16 research outputs found

    Change detection in teletraffic models

    Get PDF
    In this paper, we propose a likelihood-based ratio test to detect distributional changes in common teletraffic models. These include traditional models like the Markov modulated Poisson process and processes exhibiting long range dependency, in particular, Gaussian fractional ARIMA processes. A practical approach is also developed for the case where the parameter after the change is unknown. It is noticed that the algorithm is robust enough to detect slight perturbations of the parameter value after the change. A comprehensive set of numerical results including results for the mean detection delay is provided

    A study of self-similar traffic generation for ATM networks

    Get PDF
    This thesis discusses the efficient and accurate generation of self-similar traffic for ATM networks. ATM networks have been developed to carry multiple service categories. Since the traffic on a number of existing networks is bursty, much research focuses on how to capture the characteristics of traffic to reduce the impact of burstiness. Conventional traffic models do not represent the characteristics of burstiness well, but self-similar traffic models provide a closer approximation. Self-similar traffic models have two fundamental properties, long-range dependence and infinite variance, which have been found in a large number of measurements of real traffic. Therefore, generation of self-similar traffic is vital for the accurate simulation of ATM networks. The main starting point for self-similar traffic generation is the production of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN). In this thesis six algorithms are brought together so that their efficiency and accuracy can be assessed. It is shown that the discrete FGN (dPGN) algorithm and the Weierstrass-Mandelbrot (WM) function are the best in terms of accuracy while the random midpoint displacement (RMD) algorithm, successive random addition (SRA) algorithm, and the WM function are superior in terms of efficiency. Three hybrid approaches are suggested to overcome the inefficiency or inaccuracy of the six algorithms. The combination of the dFGN and RMD algorithm was found to be the best in that it can generate accurate samples efficiently and on-the-fly. After generating FBM sample traces, a further transformation needs to be conducted with either the marginal distribution model or the storage model to produce self-similar traffic. The storage model is a better transformation because it provides a more rigorous mathematical derivation and interpretation of physical meaning. The suitability of using selected Hurst estimators, the rescaled adjusted range (R/S) statistic, the variance-time (VT) plot, and Whittle's approximate maximum likelihood estimator (MLE), is also covered. Whittle's MLE is the better estimator, the R/S statistic can only be used as a reference, and the VT plot might misrepresent the actual Hurst value. An improved method for the generation of self-similar traces and their conversion to traffic has been proposed. This, combined with the identification of reliable methods for the estimators of the Hurst parameter, significantly advances the use of self-similar traffic models in ATM network simulation

    Some statistical models for high-dimensional data

    Get PDF

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding

    Estimation of long-range dependence

    Get PDF
    A set of observations from a random process which exhibit correlations that decay slower than an exponential rate is regarded as long-range dependent. This phenomenon has stimulated great interest in the scientific community as it appears in a wide range of areas of knowledge. For example, this property has been observed in data pertaining to electronics, econometrics, hydrology and biomedical signals.There exist several estimation methods for finding model parameters that help explain the set of observations exhibiting long-range dependence. Among these methods, maximum likelihood is attractive, given its desirable statistical properties such as asymptotic consistency and efficiency. However, its computational complexity makes the implementation of maximum likelihood prohibitive.This thesis presents a group of computationally efficient estimators based on the maximum likelihood framework. The thesis consists of two main parts. The first part is devoted to developing a computationally efficient alternative to the maximum likelihood estimate. This alternative is based on the circulant embedding concept and it is shown to maintain the desirable statistical properties of maximum likelihood.Interesting results are obtained by analysing the circulant embedding estimate. In particular, this thesis shows that the maximum likelihood based methods are ill-conditioned; the estimators' performance will deteriorate significantly when the set of observations is corrupted by errors. The second part of this thesis focuses on developing computationally efficient estimators with improved performance under the presence of errors in the observations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Estimation of long-range dependence

    Get PDF
    A set of observations from a random process which exhibit correlations that decay slower than an exponential rate is regarded as long-range dependent. This phenomenon has stimulated great interest in the scientific community as it appears in a wide range of areas of knowledge. For example, this property has been observed in data pertaining to electronics, econometrics, hydrology and biomedical signals.There exist several estimation methods for finding model parameters that help explain the set of observations exhibiting long-range dependence. Among these methods, maximum likelihood is attractive, given its desirable statistical properties such as asymptotic consistency and efficiency. However, its computational complexity makes the implementation of maximum likelihood prohibitive.This thesis presents a group of computationally efficient estimators based on the maximum likelihood framework. The thesis consists of two main parts. The first part is devoted to developing a computationally efficient alternative to the maximum likelihood estimate. This alternative is based on the circulant embedding concept and it is shown to maintain the desirable statistical properties of maximum likelihood.Interesting results are obtained by analysing the circulant embedding estimate. In particular, this thesis shows that the maximum likelihood based methods are ill-conditioned; the estimators' performance will deteriorate significantly when the set of observations is corrupted by errors. The second part of this thesis focuses on developing computationally efficient estimators with improved performance under the presence of errors in the observations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Workload Modeling for Computer Systems Performance Evaluation

    Full text link

    Time Series Modelling

    Get PDF
    The analysis and modeling of time series is of the utmost importance in various fields of application. This Special Issue is a collection of articles on a wide range of topics, covering stochastic models for time series as well as methods for their analysis, univariate and multivariate time series, real-valued and discrete-valued time series, applications of time series methods to forecasting and statistical process control, and software implementations of methods and models for time series. The proposed approaches and concepts are thoroughly discussed and illustrated with several real-world data examples

    Intelligent adaptive bandwidth provisioning for quality of service in umts core networks

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore