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Abstract

A set of observations from a random process which exhibit correlations that decay

slower than an exponential rate is regarded as long-range dependent. This phe-

nomenon has stimulated great interest in the scientific community as it appears

in a wide range of areas of knowledge. For example, this property has been ob-

served in data pertaining to electronics, econometrics, hydrology and biomedical

signals.

There exist several estimation methods for finding model parameters that help

explain the set of observations exhibiting long-range dependence. Among these

methods, maximum likelihood is attractive, given its desirable statistical prop-

erties such as asymptotic consistency and efficiency. However, its computational

complexity makes the implementation of maximum likelihood prohibitive.

This thesis presents a group of computationally efficient estimators based

on the maximum likelihood framework. The thesis consists of two main parts.

The first part is devoted to developing a computationally efficient alternative

to the maximum likelihood estimate. This alternative is based on the circulant

embedding concept and it is shown to maintain the desirable statistical properties

of maximum likelihood.

Interesting results are obtained by analysing the circulant embedding esti-

mate. In particular, this thesis shows that the maximum likelihood based meth-

ods are ill-conditioned; the estimators’ performance will deteriorate significantly

when the set of observations is corrupted by errors. The second part of this

thesis focuses on developing computationally efficient estimators with improved

performance under the presence of errors in the observations.
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Chapter 1

Introduction

Several physiological mechanisms have a common purpose: to maintain the in-

terior of a biological entity stable in the face of stress. This concept was later

extended into what is termed today as homeostasis, that is, the tendency towards

a relatively stable equilibrium between interdependent elements [15]. This defi-

nition of homeostasis is highly related to what is known in the control systems

theory literature as Bounded Input Bounded Output (BIBO) stability [54], that

is, in some sense a small variation in the system will produce a variation in a

steady fashion.

However, as pointed out by Buchman [16] a healthy biological system exhibits

a high level of variability. This behaviour is inherently different to the concept

of steady state for control systems theory. The irregular behaviour of normal

(healthy) physiology might be explained by the set of interactions that are present

in such systems [15]. It is due to such levels of networked interactions that these

systems are regarded as highly complex. This high level of complexity might be

represented by nonlinear dynamical systems [16, 31, 107].

An alternative way to represent such high variability events is through stochas-

tic processes which exhibit long-range dependence [16]. In an informal fashion, a

long-range dependent stochastic process might be described as one whose obser-

vations are highly correlated regardless of the distance between them [9]. That

is to say that the correlation function of the stochastic process decays at a very

slow rate. This behaviour is unusual for most stochastic processes [90]. For exam-

ple, common linear processes such as Autoregressive Moving Average (ARMA)

processes and finite state Markov chains lead to exponentially fast decaying cor-

relation functions.

17



CHAPTER 1. INTRODUCTION 18

There is empirical evidence of the existence of stochastic processes with slowly

decaying correlations in various fields of study, such as, economics [81, 98], com-

munications [63, 61, 82], electronics [57], physiology [38, 92], hydrology [59, 73]

and image texture recognition [67].

The “unusual” behaviour of long-range dependent processes has many sta-

tistical implications. For instance, a set of observations of a stationary process

whose correlation structure decays slower than exponentially fast is reminiscent

of a non-stationary process [70, 90].

Another important implication is that the correlation structure of long-range

dependence (LRD) implies that the correlations stop being absolutely summable.

This has a direct effect on the rate of convergence of the strong law of large

numbers for long-range dependent processes. For instance, processes whose cor-

relations decay exponentially fast are guaranteed to have a convergence rate of

order
√
N , whereas LRD processes are not. This point is further illustrated in

example 2.2.6.

In terms of modelling, it is not a simple task to construct a process whose cor-

relation function decays to zero at a slower than exponentially fast rate. Keshner

[57] proposed employing high order lumped linear systems in order to approxi-

mate long-range dependence (see example 1.0.1). A parsimonious approach on

representing long-range dependence is to construct a model from the frequency

domain. Briefly, a finite variance, stationary process whose spectral density func-

tion diverges to infinity at a certain rate has a correlation function that decays

at an appropriate slow rate [90]. A formal and precise description of such model

construction is presented in chapter 2.

Example 1.0.1. Consider the simple linear system of a finite resistor capacitor

(RC) transmission line in figure 1.1. Keshner [57] showed that as the length of

the transmission line grows large, its spectral density function takes the form

f(ω) = 1/ωθ for some finite nonzero θ. This system might be represented by a

high order linear model with a finite amount of state variables. Each state variable

contributes a pole and a zero to the overall frequency response of the model (see

figure 1.2). In order to properly summarise the spectral density function (and

equivalently the correlation function), the lumped linear system would require

hundreds of state variables [57]. The task of estimating hundreds of parameters to

represent such behaviour is daunting. A more parsimonious approach is attained

by the use of LRD models capable of representing such behaviour.
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Figure 1.1: Representation of a continuous resistor-capacitor transmission line excited
by a white noise current source.
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Figure 1.2: Finite dimensional linear system approximation to the spectral density
function ω−θ. The segmented lines represent the spectral density functions of the finite
dimensional linear systems. The continuous line represents the spectral densities ω−θ.

The estimation of the parameters of stochastic processes exhibiting long-range

dependence is not a trivial task. This is due to the complexity of the statistics of

the models portraying long-range dependence and due to the computational diffi-

culties involved in the implementation of traditional estimation methods. There

are several alternatives available in the literature. However, they are either under

performing in terms of the convergence of the estimates or difficult to implement.

Maximum likelihood is a method with desirable statistical properties even un-

der long-range dependence. Nevertheless, it has been reported as a methodology

that is difficult to implement as it is computationally expensive [see for example

79]. Furthermore, under long-range dependence, the performance of maximum

likelihood under measurement errors deteriorates.

This thesis is concerned with the estimation of stochastic processes which ex-

hibit long-range dependence. In particular, we are concerned in finding the set of

parameter values that makes the occurrences of a set of observations exhibiting
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LRD more likely. The goal of this thesis is to address the computational im-

plementation problem of maximum likelihood while achieving an estimator that

produces accurate results under error-free and error-corrupted measurements sce-

narios.

1.1 Thesis Overview

Chapter 2: Long-Range Dependence

This chapter surveys the concept of long-range dependence, the most renowned

models available and a method for generating Gaussian realisations with long-

range dependence. Section 2.2 provides a formal mathematical definition of long-

range dependence and its properties. Section 2.3 surveys the fractional Brownian

Motion, fractional Gaussian Noise and fractionally differenced models. The sim-

ilarities and differences between these models along with their properties are

discussed. Section 2.4 surveys a computationally efficient method for generating

exact realisations of Gaussian long-range dependent processes.

Chapter 3: Estimation of Long-Range Dependent Models

This chapter surveys several semi-parametric and parametric methods for esti-

mating the parameters of the long-range dependent models presented in chapter

2. The advantages and disadvantages of the semi-parametric and parametric ap-

proaches are discussed. The properties of the parametric methods are presented

along with a discussion of their implementation.

Chapter 4: Regularised Estimators

This chapter introduces a group of parametric estimators geared towards fitting

the long-range dependent models of chapter 2 under the presence of errors in the

measurements.

Chapter 5: Numerical Results

This chapter evaluates some of the available methods for estimating the parame-

ters of the long-range dependent models presented in chapter 2. These methods

are evaluated for several sample lengths and a wide range of parameter values

of the long-range dependent coefficient. An evaluation between the parametric
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methods of chapter 3 and 4 is provided for errors at different levels. Further-

more, the performance of the estimators is illustrated briefly on data from two

real-world examples.

Chapter 6: Conclusions and Future Work

This chapter presents the general concluding remarks of the thesis and provides

comments on future work.

1.2 Thesis Contributions

Circulant Embedding Estimator

The Circulant Embedding estimator presented in chapter 3, section 3.3.3 is novel.

We prove its asymptotic properties and discuss its advantages and disadvantages

in comparison to other estimation methods.

Ill-conditioning of the likelihood based methods

In chapter 3, section 3.3.3, we prove that the likelihood based estimators are

ill-conditioned. This fact has been discussed briefly in the literature. However,

there is no prior formal proof that the estimators are ill-conditioned to the best

of the thesis author’s knowledge.

Regularised Estimators

In the light of the ill-conditioning of the likelihood based methods a set of novel

regularised estimators are proposed in chapter 4. These estimators are designed

to correct the bias produced by errors in the data observations. The chapter

also provides a novel approach for choosing the regularisation parameter. Under

further restrictions it is shown that the regularised estimates are optimal in the

sense of maximum likelihood. Finally, an estimate of the signal-to-noise ratio of

the data is provided.

Along with the three main contributions, this thesis provides in chapter 2,

section 2.4, conjectures on the non-negative definiteness of the Circulant Embed-

ding Matrix for ARFIMA covariances. If proven, this result would ensure that a

method for producing fast and exact synthetic realisations of Gaussian processes
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can be extended to ARFIMA models. Furthermore, it would provide the user

with an indication of the applicability of the Circulant Embedding estimator for

ARFIMA processes with relatively small datasets.



Chapter 2

Long-Range Dependence

2.1 Introduction

Scientists in diverse fields have often observed that far apart correlations from a

set of observations decay to zero at a much slower rate than one would expect

from independent data or data that follows the traditional Markov-type or ARMA

models. This phenomenon is important as it appears in areas such as geophysics,

hydrology, turbulence, economics, electronics and communications among others.

The processes that exhibit this correlation behaviour are referred to as long-

range dependent (LRD) or long-memory processes. These processes manifest as

the presence of cycles of any order in the observations. This is widely known as

the Joseph effect, a term coined by Mandelbrot and Wallis [70] based on:

“Seven years are coming, during which there will be a great surplus

of food all over Egypt. These will be followed by seven years of famine,

when all the surplus in Egypt will be forgotten. The famine will ravage

the land.” Genesis 41, 29-30.

Such behaviour became apparent from Hurst’s studies in 1951 of the Nile river

discharge time-series, where he observed that there is a tendency of wet years to

cluster into wet periods and dry years to cluster into drought periods.

Processes with correlations that decay at such slow rates often exhibit a di-

vergence to infinity on their spectral density function [90]. This behaviour is akin

to what is often referred to as “inverse frequency” or flicker noise [57, 68, 96]:

terms used to describe a stochastic process whose sample spectral density or

periodogram is of the form f(ω) = |ω|−θ for some finite nonzero θ.

23



CHAPTER 2. LONG-RANGE DEPENDENCE 24

This chapter surveys the concept of long-range dependence. The contents are

as follows: section 2.2 provides a formal definition of long-range dependence; sec-

tion 2.3 surveys the most renowned models designed to specifically portray long-

range dependence properties; section 2.4 presents an exact and efficient method

to compute properly a synthetic realisation of a long-range dependent process.

Hereafter, Z = {. . . ,−1, 0, 1, . . .} denotes the set of all integers, Z+ denotes

the set of all non-negative integers, J = {0, 1, 2, . . . , N − 1} denotes a finite set of

non-negative integers and R denotes the set of all reals.

2.2 Definitions of Long Range Dependence

The work throughout this thesis is focused in the context of weakly stationary

processes. Formally, they are defined as follows:

Definition 2.2.1. Let X(t), t ∈ J (where J denotes an index set, i.e. J = R if

X(t) is continuous or J = Z if X(t) is discrete) be a stochastic process with finite

first and second moments

µ(t) = E [X(t)]

γ(t, s) = E [X(t)− EX(t)] [X(s)− EX(s)]∗

where E[·] denotes the expectation operator and [·]∗ is the conjugate transpose.

If the first and second moments of X(t) are invariant to time-shifts, that is,

µ(t) = µ(t+ τ)

γ(t, s) = γ(t+ τ, s+ τ)

for any τ such that t + τ, s + τ ∈ J, then X(t) is said to be a weakly stationary

process.

As mentioned in the previous chapter, there is empirical evidence in various

fields of study where a set of observations exhibits a slow decay on its correlations.

Hence, it seems natural to formally define long-range dependence in terms of

the behaviour of the covariance function of a stochastic process. However, it is

important to note that there are several, not always equivalent, definitions of

long-range dependence available in the literature. A comprehensive review of the

available definitions of LRD can be found in [9, 80, 90, 100]. For the remainder

of the thesis, definition 2.2.2 is sufficient.
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Definition 2.2.2. The weakly stationary process X = Xk, k ∈ Z, is said to be

long-range dependent if its covariance function,

γ(τ) = E [XkXk+τ ] , (2.1)

is such that

lim
τ→∞

γ(τ)

A τ−θLRD
= 1 (2.2)

for some finite, non-zero constant A and θLRD ∈ (0, 1).

Remark 2.2.3. It is important to note that definition 2.2.2 is more restrictive

than the available definitions in the literature. In general, the literature employs

slowly varying functions at infinity instead of the finite, non-zero constant A. In

such cases, the spectral density function of the process is not always guaranteed

to exist [46].

Of particular interest is to analyse the implications of definition 2.2.2. It

follows that under this definition, the covariances, and thus the correlations, of

X are not absolutely summable. Furthermore, the spectral density function of X

has a pole in the origin. This is formalised in theorem 2.2.4.

Theorem 2.2.4. Let X = Xk, k ∈ Z, be a weakly stationary process exhibiting

LRD with parameter θLRD ∈ (0, 1). Then:

(a) The covariance function of X is not absolutely summable, that is

∞∑

τ=−∞

|γ(τ)| = ∞ . (2.3)

(b) The spectral density function of X,

f(ω) =
1

2π

∞∑

τ=−∞

γ(τ) exp(−iτω) , (2.4)

is such that

lim
ω→0

f(ω)

B |ω|θLRD−1
= 1 (2.5)

for some finite, non-zero constant B.

Proof. The proofs are standard results, see [80, 90, 100] and the references within.
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Remark 2.2.5. Point (b) in theorem 2.2.4 states that at low frequencies the spec-

tral density function of a LRD process behaves as |ω|1−θLRD. This implies that

at the origin, the spectral density diverges as a power law, and thus a log-log

chart of the spectral density function will appear as a straight line with slope

θLRD − 1. A large part of the available literature defines LRD based on this prop-

erty, and commonly refers to them as “one over frequency” or “inverse frequency”

processes.

Example 2.2.6. One of the reasons to concentrate on the lack of summability

of correlations is the interest in understanding the order of magnitude of the

convergence of the strong law of large numbers for processes exhibiting long-

range dependence. To illustrate, let Xk, k ∈ J, be a set of observations of a

zero-mean process with finite variance, covariance function γ(τ) and partial sums

SX =
1

N

N∑

k=1

Xk .

Suppose Xk is such that

N−1∑

t=0

N−1∑

s=0

γ(|t− s|) ≤ CNΩ

for some C < 0 and Ω ∈ (0, 1). Then the result of Ninness [78] shows that for any

α > Ω/2

1

Nα

N−1∑

k=0

Xk
a.s.−→ 0 (2.6)

as N → 0, where a.s. means almost surely. To illustrate, we look at the following

two examples:

(a) Suppose

lim
τ→∞

γ (τ)

exp (−λτ) = 1 .



CHAPTER 2. LONG-RANGE DEPENDENCE 27

with λ > 0. Then we have

N−1∑

t=0

N−1∑

s=0

γ (|t− s|) ≤ CN
N−1∑

τ=0

γ(τ)

= CN
∫ N

0

exp(−λτ)dτ

≤ 1

λ
C̄N .

Thus, for the case of exponentially fast decaying covariance functions, equa-

tion (2.6) implies that the rate of convergence of SX is of at least
√
N .

(b) Suppose Xk is LRD such that γ (|t− s|) is as in equation (2.2). Then

N−1∑

t=0

N−1∑

s=0

γ (|t− s|) ≤ CN
N−1∑

τ=0

γ(τ)

≤ C̄N
∫ N

0

τ−θLRDdτ

=
1

1− θLRD

C̄N2−θLRD .

Thus, equation (2.6) implies that for LRD processes, the convergence of SX

is not longer guaranteed to be of
√
N .

2.3 Models with LRD

This section presents the most renowned finite variance models that exhibit long-

range dependence along with most of their properties. All of the weakly stationary

models presented in this section satisfy equation (2.2) and thus are compliant with

definition 2.2.2.

2.3.1 Fractional Brownian Motion

In the 1960’s, Mandelbrot suggested using models in order to represent processes

exhibiting a slowly decaying covariance function. In [69], he introduced the now

widely known fractional Brownian Motion (fBM) model. The discovery of fBM

was by Kolmogorov in his work on the spiral of Wiener and phenomenological

theory of turbulence for large Reynolds numbers [75]. However, it was Mandelbrot
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who pointed out its relevance to more general applications and who developed

many of its properties along with Van Ness in [69] and many other subsequent

publications.

Definition 2.3.1. A Gaussian process BH(t), with coefficient H ∈ (0, 1) and

t, τ ∈ R, is called a fractional Brownian Motion if

BH(Ωt)
D
= ΩHBH(t) (2.7)

for any Ω > 0 and

BH(t+ τ)−BH(τ)
D
= BH(t)−BH(0) (2.8)

where
D
= denotes equality of the finite-dimensional distributions [100].

Equation (2.7) and (2.8) denote that fBM is a self-similar (H-ss) process with

coefficient H that possesses stationary increments (si), that is fBM is H-sssi. Frac-

tional Brownian Motion is a process that has been widely studied in the literature.

Comprehensive reviews can be found in [9, 100]. Theorem 2.3.2 summarises most

of the properties of fBM.

Theorem 2.3.2. Let a process BH = BH(t), s, t ∈ R, be fBM as in definition

2.3.1, and let β = [H, ν2], then

(a) BH(0) = 0 almost surely.

(b) E [BH ] = 0 for all t ∈ R.

(c) BH(−t) = −BH(t).

(d) The variance of fBM is given by

E
[
B2

H

]
= |t|2Hν2 . (2.9)

(e) The covariance function of fBM, γH(s, t), is given by

γβ(s, t) = E [BH(t)BH(s)]

=
ν2

2

[
|t|2H + |s|2H − |t− s|2H

]
.

(2.10)

Proof. See appendix 2.A.



CHAPTER 2. LONG-RANGE DEPENDENCE 29

Remark 2.3.3. Given the properties of fBM in theorem 2.3.2 we have

(a) fBM is a zero mean non-stationary Gaussian process.

(b) When H = 1/2, fBM reduces to Brownian Motion.

(c) If the process is H-ss, then its finite dimensional distributions on the positive

real line are completely determined by those on any interval of finite length

[100].

2.3.2 Fractional Gaussian Noise

While fBM is a non-stationary process (see theorem 2.3.2), its increments are

stationary. This makes them very useful in terms of parameter estimation. We

refer to these stationary increments as fractional Gaussian Noise (fGN) and define

them as follows.

Definition 2.3.4. The process Xk, k ∈ Z, is said to be fGN if there exists BH(·)
such that

Xk , BH(k + 1)− BH(k) (2.11)

where BH(·) is given by definition 2.3.1.

Along with fBM, fractional Gaussian Noise has been widely studied in the

literature. Comprehensive reviews can be found in [9, 80, 100]. Theorem 2.3.5

summarises the properties of fGN.

Theorem 2.3.5. Let a process Xk, k, τ ∈ Z, be fGN as in definition 2.3.4 and

let β = [H, ν2], then

(a) E [Xk] = 0

(b) E [X2
k ] = E [B2

H(1)] = ν2

(c) The covariance function of Xk is given by

γβ(k) = E [XτXτ+k]

=
ν2

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

(2.12)

(d) Let k 6= 0. Then γβ(k) = 0 if H = 1/2, γβ(k) < 0 if H ∈ (0, 1/2), and

γβ > 0 if H ∈ (1/2, 1).
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(e) The spectral density function of fGN is given by

fβ(ω) =
2ν2(1− cosω)

π[HΓ(2H) sinHπ]−1

∞∑

k=−∞

|2πk + ω|−2H−1 . (2.13)

Proof. See appendix 2.A.

Remark 2.3.6. Given the properties of fGN in theorem 2.3.5 we have:

(a) If H 6= 1/2 then [see p. 11 in 100] the covariance function of fGN behaves

asymptotically as

lim
k→∞

γβ(k)

ν2H(2H − 1)|k|2H−2
= 1 . (2.14)

Note that this behaviour is as defined in 2.2.2.

(b) If ω → 0 the spectral density function is given by [See corollary 2.1, p. 53 in 9]

fβ(ω) = ν2UH |ω|1−2H +O(|ω|min(3−2H,2)) (2.15)

with

UH = (2π)−1 sin(Hπ)Γ(2H + 1) (2.16)

where Γ(·) denotes the gamma function. Note that the behaviour of the

spectral density function of fGN at small frequencies is as defined in equa-

tion (2.5).

(c) If H ∈ (0, 1), fGN is a weakly-stationary, invertible (i.e., the errors between

the outputs of the process and a set of forecasts tends to zero [43, 56])

Gaussian process [80, 100]. If H ∈ (1/2, 1) the process exhibits LRD. If

H ∈ (0, 1/2) the process is anti-persistent (i.e., all τ 6= 0 correlations are

negative).

(d) There is no known closed form solution for the spectral density of fGN. The

vexing infinite sum in (2.13) makes the spectral density function difficult to

compute. An approach is to directly truncate the terms in the sum, such

as in [9], where only 200 elements are added. A different approximation

is provided by Paxson [82]. This approximation consists in truncating the

midpoint infinite sum between the upper and lower bounds of the spectral
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density. The approximation will improve arbitrarily provided the amount

of terms included within the truncation is increased. In particular, [82] uses

a level of truncation such that the spectral density may be approximated

by

f̃β(ω) = U(ω,H)
[
|ω|−2H−1 + V(ω,H)

]

≈ fβ(ω)

with

U(ω,H) =2 sin(πH)Γ(2H + 1)(1− cosω)

V(ω,H) =g−2H−1
1 + p−2H−1

1 + g−2H−1
2 + p−2H−1

2 + g−2H−1
3 + p−2H−1

3

+
g−2H
3 + p−2H

3 + g−2H
4 + p−2H

4

8Hπ

and

gk = 2kπ + ω

pk = 2kπ − ω .

[82] reports a performance that diverges slightly to the method of [9], how-

ever there is an improved computational performance.

2.3.3 Fractionally Differenced Noise

Granger and Joyeux [44] and Hosking [50] developed the concept of Fractionally

Differenced Noise (FDN) independently in the 1980’s. The properties of this

model draw several parallels with those of fGN, particularly, the behaviour of

the covariance and spectral density functions at large lags and low frequencies

respectively. In terms of parameter estimation, the Fractionally Differenced (FD)

family of models is favoured over fGN due to its flexibility and by the simplicity

of the computation of the spectral density function [63].

Definition 2.3.7. The process Xk, k ∈ Z, is said to be FDN with fractional

dimension d if

ek , ∇dXk (2.17)

is a sequence of independent identically distributed (iid) random variables with
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variance ν2e <∞ and ∇d is a linear operator given by

∇d = (1− q−1)d

=

∞∑

j=0

(
d

j

)
(−q−1)j

= 1− dq−1 − 1

2
d(1− d)q−2 − 1

6
d(1− d)(2− d)q−3 − . . .

(2.18)

with q−1 being the standard backward shift operator such that

Xk−τ = q−τXk , (2.19)

and τ ∈ Z+.

Fractionally differenced noise has been widely studied in the literature. The-

orem 2.3.8 is due to [50] and summarises the properties of FDN.

Theorem 2.3.8. Let a process Xk, k, τ ∈ Z, be FDN with index d ∈ (−1/2, 1/2)

as in definition 2.3.7 and let β = [d, ν2e ] then

(a) The spectral density of Xk is given by

fβ(ω) =
ν2e

2π[2 sin(ω/2)]2d
. (2.20)

with ω ∈ [−π, π] frequencies.

(b) The covariance function of Xk is given by

γβ(k) = E [xτxτ+k]

=
ν2e√
π

[
Γ(1/2− d)Γ(k + d)

4dΓ(d)Γ(1 + k − d)

]
.

(2.21)

Here, Γ(·) denotes the gamma function.

Proof. See appendix 2.A.

Remark 2.3.9. Given the properties of FDN in theorem 2.3.8 we have

(a) If d 6= 0, we have by the limit of the ratio of gamma functions [see eq.

6.1.46, p. 257 in 1]

lim
k→∞

γβ(k)

ν2eUdk2d−1
= 1 (2.22)
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and

Ud =
1√
π

[
Γ(1/2− d)

4dΓ(d)

]
. (2.23)

The behaviour of the covariance function of FDN is as defined in 2.2.2.

(b) If d 6= 0, then we have [50]

lim
ω→0

fβ(ω)

|ω|−2d
= 1 . (2.24)

The behaviour of the spectral density function of FDN is as defined in

equation (2.5).

(c) From equations (2.14) and (2.22) we have that as the lags of the covariance

functions of fGN and FDN grow large, the LRD coefficients, d and H are

related by H = d+ 1/2.

(d) FDN is asymptotically self-similar [50].

(e) If d ∈ (−1/2, 1/2), FDN is a weakly-stationary, invertible, Gaussian process

[50]. Particularly, if d ∈ (0, 1/2) then FDN exhibits LRD since its covariance

is not absolutely summable. If d ∈ (−1/2, 0) the process is anti-persistent.

(f) It is not necessary that the innovations ek be Gaussian. The only require-

ment for FDN to be well defined is that the mean and variance are finite

[100].

2.3.4 ARFIMA Processes

The FDN and fGN processes excel at modelling long memory behaviour of a

process, i.e., the LRD coefficient θLRD can be represented by either d or H respec-

tively. Nevertheless, there is a disadvantage inherited from the rigidity of their

covariance, that is, the subtleties of the short-term correlations, or short-range

dependence (SRD), cannot be addressed by means of these models [73]. Hosk-

ing [50] addressed this issue by extending the framework of FDN and ARMA

processes into what is known as Autoregressive Fractionally Integrated Moving

Average (ARFIMA), or Fractional Autoregressive Integrated Moving Average

(FARIMA) processes. The ARFIMA model provides more flexibility as it retains

the eventual hyperbolic decay of the correlations while encompassing a wider
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range of short term behaviour. Figures 2.1 and 2.2 illustrate the differences be-

tween a pure LRD model and the ARFIMA model which incorporates both LRD

and SRD.

Definition 2.3.10. Let a process Xk, k ∈ Z, be FDN with parameter d as in

definition 2.3.7. Then the process Yk is said to be ARFIMA(na, d, nb) if

A(q)Yk , B(q)Xk , (2.25)

where

A = A(q) = 1 + a1q
−1 + a2q

−2 + . . .+ ana
q−na

B = B(q) = 1 + b1q
−1 + b2q

−2 + . . .+ bnb
q−nb

(2.26)

are finite dimensional polynomials with no common roots.

The ARFIMA process can be understood as an ARMA process with FDN

innovations, i.e., a sequence of FDN that has been filtered by a rational transfer

function B(q)/A(q). Thus, if A(q) = B(q) then we have an ARFIMA(0, d, 0)

process which is equal to FDN.

Remark 2.3.11. We have that

(a) if B(q)/A(q) is analytic outside the unit circle and d ∈ (−1/2, 1/2) then the

ARFIMA(na, d, nb) process is invertible, causal and stationary

[see Theorem 2, p. 170 in 50].

(b) An explicit expression for the covariance of an ARFIMA process is difficult

to find [9]. Nevertheless, it is possible to decompose its covariance function

into its ARMA and FDN contributions by means of a convolution, i.e.,

γβ(τ) = γARMA(τ) ∗ γFDN(τ)

=

∞∑

k=−∞

γARMA(k)γFDN(k − τ)
(2.27)

with β = [d, A,B, ν2e ], γARMA(·) the covariance function of an ARMA pro-

cess with unity innovations variance and polynomials A(q) and B(q). Fur-

thermore, γFDN(·) is the covariance function of FDN given by (2.21). The

covariance of the ARMA process can be found, for example, by solving the
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(a) Correlation Function of FDN

(b) Spectral Density Function of FDN

Figure 2.1: The figure illustrates the behaviour of FDN for d ∈ (−1/2, 1/2). In figure
2.1a the correlation function of FDN is shown. When d > 0, the long term correlations
are not negligible. Figure 2.1b shows the spectral density function of FDN. It can be
observed that at small frequencies, the spectral density function of FDN exhibits a
power law relationship of the form w−2d, which is referred to as one over frequency
behaviour.
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(a) Correlation Function of an ARFIMA process at small lags

(b) Correlation Function of an ARFIMA process at large lags

Figure 2.2: The figure illustrates the behaviour of the correlations of an ARFIMA
process. In figure 2.2a it is possible to observe that the short term behaviour is driven
by the ARMA process. Figure 2.2b portrays the behaviour of the same ARFIMA
process at large lags. The behaviour resembles that of FDN at large lags.
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(a) Spectral Density Function of an ARFIMA(1, d, 0) Process

(b) Spectral Density Function of an ARFIMA(2, d, 1) Process

Figure 2.3: The figure illustrates the shape of two different ARFIMA processes. It
is possible to observe the flexibility provided at higher frequencies due to the ARMA
contributions to the process. Note that in contrast with typical spectral density function
charts, the frequency decreases from left to right rather than right to left.
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Yule-Walker equations [see for example 94]. Algorithms to numerically eval-

uate the covariance function of an ARMA process are given by [14, 72, 95].

Once the covariances of the ARMA and FDN processes have been found

we can truncate the infinite sum in (2.27) to obtain an approximation. The

convolution can be implemented via the Fast Fourier Transform (FFT) al-

gorithm. Bertelli and Caporin [10] established truncation bounds such that

the errors in the approximation of the convolution are reduced. They sug-

gest employing a bound m such that γARMA(τ) < 1×10−j for all τ : |τ | > m,

with j ≥ 6. This rule leads to a computation of the covariance function of

an ARFIMA(na, d, nb) process with a precision up to 1× 10−j−1.

A different approach is given by Sowell [97] which involves the computation

of hypergeometric functions. This method is much more computationally

expensive.

Note that the efficient and accurate computation of the covariance function

of an ARFIMA process is of great importance when computing some of the

estimation methods in chapter 3 and 4.

(c) We have from [14, p. 525] that the covariance function of the ARFIMA

process behaves asymptotically as

lim
k→∞

γβ(k)

ζdk2d−1
= 1 (2.28)

with ζd 6= 0 a function independent of k.

(d) The spectral density function of an ARFIMA process is given by the spectral

factorisation theorem [see for example 3, 65], i.e.,

fβ(ω) = fARMA(ω)fFDN(ω) (2.29)

with fFDN(·) given by equation (2.20) and fARMA(·) the spectral density func-

tion of an ARMA process with unity innovations variance and polynomials

A(q) and B(q).



CHAPTER 2. LONG-RANGE DEPENDENCE 39

2.4 Synthesis of Gaussian LRD Processes

Being capable of efficiently and accurately producing artificial realisations of LRD

stochastic processes is of great interest. The synthetic data can be used to pro-

vide some insight on the small sample statistics of such processes, in Monte Carlo

studies for evaluating the performance of different parameter estimators [see for

example 27, 37, 40, 49, 86, 102] or for generating persistent excitation for exper-

iment design [89].

There exist several methods capable of generating a realisation of a Gaussian

LRD process. However, there is a trade-off between their accuracy and compu-

tational efficiency. The exact (up to the precision of the computations) methods

are, in general, computationally expensive and thus impractical from an imple-

mentation point of view. They are based on matrix factorisation algorithms such

as the Choleski decomposition and the Levinson-Durbin algorithm. The Choleski

decomposition method has a complexity of order O(M3) for a sequence of length

M . The Levinson-Durbin algorithm has a computational complexity of O(M2).

Approximate methods are computationally more efficient, e.g., the direct spec-

tral method has a computational complexity of O(M logM). However, it suffers

from periodicity, i.e., the end of the simulated sequence is highly correlated with

the beginning, and aliasing [6]. A comprehensive review of several methods for

synthesising LRD processes is given by Bardet et al. [6].

Davies and Harte [1987] introduced a fast and exact algorithm for produc-

ing simulated realisations of fGN. Dietrich and Newsam [1997] showed that this

method can be applied to synthesising sequences of stationary Gaussian pro-

cesses. Its computational complexity is of order O(N logN), with N ≥ 2(M−1).

This algorithm relies on embedding the M × M covariance matrix of the pro-

cess, Σ, into a larger N × N circulant matrix, C. If C is non-negative definite

(written C ≥ 0), then the method is guaranteed to properly generate a Gaussian

stationary sequence. If C ≥ 0, then the Circulant Embedding Method (CEM)

or Davies-Harte algorithm, is exact in the sense that the simulated path has the

correct covariances up to a multiplicative factor of N [30].

2.4.1 Circulant Embedding Method

It is known that the covariance matrix of a weakly stationary complex stochastic

process is positive definite [35] and hermitian [66]. If the weakly stationary process
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is real then its covariance matrix is positive definite and symmetric. Furthermore,

we have that the covariance matrix has a Toeplitz structure [94].

Definition 2.4.1. A square matrix T of dimension M is said to be Toeplitz if

Tj,k = tj−k (2.30)

and j, k = 0, 1, . . . ,M − 1.

Definition 2.4.1 implies that the matrix T is such that its elements are constant

along all diagonals, i.e.,

T =




t0 t−1 t−2 · · · t−(M−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tM−1 · · · t0



.

Circulant matrices are a common special case of Toeplitz matrices. These

occur when every row of the matrix is a right cyclic shift of the row above it.

Definition 2.4.2. A square matrix C of dimension N is said to be a circulant if

C =




c0 c−1 c−2 · · · c−(N−1)

c−(N−1) c0 c−1

c−(N−2) c−(N1) c0
...

...
. . .

c−1 c−2 · · · c0



. (2.31)

The eigenstructure of a circulant matrix is considered to be simple as it is

possible to explicitly find the eigenvectors and eigenvalues of such matrices [36].

We have that the eigenvectors of a circulant matrix are the columns of the Fourier

matrix [26]

F ∗ =
1√
N




1 1 1 · · · 1

1 u u2 · · · uN−1

1 u2 u4 · · · u2(N−1)

...
...

...
. . .

...

1 uN−1 u2(N−1) · · · u(N−1)(N−1)




(2.32)
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where

u = exp

(
i2π

N

)
(2.33)

is the root of unity. Thus, we have

C = F ∗ΛF (2.34)

with

Λ = diag{λk} , k ∈ J (2.35)

and

λk =

N−1∑

τ=0

cτu
−kτ . (2.36)

Equation (2.36) implies that the eigenvalues of a circulant matrix C can be ob-

tained by computing the Discrete Fourier Transform (DFT) of the sequence cτ .

Therefore, diagonalising a circulant matrix is computationally inexpensive due to

the FFT algorithm.

Another of their attractive properties is that any circulant of composite order

N = mn is automatically a block circulant matrix in which each block matrix

is Toeplitz. The blocks are of order n × n and the arrangement of the blocks is

m×m, e.g.,

C =




c0 c1 c2 c3 c4 c5

c5 c0 c1 c2 c3 c4

c4 c5 c0 c1 c2 c3

c3 c4 c5 c0 c1 c2

c2 c3 c4 c5 c0 c1

c1 c2 c3 c4 c5 c0




N×N

or

C =



C0 C1 C2

C2 C0 C1

C1 C2 C0




m×m

with

C0 =

[
c0 c1

c5 c0

]

n×n

, C1 =

[
c2 c3

c1 c2

]

n×n

, C2 =

[
c4 c5

c3 c4

]

n×n

,

m = 3 and n = 2.
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Using this property, we can embed a Toeplitz matrix into a larger circulant

matrix. This idea is not new as circulant embedding matrices have been used to

speed up algebraic computations of Toeplitz matrices [26], for covariance matrix

estimation [28], for synthesis of Gaussian sequences [23, 25, 30, 85], for providing

bounds of the eigenvalues of the Toeplitz matrix [36] and for estimating the

parameters of LRD processes (see chapter 3).

Let Σ = Σ(β) denote the M ×M covariance matrix of a weakly stationary

Gaussian process, Y , with parameters β. Its elements are given by

Σj,k = Σj,k(β) = γβ(|j − k|) (2.37)

with γβ(·) the covariance function of the process, j, k = 0, 1, . . . ,M−1. Equation

(2.37) implies that Σ = ΣT with [·]T the matrix transpose, that is, Σ is symmetric.

Davies and Harte [25] proposed a particular circulant embedding of Σ for

generating synthetic realisations of the Gaussian stationary process Y . Let cβ be

a vector of length N ≥ 2(M − 1) with elements

cβ(k) = γβ(k) , k = 0, 1, . . . ,M − 1

cβ(N − k) = γβ(k) , k = 1, 2, . . . ,M − 2 .
(2.38)

If N > 2(M − 1) then the entries c(M), . . . , c(N − M + 1) are arbitrary, or

conveniently chosen. The optimal case N = 2(M − 1) is said to be a minimal

embedding.

Let C be an N × N symmetric circulant matrix with first row or column

elements cβ. Then, provided that C is non-negative definite, the Davies-Harte

algorithm (see algorithm 1) will yield an exact artificial realisation of length M

of the Gaussian process with covariance function γβ(·).
Perrin et al. [85] and Craigmile [23] showed respectively that artificial se-

quences of fGN and FDN can be produced via the CEM. Nevertheless, there is

no general result that ensures the nonnegative definiteness of the embedding of

an ARFIMA process [6]. Dietrich and Newsam [30] showed that if the covariance

function of a process has finite support and is convex decreasing then the CEM is

guaranteed to be non-negative definite. The covariance function of an ARFIMA

process is not guaranteed to be convex decreasing. Furthermore, it does not have

finite support, thus the result of [30] is not applicable.

From experience, we have noted that the circulant embedding is non-negative



CHAPTER 2. LONG-RANGE DEPENDENCE 43

Algorithm 1 Davies-Harte Algorithm for generating synthetic realisations of a
stationary Gaussian Process

1: Generate an M−vector of covariances γβ.
2: Form the vector c of length N ≥ 2(M − 1) as in equation (2.38).
3: if N > 2(M − 1) then
4: Select appropriate entries for c(M), . . . , c(N −M + 1).
5: end if
6: Compute λ = Fs by using the Fast Fourier Transform (FFT) algorithm.
7: if λ ≥ 0 then
8: Generate the complex vector of size N , x = x1 + ix2 with x1 and x2

independent Gaussian simulations with zero mean and unit variance.
9: Form the vector λ1/2x.
10: Compute [y1, y2] = y = Fλ1/2x using the FFT algorithm. This step yields

two independent vectors with Gaussian distribution and covariance C.
11: else if N > 2(M − 1) and λ < 0 then
12: Choose different entries for c(M), . . . , c(N −M + 1).
13: Return to step 6.
14: end if
15: Select any consecutive values of yk, k = 1, 2. These vectors will be Gaussian

distributed with zero mean and covariance Σ.
16: To generate two additional vectors go to step 8.

definite provided its dimension is large such that most of the SRD contributions of

the ARMA covariance function are encapsulated in C. This hypothesis is written

formally in conjecture 2.4.3 and 2.4.4.

Conjecture 2.4.3. Let C be the N × N , N = 2(M − 1), circulant embedding

of the covariance matrix of an ARFIMA(0, d, nb) stationary Gaussian process. If

M > nb + 1, then the eigenvalues of C are such that condition 2.4.5 is satisfied.

Thus, by lemma 2.4.6 we have C ≥ 0.

Conjecture 2.4.4. Let C be the N ×N , N = 2(M − 1), circulant embedding of

the covariance matrix of an ARFIMA(na, d, nb) stationary Gaussian process. If

M is large such that γARMA(k)/γARMA(0) < 1 × 10−6 for all k : |k| > M , then the

eigenvalues of C satisfy condition 2.4.5. Thus, by lemma 2.4.6 we have C ≥ 0.

Condition 2.4.5. Let fβ(ωk) ≥ 0 be the spectral density function of the Gaussian

process evaluated at frequencies ωk = i2πk/N and k ∈ J. Then

max
k

[ |λk − 2πfβ(ωk)|
2πfβ(ωk)

]
≤ 1 . (2.39)
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Lemma 2.4.6. The circulant matrix with eigenvalues λk is non-negative definite

if condition 2.4.5 holds.

Proof. We have λk − 2πfβ(ωk) ≤ 2πfβ(ωk) and 2πfβ(ωk) − λk ≤ 2πfβ(ωk), that

is 0 ≤ λk ≤ 4πfβ(ωk).

2.A Proofs of Theorems 2.3.2, 2.3.5 and 2.3.8

Proof of Theorem 2.3.2. Most of these properties are a direct consequence of fBM

being an H-sssi process.

(a) The proof follows immediately from the self-similarity condition in (2.7).

(b) From the self-similarity property we have

E [BH(Ωt)] = ΩH
E [BH(t)] .

From stationary increments condition we have

E [BH(Ωt)] = E [BH(Ωt)− BH(t)] + E [BH(t)]

= E [BH(t)−BH(0)] + E [BH(t)]

= ΩE [BH(t)] .

Therefore, in order for ΩH
EBH = ΩEBH to hold for H ∈ (0, 1), EBH = 0.

(c) From the stationary increments condition we have

BH(−t)− BH(0)
D
= BH(−t+ h)−BH(h)

which holds only for h = t. Hence

BH(−t)− BH(0)
D
= BH(0)− BH(t) .

(d) From the self-similarity condition we have

E
[
B2

H(t)
]
= E[BH(|t|sign t)BH(|t|sign t)]
= |t|2H E[BH(sign t)BH(sign t)] .
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From property (c) we get

E
[
B2

H(t)
]
= |t|2H E

[
B2

H(1)
]
,

with E [B2
H(1)] = ν2.

(e) First, we have

E[BH(t)− BH(s)]
2 = E

[
B2

H(t)
]
+ E

[
B2

H(s)
]
− 2E[BH(t)BH(s)] .

Let τ = t− s, then we have

BH(s+ τ)−BH(s)
D
= BH(τ)−BH(0) ,

thus, by the property of self-similarity we get

2E[BH(t)BH(s)] =E
[
B2

H(t)
]
+ E

[
B2

H(s)
]
− E [BH(τ)− BH(0)]

2

=|t|2H E
[
B2

H(1)
]
+ |s|2H E

[
B2

H(1)
]

− |t− s|2H E
[
B2

H(1)
]

=
[
|t|2H + |s|2H − |t− s|2H

]
ν2

with E [B2
H(1)] = ν2.

Proof of Theorem 2.3.5. The proof from this properties follow from the properties

of fBM processes and the definition of fGN.

(a) From the stationary increments condition we have

E [Xk] = E[BH(k + 1)− BH(k)] .

From theorem 2.3.2 we know that EBH(t) = 0 for all t ∈ R and thus the

result.
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(b) From the stationary increments condition we have

E
[
X2

k

]
= E [BH(1)− BH(0)]

2

= E
[
B2

H(1)
]

= ν2 .

(c) We have

γβ(k) =E [XτXτ+k]

=E [{BH(τ + 1)− BH(τ)} {BH(τ + k + 1)−BH(τ + k)}]
=E [BH(τ + 1)BH(τ + k + 1)]− E [BH(τ + 1)BH(τ + k)]

− E [BH(τ)BH(τ + k + 1)] + E [BH(τ)BH(τ + k)] .

The result follows immediately from the covariance function of fBM in equa-

tion (2.10).

(d) Let g(k) = k2H and k ≥ 1. The function g(k) is strictly convex for H ∈
(1/2, 1), hence

g(k + 1)− 2g(k) + g(k − 1) > 0 .

This implies that γβ(k) > 0 when H ∈ (1/2, 1). If H ∈ (0, 1/2) then g(k)

is strictly concave, hence

g(k + 1)− 2g(k) + g(k − 1) < 0 .

which implies that γβ(k) < 0 when H ∈ (0, 1/2). For H = 1/2 the proof is

trivial.

(e) See [100].

Proof of Theorem 2.3.8. (a) Recall that the spectral density of a sequence of

iid random variables is given by

fe(ω) =
ν2e
2π
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Then from the spectral factorisation theorem [see for example 3, 65] we get

fβ(ω) = fe

[
1

1− e−iω

]d [
1

1− eiω

]d

=
fe

[2− 2 cos(ω)]d

=
ν2e

2π[2 sin(ω/2)]2d
.

(b) From [44, 50] we get that for d < 1/2

γβ(k) =

∫ π

−π

e−iωkφx(ω, d)dω

=
(−1)k(−2d)!

(k − d)!(−k − d)!
.

We have from [eq 6.1.5, p. 255, in 1]

Γ(z + 1) = zΓ(z) = z! .

Then we may write

(−1)k(−2d)!

(k − d)!(−k − d)!
=

cos(πk)Γ(1− 2d)

Γ(k + 1− d)Γ(1− k − d)

The result follows from the reflection and duplication properties of the

gamma function [eq. 6.1.17 and 6.1.18, p. 256, in 1], i.e.,

Γ(z)Γ(1− z) = π csc(πz)

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z + 0.5) .



Chapter 3

Estimation of Long-range

Dependent Models

3.1 Introduction

The goal of estimation is to find the parameter values that will enable a math-

ematical model to explain, in some sense, the behaviour of a set of observations

along with the underlying process producing them. Much of the traditional pa-

rameter estimation has been developed around a flexible set of discrete-time mod-

els which arise from the foundations of Linear Time-Invariant (LTI) system theory

[see for example 3, 12, 65]. There are several parameter estimation methods for

such family of models, e.g., Box-Jenkins “back-forecasting” algorithm, Prediction

Error Methods (PEM) or Kalman filtering implementations.

For the case of the LRD family of models, the implementation of such meth-

ods is no longer straight forward. However, there exist several alternatives for

performing parameter estimation for such models. Their frames of analysis range

from the parametric to the semi-parametric. Some of them are based in the time

domain, while others work in the frequency domain. The finite dimensional prop-

erties of most of these estimators have been evaluated in Monte-Carlo studies [see

for example 27, 37, 40, 49, 86, 102].

The chapter is organised as follows: section 3.2 of this chapter surveys some of

the semi-parametric estimation methods available; section 3.3 discusses in detail

likelihood based estimation methods under a parametric frame of analysis; here,

we present the maximum likelihood estimate, the Whittle estimate and a novel

Circulant Embedding estimate, and show their asymptotic properties; section 3.4

48
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presents the concluding remarks of the chapter.

3.2 Semi-parametric Methods

The semi-parametric approach may seem an advantageous strategy for estimating

the LRD coefficient of a stochastic process provided that its SRD behaviour is

not of central interest. The asymptotic behaviour of the covariance and spectral

density functions of the LRD processes presented in chapter 2 indicate that the

short term behaviour of the model is almost irrelevant at very low frequencies

and very long lags. Thus, estimates of the LRD coefficient may be obtained

by taking advantage of the aforementioned properties. If the SRD behaviour is

not of central interest, the semi-parametric estimates become fairly attractive as

they avoid model order selection and other global assumptions of the spectral

density and covariance function of the process. However, this comes at the price

of a slower rate of convergence of such methods in comparison to parametric

estimates based on models with a correctly specified structure [88]. Nevertheless,

for a sufficiently large set of observations the precision of the semi-parametric

estimates can be expected to be adequate. This, along with their computational

simplicity makes them attractive as simple diagnostic tools under a wide range

of scenarios.

Among these methods we have: Higuchi’s method (see [102] and the references

within), Geweke and Porter-Hudak method (see [102] and the references within),

the rescaled adjusted range [71], the de-trended fluctuation analysis [84] and a

log-periodogram regression [9]. In this section we review the rescaled adjusted

range, the de-trended fluctuation analysis and the log-periodogram regression.

All three of these methods perform an Ordinary Least Squares (OLS) regression

at some point in their computation, hence, we briefly describe this procedure.
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Ordinary Least Squares Regression

The method of ordinary least squares (OLS) can be traced back to Carl Friedrich

Gauss in 1794 [4]. Let (xk,m, yk), k,m ∈ J with m ≤ k be a finite set of observa-

tions given by a linear combination, i.e.




y0

y1
...

yN−1



=




xT0,m
xT1,m
...

xTN−1,m



Θ+




η0

η1
...

ηN−1




or in vector form

Y = XΘ+ η (3.1)

where Θ is a matrix containing N vectors of unknown parameters θm and η is a

vector of deviations or noise. The residual sum of squares in vector form is given

by

VOLS = [Y −XΘ]T [Y −XΘ] . (3.2)

Given V , we have the standard result

Θ̂OLS = argmin
Θ
VOLS

=
(
XTX

)−1
XTY .

(3.3)

We refer to Θ̂OLS as the ordinary least squares solution to the linear regression

problem in equation (3.1). Under certain conditions, the OLS solution can be

shown to have optimality properties for various statistical models [see 4, 18, 93].

3.2.1 Rescaled Adjusted Range

First introduced by Hurst in the 1950’s, the Rescaled Adjusted Range (R/S)

method is one of the most well known semi-parametric estimators for the LRD

coefficient. It is discussed in detail in [71] and it has been subject to Monte-Carlo

studies in [49, 102] and more recently for small sample lengths in [27].

Let Xk, k ∈ J, be a series of sequential observations of a weakly stationary
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LRD process with partial sums

Yk =
k∑

τ=0

Xτ (3.4)

and sample variance

S2
k =

1

k

k∑

τ=0

X2
τ −

1

k2
Y 2
k . (3.5)

The R/S statistic is given by [71]

Rk

Sk

=
1

Sk

[
max
0≤t≤k

(
Yt −

t

k
Yk

)
− min

0≤t≤k

(
Yt −

t

k
Yk

)]
. (3.6)

Asymptotically, we have [102]

lim
k→∞

E [Rk/Sk]

Ωθkθ
= 1 (3.7)

where Ωθ <∞ is a positive function independent of k and θ is the LRD coefficient

of Xk. Equation (3.7) implies that for large values of k, logRk/Sk should be

randomly scattered around a straight line with slope θ = d− 1/2 for FD models

and θ = H for fGN [9].

Algorithm 2 briefly describes the procedure for estimating the LRD coeffi-

cient via the R/S statistic. Figure 3.1 depicts an estimate from a fGN sequence

obtained by employing the R/S statistic.

Algorithm 2 R/S Estimation Method for LRD observations

1: Subdivide the observations Xk into M segments of length m = N/M .
2: Compute the Rk/Sk statistic for all possible lags, k, per segment such that
k +m ≤ N .

3: The estimate of the LRD coefficient is given by finding the solution

Θ̂ =
[
θ̂R/S θ̂0

]

to the OLS regression for the ordered pair (k, Rk/Sk).
4: Compute the LRD coefficient given by θ̂R/S = d̂R/S − 1/2 for the FD family of

models and θ̂R/S = ĤR/S for fGN.

There exist several modified versions of the R/S statistic. They are based on

replacements to the sample variance and some perform better than others. A
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Figure 3.1: The figure depicts the R/S statistic of a sequence of fGN observations Xk with
nominal LRD coefficient H = 0.8, and the estimate of the LRD coefficient obtained by fitting
an ordinary least squares regression line to the R/S ordinates. The estimate obtained via this
method was of Ĥ = 0.7959.

comprehensive review of the R/S method and its modified versions is given by

[9, 49] and the references within.

3.2.2 De-trended Fluctuation Analysis

De-trended Fluctuation Analysis (DFA) is a method based on classical random

walk studies for estimating the LRD coefficient of a process in a semi-parametric

frame of analysis. First introduced by Peng et al. [84], DFA is frequently used

in the area of physiological data processing, particularly for estimating the LRD

coefficient in heartbeat signals of healthy and sick individuals [see references 41,

52, 53, 83, 87, 92] and more recently for modelling bimanual coordination [103].

This method has been consistently reported as one of the most accurate estimators

for the LRD coefficient in various Monte-Carlo studies [27, 40, 86, 102].

Bardet and Kammoun [5] showed that DFA possesses a reasonable (but not

optimal) convergence rate when the sequence of observations are not subject to

a trend. Chen et al. [22], Hu et al. [51] and Kantelhardt et al. [55], performed
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heuristic studies of the DFA method under the presence of non-linearities associ-

ated with examples of trends (linear, sinusoidal and power-law). They deduced

that the estimate obtained through DFA is affected by a trade-off between the

effects of such non-linearities and the LRD coefficient of a process. The effects

of non-stationarities over the estimates produced by DFA was studied in Chen

et al. [21].

Let Xk, k ∈ J, be a sequence of observations from a weakly stationary LRD

process. The kth sequence of partial sums of Xk is given by Yk as in equation

(3.4). Let

Y m
τ =

[
Ymτ Ymτ+1 · · · Ymτ+m−1

]T
(3.8)

denote the τ ∈ {0, 1, . . . ,M} segment of length m = N/M of the partial sum

sequence Yk and let

Zm
τ =




Zmτ

Zmτ+1

...

Zmτ+m−1



= Y m

τ −




mτ 1

mτ + 1 1
...

...

mτ +m− 1 1



Θ̄ (3.9)

denote the τ th de-trended segment of the partial sum sequence, where

Θ̄ =
[
θ̄1 θ̄0

]

is the solution to the OLS regression for the ordered pair (K, Y m
τ ) with

K =
{
mτ mτ + 1 · · · mτ +m− 1

}
. (3.10)

The standard deviation of the de-trended segment Zm
τ is given by the de-trended

fluctuation function

F2
τ (m) =

1

m

m−1∑

k=0

[Zmτ+k]
2 (3.11)

The de-trended fluctuation function of the entire set of segments is given by

F2(m) =
1

M

M∑

τ=0

F2
τ (m) . (3.12)

Taqqu et al. [102] showed that the de-trended fluctuation function behaves
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asymptotically as

lim
m→∞

EF(m)

Ωθmθ
= 1 (3.13)

where Ωθ is a positive function independent of m. Equation (3.13) suggests that

for large values of m, logF (m) should be randomly scattered around a straight

line with slope θ = d− 1/2 for FD models and θ = H for fGN.

Algorithm 3 outlines the DFA procedure for obtaining an estimate of the

LRD coefficient from a sequence of observations Xk. Algorithm 4 outlines the

procedure for computing the de-trended fluctuation function for a segment of

length m.

Figure 3.2 depicts a series of estimates obtained by employing the DFAmethod

on a set of sequences of fGN with different LRD coefficient H . Figure 3.3 depicts

the de-trending procedure given by Zm
τ in equation (3.9) for a particular segment

length m.

Algorithm 3 DFA Estimation Method for LRD observations

1: Select a set of segment lengths M.
2: Compute the de-trended fluctuation function in equation (3.12) for each seg-

ment length m ∈ M (see algorithm 4).
3: The estimate of the LRD coefficient is given by finding the solution

Θ̂ =
[
θ̂DFA θ̂0

]

to the OLS regression for the ordered pair (m,F(m)).
4: Compute the LRD coefficient by θ̂DFA = d̂DFA − 1/2 for the FD family of

models and θ̂DFA = ĤDFA for fGN.

Algorithm 4 De-trended Fluctuation Function for a Segment of Length m

1: Compute the N partial sums Yk in equation (3.4) of the sample Xk, k ∈ J.
2: Subdivide the sequence Yk into M segments, Y m

τ , of length m = N/M as in
equation (3.8).

3: Find the solution
Θ̄ =

[
θ̄1 θ̄0

]

to the OLS regression for the ordered pair (T, Y m
τ ) with T given by equation

(3.10).
4: De-trend each partial sum segment Y m

τ as in equation (3.9)
5: Compute the de-trended fluctuation function F(m) from equation (3.12).
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Figure 3.2: Estimates obtained by the DFA method. The DFA was applied to sequences of
FDN with coefficient d = {0, 0.11, 0.22, 0.34, 0.5} and of length N = 4096.

Figure 3.3: The figure depicts a sequence of observations Xk, its partial sums Yk and the
least squares linear interpolation Ŷk for segments of length m = 47 (see steps 1 through 3 in
algorithm 4).
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3.2.3 Log-Periodogram Regression

We have from point (b) in theorem 2.2.4, that the spectral density function of a

weakly stationary LRD process takes the form

lim
ω→0

f(ω)

Ω |ω|−θ
= 1

for some finite, non-zero constant, Ω. Here f(ω) denotes the spectral density

function of the process and the LRD coefficient is given by θ = 2d for the FD

family of models and θ = 2H − 1 for fGN.

Given the behaviour of f as ω → 0 and the fact that the periodogram of

a sequence of observations is an estimate of f , then a natural estimator for the

LRD coefficient is given by fitting a line to the log-periodogram ordinates at small

frequencies.

Let Xk, k ∈ J, be a series of sequential observations of a weakly stationary

LRD process. The periodogram of Xk is given by

I(ω) =
1

2πN

∣∣∣∣∣
N−1∑

k=0

Xk exp(ikω)

∣∣∣∣∣

2

(3.14)

with frequencies ω ∈ [−π, π]. Let

Θ̂ =
[
θ̂PSD θ̂0

]
(3.15)

denote the solution to the OLS regression for the ordered pair (ω, I(ω)) then

θ̂PSD = 2d̂PSD for the FD family of models and θ̂PSD = 2ĤPSD − 1 for fGN. Fig-

ure 3.4 depicts an estimate from a fGN sequence obtained by employing the

log-periodogram regression method.

As noted by [86, 102], the range of frequencies included into the OLS regression

must be carefully selected as the asymptotic behaviour of the spectral density

function of the LRD process only holds at small frequencies. This means that the

occurrences at larger frequencies can significantly bias the estimate of the LRD

coefficient. Taqqu et al. [102] suggest a heuristic range of small frequencies to be

included in the OLS regression that only accounts for 10% of the total frequencies

in the range ω ∈ (0, π].

There are as many modifications to this method as there are ways to com-

pute a periodogram. These alternatives are justified as the periodogram is not



CHAPTER 3. ESTIMATION OF LRD MODELS 57

Figure 3.4: The periodogram of a sequence of fGN observations Xk with nominal LRD coeffi-
cient H = 0.8, and the estimate of the LRD coefficient obtained by fitting a least squares line
to the periodogram ordinates are illustrated. The estimate obtained via this method was of
Ĥ = 0.827

a minimum variance estimate of the spectral density function [13]. For example,

computing a smoothed periodogram, i.e., subdividing the record into segments,

computing the periodogram ordinates per segment and averaging the results will

yield variance reduction properties. A related approach is given by Welch [106]

which consists on subdividing the record into segments, using a function to win-

dow the data segments, computing the periodogram of each windowed segment

and averaging. For the case of unevenly spaced data records Scargle [91] provides

a modification to the periodogram. The Lomb-Scargle periodogram was recently

used by [61] to report LRD behaviour in records of ocular accommodation in

which there are large segments of missing data.

3.3 Likelihood Based Methods

In the previous section we discussed heuristic methods for estimating the LRD

coefficient. They are useful as a first informal diagnostic tool for assessing if a set

of observations exhibits LRD. These methods only provide a useful approximation
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of the asymptotic behaviour of the process under study. However, they do not

provide information of the short-term properties of the process. For such cases,

more refined methods which model the entire correlation (or spectral density)

structure are available. One possible approach is to use parametric models and

estimate their parameters by likelihood based methods. These methods allow the

characterisation of both SRD and LRD characteristics of a set of observations

and are more efficient [9]. However, they inherit a set of difficulties such as:

(a) Model structure selection: this is a problem that arises in parametric meth-

ods and it is beyond the scope of this thesis. However, as noted by [9] model

older selection can be assessed via the Bayesian Information Criterion (BIC)

or the Akaike Information Criterion (AIC).

(b) Computational implementation.

In this section we will present the likelihood based methods along with their

properties and assess their computational implementation.

3.3.1 Maximum Likelihood Estimate

R.A. Fisher introduced the method of maximum likelihood in the early 1900’s

[2]. This method has become standard in several applications, mainly due to its

desirable statistical properties under reasonable conditions, e.g., consistency and

efficiency. In Fisher’s words

“The likelihood that any parameter (or set of parameters) should

have any assigned value (or set of values) is proportional to the prob-

ability that if this were so, the totality of observations should be that

observed.”

Problem Statement. Maximum likelihood aims to find the set of parameter

values that makes the observation occurrences more likely. That is, given a set

of parameters β, it attempts to find for a set of observations X

β̂MLE = argmax
β

L(β|X) (3.16)

where L(β|X) is the likelihood function.
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Let X = Xk, k ∈ J, denote a series of equidistant observations. Suppose that

these observations constitute a realisation of a real, discrete, weakly stationary,

invertible Gaussian process. Let β = [θ, σ2] be a vector containing the model

parameters θ and the innovations variance σ2. The probability density function

(PDF) of such process is given by

p(X|β) =
[

1

(2π)N det Σ

]1/2
exp

[
−1

2
XTΣ−1X

]
(3.17)

where Σ = Σ(β) > 0 is an N × N symmetric Toeplitz matrix with elements

γβ(τ) generated by the covariance function of the process [34]. Note that for the

long-range dependent processes presented in the previous chapter, the covariance

function of the process is given by equation (2.12) for the case of fGN and equation

(2.21) for the case of FDN.

The Maximum Likelihood Estimate (MLE), β̂MLE =
[
θ̂MLE, σ̂

2
MLE

]
, is given by

equation (3.16) with

L(β|x) = p(X|β) . (3.18)

Since the logarithm is a monotonic function, we can obtain the MLE, β̂MLE, from

β̂MLE = argmin
β
Q(β|X) (3.19)

where

Q(β|X) = − logL(β|X)

=
1

2

[
XTΣ−1X +N log(2π) + log det Σ

] (3.20)

is the negative Gaussian log-likelihood function of the set of observations. It is

standard to perform the optimisation in equation (3.19) only through the param-

eters θ rather than β = [θ, σ2]. To do this we have the following lemma.

Lemma 3.3.1. Let a factorisation of the covariance matrix, Σ, be given by

σ2R = κΣ (3.21)

where R = R(θ) > 0 is a symmetric Toeplitz matrix with first row elements

σ2rθ(τ) = κγβ(τ) (3.22)
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with τ ∈ J and κ > 0 a scaling constant. Then the value that minimises the cost

function Q(β|X) in terms of the innovations variance, σ2, is given by

σ̂2
MLE

=
κ

N
XTR−1X . (3.23)

Proof. The proof is a standard result, see for example [67, 105].

From lemma 3.3.1 we have that the MLE, θ̂MLE, is given by

θ̂MLE = argmin
θ
V (θ|X) (3.24)

where

2V (θ|X) =N [log(2π) + 1− log(N)]

+ log(detR) +N log
[
XTR−1X

]
.

(3.25)

Note that for the case of LRD models we have

θ =





H if the model is fGN

d if the models is FDN

[d, a1, · · · , ana
, b1, · · · , bnb

] if the model is ARFIMA(na, d, nb)

, (3.26)

σ2 =




ν2 if the model is fGN

ν2e if the models is FDN or ARFIMA(na, d, nb)
, (3.27)

and

κ =




1 if the model is fGN
√
π if the models is FDN or ARFIMA(na, d, nb)

. (3.28)

Furthermore, the MLE estimate σ2
MLE

can be computed after obtaining θMLE.

Dahlhaus [24] and Yajima [110] have shown that the MLE, θ̂MLE, given by

equation (3.24) is consistent, asymptotically normal and efficient for fGN, Gaus-

sian FDN and Gaussian ARFIMA. This means that asymptotically the MLE,

θ̂MLE becomes unbiased and that its asymptotic variance achieves the Cramér-

Rao Lower Bound. These are desirable statistical properties in an estimator.

Remark 3.3.2. The minimum of V (θ|X) in equation (3.25) is difficult to find

analytically. As an alternative, optimisation algorithms such as line search type

methods can be employed for finding the MLE, θ̂MLE. Nevertheless, such methods
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require multiple evaluations of V (θ|X), which implies the calculation of several

matrix inverses and determinants. This renders the implementation of the MLE

as impractical [32, 37, 40, 79, 86, 104].

The direct inversion of R has a computational complexity of order O(N3);

hence, several algorithms have been developed in order to reduce the computa-

tional burden of the aforementioned operations. The Cholesky decomposition

algorithm used in [73] for estimation fGN has a computational complexity of or-

der O(N3/6). The Levinson-Durbin algorithm used in [67] for the estimation of

fGN has an algorithmic complexity of O(2N2). The expectation maximisation

algorithm presented in [29] for estimating FDN has a computational complex-

ity of order O(N2/2). The recursive Kalman filter of [19] has a computational

complexity of O(N ×m2) for obtaining an estimate from an m− truncated state

space representation of a LRD process.

Figure 3.5: The figure depicts the cost function V (θ|X) for a sequence of observations Xk with

nominal LRD coefficient d = 0.3 and the MLE estimate d̂MLE = 0.3038.
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3.3.2 Whittle’s Approximation to the MLE

As mentioned in the previous section, the MLE has very attractive statistical

properties. However, its implementation is difficult due to the high computa-

tional complexity involved. This has been a recurring problem even for short

range dependent processes. Whittle [108] proposed to approximate the quadratic

form in Q(β|X) such that the explicit computations of the inverse and the deter-

minant of the covariance matrix are avoided. In general terms, this approximation

is given by the ratio of the periodogram of the time-series and the spectral density

function of the process. The order of operations required to compute Whittle’s

approximation is of O(N logN) due to the fast Fourier Transform (FFT) algo-

rithm.

Whittle’s approach yields a computationally efficient approximation to the

Gaussian likelihood function, Q(β|X). Nevertheless, it does not appear to have

been used much for SRD observations, arguably, due to the introduction of the

Box-Jenkins “back-forcasting” algorithm and Kalman filtering methods [17, 48].

For the case of LRD, the implementation of the Box-Jenkins and Kalman filtering

approaches is no-longer straight forward (see remark 3.3.2). Thus, Whittle’s ap-

proximation has gathered importance as the estimation of the model parameters

can be performed without the computational burden of the MLE [17].

Let X = Xk, k ∈ J, be a set of equidistant observations. Suppose that

these observations constitute a realisation of a real, discrete, weakly stationary

Gaussian process whose spectral density function, fβ(ω), is integrable everywhere

in ω ∈ [−π, π]. Then Whittle’s approximation to the Gaussian likelihood function

is given (up to an additive constant) by [see for example 48, 101, 108]

Q̃(β|X)WE =

∫ π

−π

log fβ(ω)dω +

∫ π

−π

I(ω)

fβ(ω)
dω (3.29)

where I(·) denotes the periodogram of the set of observations given by equation

(3.14).

These approximations follow from the limiting behaviour of the Toeplitz de-

terminant described by Szegö [see equation 1.11 in 45], i.e.,

lim
N→∞

log det Σ =

∫ π

−π

log fβ(ω)dω



CHAPTER 3. ESTIMATION OF LRD MODELS 63

and that discrete Fourier Transform (DFT) approximately diagonalises the co-

variance matrix, Σ, the diagonal elements being 2πfβ(ωk) [see p. 224 in 48,

and the references within]. Then, by approximating the integrals in (3.29) with

Riemann sums over the set of frequencies ωk = 2πk/N we have

Q(β|X)WE =
N−1∑

k=0

I(ωk)

fβ(ωk)
+

N−1∑

k=0

log fβ(ωk) .

It is important to note that Whittle’s assumption on the spectral density function

is no longer valid for the LRD case since fβ(ω) possesses a singularity at ω = 0.

However, Fox and Taqqu [39] showed that the ratio I(ω)/fβ(ω) has a limiting

distributional behaviour at the singularity, i.e., there is mutual compensation

as both I(ω) and fβ(ω) “blow up” at ω = 0. This fact justifies using Whittle’s

approximation of the Gaussian Likelihood function for estimating the parameters

of a LRD process.

In this section we present a development of the Whittle Estimate with a matrix

analysis focus as in [17]. Let G = G(β) ≥ 0 be a circulant matrix

G = F ∗ΦF , (3.30)

where F is the Fourier matrix given by equation (2.32) and

Φ = Φ(β) = diag{fβ(ωk)} (3.31)

with fβ(ωk) the spectral density function of the process evaluated at frequencies

ωk = i2πk/N . Suppose that G is asymptotically equivalent to the covariance

matrix Σ, i.e., their difference tends to zero as N tends to infinity (see defini-

tion 3.3.5), then we may write

2QWE(β|X) =N log(2π) +XTG−1X + log(detG)

=N log(2π) + (FX)∗Φ−1(FX) +

N−1∑

k=0

log fβ(ωk)

=N log(2π) +
N−1∑

k=0

I(ωk)

fβ(ωk)
+

N−1∑

k=0

log fβ(ωk)

≈2Q(β|X)

(3.32)
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where I(ωk) is the periodogram of the time-series evaluated at frequencies ωk.

Thus, Whittle’s Estimate (WE) is given by

β̂WE = argmin
β
QWE(β|X) . (3.33)

Since fβ(ω) is an even function with period of 2π [see pp. 116 in 13] then

we may perform the sums in (3.32) up to (N − 1)/2. Furthermore, we may omit

frequency ω = 0 to obtain a mean-correction ofXk [88] and so that I(ω) is asymp-

totically unbiased [see corollary 5.2.1 in 13, pp. 123]. Then, from lemma 3.3.1

we have

θ̂WE = argmin
θ
VWE(θ|X) (3.34)

with

2VWE(θ|X) =N [log(2π) + 1− log(N)]

+N log

(N−1)/2∑

k=1

I(ωk)

fθ(ωk)
+

(N−1)/2∑

k=1

log fθ(ωk)
(3.35)

and fθ(·) = (κ/σ2)fβ(·). For the case of SRD processes, Hannan [47] showed that

Whittle’s estimate is asymptotically consistent, efficient and normal. For the

LRD case, Fox and Taqqu [39] showed that the WE is asymptotically consistent

and normal, while Dahlhaus [24] established its asymptotic efficiency.

Algorithm 5 presents the pseudocode for computing the cost function VWE(θ|X).

Algorithm 5 Computing the Cost Function of the CE Estimate

1: Compute the spectral density function of the chosen model for the frequencies
ωk = i2πk/N , k = 1, 2, . . . , N − 1. See chapter 2 for details on the individual
models.

2: Compute the periodogram of the time series as per equation (3.14).
3: Truncate the vectors containing the spectral density function and peri-

odogram values up to N − 1/2.
4: Compute VWE(θ|X) as per equation (3.35).
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3.3.3 Circulant Embedding Estimator

In order to cope with the computational burden of the MLE, this section proposes

a method which consists in embedding the covariance matrix of the process into

an asymptotically equivalent circulant matrix. The embedding provides an algo-

rithm with a computational complexity of order O(N logN) given the simplicity

of the eigenstructure of the circulant matrix. This method is referred to as the

Circulant Embedding (CE) estimator.

The development of the CE estimator will be presented and its asymptotic

properties will be shown in this section. The properties of the circulant embedding

matrix are used to show the relationship between the MLE, the WE and the CE

Estimator.

Let C = C(θ) be an N×N symmetric Toeplitz matrix with first row elements

cθ(k) = rθ(k) + sθ(k) (3.36)

with k ∈ J. Here, rθ(·) is given by equation (3.22) and denotes the first row

elements of the symmetric Toeplitz matrix R defined in (3.21). The term sθ(·) is
given by

sTθ =




0
...

0

rθ(m1)− rθ(m1 + 1)

rθ(m1 − 1)− rθ(m1 + 2)

rθ(m1 − 2)− rθ(m1 + 3)
...

rθ(2)− rθ(N − 2)

rθ(1)− rθ(N − 1)




(3.37)
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with m1 = (N − 1)/2 and N odd, or

sTθ =




0
...

0

rθ(m2 − 1)− rθ(m2 + 1)

rθ(m2 − 2)− rθ(m2 + 2)

rθ(m2 − 3)− rθ(m2 + 3)
...

rθ(2)− rθ(N − 2)

rθ(1)− rθ(N − 1)




(3.38)

with m2 = N/2 and N even. Note that sθ is the first row of a symmetric Toeplitz

such that

C = R + S . (3.39)

First, we will show that the symmetric Toeplitz matrix C with first row elements

given by the perturbed vector cθ is a circulant matrix.

Lemma 3.3.3. The symmetric Toeplitz matrix C with first row elements cθ given

by equation (3.36) is a circulant matrix.

Proof. Suppose N is even. Let R and S be symmetric Toeplitz matrices with

first row elements rθ and sθ respectively. Let rθ be given by equation (3.22) and

sθ be given by equation (3.38), such that

C = R + S .

Let the forward-shift permutation matrix be given by

Π =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0



.

Then, it suffices to show that

ΠR−RΠ + ΠS − SΠ = 0 (3.40)
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holds [see theorem 3.1.1 in 26, pp. 67]. By performing the algebra on the left

hand side of equation (3.40) we have

ΠR− RΠ+ ΠS − SΠ =




ϕ(1) 0 0 · · · 0

ϕ(2) 0 0 · · · 0
...

...
...

...

ϕ(N − 1) 0 0 · · · 0

0 ϕ(1) ϕ(2) · · · ϕ(N − 1)




where

ϕ(τ) = r(τ)− r(N − τ) + s(τ)− s(N − τ)

for τ = {1, 2, . . . , N − 1}. By substituting equation (3.38) we have that ϕ(τ) = 0

for all τ and hence the result. The proof is similar for N odd.

Corollary 3.3.4. Let C = R + S be a matrix with first row elements, cθ, given

by equation (3.36). If

rθ(k) = Aδk

with δk the Kroenecker delta given by

δk =




1 if k = 0

0 otherwise
. (3.41)

and some finite constant A then C = R.

Proof. The result follows immediately from the residual elements sθ in equations

(3.38) for N even and (3.37) for N odd.

The N ×N matrix C may be seen as an embedding of a symmetric Toeplitz

matrix R̄ of dimension mj , j = 1, 2 and m1 = (N −1)/2 if N is odd or m2 = N/2

if N is even. That is, the matrix R̄ is encapsulated within the larger matrix

C. Note that C is the optimal case of the embedding proposed by Davies and

Harte [25] for generating artificial realisations of length mj for fGN (see chapter

2, section 2.4.1).

The simplicity of the eigenstructure of the circulant matrix C allows for effi-

cient computational manipulations. Thus, provided that C behaves similarly to

the covariance matrix R, we can develop an estimator based on the circulant em-

bedding. That is, if we can establish the asymptotic equivalency between C and
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R, then we can justify an estimator based on C as an asymptotically equivalent

approximation to the MLE.

Definition 3.3.5. We say that a pair of N ×N non-random matrices P and Q

are asymptotically equivalent, written P ∼ Q, if

lim
N→∞

‖P −Q‖HS = 0 (3.42)

where ‖·‖HS is the Hilbert-Schmidt (HS) norm of a matrix and it is given by

‖P −Q‖2
HS

,
1

N
trace

[
(P −Q)T (P −Q)

]
. (3.43)

In theorem 3.3.6 we show that C is an approximation to the MLE in the sense

that the HS-norm of the matrix of residuals S, ‖S‖HS, decays to zero as N grows

large.

Theorem 3.3.6. Let C be a symmetric circulant matrix with first row elements,

cθ, given by equation (3.36). Then, C ∼ R for all d ∈ (−1/2, 1/4) for the case of

the FD family of models or H ∈ (0, 3/4) for the case of fGN.

Proof. See appendix 3.A.

Theorem 3.3.6 shows that the circulant matrix C is asymptotically equivalent

to the matrix R. This implies that asymptotically, the eigenstructure of both

matrices is equivalent. Therefore, an estimator based on the CE is justified at

least for the validity regions d ∈ (−1/2, 1/4) and H ∈ (0, 3/4) for the models of

chapter 2.

θ̂CE = argmin
θ
VCE(θ|X) (3.44)

where

2VCE(θ|X) =N [log(2π) + 1− log(N)]

+

N−1∑

k=0

log λk +N log
(
XTC−1X

) (3.45)

is the CE approximation to the Gaussian likelihood and λk, is the k
th eigenvalue

of C. The pseudocode for computing VCE(θ|X) is presented in algorithm 6.
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Algorithm 6 Computing the Cost Function of the CE Estimate

1: Generate the sequence of covariance values rθ of length N as per equation
(3.22).

2: Generate the sequence of residuals sθ as per equation (3.38) or (3.37).
3: Obtain the sequence cθ as per equation (3.36).
4: Compute the eigenvalues λk by computing the FFT of cθ.
5: Compute the inverse of the matrix by use of the FFT. In MatLab code

this would be ic = real(fft(1./eC/N)) where eC is a row vector

containing the set of eigenvalues computed in the previous

step.

6: Use the eigenvalues to compute equation (3.45). Note that the

term XTC−1X can be computed by repeated use of the FFT. In

MatLab code this would be x’*ifft(fft(ic’).*fft(x)) were x is

a column vector containing the set of observations and ic is a

row vector containing the inverse of the matrix C.

We now proceed to justify the CE estimator for the entire intervals d ∈
(−1/2, 1/2) and H ∈ (0, 1) for the models of chapter 2. Furthermore, we show

that the CE estimator is asymptotically normal, consistent and efficient.

Theorem 3.3.7. For all d ∈ (−1/2, 1/2) and H ∈ (0, 1), the CE Estimate, θ̂CE,

in equation (3.44) is asymptotically equivalent to the WE, θ̂WE, in equation (3.34).

Proof. We have that the matrices C and G, given by equations (3.39) and (3.30)

respectively, are circulant matrices. Then it suffices to show that their eigenvalues

are asymptotically equivalent.

In the limit, the kth eigenvalue of C is given by [26]

lim
N→∞

λk = lim
N→∞

N−1∑

τ=0

cθ(τ)u
−kτ

with u the root of unity given by equation (2.33). Since rθ(·) is an even function,

then by equation (3.36) we can write

lim
N→∞

λk = rθ(0) + 2 lim
N→∞

N−1∑

τ=1

rθ(τ)u
−kτ

=
∞∑

τ=−∞

rθ(τ)u
−kτ .
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By the definition of spectral density function [see for example 3, 74] we have

lim
N→∞

λk = 2πfθ(ωk) (3.46)

with ωk = i2πk/N . Since fθ(ωk) are the eigenvalues of G then the result follows.

Corollary 3.3.8. The CE estimator, θ̂CE is asymptotically normal, consistent

and efficient.

Proof. The result follows immediately from theorem 3.3.7.

Theorem 3.3.7 establishes that the CE estimator is asymptotically equivalent

to the WE. Hence, by theorem 3.3.6, we have addressed for the intervals d ∈
(−1/2, 1/4) and H ∈ (0, 3/4) the subtle yet important point on the quality of

the approximation of the WE to the MLE, a point left unaddressed by Whittle

as pointed out in [17]. Corollary 3.3.8 justifies the CE estimator along the entire

ranges d ∈ (−1/2, 1/2) and H ∈ (0, 1).

Further analysis into equation 3.46 shows that the matrices C, R and G are

ill-conditioned.

Theorem 3.3.9. The circulant matrix C with first row elements cθ given by

equation (3.36) is ill-conditioned, that is,

lim
N→∞

cond(C) = lim
N→∞

maxλk
minλk

= ∞
(3.47)

for all d ∈ (−1/2, 1/2) and d 6= 0 for the case of the FD family of models and

H ∈ (0, 1) and H 6= (1/2) for the case of fGN.

Proof. We have from equation (3.46)

lim
N→∞

max
k
λk =

2πκ

σ2
max fβ(ω)

lim
N→∞

min
k
λk =

2πκ

σ2
min fβ(ω) .

Let d < 0 for the FD family of models or H < 1/2 for fGN, then

min fβ(ω) = lim
ω→0

fβ(ω)

= 0
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and 0 < max fβ(ω) < ∞. If d > 0 for the FD family of models or H > 1/2 for

fGN, then

max fβ(ω) = lim
ω→0

fβ(ω)

= ∞

and 0 < min fβ(ω) <∞. Thus the result.

Theorem 3.3.10. The circulant matrix G, given by equation (3.30), is asymp-

totically ill-conditioned for all d ∈ (−1/2, 1/2) and d 6= 0 for the case of the FD

family of models and H ∈ (0, 1) and H 6= (1/2) for the case of fGN.

Proof. The result follows immediately from theorems 3.3.7 and 3.3.9.

Theorem 3.3.11. The symmetric Toeplitz matrix R, given by equation (3.21),

is asymptotically ill-conditioned for all d ∈ (−1/2, 1/4) and d 6= 0 for the case of

the FD family of models and H ∈ (0, 3/4) and H 6= (1/2) for the case of fGN.

Proof. The result follows immediately from theorems 3.3.6 and 3.3.9.

Theorem 3.3.11 only guarantees the ill-conditioning of the matrix R for the

intervals d ∈ (−1/2, 1/4), d 6= 0 and H ∈ (0, 3/4), H 6= 1/2 for the models of

chapter 2. Nevertheless, numerical evidence suggests that this behaviour is still

present for d > 1/4 and H > 3/4. This is illustrated in figure 4.2.

Under the ill-conditioning circumstances, we have that in the presence of

measurement errors, the computation of C−1X , G−1X and R−1X in VCE(θ|X),

VWE(θ|X) and V (θ|X) respectively may be poor [42] and thus the estimators may

present a significant bias.

The ill-conditioning issue was mentioned hinted at in [37, 67]. The simulation

studies in [67] showed that the MLE has a degraded performance when the set

of observations has been contaminated with errors that account to a signal-to-

noise-ratio (SNR) of 30 decibels (dB). Chen et al. [20] mentions, without a formal

proof, that the MLE is ill-conditioned and provides a solution by means of a pre-

conditioned conjugate gradient (PCG) algorithm. The PCG has a computational

complexity of order O(N [logN ]5/2) to invert the matrix R. Nevertheless, the de-

terminant of the preconditioned covariance matrix must be approximated (which

can be computationally expensive). In the simulation studies presented in [20], it

is shown that the WE slightly outperforms the PCG when the observations are

not corrupted with noise.
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3.4 Chapter Conclusions

Parameter estimation of LRD processes is important as they appear to be ubiq-

uitous in several scientific areas. There exists several semi-parametric estimation

methods available in the literature. These can be used as a starting point for

the analysis of the time-series at hand. However, as noted by [9, 88] and the

Monte Carlo studies of [102], parametric estimation methods based on a par-

simonious model will be a preferred approach given their statistical properties.

Among these, the likelihood based methods excel in accuracy; however, their

computational implementation is not straightforward.

In order to simplify the implementation of the maximum likelihood estimate,

one might use an approximate approach provided by either the Whittle Esti-

mate or the Circulant Embedding Estimate. The CE estimate may be seen as

a time-domain approach for performing the Whittle approximation. This is in

the vein of Blackman-Tukey’s approach to construct a power spectrum versus

Welch’s method. There are clear advantages to using the CE estimate and the

WE depending on the model selection. For example, if the model selected is fGN

then we have from point (d) in remark 2.3.6 that the spectral density function

must be approximated and thus it makes sense to compute the covariances and

perform the embedding. The converse is also true, that is, when the covariance

function is difficult to evaluate, one might prefer to use the WE over the CE

estimate. Furthermore, from the Monte Carlo studies presented in chapter 5 we

can observe that the CE estimate is more accurate than the WE when the length

of the observations is small, a reason why the WE is criticised [48].

Furthermore, we have shown that all three likelihood based methods presented

in the chapter are sensitive to error corruptions due to the ill-conditioning of the

covariance matrices involved in computing the estimates.

3.A Proof of Theorem 3.3.6

The proof for this theorem will be divided into three sections: 1) For the case

d = 0 and H = 1/2, 2) for antipersistent processes, that is, d < 0 and H < 1/2

and 3) for LRD processes in the ranges d ∈ (0, 1/4) and H ∈ (1/2, 3/4).

(a) Let d = 0 for the FD family of models or H = 1/2 for the case of fGN.

From point (a) in lemma 3.B.1 and corollary 3.3.4 we have S = 0 and thus
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the result.

(b) Suppose N is even and let d < 0 for the FD family of models and H < 1/2.

Then from the definition of the Hilbert-Schmidt norm and the construction

of the matrix S we can write

‖S‖2
HS

=
2

N

m2−1∑

k=1

(m2 − k) |sθ(m2 + k)|2 (3.48)

with m2 = N/2 and sθ given by equation (3.38).

(i) Let rθ(·) denote the scaled covariance matrix of a fGN process or FDN

process. From point (d) in lemma 3.B.1 we have

‖S‖2HS <
2

N

m2−1∑

k=1

(m2 − k) |rθ(m2 − k)|2

=
2

N

m2−1∑

k=1

k |rθ(k)|2

= Υ
z1
N

with

z1 =





m2−1∑

k=1

k
[
|k + 1|2H − 2|k|2H + |k − 1|2H

]2
for fGN

m2−1∑

k=1

k

[
Γ(k + d)

Γ(k + 1− d)

]2
for FDN

(3.49)

and

Υ =





1

2
for fGN

2

∣∣∣∣
Γ(1/2− d)

4dΓ(d)

∣∣∣∣
2

for FDN

. (3.50)

Thus we have that

lim
N→∞

‖S‖2HS < Υ lim
N→∞

z1
N

.
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From lemmas 3.B.2 and 3.B.3 we have that

lim
N→∞

z1 <∞ .

Therefore

lim
N→∞

‖S‖2
HS

= 0

holds for all H ∈ (0, 1/2) and d ∈ (−1/2, 0). The proof is similar for

N odd.

(ii) Let rθ(·) denote the scaled covariance matrix of an ARFIMA process.

By the triangle inequality [see for example equation 3.2.5, p. 11 in 1]

we have

‖S‖2
HS
<

2

N
z3

with

z3 =

m2−1∑

k=1

(m2−k) |rθ(m2 − k)|2+
m2−1∑

k=1

(m2−k) |rθ(m2 + k)|2 . (3.51)

Thus

lim
N→∞

‖S‖2
HS
< 2 lim

N→∞

z3
N

.

From lemma 3.B.4 we have that

lim
N→∞

z3 <∞ .

Therefore

lim
N→∞

‖S‖2HS = 0

holds for all d ∈ (−1/2, 0). The proof is similar for N odd.

(c) Suppose N be even and let m2 = N/2. Furthermore, let d ∈ (0, 1/4) for

the FD family of models and let H ∈ (1/2, 3/4) for fGN.

(i) Let rθ denote the covariance function of either FDN or fGN. Since rθ

is non-negative for all d > 0 and H > 1/2 for these two models we can

write

‖S‖2HS <
2

N

m2−1∑

k=1

k [rθ(k)]
2 .

It follows from equations (2.14) and (2.22) that for a sufficiently large
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M <∞
rθ ≤ MkθLRD

holds for all k ∈ Z+, Z+{1, 2, . . .}, where

θLRD =




2d− 1 for FDN

2H − 2 for fGN
.

Thus, it follows that

N

2
‖S‖2HS <M

m2−1∑

k=1

k [g(k)]2 .

Approximating the sum on the right hand side with the Euler-Maclaurin

formula yields

N

2
‖S‖2

HS
<M

∫ m2−1

1

t [g(t)]2 dt+K

for some finite constant K. Hence, for the case of FDN we have

m2‖S‖2HS
<

M
4d

[
(m2 − 1)4d

m2

− 1

m2

]
+

K
m2

and for the case of fGN we have

m2‖S‖2HS
<

M
4H − 2

[
(m2 − 1)4H−2

m2
− 1

m2

]
+

K
m2

Therefore

lim
m2→∞

‖S‖2
HS

= 0

holds for all d ∈ (0, 1/4) and H ∈ (1/2, 3/4). The proof is similar for

N odd.

(ii) Let rθ be the covariance function of and ARFIMA process. The re-

sult follows from equation (3.64), (2.28) and the development of the

previous point.
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3.B Useful lemmas

Lemma 3.B.1. Suppose X = Xk, k ∈ J is a stationary sequence of either fGN

or FDN with covariance function γβ(k). Let rθ(k) be given by equation (3.22).

Then

(a) If H = 1/2 for fGN or d = 0 for FDN we have

rθ(k) =
σ2

κ
δk (3.52)

with δk the Kroenecker delta in equation (3.41).

(b) If H 6= 1/2 for fGN, d 6= 0 for FDN then

∣∣∣∣
rθ(k + 1)

rθ(k)

∣∣∣∣ < 1 . (3.53)

(c) Let N be even and τ = 0, 1, . . . , m2 − 1 with m2 = N/2. If H 6= 1/2 for

fGN and d 6= 0 for FDN then

|rθ(m2 − τ)− rθ(m2 + τ)| ≤ |rθ(m2 − τ)| (3.54)

with equality if and only if τ = 0.

(d) Let N be odd and τ = 0, 1, . . . , m1 − 1, m1 = (N − 1)/2. If H 6= 1/2 for

fGN and d 6= 0 for FDN then

|rθ(m1 − τ)− rθ(m1 + τ)| ≤ |rθ(m1 − τ)| (3.55)

with equality if and only if τ = 0.

Proof. The proof is as follows.

(a) Follows immediately from the definitions of each process, that is, for such

conditions, X is i.i.d.

(b) The proof for fGN is given in [100]. Let X be FDN. We have that [see

equation 6.1.15 in 1]

Γ(z + 1) = zΓ(z) . (3.56)
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Then, we have ∣∣∣∣
rθ(k + 1)

rθ(k)

∣∣∣∣ =
∣∣∣∣

k + d

k + 1− d

∣∣∣∣ .

Thus, it suffices to show that

|k + d| < |k + 1− d| (3.57)

holds for all k ∈ J. Let k = 0, then we have

|d| < |1− d|

which holds for d < 1/2. Let k ≥ 1, then we can write equation (3.57) as

k + d < 1 + k − d

which also holds for all d < 1/2. Since X is stationary, then the result

follows.

(c) Let N be even. if d > 0 for FDN or H > 1/2 for fGN we have from equation

(3.53)

rθ(m2 − τ) ≥ rθ(m2 + τ) ≥ 0

with equality if and only if τ = 0. If d < 0 for FDN or H < 1/2 for fGN,

then we have

rθ(m2 − τ) ≤ rθ(m2 + τ) ≤ 0

with equality if and only if τ = 0.

(d) The proof is similar to point (c), except t = 0, 1, . . . , m1 − 1.

Lemma 3.B.2. Let z1 be given by

z1 =
N∑

k=1

gd(k) (3.58)

with

gd(k) = k

[
Γ(k + d)

Γ(k + 1− d)

]2
. (3.59)
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If d ∈ (−1/2, 0), then

lim
N→∞

z1 <∞

Proof. From [eq. 6.1.46, p. 257 in 1] we have that

lim
n→∞

ns−zΓ(n + z)

Γ(n+ s)
= 1 . (3.60)

Let z = d, s = 1 − d, n = k and square both sides of equation (3.60) then we

have

lim
k→∞

k2−4d

[
Γ(k + d)

Γ(k + 1− d)

]2
= lim

k→∞
k1−4dgd(k)

= 1 .

Since
∞∑

k=1

1

k1−4d
<∞

for d ∈ (−1/2, 0), then the results follows by the limit comparison test, [see for

example theorem 2, p. 468 in 99].

Lemma 3.B.3. Let z1 be given by

z1 =

N∑

k=1

gH(k) (3.61)

with

gH(k) = k
[
|k + 1|2H − 2|k|2H + |k − 1|2H

]2
. (3.62)

If H ∈ (0, 1/2), then

lim
N→∞

z1 <∞

Proof. From [100] we have for k → ∞

k2
[
(1 + 1/k)2H − 2 + (1− 1/k)2H

]
→ 2H(2H − 1) .

Hence
gH(k)

k3−4H
→ 4H2(2H − 1)2 (3.63)

as k → ∞. Since
∞∑

k=1

1

k3−4H
<∞
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for H ∈ (0, 1/2) then the result follows by the limit comparison test [see for

example theorem 2, p. 468 in 99].

Lemma 3.B.4. Let z3 be given by equation (3.51), i.e.,

z3 =

m2−1∑

k=1

k |rθ(k)|2 +
m2−1∑

k=1

(m2 − k) |rθ(m2 + k)|2

with rθ(·) given by (3.22) and m2 = N/2. If d ∈ (−1/2, 0) then

lim
N→∞

z3 <∞ .

Proof. For m2 sufficiently large

|rθ(m2 + τ)| < |rθ(m2 − τ)|

for τ = 1, 2, . . . , m2. Hence

m2−1∑

τ=1

(m2 − k) |rθ(m2 + τ)|2 <
m2−1∑

τ=1

(m2 − k) |rθ(m2 − τ)|2 . (3.64)

Thus, it suffices to show that first sum in z3 is finite. From [14, p. 525] we have

for k → ∞
rθ(k)

2

k2−4d
→ (ςd)

2

with ςd 6= 0 and independent of k. Since

∞∑

k=1

1

k1−4d
<∞

for d ∈ (−1/2, 0) then the result follows by the limit comparison test [see for

example theorem 2, p. 468 in 99].



Chapter 4

Regularised Estimators

4.1 Introduction

Chapter 3 surveyed three likelihood based estimators for long-range dependent

processes. Under the LRD context, the statistical properties of the likelihood

based methods are desirable. However, theorems 3.3.9, 3.3.10 and 3.3.11 imply

that these likelihood based methods are highly sensitive to errors in the observa-

tions.

The sensitivity of the likelihood based methods stems from the matrix inver-

sion required to compute their respective cost functions. The sensitivity of the

likelihood based methods to the presence of measurement errors is manifested by

a relevant amount of bias in the parameter estimates.

This chapter provides a solution that reduces the bias produced by the pres-

ence of errors in the measurements. Furthermore, the solution corrects the ill-

conditioning of the likelihood methods of chapter 3. Section 4.2 formalises the

problem statement. Section 4.3 surveys a regularisation method that alleviates

the ill-conditioning of a matrix. Section 4.4 proposes a solution that reduced

the bias produced by the presence of errors in the measurements. The chapter

conclusions are presented in section 4.5.

80



CHAPTER 4. REGULARISED ESTIMATORS 81

4.2 Problem Statement

Let Y = Yk, k ∈ J, be a series of equidistant observations. These observations

consist of a realisation of a LRD process subject to additive errors. That is,

Yk = Xk + ǫk (4.1)

with ǫ = ǫk a white noise sequence with variance ν2ǫ <∞ and X = Xk one of the

weakly stationary, invertible LRD processes presented in chapter 2. Suppose X

and ǫ are independent.

If the observations, Y , are such that ν2ǫ = 0 and if the computer precision is

good enough, i.e., the machine epsilon is sufficiently small, the round-off errors

will not affect the performance of the likelihood based estimators [42]. This is

clear from the simulation results of chapter 5.

However, if ν2ǫ 6= 0, the likelihood based methods will be sensitive to the

effects of ǫ. This sensitivity will be apparent in a relevant bias of the estimates

θ̂. To illustrate, both the Whittle and CE estimation methods of chapter 3 may

be interpreted as finding the best fit to the periodogram ordinates computed

from the data from a family of spectral density functions. When ν2ǫ 6= 0, the

underlying LRD process will be dominant at lower frequencies. Nevertheless,

there is a cross-over frequency at which the ǫ will be dominant. This change in

the periodogram ordinates is what biases the spectral density fit as the estimators

try to accommodate the occurrences at higher frequencies. This is illustrated in

figure 4.1.

Figure 4.1: The figure portrays the periodogram ordinates computed from a set of corrupted
observations y. The dashed line shows the theoretical spectral density of the process y. The
continuous line shows the spectral density function of fGN with fractional index, θ̂WE, obtained
through the WE.
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Lundahl et al. [67] noted this behaviour. He generated fGN sequences and cor-

rupted them with additive Gaussian errors with 30db to 10 db SNR. He observed

that under error corruption, the MLE performance was biased. Furthermore, he

noted that the bias on the estimates was not uniform.

The bias on the parameter estimates stems from the matrix inversion required

to compute their respective cost functions. Chapter 3 shows that the condition

number of these matrices grows along with their dimension, that is, the larger

the matrix the more ill-conditioned it becomes. Thus, under the effect of ǫ, the

likelihood based estimates are difficult to compute. Furthermore, the bias of the

estimates will not be reduced by collecting larger amounts of observations.

The lack of uniformity on the bias of the parameter estimates is not surprising

in the light of the ill-conditioning of the covariance matrix of a LRD process.

From the behaviour of the eigenvalue distribution given the LRD coefficient of

the process, e.g., as H ∈ (0, 1) or d ∈ (−1/2, 1/2) approaches the extrema of their

respective validity intervals, the condition number of the covariance matrix of the

process deteriorates regardless of its dimension. Such behaviour is illustrated in

figure 4.2.
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(a) Condition number of Σ with H < 1/2

(b) Condition number of Σ with H > 1/2

Figure 4.2: The figure illustrates the behaviour of the conditional number of the covari-
ance matrix of fGN. As N becomes large, the matrix condition number deteriorates,
i.e., it grows large. The same phenomenon occurs as H → 1 and H → 0 regardless of
the size of N .
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4.3 Regularisation

Fitting the parameters of the underlying LRD process in Y by means of a likeli-

hood based estimation method, such as the ones presented in chapter 3, requires

the computation of

z = P−1Y

= P−1(X + ǫ) .
(4.2)

Chapter 3 shows that in the case of LRD, the matrix P is ill-conditioned. This

implies that a small ǫ will introduce a large variance in the solution z. In other

words, the solution z has little relationship between the cases ν2ǫ = 0 and ν2ǫ 6= 0.

An alternative is provided by solving a well-conditioned approximation of the

ill-conditioned linear system, that is, to solve

ẑR = (P + αI)−1Y . (4.3)

This is referred to as regularisation with α > 0 as a regularisation parameter [77].

If P has been properly scaled, then the minimum eigenvalue of the matrix

P + αI will be bounded below by α as P is positive definite and symmetric. It

follows that α will represent a trade-off between the variance of the solution ẑR

and its bias, |ẑR − z|.
The choice of the regularisation method, αI, guarantees that the matrix struc-

ture of P is preserved. Therefore, the computational complexity of the regularised

likelihood methods is left unaffected, that is, the regularised WE and CE esti-

mators remain with a computational complexity of order O(N logN) while the

regularised MLE can be solved in O(N2) operations via the Levinson-Durbin

algorithm. While the regularisation method choice might not be the optimal

one [77], the ill-conditioning of the problem is mitigated while the WE and CE

estimators remain computationally efficient.

Selection of the Regularisation Parameter

The performance of a regularisation method depends directly on the suitable

choice of α. If α is selected to be small, the ill-conditioning of the matrix might

not be addressed properly. However, if α is chosen to be large enough, the bias

introduced by the approximation ẑR will be large.
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There exist several strategies for choosing the regularisation parameter in the

context of least squares and ridge regression. These strategies depend on addi-

tional information inferred from the analysed problem and its solution. Among

others, the discrepancy principle [33] and the L-curve [58, 60] criterion are some

of the most well known strategies for choosing the regularisation parameter [58].

However they have not been used to estimate the parameters of a LRD process.

Both the discrepancy principle and the L-curve criterion are iterative strategies

that require several computations of the solution ẑR. This kind of procedure

would turn the parameter estimation for LRD processes into a tedious and com-

putationally expensive task.

A different approach can be obtained through a Bayesian interpretation. As-

suming z and Y are jointly distributed continuous random variables we have by

Bayes rule [18]

p(z|Y ) =
p(Y |z)p(z)
p(Y )

where p(z) is a prior density function. Suppose that z = Sη where S is a

smoothing matrix that yields the regularisation method. If η and ǫ are uncorre-

lated random variables with zero mean and variances ν2η and ν2ǫ respectively, then

[77]

η̂R =
(
S∗P ∗PS + α2I

)−1
S∗P ∗Y

with α = ν2ǫ /ν
2
η . If S = I, then a particular regularisation method known as

Tikhonov regularisation is recovered. To illustrate, let us look at the following

example.

Example 4.3.1. Suppose η and ǫ are iid Gaussian distributed random variables

with zero mean and variances ν2η and ν2ǫ respectively. Let S = I, then

p(z) =
1

[
2πν2η

]N/2
exp

(
−||z||2

2ν2η

)

and

p(Y |z) = 1

[2πν2ǫ ]
N/2

exp

(
−||Pz − Y ||2

2ν2ǫ

)

with || · || the L2 norm. Hence the cost function

− log p(z|Y ) = − log p(Y |z)− log p(z)

= ||Pz − Y ||2 + α||z||2
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with α = ν2ǫ /ν
2
η has its minimum at

η̂R = ẑR =
(
P ∗P + α2I

)−1
P ∗Y .

For the particular case of LRD models the smoothness of S is questionable

and the difficulties involved in computing the regularisation method through this

approach are not investigated here. Nevertheless, in the sequel we propose a set

of estimators that are related to the regularisation method ẑR = (P + αI)−1Y .

The estimation of the regularisation parameter is performed simultaneously with

the parameters of the LRD models.

4.4 Maximum Likelihood for Error Corrupted

Observations

In the chapter introduction, we have noted that the presence of measurement

errors, ǫ, will introduce a bias in the likelihood based estimates. This behaviour is

accentuated by the ill-conditioning of the covariance matrix of the LRD processes.

Nevertheless, this bias can be corrected by imposing statistical properties on the

noise model and by taking advantage of its structure. Propositions 4.4.3 and 4.4.2

provide such solution.

The regularised estimators of propositions can also be equivalently justified

from a Bayesian perspective. This follows from Bayes rule and its equivalency to

maximum likelihood when a Gaussian prior is assumed. We do not pursue this

approach here, however [65], points out the relationship between the Bayesian

approach of Maximum A Posteriori and MLE. A much more in-depth treatment

is provided in [18, 76].

Lemma 4.4.1. Let ǫ be a realisation of an iid Gaussian process with zero mean

and variance ν2ǫ and let Y be given by equation (4.1). Then Y is a Gaussian

process with covariance matrix

Ψ = Σ+ ν2ǫ (4.4)

where Σ is the covariance matrix of the LRD process X.

Proof. The proof is a standard result based on the characteristic function of a

Gaussian process, see for example [74].
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Under lemma 4.4.1, we have from the development of the MLE in chapter 3,

that the MLEs, β̂ and ν̂2ǫ are given by

{
β̂, ν̂2ǫ

}
= argmin

β,ν2ǫ

Q
(
β, ν2ǫ |Y

)
(4.5)

where

2Q
(
β, ν2ǫ |Y

)
= N log(2π) + log (detΨ) + Y TΨ−1Y (4.6)

is the log-likelihood and β = [θ, σ2] is given by equations (3.26) and (3.27).

The optimisation in equation (4.5) is performed simultaneously over the pa-

rameter space {θ, σ2, ν2ǫ }. By introducing the hyper-parameters

α = α
(
σ2, ν2ǫ

)
=
κν2ǫ
σ2

ψ = ψ
(
σ2, ν2ǫ

)
=
σ2

κ

(4.7)

with κ given by equation (3.28), such that

Ψ = ψ (R + αI) , (4.8)

and by lemma 3.3.1, then the optimisation in equation (4.5) can be reduced to

the parameter space {θ, α}, that is,

{θ̂, α̂} = argmin
θ,α

V (θ, α|Y ) (4.9)

where

2VRWE(θ, α|Y ) =N [log(2π) + 1− log(N)]

+ log(det[R + αI])

+N log
(
Y T ẑRWE

)
(4.10)

and

ẑRWE = (G+ αI)−1 Y . (4.11)

In the same sense as in the previous chapter, the MLEs, β̂ and ν̂2ǫ are expensive

to compute. Hence, we introduce two computationally efficient approximations

to these MLEs.

Proposition 4.4.2. Given a series of equidistant observations Y as in equation
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(4.1) then the Regularised Whittle Estimate (RWE) is given by

{θ̂RWE, α̂RWE} = argmin
θ,α

VRWE(θ, α|Y ) (4.12)

with

2VRWE(θ, α|Y ) =N [log(2π) + 1− log(N)]

+ log(det[G+ αI])

+N log
(
Y T ẑRWE

)
(4.13)

and

ẑRWE = (G+ αI)−1 Y .

Proposition 4.4.3. Given a series of equidistant observations Y as in equation

(4.1) then the Regularised Circulant Embedding (RCE) Estimate is given by

{θ̂RCE, α̂RCE} = argmin
θ,α

VRCE(θ, α|Y ) (4.14)

with

2VRCE(θ, α|Y ) =N [log(2π) + 1− log(N)]

+ log(det[C + αI])

+N log
(
Y T ẑRCE

)
(4.15)

and

ẑRCE = (C + αI)−1 Y .

By propositions 4.4.2 and 4.4.3 we try to find the best fit to the periodogram

ordinates produced by the combination of the parameters θ and α. For the case

of FDN and fGN propositions 4.4.2 and 4.4.3 extend the estimation framework

from a line search to a surface search. This is illustrated in figure 4.3.

By theorem 4.4.4 shows the relationship between propositions 4.4.2 and 4.4.3

with the MLEs in equation (4.5).

Theorem 4.4.4. The RWE and RCE estimators are asymptotically equivalent

to the MLEs in equation (4.5) for d ∈ (−1/2, 1/4) for the FD family of models

and H ∈ (0, 3/4) for fGN.

Proof. The result follows immediately from theorems 3.3.6 and 3.3.7.
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Figure 4.3: The figure illustrates the optimisation surface QRCE(θ, α|Y ) for a sequence of FDN.
When α = 0 the cost function QCE(θ|Y ) is recovered and an estimate ĤCE can be found. The

bold line shows the minima across the surface for each α. The estimate ĤRCE is the global
minimum of the surface.

Finally, an estimate of the signal-to-noise ratio (SNR) can be obtained as

follows.

Definition 4.4.5. Let Y be the process given by equation (4.1). Then we define

the SNR of Y (in decibels) as

SNRY = 20 log
σ2

ν2ǫ
. (4.16)

Lemma 4.4.6. Let Y be the process given by equation (4.1). Then the MLE

estimate of the SNR is given by

ŜNRY = 20 log
σ̂2

ν̂2ǫ
. (4.17)

Proof. Proof follows immediately from the derivation of the MLEs at the begin-

ning of this section.



CHAPTER 4. REGULARISED ESTIMATORS 90

4.5 Conclusions

In this chapter we have presented a solution that corrects the bias introduced

by measurement errors and that alleviates the ill-conditioning of the likelihood

based methods. Under Gaussian conditions the regularised methods are optimal

in the sense of maximum likelihood. Furthermore, they remain computationally

efficient, that is, their order of computational complexity is O(N logN).

It is important to note that while the estimate bias is reduced, the variance

of the estimates is increased slightly as shown in chapter 5. While this phe-

nomenon is expected as we are parting from an under-parameterised model to a

properly parameterised one, an proof of this phenomenon is left open for further

examination.

Finally, we have that the regularised likelihood methods will be slower to

compute in comparison to the likelihood methods of chapter 3. This is due to

the augmented parameter space for which the search must be performed, e.g.,

for fGN and FDN the regularised methods will optimise over a two dimensional

parameter space while the standard likelihood methods will optimise over a one

dimensional parameter space.



Chapter 5

Numerical Results

This chapter presents a series of numerical results that are related to the estima-

tors presented in chapters 3 and 4. The objective is to present a fair comparison

between some of the relevant estimators under the scenarios of error-free and

error corrupted observations. In section 5.1 a Monte-Carlo comparison between

the WE, the CE Estimator and the DFA is performed. Section 5.2 presents the

comparison between the WE, CE Estimator and their regularised versions for

the case of error-corrupted observations. Section 5.3 presents some real world

examples in which the parameter estimation of LRD processes is useful. The

appendices 5.A and 5.B contain the complete results of the Monte Carlo studies

on the previous sections.

5.1 Scenario I: Sets of Error-Free Observations

5.1.1 Description of the Experiments

The numerical experiments were performed in a Monte-Carlo approach. The

procedure was as follows:

(a) The following parameter grid was employed:

H0 = {0, 0.1, . . . , 1}
d0 = {−0.5,−0.4, . . . , 0, 0.1, . . . , 0.5}

A0(q) = 1 + 0.5q−1

B0(q) = 1− 0.3q−1 .

91
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Within this parameter grid there are 11 fGN processes, 11 FDN processes

and 11 ARFIMA processes, with true parameters H0, d0, A0(q) and B0(q).

(b) For each of the fGN, FDN and ARFIMA processes contained within the

parameter grid, 100 realisations were generated. The circulant embedding

algorithm described in chapter 2, section 2.4.1 was employed for generating

the synthetic realisations.

(c) For each experiment, a different realisation length was selected. The choices

were

N = {64, 128, 512, 1024, 2048, 16384}

for fGN and FDN. For ARFIMA the choices were

N = {1024, 2048, 16384} .

Thus, the parameters of 3300 processes of length N were estimated. This

gives a total of 16500 estimation problems solved. The objective of sub-

dividing the estimation lengths is to analyse how the performances of the

estimators improve or deteriorate with sample length.

(d) For each one of the experiments, the parameter estimates were obtained

by using the WE, the CE Estimator and the DFA. The WE and DFA

methods were selected as they rated as the best performing estimators in

the comparisons performed in [27, 86, 102, 101]. The PCG algorithm of

[20] was not employed as it is slightly outperformed by the WE in the

case where the mean of the process is unknown. Furthermore it requires

various iterations due to the preconditioning. This translates into an unfair

computational expense comparison. For the particular case of ARFIMA,

we only compared the WE and the CE.

5.1.2 Results and Discussion

The comparison of results is performed through boxplots and the average time

consumed to compute the estimates. In general terms, the DFA was under-

performing in comparison to the WE and CE Estimator. For this particular

method we employed a set of 200 segments which varied with lengths m ∈
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(10, N/6) where possible. For the experiments with less than 200 data points

we used N − 10 segments of the same length.

fGN Experiments

For computing the WE estimate we employed the approximation of the spectral

density function of fGN by [9]. This approximation is slightly more accurate than

the approximation of [82]. For a discussion on this see point (d) in remark 2.3.6.

There is no surprise in the fact that all three estimators improved when the

amount of data points was increased. For small sample lengths, the CE Esti-

mator performs better than the WE in all four measures. When the amount of

observations is large, the performance improvement over the bias, STD and MSE

of the CE Estimator over the WE starts to diminish. However, the time required

to compute the CE Estimator in comparison to the WE is quite an improvement

as noted previously in the conclusions of chapter 3. It is important to note that

as H0 → 1 the performance of the WE deteriorates while the performance of the

CE Estimator remains uniform. The results of each experiment are displayed in

figures 5.7 through 5.12 in the appendix 5.A

FDN Experiments

Just as for fGN, all three estimators improve when the amount of data points

is increased. For small sample lengths, the CE Estimator performs better than

the WE in all four measures. When the amount of observations is large, the

performance improvement over the bias, STD and MSE of the CE Estimator

over the WE starts to diminish. The CE Estimator requires less time to be

computed in comparison to the WE. Nevertheless, the difference is not as much

as in the case of fGN, particularly, when N is large. The results of each experiment

are displayed in figures 5.13 through 5.17 in the appendix 5.A. An example is

presented in figure 5.1.

ARFIMA Experiments

As in the last two cases, the WE and the CE Estimator improve when the amount

of data points is increased. For the sample lengths of N = 1024, 2048, the WE

performs slightly better than the CE Estimator. For N = 16384 the estimators’

performance is comparable. Nevertheless, the CE Estimator is computationally

more expensive than the WE. This is due to the cost of computing the covariance

of an ARFIMA process in comparison to computing its spectral density function.

The results of each experiment are displayed in figures 5.18 through 5.20 in the

appendix 5.A.
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Figure 5.1: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the
box. The outliers are displayed with crosses. The estimation methods were applied
to 100 realisations of FDN with different nominal LRD coefficient d0. The realisations
had a length of N = 1024. It can be observed that the CE Estimate outperforms the
WE and the DFA for most instances of d0. The average computational times where of
0.0074 seconds for the CE Estimator, of 0.0125 seconds for the WE and 5.494 seconds
for DFA.
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5.2 Scenario II: Sets of Error Corrupted Obser-

vations

5.2.1 Description of the Experiments

The numerical experiments were performed in a Monte-Carlo approach. The

procedure was as follows:

(a) The following parameter grid was employed:

H0 = {0, 0.1, . . . , 1}
d0 = {−0.5,−0.4, . . . ,−0.1, 0.1, . . . , 0.5} .

Within this parameter grid there are 10 fGN processes and 10 FDN pro-

cesses.

(b) For each of the fGN and FDN processes contained within the parameter

grid, 100 realisations of length N = 32768 were generated. The circulant

embedding algorithm described in chapter 2, section 2.4.1 was employed for

generating the synthetic realisations.

(c) Each of the realisations were contaminated with white Gaussian noise as a

signal to noise ratio of SNR = {30, 15, 10, 5} decibels.

(d) For each realisation, the parameters of the models were estimated by em-

ploying the likelihood methods of chapter 3 and the regularised estimators

of chapter 4. For the fGN experiments, the RWE was excluded as it is

computationally much more costly than the RCE Estimator. For the FDN

experiments, the WE, the CE Estimator, the RCE Estimator and the RWE

are compared. For the ARFIMA experiments the CE and RCE estimators

were excluded as they are computationally much more costly than their

Whittle counterparts.

5.2.2 Results and Discussion

The result comparison is performed through the use of boxplots. As expected

from the analysis in chapter 3, section 3.3.3, the CE Estimator and the WE are

highly biased whenever the observations are corrupted with errors.
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Conversely, the bias of the RCE and RWE is small for all the levels of error

corruption in the experiments. It is important to note that as the SNR increases,

the standard deviation of the estimates increases slightly as well. This is not

a desirable characteristic of the regularised estimates. Nevertheless, it can be

corrected by implementing a segmentation framework such as the one presented

in [105]. Under such a framework, a smoothing of the estimates is performed such

that the variance of the estimates is highly reduced.

Another important point to notice is that the regularised estimators become

sensitive as the processes resembles a series of i.i.d. random variables, i.e., white

noise. This behaviour is related to the choice of initial conditions.

The results of the experiments are summarised in figures 5.21 through 5.27 in

the appendix 5.B. An example is given in figure 5.4.
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(a) Parameter estimates for FDN via the RCE est.

(b) Parameter estimates for FDN via the RWE

Figure 5.2: Comparative results between the likelihood based estimators and their regu-
larised versions. The box-plots of the estimates have lines at the lower quartile, median
and upper quartile values. The whiskers extend 1.5 times the interquartile range from
the ends of the box. The outliers are displayed as crosses. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
FDN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 15 dB.
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5.3 Real World Examples

In this section we present some real world examples of time-series exhibiting long-

range dependence. The difficulty when performing parameter estimation of real

world data is that there is no “true” underlying model producing the observations.

In the words of George Box [11]

“Essentially, all models are wrong, but some are useful.”

There is no reason to assume that the models selected for the parameter estima-

tion of these examples are the correct ones. The topic of model order selection

and model validation are outside the scope of this thesis. Instead, we compare the

estimates available in the literature against the estimates obtained by applying

the methods of chapters 3 and 4.

5.3.1 Ethernet Data

In this section we apply the WE and the CE Estimator to the real time series

obtained from a study of Ethernet traffic performed at Bellcore Morris Research

and Engineering Centre. This data was produced by [63] and it corresponds

to one hour of normal traffic in August 1989. The data collected contains two

time-series. One corresponds to the number of bytes per 10 milliseconds. The

second time series represents the number of packets per 10 milliseconds. Leland

et al. [63] and Willinger et al. [109] obtained estimates of the LRD coefficient of

approximately Ĥ ≈ 0.8 for the byte time-series and Ĥ ≈ 0.9 for the packet time-

series. They employed several methods such as the R/S statistic (see chapter 3,

section 3.2.1), the log-periodogram method (see chapter 3, section 3.2.3 ) and

the aggregated Whittle method [101]. Taqqu and Teverovsky [101] estimated the

parameters of both the byte and packet time-series by employing the WE and the

Local Whittle estimator. The results obtained in [101] are highly in accordance

to those in [63] and [109].

Here, we estimate the parameters of a fGN, FDN and ARFIMA(1,d,1) models

through the WE and CE Estimator. The estimates were obtained in a 2.33 GHz

Intel Core 2 Duo Macbook Pro with 2 GB of RAM running MatLab R2008a.

The estimates and the time to compute them are reported in tables 5.1 and 5.2.

The parameters obtained by the CE Estimator are highly in accordance to the

WE estimates, which in turn are equal to those reported in [101]. The notable
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Model Structure
Whittle’s Estimate CE Estimator
LRD est. Time LRD est. Time

fGN 0.774 238 s 0.775 25.6 s
FDN 0.318 9.6 s 0.319 15.3 s

ARFIMA(1,d,1) 0.26 80 s 0.25 358 s

Table 5.1: Comparative results between the WE and CE Estimator for the Ethernet
byte time-series. The parameter estimates are highly in accordance to those reported
in [63, 109, 101]. It can be observed that the CE Estimator is more efficient than the
WE for computing the parameters of a fGN model. For ARFIMA models, the WE is
more efficient than the CE Estimator.

Model Structure
Whittle’s Estimate CE Estimator
LRD est. Time LRD est. Time

fGN 0.829 260 s 0.831 15.3 s
FDN 0.389 8.8 s 0.389 14.5 s

ARFIMA(1,d,1) 0.353 93.9s 0.355 497 s

Table 5.2: Comparative results between the WE and CE Estimator for the Ethernet
byte time-series. The parameter estimates are highly in accordance to those reported
in [63, 109, 101]. It can be observed that the CE Estimator is more efficient than the
WE for computing the parameters of a fGN model. For ARFIMA models, the WE is
more efficient than the CE Estimator.

difference between the WE and the CE Estimator is the computational expense

of each method. For fGN models, the CE Estimator is less expensive than the

WE. The contrary is true for ARFIMA models. For the case of FDN, the CE

Estimator was slightly slower than the WE. This might be due to the amount of

likelihood function evaluations performed in the optimisation.
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(a) Byte time-series

(b) Packet time-series

Figure 5.3: Time-series corresponding to the Ethernet dataset from Bellcore Morris Research and Engineering Centre
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(a) Spectral Density Estimate for the Byte time-series

(b) Spectral Density Estimate for the Packet time-series

Figure 5.4: The figure depicts the periodogram of the time-series and the estimates of the spectral density functions obtained by the
CE Estimator for and FDN model.
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5.3.2 Ocular Accommodation

In this section, parameter estimates from a study of ocular accommodation are

obtained by means of the RWE. The time-series was obtained by Leahy et al.

[61] and it corresponds to subject ED, trial number 4. The data contained in the

time-series represents the accommodative response of a subject sample at 173 Hz

for approximately 47 seconds. This particular time-series has been reported to

be stationary [61] with heavy-tailed [62] increments.

Leahy et al. [61] and Leahy [62] analysed this data and reported a power-

law decay that resembles long-range dependence. The analysis performed in

[61, 62] is similar to the log-periodogram analysis summarised in chapter 3, section

3.2.3. Instead of computing the standard periodogram as in equation (3.14), the

Lomb-Scargle periodogram was computed. The advantage of the Lomb-Scargle

periodogram to that of equation (3.14) is its robustness to unevenly sample data

and missing observations.

Let Xk, k ∈ J, denote a set of observations. Then Lomb-Scargle periodogram

of Xk is given by

2ILS(ω) =

[∑

k∈J

Xk cos(ωtk − ωτ)

]2

∑

k∈J

Xk cos
2(ωtk − ωτ)

+

[∑

k∈J

Xk sin(ωtk − ωτ)

]2

∑

k∈J

Xk sin
2(ωtk − ωτ)

where ω is the angular frequency, tk corresponds to the time in which the data

point Xk was sampled and τ is given by

tan(2ωτ) =
∑

k∈J

sin(2ωtk)

[∑

k∈J

cos(2ωtk)

]−1

.

Since the ocular accommodation time-series presents segments of missing data

(see figure 5.5), [61, 62] employed the Lomb-Scargle periodogram to fit a bilinear

model with slopes θ̂PSD1 and θ̂PSD2. The slope θ̂PSD1 corresponds to the linear

fit at low frequencies ω < 4π/173. The θ̂PSD2 slope corresponds to the higher

frequencies 4π/173 < ω < 20π/173. The cross-over frequency selected by [61, 62]

was of 2Hz and the estimates obtained from averaging four sets of trials was

θ̂PSD1 = −2d̂PSD1 = −0.8 and θ̂PSD2 = −2d̂PSD2 = −2.5.
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The approach presented in this section is different to that of [61, 62]. In-

stead of employing the entire time-series, a segment where there were no miss-

ing observations was selected for estimation. The RWE was employed to fit an

ARFIMA(1, d, 0) and ARFIMA(2, d, 1) models. The results are summarised in

table 5.3 and figure 5.6.

From the estimates we can observe that the RWE obtains a smaller LRD

coefficient in comparison to the PSD estimate of [61, 62]. This difference can be

attributed to the cut-off frequency selected by [61, 62] which does not correspond

to the ones obtained by the RWE. It is important to note that neither the cut-off

frequencies nor the correct values for the model coefficients can be verified without

proper validation tools. Under weak stationarity, the goodness of fit test provided

by [8] becomes a powerful tool. Nevertheless, under heavy-tailed distributions and

non-stationarity the effectiveness of this test is an open question.

Model Parameters ARFIMA(1, d, 0) ARFIMA(2, d, 1)

d̂ 0.3298 0.3662

Â(q) 1− 0.9577q−1 1− 0.2015q−1 + 0.624q−2

B̂(q) 1 1 + 0.6497q−1

α̂ 0.5604 0.1493

Table 5.3: Comparative results for between the ARFIMA(1, d, 0) and ARFIMA(2, d, 1)
models for the Ocular Accommodation time-series corresponding to subject ED trial
number 4. In comparison to the result of [61], d̂PSD1 = 0.4, we have that the RWE
yields a smaller LRD coefficient.
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Figure 5.5: The figure depicts the dataset corresponding to subject ED, trial number 4.
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Figure 5.6: The figure depicts the Lomb-Scargle periodogram of the time-series along with the estimates of the spectral density functions obtained
by the RWE. The PSD estimate of [61] is also depicted.
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5.A Monte Carlo Studies for the Error-Free Case

This appendix contains the Monte Carlo studies discussed in section 5.1.

Figure 5.7: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of fGN with different nominal LRD coefficient H0. The realisations had
a length of N = 64. It can be observed that the CE Estimate outperforms the WE
and DFA for most instances of H0. The average computational times were of 0.0047
seconds for the CE Estimator, of 0.0404 seconds for the WE and 0.3076 seconds for
DFA.
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Figure 5.8: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of fGN with different nominal LRD coefficient H0. The realisations had
a length of N = 128. It can be observed that the CE Estimate outperforms the WE
and DFA for most instances of H0. The average computational times were of 0.0051
seconds for the CE Estimator, of 0.0794 seconds for the WE and 0.6386 seconds for
DFA.
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Figure 5.9: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of fGN with different nominal LRD coefficient H0. The realisations had
a length of N = 512. It can be observed that the CE Estimate outperforms the WE
and DFA for most instances of H0. The average computational times were of 0.0103
seconds for the CE Estimator, of 0.3185 seconds for the WE and 3.4608 seconds for
DFA.
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Figure 5.10: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of fGN with different nominal LRD coefficient H0. The realisations had a
length of N = 1024. It can be observed that the CE Estimate outperforms the WE
and DFA for most instances of H0. The average computational times were of 0.0103
seconds for the CE Estimator, of 0.3185 seconds for the WE and 3.4608 seconds for
DFA.
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Figure 5.11: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of fGN with different nominal LRD coefficient H0. The realisations had a
length of N = 2048. It can be observed that the CE Estimate outperforms the WE and
DFA for most instances of H0. The average computational times were of 0.034 seconds
for the CE Estimator, of 1.3072 seconds for the WE and 8.8891 seconds for DFA.
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Figure 5.12: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of fGN with different nominal LRD coefficient H0. The realisations had a
length of N = 16384. It can be observed that the CE Estimate outperforms the WE
and DFA for most instances of H0. The average computational times were of 0.2766
seconds for the CE Estimator, of 10.844 seconds for the WE and 45.588 seconds for
DFA.
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Figure 5.13: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of FDN with different nominal LRD coefficient d0. The realisations had a
length of N = 64. It can be observed that the CE Estimate outperforms the WE and
DFA for most instances of d0. The average computational times were of 0.0039 seconds
for the CE Estimator, of 0.0049 seconds for the WE and 0.2915 seconds for DFA.
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Figure 5.14: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of FDN with different nominal LRD coefficient d0. The realisations had a
length of N = 128. It can be observed that the CE Estimate outperforms the WE and
DFA for most instances of d0. The average computational times were of 0.0039 seconds
for the CE Estimator, of 0.005 seconds for the WE and 0.6003 seconds for DFA.
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Figure 5.15: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of FDN with different nominal LRD coefficient d0. The realisations had a
length of N = 512. It can be observed that the CE Estimate outperforms the WE and
DFA for most instances of d0. The average computational times were of 0.0053 seconds
for the CE Estimator, of 0.0082 seconds for the WE and 3.5108 seconds for DFA.
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Figure 5.16: Comparative results between the CE Estimator, the WE and the DFA. The
box-plots of the estimates have lines at the lower quartile, median and upper quartile
values. The whiskers extend 1.5 times the interquartile range from the ends of the box.
The outliers are displayed with crosses. The estimation methods were applied to 100
realisations of FDN with different nominal LRD coefficient d0. The realisations had a
length of N = 2048. It can be observed that the CE Estimate outperforms the WE and
DFA for most instances of d0. The average computational times were of 0.0131 seconds
for the CE Estimator, of 0.0211 seconds for the WE and 8.961 seconds for DFA.
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Figure 5.17: Comparative results between the CE Estimator, the WE and the DFA.
The box-plots of the estimates have lines at the lower quartile, median and upper
quartile values. The whiskers extend 1.5 times the interquartile range from the ends
of the box. The outliers are displayed with crosses. The estimation methods were
applied to 100 realisations of FDN with different nominal LRD coefficient d0. The
realisations had a length of N = 16384. It can be observed that the CE Estimate and
the WE perform similarly while the DFA is the estimator that performs the poorest.
The average computational times were of 0.1112 seconds for the CE Estimator, 0.1578
seconds for the WE and 45.678 seconds for DFA.
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(a) Bias of the estimates d̂

(b) Bias of the estimates â1

(c) Bias of the estimates b̂1

Figure 5.18: Comparative bias results between the CE Estimator and the WE. The
estimation methods were applied to 100 realisations of an ARFIMA process with
A0(q) = 1 + 0.5q−1, B0(q) = 1 − 0.3q−1 and different nominal LRD coefficient d0.
These realisations had a length of N = 1024. It can be observed that the CE Esti-
mator has a comparable performance to the WE in all estimates for most instances of
d0 ≥ 0. The WE performs slightly better when d0 < 0. The average computational
times were of 2.6587 seconds for the CE Estimator and 0.0492 seconds for the WE.
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(a) Bias of the estimates d̂

(b) Bias of the estimates â1

(c) Bias of the estimates b̂1

Figure 5.19: Comparative bias results between the CE Estimator and the WE. The
estimation methods were applied to 100 realisations of an ARFIMA process with
A0(q) = 1 + 0.5q−1, B0(q) = 1 − 0.3q−1 and different nominal LRD coefficient d0.
These realisations had a length of N = 2048. It can be observed that the CE Estima-
tor has a comparable performance to the WE for all instances of d0 ≥ 0. When d0 < 0
we have that the WE performs slightly better. The average computational times were
of 2.3882 seconds for the CE Estimator and 0.6423 seconds for the WE.
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(a) Bias of the estimates d̂

(b) Bias of the estimates â1

(c) Bias of the estimates b̂1

Figure 5.20: Comparative bias results between the CE Estimator and the WE. The
estimation methods were applied to 100 realisations of an ARFIMA process with
A0(q) = 1 + 0.5q−1, B0(q) = 1 − 0.3q−1 and different nominal LRD coefficient d0.
These realisations had a length of N = 16384. It can be observed that for d̂, the CE
Estimator performs better for d0 > −0.1. The WE performs better in most instances
for the estimates Â and B̂. The average computational times were of 19.3852 seconds
for the CE Estimator and 4.133 for the WE.
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5.B Monte Carlo Studies for the Error-Corrupted

Case

This appendix contains the Monte Carlo studies discussed in section 5.2.

(a) Parameter estimates for FDN via the RCE est.

(b) Parameter estimates for FDN via the RWE

Figure 5.21: Comparative results between the likelihood based estimators and their
regularised versions. The box-plots of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed
that the bias of the regularised estimates is dramatically reduced at an expense of a
slight increase on the estimate’s variance. The segmented line represents the true LRD
parameter value. The estimators were applied to 100 realisations of FDN with different
nominal coefficient d0. The realisations had a length of N = 32768 data points and
they were corrupted at a SNR of 30 dB.
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(a) Parameter estimates for FDN via the RCE est.

(b) Parameter estimates for FDN via the RWE

Figure 5.22: Comparative results between the likelihood based estimators and their
regularised versions. The box-plots of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
FDN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 10 dB.



CHAPTER 5. NUMERICAL RESULTS 121

(a) Parameter estimates for FDN via the RCE est.

(b) Parameter estimates for FDN via the RWE

Figure 5.23: Comparative results between the likelihood based estimators and their
regularised versions. The box-plots of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
FDN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 5 dB.
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Figure 5.24: Comparative results between the likelihood based estimators and their
regularised versions. The box-plot of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
fGN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 30 dB.
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Figure 5.25: Comparative results between the likelihood based estimators and their
regularised versions. The box-plot of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
fGN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 15 dB.
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Figure 5.26: Comparative results between the likelihood based estimators and their
regularised versions. The box-plot of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
fGN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 10 dB.
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Figure 5.27: Comparative results between the likelihood based estimators and their
regularised versions. The box-plot of the estimates have lines at the lower quartile,
median and upper quartile values. The whiskers extend 1.5 times the interquartile
range from the ends of the box. The outliers are also displayed. It can be observed that
the bias of the regularised estimates is dramatically reduced at an expense of a slight
increase on the estimate’s variance. The estimators were applied to 100 realisations of
fGN with different nominal coefficient d0. The realisations had a length of N = 32768
data points and they were corrupted at a SNR of 5 dB.



Chapter 6

Conclusions & Future Work

6.1 General Conclusions

Given the wide applicability of long-range dependent processes, there is great

interest in the estimation of model parameters that allow their understanding.

Maximum likelihood is a method that yields estimates with desirable statisti-

cal properties [24, 110]. However, it has been criticised as the computational

implementation of this method is impractical in terms of efficiency [79].

This thesis presents a set of computationally efficient estimators for finding

the parameters of long-range dependent processes. The estimators presented in

this thesis produce accurate results under error-free and error-corrupted measure-

ments.

For the error-free measurements scenario, the concepts of maximum likelihood

estimation and circulant embedding were employed to develop the CE Estimator.

This estimator is a computationally efficient alternative to maximum likelihood

due to the attractive eigenstructure of the circulant embedding matrix.

Theorems 3.3.6 and 3.3.7 and corollary 3.3.8 justify the use of the CE Esti-

mator for LRD process. In particular, theorem 3.3.6 implies that as the matrices

grow large, they behave similarly. Corollary 3.3.8 shows that the CE Estimator

is asymptotically normal, consistent and efficient.

The Monte-Carlo experiments in section 5.1.1 show that for fGN and FDN

and small data samples, the performance of the CE Estimator is superior to that

of the WE. Furthermore, for the case of fGN, the CE Estimator is computation-

ally more efficient than the WE. For the case of ARFIMA, the CE Estimator

is computationally less efficient than the WE. Finally, for the case of FDN, the
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computational efficiency of both estimators is similar.

Theorems 3.3.9, 3.3.10 and 3.3.11 show that the likelihood based estimators

are highly sensitive to the effect of measurement errors. This is due to the ill-

conditioning of the respective matrices involved in their computation.

For the error-corrupted measurements scenario, the concept of regularisation

was employed to improve the robustness of the likelihood based methods to the

presence of errors in the measurements. The choice of regularisation structure

ensures that the regularised versions of the approximations to the MLE, the RWE

and the RCE Estimator, remain with low computational complexity. Under the

assumption of Gaussian errors, theorem 4.4.4 shows that the estimates obtained

by the regularisation methods are related to the MLE of a model which accounts

for the measurement errors.

6.2 Future Work

There are three major research paths that follow after the work presented in this

thesis: a) extensions to systems with exogenous inputs, b) multifractal processes

and c) the estimator robustness and model validation.

Extension to Systems with Exogenous Inputs

The approach of fitting a mathematical model to input-output relations obtained

from an experiment is known as system identification [4]. One of the basic ap-

proach to finding the model parameters to such input-output relations is given by

the prediction-error method [65]. This method has the advantage that it can be

applied to very general model structures within the Box-Jenkins family of mod-

els. Its asymptotic accuracy is optimal when the “true” system (or process) can

be represented within the model structure. Conversely, when the “true” system

cannot be represented within the model structure, the method has reasonable

approximation properties [65].

The convergence properties mentioned above hold when the correlations of the

process decay exponentially [64, 65]. Thus, when the correlations decay at a much

slower rate such convergence results are no longer guaranteed. Therefore, the

inclusion of LRD processes into this framework is an interesting and challenging

problem.
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Extension to Multifractal Processes

In some applications, it has been shown that LRD is not sufficient to properly

characterise the set of observations. Particularly, the stationary condition on the

increments of fBM can be too restrictive to some applications [7]. Introduced by

Benassi et al. [7], multifractional Brownian Motions (mBM) are a generalisation

of fBM by letting the LRD coefficient H be a time varying function H(t).

Multifractional Brownian Motion no longer possesses stationary increments.

Thus there is no reason to believe that the methods presented in this thesis would

effectively estimate the parameters of these kind of processes. Nevertheless, by

combining the estimators presented in this thesis with a segmenting framework

such as the one presented in [section 4 in 105] the user might be able to differen-

tiate between a multifractal processes and the processes presented in this thesis.

This is the subject of further investigation.

Estimator Robustness and Model Validation

The models presented in this thesis are a simple approximation to real world

applications. In rare cases, the data obtained from a real life application satisfies

all the assumptions employed to develop the theory behind the models and the

estimators. For example, the ocular accommodation datasets of [61] have been

reported to possess heavy-tailed distributions [62]. The estimators developed in

this thesis must be tested under different assumption departures such that their

robustness can be assessed.

Another important aspect is that of model validation. While the model struc-

ture selection can be performed by the Akaike’s and Bayes’ Information Criteria

[9], the crucial question is whether the identified model is good enough for the

intended purpose. Beran [8] provides a goodness of fit test based on the frequency

response of the estimates and the periodogram of the time-series. However, in

the case of non-stationarities and non-Gaussian time-series the validity of the

estimated models remains an open question.
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