Readaptation and 
Updating of Computer Software 
Suites to Infrastructure Changes 
(Moving Away from Manual Recoding of Software to 
Take Advantage of New Computer Architectures Such 
as GPUs or CPU+GPU)

Most HPC software today is written in C/C++ or 
FORTRAN using MPI routines for DMP and/or 
OpenMP pragmas for SMP. When a new accelerator 
comes along (e.g., GPUs or Xeon Phi), a substantial 
recoding effort is required using a language like 
CUDA or OpenCL. Efforts are underway at a number 
of national labs, universities, and companies to 
develop a higher-level HPC programming language 
to automatically take care of the lower-level message 
passing and multi-threading issues. This approach 
would free up scientists and engineers to focus on 
the physics they are trying to model rather than 
dealing with the often complex required coding 
to achieve high performance on heterogeneous 
computing systems. It would also save software 
companies an enormous amount of development 
time in trying to adapt their codes to changing 
computer architectures.

This MEC program would target the development 
of computer software that can write and optimize 
computer software for a specific function for 
evolving computational hardware platforms. 
Ideally, the various efforts currently underway 
would be consolidated into a new ANSI-standard 
HPC computer language. A working group or 
consortium should be established to understand 
the pros and cons of the HPC paradigms currently 
under development and come up with a language 
that combines the best of each. This should be 
followed by the formation of a standards committee 
to define and maintain the minimum common 
elements of such a language. This is a multi-decade 
undertaking that should be initiated now. Numerical 
models of physical phenomena that depend on 
high-performance computing for their utility would 
certainly be impacted by the availability of an HPC 
programming language and how it would be applied 
within a multidisciplinary engineering environment. 
The tools which encompass such models should be 
implemented for HPC at the inception rather than at a 
later stage. Simulation infrastructure must also be up 
to par. A HPC programming language would depend 
on the evolution of the computer hardware that it 
is expected to run on. A programming language is 
an essential part of the simulation infrastructure. 
Ultimately, this effort would require the collaboration 
of the national labs, other government agencies, 
universities, and software companies across an 
expansive workflow and collaboration network.

7
Design and Optimization of 
Ceramic Matrix Composites for 
Aeronautical Vehicles
Ceramic matrix composites (CMCs) are a class 
of materials that are beginning to be used in 
commercial applications, most notably, within 
the hot sections of gas turbine engines. Interest 
in CMCs is growing because gas turbine engine 
efficiency and performance is directly related to the 
turbine entry temperature where environmentally 
protected CMCs are expected to replace thermally 
protected superalloys for certain applications in 
the future. Higher temperature capability and lower 
density are the fundamental reasons why SiC/SiC 
CMCs (silicon-carbide fiber, silicon-carbide matrix 
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composites) offer great potential benefits over 
metallic components in a gas turbine. As a result 
of the high cost of raw goods and long duration of 
manufacturing processes, modeling of manufacturing 
processes, such as 1) chemical vapor infiltration 
(CVI), 2) polymer impregnation and pyrolysis (PIP), 
and 3) melt infiltration (MI), has been an active area 
of research. Each of the three main processing 
routes is completed through control of fluid flows 
and various reaction processes. These processes 
involve the interaction between microstructure (on the 
order of micrometers), the part scale (on the order of 
centimeters) and the equipment scale (on the order 
of meters). In the case of woven materials, the weave 
architecture will influence phenomena acting over an 
intermediate scale between the microstructure and 
parts (on the order of millimeters).

Despite the fact that there is a high degree of 
coupling in the flow characteristics at the various 
scales, most modeling approaches only loosely 
couple the scales and generally focus at the part 
scale. Boundary conditions are imposed based on 
the equipment setup to simulate the effects of the 
processing environment. Often, these boundary 
conditions are taken to be uniform based on the 
assumption that ideal conditions can be achieved in 
the equipment. Other approaches impose boundary 
conditions based on models of fluid flow and heat 
transfer within the equipment. This loose coupling 
between length scales has hindered the application 
and advancement of ICME for this class of materials. 
Key phenomena, such as the dependence of 
permeability on the flow field or the effects of non-
uniform deposition which occurs in industrial scale 
CVI processes, are not captured which has led to 
limited applicability of these approaches.

An MEC program is proposed for the development 
of true multiscale manufacturing modeling of CMCs. 
The NASA CFD Vision 2030 program highlighted the 
need for advanced solution methods focused on 
turbulence modeling in high Reynolds number flows 
[1]. Such developments, although needed by industry, 
will not support the processes described above that 
are dominated by low Reynolds number flows and 
interactions between length scales separated by 
several orders of magnitude. Methods should be 
developed to optimize processing with the goal of 
minimizing manufacturing time and cost. There is also 

the need for development of advanced experimental 
methods for characterizing the reaction kinetics that 
control the CVI process. The high temperatures and 
harsh chemicals that exist inside a CVI reactor limit 
current methods. Additional experimental techniques 
are needed to properly understand the MI process 
that is conducted at temperatures above the melting 
point of silicon (1414 °C). To fully benefit from these 
developments, processing data will need to be 
linked to component performance through the use 
of advanced materials characterization techniques, 
comprehensive databases, and informatics. 
Education and training must also be advanced to 
realize the capabilities of CMCs. There are only a 
handful of universities in the United States that have 
active research and educational programs in the area 
of CMCs and even fewer that are working on coupled 
multiscale materials modeling with a system-based 
approach. Similarly, most engineers in the industry 
still think of designing and analysis of composites 
without coupling models to drive experimental 
methods. Significant resources must be devoted to 
train the current and future workforce to overcome 
this challenge.
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8
Application of Microstructure 
Definition Tools and Methods to 
Enable Model-Based Material 
and Probabilistic Component 
Definitions
Models that describe the physics within materials 
are starting to emerge as the preferred approach to 
defining material, rather than empirical testing and 
statistical treatment of results with the assumption 
that all test results should be the same. Model-
based material definitions provide huge potential 
for advancing component optimization through 
prediction of properties based on local structure 
[1]. This opportunity is also accompanied by the 
challenge of defining local structure from simulation 
and physical characterization.
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To enable prediction of local properties within a 
component, it is imperative to know the range of 
structure at the location of interest. The knowledge 
of the structure must be to a level where the volume 
and length-scale that interact with controlling 
physics-based mechanisms are fully defined. For 
some properties, microstructure features, such as 
grain size, may be dominant, but for others, features 
on the submicron level, such as atom clusters or 
boundary chemistry, may be the controlling feature. 
Knowledge of the entire range of controlling features 
within a component volume is needed. The size of 
the volume that must be predicted or characterized 
that allows for a statistically valid description of 
the feature size, volume fraction, and/or spatial 
distribution is also required.

Determining the critical volume size for a minimum 
size representation of the material must be based 
on the physics-based mechanisms involved. The 
larger the controlling size feature within a material, 
the larger the critical volume will be. Conversely, the 
smaller the size of the controlling features, the smaller 
will be the critical definition volume, which also 
means that many more critical volumes are within a 
total volume of a component.

An MEC program is proposed to establish standard 
methods for defining statistically equivalent 
representative volume elements (SERVEs) within a 
material structure, as well as techniques for acquisition 
of materials information at these representative 
volumes. This must be accomplished based on 
mechanism length-scale, knowledge of the component 
manufacturing method, and component application 
space. To track and model entire component volumes 
with respect to mechanism-based length scales would 
be computationally restrictive with the current state 
of modeling software and computational hardware, 
so a near-term, engineering-pragmatic approach is 
needed, based on zoning of the component volume 
into smaller number of SERVEs, each with a practical 
range of structural statistics.

This challenge program is proposed to characterize 
and define the SERVEs sizes and zones within a 
titanium component for the purpose of dwell-fatigue 
optimization and high-cycle fatigue optimization for 
a system-level component capability. Both material 
behavior capabilities are driven by structure but 
at greatly different length scales. The result of this 

challenge program would be the demonstration of 
defining and applying a SERVE-based zoned material 
structure analysis to determine probabilistic behavior at 
the component level. This program would also provide 
needed guidance to industry standards for multiscale 
material structure characterization and statistical 
descriptions for component structural analysis.
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9
Electrification of Aircraft 
Propulsion
The aeronautics community has invested 70 years 
in optimizing tubular fuselage aircraft and podded 
turbofan engines. While there are still improvements 
to be made in aircraft and engines, it is clear that 
those improvements are coming more slowly 
and are costing more. In the early 2000s, NASA 
challenged the aeronautics industry to look ahead 
to future generations of aircraft and predict what 
technology advancements could have substantial 
impacts on the metrics of fuel economy, ground 
and in-flight emissions, and community noise. 
Electrification of aircraft propulsion was one of the 
potential solutions identified.

Electrified aircraft propulsion refers to a suite of 
aircraft configurations that derive all or a portion 
of the propulsive power from electric machinery, 
such as a motor-driven propeller. Until recently, the 
specific power (power/mass) and efficiency of electric 
machines, along with the supporting control and 
distribution equipment, was too low for all but the 
smallest, unmanned aircraft. Rapid advancement in 
electric machinery, power electronics, and energy 
storage have changed this value proposition.  
However, the value of electrified aircraft propulsion 
does not come from simply replacing a turbine or 
reciprocating engine but instead from the ability 
to change propulsion-airframe integration, aircraft 
functionality, or mission optimization in ways 
unavailable through traditional propulsion. It is equally 
important to note that configuration solutions may 
be different for small versus large aircraft or vertical 
takeoff/landing versus horizontal takeoff/landing 
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aircraft. The field is exciting yet challenging, because 
the optimum configurations are far from understood.

Even though aircraft propulsion greatly benefits from 
rapid advancements in energy storage technologies 
(batteries, fuel cells, supercapacitors, etc.) and 
electronics for terrestrial applications, there are 
unique aviation requirements that will require focused 
development. Features that make aircraft powertrains 
different from land vehicle power trains or terrestrial 
power grids center around specific power (flight 
weight), efficiency demands (which greatly impact 
thermal management and overall system weight), 
dielectric integrity at reduced atmosphere (flight 
altitude), and system reliability requirements for 
aircraft safety. Higher voltage electrical transmission 
is a prime example of a technology challenge 
which will enable or constrain the implementation 
of electrified aircraft propulsion.  Higher voltage 
transmission, improved thermal management, 
higher electrical frequency operation of machines, 
and higher electrical frequency operation of power 
electronics are parameters that are crucial in these 
powertrain subsystems. Likewise, the electric 
machines and the power electronics are subsystems 
which need significant and coordinated improvement 
to achieve powertrains suitable for commuter, 
regional jet, and larger aircraft. This development 
is a key system optimization challenge at many 
levels. At the component level, for example, the 
electric machine can be optimized by treating the 
electromagnetic circuit (e.g., conduction coil, soft 
magnetic laminations, and insulation) as a meso-
scale composite. At the subsystem level, the 
electric machine and controlling power electronics 
must be optimized together to take advantage of 
new semiconductor device options in the power 
electronics and reduce the overall subsystem 
mass. And at the powertrain system level, choice 
of operating power, voltage, and protection 
schemes must be optimized. Each level must be 
designed with a broad range of new component 
materials, manufacturing techniques, and integration 
possibilities in mind. Perhaps most critically, 
limitations in current energy storage technologies 
are critical bottlenecks for enabling electric aircraft 
requiring dramatic improvements relative to the state-
of-the-art lithium ion battery technology.

Insulation Examples
One of the key challenges to using electric 
powertrains for aircraft thrust is the distribution of 
power (current times voltage). Distribution of high 

voltage allows lower current ratings but requires 
significant development insulation systems. 
Terrestrial high voltage solutions are insufficient 
since the reduced atmospheric pressure associated 
with standard flight altitudes can lead to ionization 
near high voltage components. This ionization both 
increases the likelihood of partial discharge and 
accelerates degradation in many ionic materials. 
Non-traditional combinations of inorganic and 
organic materials may be required to enable high 
voltage protection on aircraft. While high voltage 
insulation development is essential, advancement of 
insulation materials for electric machines and power 
electronics will improve specific power and efficiency 
and enable electrification for larger vehicle classes. In 
these components, the dielectric breakdown, thermal 
conductivity, and volume are crucial parameters. 
An MEC program that addressed these insulation 
challenges as multi-variable composite systems 
would greatly accelerate development.

Magnetic Material Examples
Magnetic circuits are the backbone of electric 
machines and power electronics. Development in 
hard and soft classes of magnetic materials have 
direct impacts on specific power through magnetic 
field strength and efficiency through electrical loses. 
The highest performance hard magnetic materials 
rely on high fractions of rare earth metals, the cost 
and availability of which are strategic concerns. 
Current research is exploring ways to maintain 
magnetic performance with smaller fractions of 
rare earth elements. Future research enabled by 
advanced materials modeling could explore alloying 
or microstructure improvement to increase saturation 
strength, increase magnetic permanence, or maintain 
these performance parameters with lower fractions of 
rare earth elements. Current soft magnetic materials 
research focuses on reducing the energy lost in each 
magnetic cycle and maintaining performance at high 
switching frequencies on known classes of alloys. 
Future research enabled by advanced materials 
modeling could explore new chemistries to provide 
greater magnetic saturation strength with tailored 
permeability, low losses, and good mechanical 
properties. These material improvements can enable 
higher performance in electric machines, power 
electronics, and power quality filtering, directly 
impacting the upper limits on powertrain performance 
and aircraft size.
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Semiconductor Examples
Wide band gap semiconductors such as SiC and 
GaN are being applied to an increasing range of 
electronic devices. These devices provide the ability 
to switch at higher frequencies, translating into not 
only processing speed increases but also increased 
electrical efficiency in many applications. Although 
wide band gap semiconductors have increased 
potential over pure Si in many facets, they still require 
maturation in both processing and applications. 

Conductor Examples
Pure aluminum and copper are ubiquitously used for 
electrical conductors in current aircraft. Advanced 
conductor systems based on superconductors, 
graphene, or carbon nanotubes would provide an 
enormous step change in power management in 
aircraft. Superconductivity is quite mature in several 
terrestrial applications but faces specific challenges 
for application in aviation. Superconducting 
wires are composite systems which must provide 
structural support as well as electrical and thermal 
management. Graphene and carbon nanotubes 
have unique conduction properties that may provide 
breakthroughs in specific conductivities. These are 
high-risk, high-payoff development areas.

Energy Storage Examples
The energy storage requirements of electric aircraft 
are dramatically higher than most other terrestrial 
applications including electric cars and consumer 
electronics.  In addition to very high requirements 
with respect to specific energy and specific power, 
there are equally challenging requirements regarding 
cycle life, cost, reliability and safety.  For example, 
the state of the art rechargeable battery technology 
is based on Lithium Ion chemistry and has a specific 
energy of approximately 200 Wh/kg.  The Boeing 
SUGAR study however identified 400 Wh/kg as the 
threshold requirement for General Aviation and 750 
Wh/kg for commercial regional service.  Meeting 
these extreme requirements will require breakthrough 
developments in the basic material science of energy 
storage component materials (e.g. electrodes, 
electrolytes, etc.) as well as their interfaces. Such 
developments will not only address basic material 
property requirements but will also address how 
these material respond to these highly reactive and 
corrosive electrochemical environment. Significant 
progress in advanced “beyond Lithium ion” battery 
technologies( e.g. Li-Air, Li-S, silicon based, etc.) 
as well as advanced fuel cells and supercapacitors 
will be needed to achieve these goals. System 
level consideration will also be critical to determine 
how these potentially very different materials work 
together in an energy storage device as well as how it 
interfaces with other aircraft systems.
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Appendix B

Case Studies
The following case studies illustrate the potential of work currently only being conducted by R&D departments 
in industry and/or government labs that could be performed regularly once the 2040 vision is realized.
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Case Study 1 Multiscale Modeling of Carbon/
Phenolic Composite Thermal Protection Materials: 
Atomistic to Effective Properties

Next-generation ablative thermal protection 
systems are expected to consist of 3D woven 
composite architectures. It is well known that 
composites can be tailored to achieve desired 
mechanical and thermal properties in various 
directions and thus can be made fit-for-purpose 
if the proper combination of constituent materials 
and microstructures can be realized. Recently, 
NASA GRC and ARC teamed up to conduct 
the first multiscale, atomistically informed, 
computational analysis of mechanical and thermal 
properties of a present-day Carbon/Phenolic 
composite Thermal Protection System (TPS) 
material, wherein micromechanics and molecular 
dynamics were combined to demonstrate how 
ultimately the design of new material systems can 
be achieved. 

The Multiscale Generalized Method of Cells 
(MSGMC) methodology was employed to 
incorporate atomistically informed constituent 
properties and detailed microstructural features 
in a coupled, synergistic multiscale analysis 
of a 5HS woven TPS composite material. 
Specifically, phenolic resin properties obtained 
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from molecular dynamics (MD) simulations and carbon fiber and carbon black filler materials drawn from 
experimental literature were used as input for micromechanics computations. Results indicate that given 
sufficient microstructural fidelity, along with lower-scale, constituent properties derived from molecular 
dynamics simulations, accurate composite level (effective) thermos-elastic properties can be obtained. This 
suggests that next-generation TPS properties can be accurately estimated at temperatures below charring 
via atomistically informed multiscale analysis.

References:
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 Predicted Thermomechanical properties for a 5HS woven TPS composite 
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MODELS & METHODOLOGIES
Methodologies based on Multiscale Generalized Method of Cells (MSGMC) will enable linkages with lower length-scale 
models.

CHARACTERIZATION
Quantitative structure definitions tied to models and test protocols will enable hierarchical characterization of complex 
failure mechanisms.

OPTIMIZATION 
Improved predictive capabilities and analytical tools will help determine strength margins and optimum layup strategies 
for complex material architectures, such as composites.

DATA, INFORMATICS, VISUALIZATION

Statistical descriptors and data structures will improve data quality and help automate the extraction of data from 
processing, characterization, and testing equipment. 

Significance for Vision 2040

References

[1] S.M. Arnold, et al., Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties, NASA 
(Ohio: NASA, 2016).

[2] K.C. Liu and S.M. Arnold, Influence of Scale Specific Features on the Progressive Damage of Woven Ceramic Matrix Composites,  Computers, 
Materials & Continua (2013) Volume 35, Number 1: 35-65.

[3] Jacob Aboudi, Steven Arnold, and Brett Bednarcyk, Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach 
(Oxford, UK: Elsevier, 2013).

Examples courtesy of NASA



NASA/CR—2018-219771 156

Case Study 2 Multiscale Modeling of Complex 
Systems: Fuel Cells
Fuel cells are complex systems that convert fuel into electrical energy through controlled sets of chemical 
reactions. The reactions within these systems provide a harsh environment for the required chemical species 
separation membranes. Degradation of fuel cell capabilities involves multiple processes subject to a variety of 
scientific disciplines. 
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MODELS & METHODOLOGIES
An integrated framework linking models and advanced experimental tests will increase accuracies of models that 
predict materials and structure responses under extreme conditions or harsh environments.

EDUCATION & TRAINING
Interdisciplinary programs and degrees will bridge across disciplines including computer science, materials science, 
polymer science, and other engineering fields to elucidate critical material mechanisms across scales.

OPTIMIZATION 
Novel optimization methods will account for emergent behaviors across scales, and help solve computationally 
intensive, high-dimensional design problems.

COMPUTATIONAL INFRASTRUCTURE
Programming language frameworks and advanced algorithms will permit large-scale computing of critical material 
mechanisms over a wide range of length scales.

CHARACTERIZATION
Next-generation characterization methods will systematically link proposed models and experimental results at 
different hierarchical scales to inform model validation efforts.

WORKFLOWS & COLLABORATION FRAMEWORKS
Computational tools will automate the linking and execution of disparate models.

Significance for Vision 2040

At the Polymer Electrolyte Membrane (PEM) Pt ions diffusion/precipitation occurs, along with oxygen/
hydrogen diffusion (crossover) and catalytic reaction at Pt. Free radical generation/quenching at Pt occur 
and polymer decay progresses by free radical formation (chemical degradation). Mechanical cracking 
develops under mechanical stress to catastrophic failure. At the cathode, Pt dissolution/diffusion/precipitation 
occurs with a loss of catalytic activity, leading to polymer decay by free radical formation from loss of proton 
conductivity. Carbon oxidation occurs followed by cathode flooding and loss of oxygen permeability. At the 
anode, Pt poisoning by CO results in loss of catalytic activity. Gas Diffusion Layer (GDL) exhibits carbon 
oxidation with GDL flooding and loss of oxygen permeability. 

Understanding of the physics-based mechanisms with PEM fuel cells has enabled optimization of materials 
and structures for unprecedented durability. 

Appendix B

Example courtesy of United Technologies Research Center



NASA/CR—2018-219771 158

Case Study 3 Materials Design in the Digital Age – 
SIMPL and DREAM.3D
In order to advance the rapid engineering of 
materials in accordance with the precepts of 
integrated computational design, the Air Force 
Research Laboratory sought to develop a 
unified platform for objectively describing and 
quantifying materials structure. This project led 
to the development of DREAM.3D, the Digital 
Representation Environment for the Analysis of 
Materials in 3D. DREAM.3D is a comprehensive 
software suite that enables materials scientists, and 
increasingly other engineers and data scientists, to 
manage multidimensional, multimodal materials data 
in a consistent framework. Underpinning the analysis 
capabilities and materials knowledge embedded 
in DREAM.3D is a management library capable of 
tracking and organizing the complex spectrum of 
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hierarchical data that defines modern engineering 
materials. This management library is called SIMPL, or 
the Spatial Information Management Protocol Library. 
These toolsets are developed and supported in an 
open fashion by BlueQuartz Software and designed 
in such a way as to allow additional packages to be 
plugged into the SIMPL/DREAM.3D ecosystem.

DREAM.3D has been utilized as a framework for 
enabling local materials structure design driven 
by process-structure-properties relationships. A 
particular use case involving the microstructure 
design of a titanium forging is shown below. In this 
workflow, a part designer uses industry standard 
tools to propose a potential overall shape for the 
given part. 

CONTINUUM FIELD VARIABLES PROCESS MODELS PART DESIGN

MICROSTRUCTURE MODELDATA FUSION

CHARACTERIZATION

PROPERTY MODEL

MICROSTRUCTURE

PROPERTIES
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Schematic view of hierarchical design in a titanium forging using DREAM.3D.
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With DREAM.3D, both the part geometry and predicted local processing variables can be integrated 
and managed using SIMPL. The field variables are then “zoned,” defining contiguous regions of material 
that have undergone similar processing history. This objective definition of structure below the part 
mold-line begins the process of local microstructure design. The processing histories are used to 
predict microstructure characteristics for each zone, which DREAM.3D can then use to instantiate virtual 
instances of the representative microstructures. These virtual structures are then run through a property 
model, which results in locally-specified mechanical properties throughout the part geometry. At each 
step, more materials information is generated at different length scales. Through its use of SIMPL, 
DREAM.3D is capable of organizing this data hierarchy and fusing the information into a common 
reference frame. The result is a unified view of the material structure, from the part mold-line down to 
the microstructure, allowing for local optimizations. 

The overall philosophy of hierarchical materials designed implemented in DREAM.3D extends beyond 
classical metallurgical materials problems. DREAM.3D has been used to analyze ceramics, carbon 
foams, additive manufacturing data. The continuing development of the SIMPL/DREAM.3D ecosystem 
represents a potential method for opening the concepts of integrated computational design to the 
broader materials enterprise.

DATA, INFORMATICS, & VISUALIZATION
Coupling data management libraries and visualization software suites will drive the ecosystem for generating 
fundamental 3D/4D datasets, thereby enabling the validation of crucial physics-based models.

CHARACTERIZATION
Robust model-structure-response definitions will provide the foundation for reliable methods of managing error and 
uncertainty.

WORKFLOWS & COLLABORATION FRAMEWORKS
Database and optimization software suites will enhance workflow functionalities and facilitate cross-organizational 
sharing of data, tools, and models.

COMPUTATIONAL INFRASTRUCTURE
Machine learning and analytical tools will help design software suites take advantage of novel HPC paradigm and 
various hardware configurations.

Significance for Vision 2040

References:
[1] M. Groeber, M. Jackson, DREAM.3D: a digital representation environment for the analysis of microstructure in 3D, Integr. Mater. Manuf. Innov. 

3 (2014)

Example courtesy of BlueQuartz Software
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Case Study 4 Information Management Workflow 
and Tools Enabling Multiscale Modeling Within 
ICME Paradigm
With the increased emphasis on reducing the cost 

and time to market of new materials, the need for 

analytical tools that enable the virtual design and 

optimization of materials throughout their processing-

internal structure-property-performance envelope, 

along with the capturing and storing of the associated 

material and model information across its lifecycle, 

has become critical. This need is also fueled by the 

demands for higher efficiency in material testing; 

consistency, quality, and traceability of data; product 

design; engineering analysis; as well as control 

of access to proprietary or sensitive information. 

Consequently, material information management 

systems and physics-based multiscale modeling 

methods must keep pace with growing user demands.

Recently, NASA Glenn and Granta Design established a workflow and demonstrated a unique set of web 
application tools for linking NASA GRC’s Integrated Computational Materials Engineering (ICME) Granta MI® 
database schema and NASA GRC’s Integrated multiscale Micromechanics Analysis Code (ImMAC) software 
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DATA, INFORMATICS, & VISUALIZATION
Coupling data management libraries and visualization software suites will drive the ecosystem for generating 
fundamental 3D/4D datasets, thereby enabling the validation of crucial physics-based models.

CHARACTERIZATION
Robust model-structure-response definitions will provide the foundation for reliable methods of managing error and 
uncertainty.

WORKFLOWS & COLLABORATION FRAMEWORKS
Database and optimization software suites will enhance workflow functionalities and facilitate cross-organizational 
sharing of data, tools, and models.

COMPUTATIONAL INFRASTRUCTURE
Machine learning and analytical tools will help design software suites take advantage of novel HPC paradigm and 
various hardware configurations.

Significance for Vision 2040

toolset. The goal was to enable seamless coupling between both test data and simulation data, which is 
captured and tracked automatically within Granta MI® with full model pedigree information. These tools, and 
this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, 
microstructure, properties, and performance are coupled to enable application-driven design and optimization 
of materials and structures.
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