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SUMMARY 

 

The issue of bandwidth provisioning is imperative for differentiated quality of service 

(QoS) to be achieved in UMTS core networks. As UMTS is to offer various classes of 

services that require different QoS levels, careful bandwidth provisioning is needed to 

ensure that the QoS of every class is met in the converged UMTS core network. The 

Differentiated Services model has been chosen as the service model for implementing 

UMTS networks. The UMTS service classes can be mapped onto various DiffServ 

classes. By adaptively controlling the bandwidth allocated to each DiffServ class, service 

providers are able to quantitatively control the level of QoS provisioned. This is crucial 

since each class of service offered would be governed by service level agreements 

contracted between service providers and mobile subscribers that spell out exact QoS 

assurance in terms of throughput, latency and packet loss bounds. 

The UMTS core network is divided into two portions – the UMTS core backbone 

network and the UMTS terrestrial radio access network (UTRAN), which will be 

provisioned using different schemes. This is because the UTRAN is topologically 

different from the UMTS core backbone network. The traffic in the UTRAN is also more 

dynamic; since in a mobile access network traffic is less aggregated and handoff traffic 

can cause large changes in overall traffic patterns. In this work, a bandwidth provisioning 

solution is presented that is bandwidth efficient, scalable, easily implemented and able to 

provision bandwidth in an objective manner. To meet the first criteria, the weighted fair 

queuing method is used to provision bandwidth as it offers high bandwidth utilization. 

The DiffServ framework that is used allows the scheme to be scalable. The algorithms 

used in the scheme can be implemented in bandwidth managers such as a DiffServ 

bandwidth broker. In order to provision bandwidth in a manner that requires no complex 



 ix

control mechanisms and little expert knowledge, and yet meet the service requirements 

contracted in SLAs, a reinforcement learning (RL) method is used. The advantage of an 

RL method is that RL agents are able to adaptively learn policies that map measured 

traffic conditions to WFQ weight settings through reward and penalty feedback. By 

designing the reward and penalty feedback based on the pricing of services and the SLA, 

the RL-based scheme, which is presented in this work is capable of intelligently 

provisioning bandwidth. 

Two bandwidth provisioning schemes are presented for UMTS core backbone 

networks. The Reinforcement Learning Adaptive Provisioning (RLAP) scheme aims to 

maximize revenue for the service provider based on a novel multi-tier pricing plan that is 

designed to maximize utilization and manage subscriber satisfaction. Alternatively, the 

Reinforcement Learning Dynamic Provisioning (RLDP) scheme provisions bandwidth 

such that QoS assurance levels are strictly met. Since most of today’s SLAs contract 

assured levels of QoS rather than strict 100% guarantees, service providers can use this 

leeway to improve utilization and at the same time adaptively manage QoS. But since 

high penalties in monetary terms as well as reputation are at stake, the bandwidth 

provisioning must be intelligent enough to manage the different classes of traffic in a 

heterogeneous network. 

Provisioning bandwidth in the UTRAN is different from the UMTS core backbone 

network, since hand-off traffic is an issue. The RLDP scheme is modified by considering 

neighboring traffic as well. With the modification, the resulting Reinforcement Learning 

Bandwidth Provisioning (RLBP) scheme thus manages to meet the QoS assured levels 

even under high hand-off situations. Simulation studies on all three schemes show that 

the solutions presented can meet QoS requirements efficiently. 
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CHAPTER 1 

 

AIMS AND OBJECTIVES OF THIS RESEARCH 

 

1.1 INTRODUCTION 

UMTS (Universal Mobile Telecommunications Service) [1] is a defined standard 

by the 3rd Generation Partnership Project (3GPP) [2] group. It covers all the necessary 

details for the implementation of 3rd Generation (3G) mobile networks. Under the 

UMTS standard, 3GPP Release 1999, Release 4 and Release 5 [6-8] map the 

evolution of the UMTS core network from a circuit-switched based architecture to an 

all-IP packet-switched based architecture. 

With an all-IP network, a variety of services with varying Quality of Service 

(QoS) requirements could be transported over the same core network [16]. To ensure 

that the QoS requirements of all classes can be met efficiently, the proportion of 

bandwidth provisioned to each class has to be optimized. Though there have been 

solutions to the bandwidth provisioning issue, such solutions are tailored for fixed 

networks and are usually designed for Asynchronous Transfer Mode (ATM) 

backbone networks [50-55]. With the convergence of mobile and fixed networks 

(backbone networks being shared by both mobile network and fixed network 

operators), the bandwidth provisioning issue is made more complex by the 

continuously varying patterns of traffic and the constant altering of routes due to the 

mobility of end nodes. 

This research focuses on a solution to the bandwidth provisioning problem for the 

UMTS network. The UMTS network has been split into two portions – the core 

backbone network (which is expected to be converged with the fixed backbone 
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network) and the radio access network as the characteristics of both portions are quite 

different. The thesis presents a solution to each of the portions. 

 

1.2 SCOPE OF THE THESIS 

 

The scope of the thesis covers the following areas: 

(i) The use of adaptive weighted-fair bandwidth proportions as a means to 

achieve QoS within the UMTS core network and the resulting formulation 

of the bandwidth provisioning optimization problem. 

(ii) The development of a self-tuning algorithm based on Reinforcement 

Learning (RL) that adaptively converges towards the solution to the 

formulated bandwidth provisioning problem. 

(iii) The implementation of the RL algorithm to the core backbone network. 

(iv) The implementation of the RL algorithm to the radio access network. 

 

1.2.1 Adaptive Bandwidth Provisioning for QoS in UMTS Core Network 
 

Proper handling of Quality of Service is required for the UMTS core network to 

handle multiple services ranging from Voice over IP (VoIP) [13-16] to multimedia 

applications to e-commerce transactions. There have been proposals to map various 

QoS classes from other standards to the UMTS QoS classes [11-15]. Various QoS 

management solutions [23-25] have also been presented to enable QoS over UMTS 

networks. 

Work has also been done at the lower layers [26-28], but these have been mainly 

focused on the wireless portion of the network for obvious good reasons. Since the 

wireless bandwidth is limited, scarce resources have to be efficiently allocated so that 

QoS can be achieved over the air. For some reason, network-layer QoS has not 
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received much attention. This could be due to the assumption that core network 

bandwidth is much larger than the wireless bandwidth. This might be the case now, 

but as wireless devices become ubiquitous and wireless services start sprouting, the 

core network would have to support the traffic from hundreds of base stations 

carrying thousands of sessions. As such, the efficient provisioning of bandwidth in the 

UMTS core network would be much needed in the near future. 

Due to the dynamic nature of mobile traffic, bandwidth cannot be statically 

provisioned. Over-provisioning is a method commonly used today. By allocating 

more than enough bandwidth to meet the heaviest of traffic, QoS can be ensured. 

However, this is an inefficient method as there would be low bandwidth utilization 

due to large variations in traffic. Another commonly used method is to give priority to 

traffic requiring strict QoS. This is at best a temporary solution, as it only provides a 

two-level differentiation of service. With more varied applications being developed, 

varying degrees of differentiation would be required. A priority-based provisioning 

solution would not be insufficient to maintain quantitative QoS. Therefore, a form of 

adaptive bandwidth provisioning would be needed. The adaptive bandwidth 

provisioning optimization problem is formulated, but it is shown that the problem is 

infeasible to solve optimally and an approximate method has to be used. 

 

1.2.2 Reinforcement Learning-based Solution to the Bandwidth Provisioning 

Optimization Problem 

 

Reinforcement Learning (RL) [60,61] is a machine learning theory that can be 

used in control problems such as the bandwidth provisioning optimization problem; 

where the amount of bandwidth to provision for each aggregate class of traffic has to 

be adaptively controlled. In RL, a learning agent has to formulate a policy, which 



Chapter   1:      Aims And Objectives Of This Research 

 4

determines the appropriate action to take in each state in order to maximize the 

expected cumulative reward over time. The reward is derived from how favorable the 

outcome is of the action taken by the agent in a particular state. RL thus provides a 

way to relate state, action and penalty. 

When RL is applied to the bandwidth provisioning optimization problem, traffic 

conditions (state) can be related to provisioning settings (action) and adjusted through 

the use of QoS feedback (penalty). Through a gradient-based algorithm, the policy 

(solution) is adaptively learned such that QoS penalties are minimized and revenue is 

maximized. Since the provisioning problem has a continuous state and action space, 

an appropriate continuous state-action space RL method [76] was used. 

The application of continuous state-action space RL to network management is a 

novel work. There have been no previous applications published explicitly that 

employ a similar technique. 

 

1.2.3   Adaptive Bandwidth Provisioning for Core Backbone Network 
 

The UMTS core backbone network [8], as defined in this thesis, is the portion of 

the core network that includes the SGSN (Serving GPRS Support Node) at one edge 

and the GGSN (Gateway GPRS Support Node) at the other. The core backbone 

network functions as a packet network that connects the UMTS Terrestrial Radio 

Access Networks (UTRAN) around the provider’s area of coverage to the fixed core 

network (or carrier-network). The SGSN serves the various UTRANs by connecting 

to the Radio Network Controllers (RNC) within each UTRAN. The GGSN provides 

the access to the other providers’ networks by connecting to the carrier-network. The 

topology of the UMTS core backbone network is usually one that is geographically-
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determined. As such, the topology can be modeled as a network of edge and core 

nodes, similar to a Differentiated Services (DiffServ) network [9]. 

The solution presented is one that provisions bandwidth at each node based on the 

amount of traffic measured on each outgoing link. The provisioning policy is adapted 

based on the service-level agreement (SLA) [29] contracted between the provider and 

the subscribers. A DiffServ model is used as it is the recommended service model for 

the UMTS core network. 

 

1.2.4   Adaptive Bandwidth Provisioning for Radio Access Network 
 

The UMTS radio access network [6], as defined in this thesis, is the portion of the 

core network that includes the RNC (Radio Network Controller) at one edge and the 

base station (Node B) at the other. The radio access network is commonly known as 

the UMTS Terrestrial Radio Access Networks (UTRAN) [21] and it provides radio 

coverage over the provider’s entire network. As such, the topology of the UTRAN is 

usually pyramid or hierarchical. The base stations provide the wireless connection to 

the user devices (UE) and are controlled and attached to the RNCs. 

As UE users move from one place to another, handovers from one base station to 

another may occur. This may occur frequently in densely populated areas or on high-

speed transport routes. Handovers require a change of route and hence fresh 

provisioning. This causes great fluctuations in traffic patterns in the UTRAN. 

Currently, mobile providers handle this situation by reserving channels (bandwidth) in 

advance before handover. However, this causes low bandwidth utilization when many 

UEs are attached to each base station and mobility rate is high. 

To solve this problem, bandwidth provisioning is proposed as an alternative to 

bandwidth reservation. The difference is that bandwidth is shared within a class and 
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reservations do not have to be made for each UE. When handovers occur, the new 

UEs entering the base station’s coverage share the bandwidth with the other present 

UEs in the same class. To ensure QoS is maintained, the bandwidth provisioned for 

the class is adaptively adjusted. Bandwidth is provisioned at each node from the 

SGSN at the top of the hierarchical topology to the RNCs, and from the RNCs down 

to the base stations. The provisioning policy is adapted based on the service-level 

agreement (SLA) contracted between the provider and the subscribers; but emphasis 

is given to the meeting of service-level requirements (SLS) within the SLA. 

 

1.3   ORGANISATION OF THE THESIS 

 

In the next chapter an introduction to next-generation UMTS networks is 

presented. Focus would be given to QoS in the UMTS core network. The 

Differentiated Services (DiffServ) service model is introduced and a mapping of the 

service model to the UMTS service model is described. In chapter 3, the use of 

bandwidth provisioning to enable multi-class QoS is examined. This is followed by a 

survey of the various bandwidth provisioning methods that are used today. The 

chapter ends with a formulation of the bandwidth provisioning optimization problem. 

In chapter 4, an introduction to the Reinforcement Learning (RL) theory is presented; 

including previous applications of RL in network control. Emphasis is then given to 

continuous state-action space RL methods, which are used in the proposed RL-based 

bandwidth provisioning algorithms. The chapter concludes by formulating the 

bandwidth provisioning optimization problem as an RL optimization problem. 

Chapter 5 presents the proposed RL-based adaptive bandwidth provisioning 

solution for the UMTS core backbone network. The chapter includes a literature 

survey of previous adaptive bandwidth provisioning methods. Following that, details 
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of implementation and simulation results of two proposed methods – Reinforcement 

Learning Adaptive Provisioning (RLAP) and Reinforcement Learning Dynamic 

Provisioning (RLDP) are described. In chapter 6, the RL-based adaptive bandwidth 

provisioning solution for the UMTS radio access network is presented as the second 

portion of the entire solution for the UMTS core network. A literature survey of 

previous mobility-based QoS provisioning methods is given prior to the 

implementation details and simulation results of the proposed Reinforcement 

Learning Bandwidth Provisioning (RLBP) solution. Finally, this thesis is summed up 

in chapter 7 with a brief conclusion emphasizing the contribution of this thesis and 

some recommendations for future work. 
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CHAPTER 2 

 

NEXT-GENERATION UMTS NETWORKS 
 

2.1 INTRODUCTION 

Imagine the possibility of communicating and accessing information anytime, 

anyhow and anywhere. This dream is soon to be a reality with 3rd Generation (3G) 

mobile telecommunications systems [2-4]. 3G promises to deliver broadband wireless 

access up to speeds of 2Mbps. This would enable mobile devices to have connection 

speeds that are similar to fixed networks, thereby achieving the same quality of 

applications familiar to fixed network users. Furthermore, the promise of seamless 

global roaming would provide users with the effect of having that same high-speed 

connection regardless of location. 3G brings about the convergence of mobile 

communications and the Internet; a concept known widely as mobile internet. 

The 3G Partnership Project (3GPP) [2] was formed to implement 3G by putting 

together a 3G mobile standard known as Universal Mobile Telecommunications 

Service (UMTS) [1]. UMTS is intended to form part of the International Mobile 

Telecommunications- 2000 (IMT-2000) [5] family of 3G standards. UMTS covers 

standards for the wireless transmission and protocols, the core network architecture, 

services and systems aspects and mobile terminals. 

UMTS supports the use of the CDMA2000 and WCDMA wireless access 

technologies; two of the more prominent high-speed wireless transmission protocols 

anchoring 3G. In the core network, UMTS networks will initially be similar to current 

GSM/GPRS networks [6], but will evolve to an entirely new architecture that is IP-

based [7,8]. This would enable mobile terminals to access the wealth of IP 

applications available today on the Internet. The radio access network (RAN) portion 
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of the UMTS network will however remain similar to current architectures. This will 

allow the underlying core network to support both current and future RANs. UMTS 

systems will support a variety of services ranging from video-conferencing to m-

commerce to multimedia applications. To enable support for such a wide range of 

services, 3GPP has adopted the IETF Differentiated Services (DiffServ) [9] service 

model, which defines how different classes of service can be supported in the core 

network. UMTS also defines 4 classes of service [10] that are to be supported over the 

wireless network. These 4 classes can be mapped to DiffServ per-hop behaviors 

(PHB) [11,12] to provide seamless service provisioning. 

 

2.2   MOBILITY AND UBIQUITY 

 

Mobility and ubiquity are the key concepts that 3G networks promise to provide. 

Mobility means that users are able to stay connected anytime and anywhere. 

Connecting without wires to a global network that can be reached at any point brings 

about the freedom for users to roam to any location. This could be as simple as from 

the kitchen to the garage, or as far-reaching as from the local main office to an 

overseas client’s office. Users will no longer be bound by the need to find a fixed 

access to the network. More than this, 3G also promises ubiquity – the ability to 

access this network through a variety of means. This could be the plain voice call 

from your mobile phone or even an m-commerce transaction through a terminal in the 

moving taxi. Ubiquity means users can now stay connected anyhow they want, 

whichever way is the most natural and best-suited to the circumstances. 

In this age of mobility, people are accustomed to communicating anytime and 

anywhere. Naturally, with the Internet so much a part of our lives today, people would 

want to access the Internet in the same way that they would communicating to each 
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other. The need for real-time information anytime is already evident in today’s time. 

Real-time information such as the latest soccer results and the current stock market 

prices are already available through mobile phones. This service could be extended in 

the future to watching live soccer matches on our mobile phones and having real-time 

charts of the stock market activity displayed on our laptops while on the bus. 

Mobility also brings about the possibility of working from anywhere. This helps 

to make workers more mobile and less reliant on the office. The concept of the mobile 

office encompasses the objective of being able to access corporate email and 

databases from anywhere. It also allows workers to collaborate and run applications 

without being back in the office. This greatly increases productivity and enhances 

communication. 

Sometimes, it may be more appropriate to have data displayed in different form 

factors. This is when ubiquity is important. The connection to the Internet should be 

readily available in whatever form best suits the circumstances. For example, a person 

who is on his way to a meeting may be on the mobile phone discussing details with 

his secretary. He may then require certain details to be sent to his PDA for his 

assessment. Upon arriving at the meeting room, the full presentation would need to be 

displayed on the projector screen. Members in the meeting may then have to access 

the same presentation, collaborate and change certain points via their own laptops. 

This scenario presented would require information to be accessed anyhow. 

With the need to have services in various forms, at various times and with 

different requirements, 3G networks have to be designed with multi-layered quality of 

service (QoS) in mind. Services would require different levels of latency response 

times, information integrity and bandwidth. QoS is gradually being implemented in 

today’s fixed networks. However, 3G networks bring in the dimensions of mobility 
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and diversity. As described in the scenarios above, as users move from one place to 

another, they change contexts and may also be access networks using different access 

technologies. Users may be moving from a high bandwidth environment like their 

office to a wireless network in a crowded place, which may exhibit bandwidth 

congestion. There is therefore a need to provision for QoS to be maintained regardless 

of where the user moves. In a congested environment with limited bandwidth, users 

who require higher QoS would be given more bandwidth than users who only require 

minimal service. 

 

2.3 CONVERGED BACKBONE NETWORK 

 

In 2nd generation (2G) networks, mobile providers built their mobile networks on 

top of their fixed telephone network. These networks are mainly circuit-switched. 

This means that upon call connection, a fixed route is established and a dedicated 

channel has to be reserved from point-to-point for the entire call duration. This was 

sufficient for voice calls that have rather constant data rates. However, in 3G 

networks, data is to be carried on the network as well. Data transmission, unlike voice 

transmission, exhibits data rates that have high fluctuations. Using a circuit-switched 

network would mean very low bandwidth utilization as bandwidth would not be 

maximized during portions of the connection when there is little data being 

transmitted. Another problem with circuit-switched networks is that as long as 

transmission is required, the connection has to be maintained. Once the connection 

has ended, further transmission would require a re-establishment of the connection. 

This would not be appropriate for 3G, where users require to be always connected. 

 



Chapter   2:      Next-Generation UMTS Networks 

 12

On the other hand, the Internet has been developed on a packet-switched network. 

As the Internet is used mainly for data purposes, this is highly efficient. However, in a 

packet-switched network, all data transmissions share the same network lines. This 

means that there would be contention for bandwidth if too much traffic is transmitted 

at the same time along the same routes. This is fine as long as users do not require any 

specific quality of service (QoS). However, this is not the case, as different services 

would require different QoS. Therefore, some form of QoS provisioning would be 

needed to grant services the required amount of QoS. 

With the convergence of mobile voice and data in 3G, it would be more efficient 

and cost-saving to merge the telecommunications network with the data network [16]. 

In this way, infrastructure can be shared and data can be transmitted to mobile 

networks more efficiently through the packet-switched network. This means that 

voice service would need to be merged with data services. As voice traffic has strict 

latency requirements, QoS has to be provisioned such that voice traffic receives 

higher service as compared to data services. In this way, voice traffic can be 

transmitted over packet-switched networks without loss of QoS. The technology that 

enables this is known as Voice over IP (VoIP) [17-20]. 

The UMTS core network is specified to be a converged voiced/data IP network. 

UMTS supports most of the VoIP standards and QoS service models. 
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2.4 UMTS NETWORK 

 

The UMTS network forms the transport backbone for all voice and data traffic, 

regardless of access technologies. The network therefore needs to support multimedia 

traffic. In this thesis, the UMTS network refers to both the UMTS Terrestrial Radio 

Access Network (UTRAN) [6] portion and the UMTS core network (CN) portion [7]. 

 

 

2.4.1 Architecture 

 

The UTRAN architecture is shown in Fig. 2.1 as given in the first release of 

UMTS specification – 3GPP Release 1999 [6]. Recently, the 3GPP has proposed that 

the UTRAN be IP-based [21]. The work done in this thesis uses this architecture as IP 

is slated to be used in the core network as well. Therefore, it makes sense to have a 

unified system. The UTRAN comprises two types of nodes – the Radio Network 

Controller (RNC) and the Node B, which is the base station. The RNC is similar to 

the Base Station Controller (BSC) in today’s GSM networks. The RNC is responsible 

for the control of the radio resources within the network. It interfaces with one or 

more base stations, known as Node Bs. Together an RNC and the set of Node Bs that 

it supports are known as a Radio Network Subsystem (RNS). The topology of the 

UTRAN is usually hierarchical, with the top node being the Serving GPRS Support 

Node (SGSN) that the RNCs are connected to. In some large topologies, several 

UTRANs are needed to provide the coverage. 
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Figure 2.1: UTRAN Architecture 

 

The mobile devices that connect to the Node Bs are known as UEs (made up of 

two parts; the TE and the MT). UEs may move from one Node B’s coverage to 

another. This would trigger a soft handover (handovers that do not require 

disconnection). Soft handovers are achieved through the use of the Mobile IP protocol 

[22], which is adopted by 3GPP. Another possible type of handover is between RNCs. 

This occurs when a UE moves from one RNS’s coverage to another. When a 

handover occurs, traffic directed to the previous Node B has to be re-routed to the 

new Node B. When mobility is high or when radio coverage is small, handovers can 

occur frequently, causing drastic changes in network patterns within the core network. 
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Figure 2.2: IP Core Network Architecture 

 

The UTRAN is connected to the backbone network through the UMTS core 

network (CN). In 3GPP Release 5 [7], the UMTS core network makes use of an all-IP 

multimedia architecture as shown in Fig. 2.2. (Only the data plane is shown). In this 

architecture, both voice and data are largely handled in the same manner all the way 

from the UE to the ultimate destination. The UTRAN is connected to the core 

network through the connection between the RNC and the Serving GPRS Support 

Node (SGSN). Data traffic flows through the core network and exits to the Internet 

backbone via the Gateway GPRS Support Node (GGSN). Voice traffic flows through 

the GGSN as well, but is required to go through a Media Gateway (MGW) before 

heading out to the Public Switched Telephone Network (PSTN). 

The GGSN may support one or more SGSNs, which in turn support several 

RNCs. Depending on how the UMTS core network is connected to the fixed 

backbone network, SGSNs may be connected to several GGSNs through core routers. 

This is especially the case when the network topology is widespread or when the 

traffic load exceeds the load capacity of a single GGSN. Hence, the UMTS core 
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network topology tends to be a bit more mesh-like, rather than hierarchical like the 

UTRAN. 

 

2.4.2 UMTS Quality of Service 

 

 Quality of Service (QoS) support in UMTS is based on a layered bearer service 

structure shown in Fig. 2.3 as defined in the 3GPP specification [10]. End-to-end QoS 

is provisioned by 3 layers. At the topmost layer, terminal equipment (TE) such as a 

laptop, PDA or mobile phone is connected to the UMTS network via a mobile 

terminal (MT). The UMTS bearer service then provides the QoS inside the UMTS 

network and performs functions necessary for QoS interworking with external 

networks. The external bearer service provides the QoS support outside of the UMTS 

network. This could be the familiar Differentiated Services (DiffServ) [9] or simply 

best-effort service. 
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 Figure 2.3: UMTS QoS Architecture 

 



Chapter   2:      Next-Generation UMTS Networks 

 17

At the second layer, the UMTS bearer service is serviced by the radio access 

bearer (RAB) and the core network (CN) bearer. The RAB involves the air interface, 

the UTRAN and the link to the SGSN. The CN bearer, on the other hand, provides 

transport services within the core network segment located between the SGSN and the 

GGSN. At the lower layers, the RAB service itself consists of a radio bearer service 

between the MS and the UTRAN and an Iu bearer service between the RNC and the 

SGSN. The core network bearer service relies on the backbone network service, 

which may use different layer 2 and layer 1 transmission technologies. 

UMTS specifications define four QoS classes, corresponding to different traffic 

QoS requirements: 

• Conversational Class: This class of service is mainly for real-time 

applications such as voice and video communications. It is characterized 

by a very low delay tolerance. 

• Streaming Class: Multimedia streaming applications come under this class, 

e.g., video streaming. For this class, a certain amount of delay is tolerable 

due to application level buffering. 

• Interactive Class: Applications that require a “reasonable” response time 

come under this class. A higher scheduling priority compared to the 

background class is usually needed to ensure the round-trip delay 

requirement. Examples of applications are interactive web applications, 

database access and m-commerce. 

• Background Class: This class takes the lowest priority as delay is not so 

much a concern for the applications under it. Traditional best-effort 

services like email and background file transfer come under this class. 
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Traffic Parameters Conversational 
Class 

Streaming 
Class 

Interactive 
Class 

Background 
Class 

Maximum bit rate × × × × 

Delivery order × × × × 

Maximum SDU size × × × × 

SDU format information × ×   

SDU error ratio × × × × 

Residual bit error ratio × × × × 

Delivery of erroneous SDUs × × × × 

Transfer delay × ×   

Guaranteed bit rate × ×   

Traffic handling priority   ×  

Allocation/Retention priority × × × × 

Table 2.1: QoS Attributes Defined for UMTS Bearer Service 

 

The applicable QoS profile parameters for each class are shown in Table 2.1. As it 

can be seen, not all attributes are applicable to all QoS classes. The attributes are 

specified in ranges in the specification, depending on the QoS requirements usually 

associated with applications in the class. 

 

2.4.3 Constraints and Challenges 

The demand for diverse mobile services and the drive to cut infrastructure costs 

have fueled the need for efficient QoS provisioning. There has always been an 

argument that QoS can be achieved by provisioning more than sufficient bandwidth. 

However, this is not the case. Even till today, multimedia applications over wireline 

networks face network congestion. Perhaps only those who can afford fixed 

bandwidth lines are the exception. VoIP has also been implemented over wireline. As 

a public service over the Internet, VoIP has been given the image of a “cheaper than 

fixed line” alternative service. It is well-known that the quality of Internet VoIP is at 

best mediocre and unreliable. Only in the enterprise do we see VoIP being effectively 

implemented. The reason for this is that companies are able to afford expensive trunk 
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lines across the Internet backbone. However, this cannot be feasible for a mobile 

network as virtually the entire Internet would have to be “booked” in order for clients 

to roam around globally! 

With a growing need to cut costs as requirements for services increases, service 

providers can longer maintain separate networks for each service rolled out. Instead, 

service providers would need to converge multiple services onto a single 

infrastructure and manage them as a single entity. This would increase bandwidth 

efficiency and save infrastructure costs, while having the flexibility to add on new 

services at any point without building a new network. It is with this management 

concept that this thesis is presented. 

The constraints and challenges that face a provider building a multi-service 

UMTS core network are as follows. 

• Infrastructure costs: A service provider may find it expensive to acquire 

bandwidth, especially over a large network topology and in dense 

metropolitan areas. Therefore, bandwidth is a constraint that has to be 

managed and utilized efficiently. Furthermore, network equipment may be 

expensive to deploy, so a simple and yet effective system is needed. 

• Traffic fluctuations: QoS management becomes critical when there is high 

traffic volume. Due to daily traffic patterns, fluctuations are inevitable. 

Service providers cannot overprovision bandwidth too much as it would be 

inefficient. Therefore when traffic volume is high, traffic with stricter QoS 

requirements must be able to obtain preferential treatment, like higher 

bandwidth provisions. 

• Diversity of services: Different applications have different QoS 

requirements. Some may require low latency, while others may require 
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high assurance. While for other applications like interactive web-browsing, 

users may tolerate up to a reasonable amount of round-trip delay. To 

provision these different levels of service such that all QoS requirements 

are met is a challenging task. It is even more challenging when all the 

different classes of traffic travel through the same core network. 

• On-demand services: When users require services, it is almost always on-

demand. This makes usage very unpredictable and the traffic mix within 

the core network may change constantly. This makes QoS provisioning a 

dynamic problem. At times, there may be a high level of conversational 

class traffic. This does not necessarily lead to poor quality of service, 

unless the volume of other classes of traffic is equally high. Even then, 

only when there is a high volume of say streaming class traffic would there 

be a problem. Since QoS provisioning for one class would be at the 

expense of another. 

• Mobility of users: This is the greatest concern in mobile networks. Users 

expect to have the same QoS wherever they roam to. This means that QoS 

has to be provisioned in advanced. Each time as users move, there is a 

route change and one or more links may be affected. The links to which 

the user’s traffic would be transferred to must have enough bandwidth 

available in order for QoS to be maintained. Reservation and admission 

control is a simple way of providing this. However, reserving bandwidth 

for a large number of users is highly inefficient, as this would require vast 

amounts of bandwidth to be reserved. An intelligent way of handling the 

reservation problem is needed for service providers to be profitable. 
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• Links with different capacities: In a UMTS network, there are links with 

capacities ranging from below 2Mbps for wireless links to OC-3 links 

(155Mbps) in the core network. These links are usually arranged in a 

hierarchical topology, where the lower bandwidth links are served by a 

higher bandwidth link. Therefore, the router that controls the traffic from a 

high bandwidth to a low bandwidth link has to provision downstream 

bandwidth efficiently and effectively (maintaining end-to-end QoS). 

 

2.5 DIFFERENTIATED SERVICES 

The Differentiated Services (DiffServ) architecture [9] was defined by the 

International Engineering Task Force (IETF) DiffServ Working Group as a simple 

and scalable service model for service differentiation within an IP network. This 

means that traffic can be classified and treated with different QoS levels whilst being 

transported through the same network. The DiffServ model has a scalable architecture 

because most of the packet classification and conditioning is done at the edge of the 

network. The core of the network merely forwards the packets from one hop to 

another. 

In the DiffServ model, traffic that enters a network is first classified and then 

possibly conditioned at the edges of the network. Depending on the result of the 

packet classification process, each packet is associated with one of the behavior 

aggregates (BA) supported by the DiffServ domain (DS domain). A BA is a service 

class within the DiffServ framework. Packets belonging to the same BA are marked 

with the same DiffServ codepoint (DSCP) and are given the same forwarding 

treatment by a router. The DSCP is used by the router to select the per-hop behavior 

(PHB) that a packet experiences at each hop within a DS domain. 
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2.5.1 Architecture 

A DS domain is a contiguous set of routers that operate with common sets of 

service provisioning policies and PHB group definitions. (Fig. 2.4). A DS domain is 

typically managed by a single administrative authority that is responsible for ensuring 

that adequate network resources are available to support the service level 

specifications (SLS) defined in the service level agreement (SLA) [29]. 

Bandwidth Broker

Core Routers

Ingress Edge
Router

Logical Bandwidth
Broker Control Lines

Router Connections

Traffic Flow

Egress Edge
Router

 

Figure 2.4: Differentiated Services Domain 

 

A DS domain consists of DS boundary nodes (edge nodes) and DS interior nodes 

(core nodes). The routers within the DS domain may be controlled by a single 

administrative entity known usually as a bandwidth broker (BB) [30].  

2.5.1.1 Edge Nodes  

Edge nodes function as both ingress and egress nodes for different directions of 

traffic flows. When functioning as an ingress node, an edge node is responsible for the 

classification, marking and possibly conditioning of ingress traffic. It classifies each 

packet based on the header with a DSCP. When functioning as an egress node, the 
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edge node may be required to perform traffic conditioning on traffic forwarded to a 

directly connected peering domain. 

Packet classification of packets is done based on the content of fields in the packet 

header. There are two types of classifiers: 

• A behavior aggregate (BA) classifier selects packets based on the value of 

the DCSP only. 

• A multifield (MF) classifier selects packets based on a combination of the 

values of one or more header fields. These fields can include the source 

address, destination address, DS field, protocol ID, source port, destination 

port, or other information, such as the incoming interface. The result of the 

classification is written to the DS field to simplify the packet classification 

task for the core nodes. 

Traffic conditioning may consist of traffic metering, marking, shaping and 

dropping, but not necessarily all. The following describes the elements: 

• A meter is used to measure a traffic stream to determine whether a 

particular packet belonging to the stream should be considered in-profile 

or out-of-profile. The meter passes the information to the other elements in 

the conditioner. 

• A marker is used to write the DSCP into the DS field of the packet header, 

that has been decided by the packet classifier and the information passed 

from the meter. 

• A shaper is used to delay some or all packets in a traffic stream to bring 

the stream into conformance with its traffic profile. 

• A dropper is used to discard some or all packets in a traffic stream to bring 

the stream into conformance with its traffic profile. 
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The two functions described above are shown in Fig. 2.5. 
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Figure 2.5: Packet Classifier and Traffic Conditioner 

2.5.1.2 Core Nodes 

Core nodes are high-speed routers that forward packets according to the PHB 

assigned based on the DSCP in the packet header. Core nodes map the DSCP to one 

of the PHB groups supported by all the core nodes within the DS domain. Core nodes 

connect only to another core node or edge node within the same domain. 

2.5.1.3 Per-Hop Behaviors (PHB) 

When a packet is marked with a DSCP, routers within the DS domain treat the 

packet according to a PHB associated with the DSCP marking. This brings about 

differentiation between the various classes. The three common PHBs defined by IETF 

are the Expedited Forwarding (EF) PHB [31], the Assured Forwarding (AF) PHB 

group [32] and the Best Effort (BE) default PHB. 

The EF PHB is the highest class of service and is reserved for low loss, low 

latency, low jitter, assured bandwidth edge-to-edge service. There can be only one 

instant of EF in a DS domain, unlike the AF PHB group. The AF PHB group provides 



Chapter   2:      Next-Generation UMTS Networks 

 25

four independently forwarded AF classes. A packet in each of these AF groups can 

also be assigned to one of three drop precedences. Therefore, theoretically 12 

instances of AF with can exist in a DS domain. The AF PHB group is mainly used for 

services with looser QoS requirements. The tiered forwarding treatment gives 

different bandwidth priority to each class of service. This is useful for services with 

different latency requirements. The drop precedences provide differential treatment to 

loss performance. This can be used to segregate low loss services like transaction-

based services from loss tolerant services like video streaming. The BE PHB is for 

traffic that does not have any particular QoS requirement, like email. The bulk of 

Internet traffic would fall under this category. Therefore, it is important that service 

providers still provide as much leftover bandwidth as possible to maintain good 

relations with the majority. 

PHBs can be implemented through the scheduler and the dropper in each DiffServ 

router. For the EF PHB, the scheduler should provide more than enough bandwidth so 

that low delay and low loss can be achieved. The dropper should be set to drop EF 

packets once a queue of EF packets starts forming. For the AF PHB group, the 

scheduler should be set to provide a rate assured by the SLS for each class of traffic. 

The dropper should also be set to drop packets from classes with higher packet loss 

tolerance and lower delay tolerance first. To achieve independent bandwidth 

provisioning, a form of weighted fair scheduler [33-37] is recommended.  

2.5.1.4 Bandwidth Broker (BB) 

 In the DiffServ framework, the DS domain management entity has not been 

defined. The bandwidth broker (BB) model [30], as defined by the Internet2 Qbone 

BB Advisory Council [39], is a good implementation of a DS domain management 
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entity for DiffServ. The BB is used in this work to manage resources in the DS 

domain and to configure the DS nodes dynamically through the use of network 

management protocols such as SNMP (Simple Network Management Protocol) [40]. 

A BB manages the QoS resources within the DS domain based on the SLS agreed 

upon. The SLS is a translation of an SLA into the appropriate information necessary 

for provisioning and allocating QoS resources within the network devices. The BB 

may gather and monitor the state of QoS within the DS domain through traffic 

measurements deployed around the domain to ensure that QoS is maintained. This 

measurement-based approach is an alternative to rigid reservation-based approaches 

that require complex signaling between BBs of various DS domains and DS nodes 

within the domain. The measurement-based approach is also more bandwidth efficient 

as it does not require bandwidth to be reserved. However, traffic measurements may 

be costly as probes and counters that eat up processing cycles are required to be 

deployed at each link. We foresee that efficient standalone gear may be developed in 

the near future to implement network measurements efficiently [41,42]. The 

measurements will then be fed back to the BB and the BB can then make decisions on 

how to provision QoS efficiently. The results of the decisions are translated into 

DiffServ router configurations that may change the traffic conditioner settings, the 

buffer management configuration and the scheduler settings. The measurement-based 

management of QoS in a DS domain can thus be seen as a closed-loop control 

problem. 
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2.5.2 Mapping of UMTS Service Classes to DiffServ Classes 

There have already been proposals to map the UMTS service classes to the 

DiffServ classes [11,37] so that the DiffServ model can be used in the UMTS core 

network. However, in this thesis, a simpler mapping is preferred. This is done to 

simplify the presentation of the algorithms proposed and to reduce the complexity of 

the implementation for simulation purposes. The algorithms can be expanded to 

greater dimensions if needed depending on the number of service levels a service 

provider offers in actual implementation. For example, if five service classes are to be 

offered – VoIP and Video conferencing conversational classes, a video streaming 

class, an interactive class and a default class, then the algorithm would provision for 

five bandwidth proportions. 

The thesis presents a solution for a three-class DiffServ implementation – EF, AF 

and BE. The UMTS classes are mapped as given in the table below. 

UMTS Class DiffServ Class QoS Requirements 

Conversational EF Low delay 

Low loss 

Streaming AF Medium delay 

Medium loss 

Interactive EF Low delay 

Low loss 

Background BE Reasonable delay 

Reasonable loss 

Table 2.2: Mapping of UMTS Service Classes to DiffServ Classes 
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CHAPTER 3 

 

BANDWIDTH PROVISIONING 
 

3.1 INTRODUCTION 

 

Bandwidth provisioning is required for the UMTS core network to support a diversity 

of services. This is because traffic flows with various QoS requirements share the same 

network and may contend for the limited bandwidth resources. As traffic patterns are not 

constant, there will be intervals of time when the total amount of data being transmitted 

far exceeds the capacity of the links. This phenomenon is known as traffic burstiness. Its 

occurrence is due to the random nature of user usage and the way IP packets are 

packetized for transmission. Therefore, though the average amount of traffic over a long 

period of time may be constant, there may be congestion over shorter periods. 

If however, the congestion periods are long enough to cause delays and packet drops 

(due to buffer space being exhausted), the amount of bandwidth provisioned for delay 

and loss intolerant traffic should be increased at the expense of other more tolerant traffic 

flows. This is known as service differentiation. Service differentiation allows certain 

classes of traffic to have better “service”, in terms of priority to network resources, than 

others. This is usually required for applications that need a high level of QoS. For 

example, video conferencing applications need data to be sent with little delay. 

Otherwise, there will be irritating synchronization problems between the two parties 

trying to converse with each other. 
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A service differentiation model called DiffServ has been described in the previous 

chapter and will be used in this work. Bandwidth provisioning in DiffServ networks 

involves the determination of the amount of bandwidth to allocate for each PHB across 

each network link in the DS domain. This is usually done at the router’s outgoing ports 

through packet scheduling. Through bandwidth provisioning, behavior aggregates (BA) 

share the bandwidth in a certain proportion as they contend for the use of a link to 

transmit data packets from one node to another. By allocating different proportions of 

bandwidth, the service levels of each BA can be differentiated. 

 

3.2   QOS THROUGH BANDWIDTH PROVISIONING 

 

The original intention of DiffServ was to provide premium or better-than-best-effort 

service. Therefore, the concept of QoS was a qualitative one. This means that services 

requiring a higher level of QoS would be allocated a PHB that gives preferential 

treatment in terms of scheduling and buffering. However, the absolute level of service is 

not defined. This may be sufficient as a starting point, but as users demand better service 

quality and become less tolerant to poor service, the need for quantitative QoS arises. In 

the new definition of the expedited forwarding PHB [31], absolute values of delay and 

loss requirements can be specified. This can be seen as a trend towards having more 

concrete SLS defined in SLAs [29,43]. Unfortunately, as demands grow the provisioning 

of resources to meet strict QoS requirements becomes much more complicated. This is 

especially so when the traffic mix in the network is so diverse and QoS mechanisms of a 

large network have to inter-work with each other [44]. 
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It is important to note that service differentiation only becomes enforced when there 

is congestion. It has already been argued in the previous chapter that having larger 

capacity links to combat congestion is inefficient, as data traffic has a high level of 

burstiness. Therefore, the best way of handling congestion is to manage resources in the 

network. In the following analysis, it is shown that, given a comfortable level of 

buffering, dynamic bandwidth provisioning can be used to determine the QoS achieved. 

This means that a solution that effectively and intelligently provisions bandwidth 

adaptively is good enough to maintain a reasonably strict level of QoS. The analysis is 

based on tail-drop FIFO queues and Weighted Fair Queuing (WFQ) schedulers [33]. Fig. 

3.1 shows the WFQ model that is to be used. For each service class i , iλ  is the arrival 

rate of the packets, iσ  is the buffer size, iq  is the average queue length and iψ  is the 

weight assigned. r  is the link capacity. 
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Figure 3.1: WFQ Scheduler 
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3.2.1 Throughput Analysis 

 

It is common to use a weighted fair queuing (WFQ) scheduler to provision bandwidth 

on DiffServ links. A WFQ scheduler is bandwidth efficient in the sense that it fairly re-

allocates any excess bandwidth not used by a flow to other flows that require more than 

their allocated bandwidth. This is especially useful when there is congestion and a 

particular aggregate flow does not need its full allocation. Other aggregate flows can then 

use the excess bandwidth. The amount of bandwidth provisioned by WFQ scheduler 

across a link for a particular aggregate flow i  follows the equation 

rB n

j
j

i
i

∑
=

=

1
ξ

ξ
     (3.1) 

where iξ  is the weight given to flow i , n  is the number of flows utilizing the link and r  

is the link capacity. This is however the amount of bandwidth guaranteed to an aggregate 

flow and does not guarantee anything for individual flows within the aggregate. It is only 

possible to assure an average throughput over longer timescales for individual flows. The 

proportion of bandwidth allocated to the flow is given by the proportion 
∑

=

= n

j
j

i
i

1
ξ

ξ
ψ . 

From equation (3.1), is can be seen that the throughput requirements of the service class 

can be met by provisioning iψ  accordingly. 

 

 

 

 

 

 



Chapter   3:      Bandwidth Provisioning 

 32

3.2.2 Queuing Delay Analysis 

 

Queuing delay is mainly caused by packets building up in queues. This happens when 

there is insufficient bandwidth to service the flow. For a non-preemptive scheduler like 

the WFQ scheduler, slight delays caused by burstiness cannot be avoided. Thus, it is 

assumed that some delay for a small percentage of packets is tolerable. Rather, the aim 

should be to maintain the percentage of packets that face excessive delay below the 

tolerable level. 

The delay bound for a WFQ scheduler is given by 

r
p

r
D

i

i
i

max+=
ψ
σ

    (3.2) 

where p  refers to packet size. 

The average latency is given by 

r
p

r
pq

d ave

i

ii
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ψ
    (3.3) 

i
i

i
qd ψ∝⇒      (3.4) 

To maintain a certain average latency, the average queue length iq  has to be kept 

small. This is done by ensuring that rii ψλ < . We clearly see that by increasing the 

bandwidth provision iψ , iq  will not only be kept small, but id  will also be reduced due 

to both a small iq  and a large iψ  (given in equation (3.4)).  

Note that,     ( ) 1max =iψ       

     ( )
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D i
i

maxmin
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σ

   (3.5) 
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and     ( )
r

ppq
d aveii

i
+

=min    (3.6) 

Therefore, if iq  is reduced due to a large iψ  ( 1→iψ ), then from (3.6) we see that 

r
pdi

max→  (a constant value). However, we cannot indiscriminately set the provision 

of one class to be large, as this will cause a trade-off in a lower provision for another 

class. We can see from the above analysis that the average latency of a service class can 

be controlled by strictly by the provisioning of iψ . Due to the trade-off in the 

provisioning of one class with another, it is important to dynamically and adaptively 

control the bandwidth provisions of each class with respect to one another. 

 

3.2.3 Packet Drop Analysis 

 

 Packet losses due to full queue buffers can occur in 3 ways: 

• When the burst rate (the rate at which packets enter the queue over a short 

period) rii ψγ > . This occurs over short timescales, when the burst time (the 

period of time over which multiple packets are entering the queue) 

r
t

ii

i
b ψγ

σ
−

> . Such packet losses can only be prevented by adequately 

allocating iσ , as setting iψ  large enough to absorb bursts is similar to over-

provisioning, which is bandwidth inefficient. 

• When rii ψλ > . This can occur over long timescales and is due to insufficient 

bandwidth to meet sustained traffic demands. This can be solved through 

increasing iψ . 
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• When there are large IP packets being served in other queues and preemption 

is not an option. This problem seldom occurs in large capacity backbone links 

and is more commonly seen in low bandwidth links, where the transmission 

time for a large IP packet can take up considerable time. Packets start to get 

dropped when 
i

iave
r

p
λ

σ> . To prevent packet drop, 
r

p i
i

λ
σ max> . 

 

3.3 METHODS OF PROVISIONING 

 

A survey of the methods of provisioning is done here. The reasons why priority 

queuing and bandwidth partitioning methods are insufficient for provisioning multi-

service UMTS core networks are given. 

 

3.3.1 Priority Queuing 

The use of priorities as a way of providing better service is common not only in 

networking [45-49] but also in any service industry. Those who want better service pay 

more and are served first. There are a few assumptions made here. Firstly, there is a 

desire for a premium service that is not possible to get otherwise. This implies that 

normally when there is no service differentiation, the service is not good enough for 

some. Secondly, customers who are given priority are not too concerned about the actual 

service level. They just want a better service. If the better service is still not good enough, 

they are willing to pay even more for even better service. This brings about the concept 

of multi-priority. Lastly, in a priority-based system, there is no way to guarantee a 

specific level of service, as the service level may decline when more customers join the 

service class. 
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The points mentioned above are similar in multi-service networks that employ 

priority queuing. If priority queuing is used in DiffServ networks to differentiate, for 

example, EF, AF and BE classes, it would be difficult to guarantee any strict QoS. The 

QoS received by traffic in the AF class is dependent on volume of EF traffic. When EF 

traffic volume is high, the QoS of AF traffic degrades. This is known as starvation, as the 

needs of a higher priority customer are met first regardless of the needy low priority 

customer. Traffic in the EF class is not protected from degradation either. Since the 

priority is applied to the whole aggregate flow, individual flows cannot be guaranteed any 

deterministic QoS [47,49]. Therefore, the implementation of priority queuing in DiffServ 

networks is at best for qualitative QoS and cannot be used for quantitative QoS. 

Methods have been proposed to introduce absolute QoS to DiffServ networks based 

on priority queuing. These include using admission control and dynamic priority 

assignment [45], aggregation control and buffer management [47,48], and traffic 

conditioning and measurement-based admission control [49]. However, these methods 

are mainly used to provision for EF class traffic. AF traffic is not considered. It is fair to 

say that if AF traffic requires similar delay bounds (albeit looser ones), some form of 

extension to the priority queuing that have been proposed can be used, but this has not 

been researched so far. Therefore, it may not be feasible to use an entirely priority-based 

scheme to implement DiffServ in UMTS multi-service networks. 
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3.3.2 Bandwidth Partitioning 

Bandwidth partitioning is by far the most popular way of provisioning service. It is 

simple and effective. Bandwidth partitioning is done by allocating a fixed amount of 

bandwidth to the customer. This means that there is no sharing of bandwidth. It is as if 

there are separate pipes from point to point. Therefore, each customer is guaranteed a 

certain bandwidth, alleviating the problem of starvation associated with priority queuing. 

However, there is a trade-off. Bandwidth partitioning methods usually employ over-

provisioning. This is bandwidth inefficient as mentioned previously. Either users end up 

paying for more than they need or service providers end up with fewer customers than 

they could have dimensioned for. 

In a DiffServ network, bandwidth partitioning is used to allocate and reserve 

bandwidth for each class. In the strictest sense, once bandwidth has been fully allocated, 

an increase in bandwidth allocation of one class can only result from a re-allocation from 

other classes. The optimal allocation of bandwidth to each class on each link is known as 

the bandwidth provisioning/allocation/dimensioning optimization problem. Links have to 

be provisioned such that each class has sufficient bandwidth to meet traffic demands and 

QoS requirements. The problem is formulated in section 3.4 of the thesis. 

Usually, the problem of estimating traffic patterns and meeting Qos is separated from 

the allocation problem. (We have chosen to define and solve the problem as a whole, as 

this would lead to better bandwidth allocation efficiency). The problem of estimating the 

required bandwidth is not a simple one. We discuss some methods that have been 

proposed later in section 5.2. Most providers resort to over-provisioning based on the 
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average volume of traffic observed, the burstiness of the traffic and how strict the QoS 

requirements of the services provided are. 

Methods have been proposed to reduce the rigidity of the bandwidth allocation. Link-

sharing strategies [50] have been proposed to have shared portions of bandwidth in a 

hierarchical manner. Over-provisioning is reduced as over-provisioned portions can be 

shared. Virtual partitioning [51] employs a penalty concept, where bandwidth is initially 

nominally provisioned. When excess bandwidth is required, a penalty is imposed. The 

aim is to minimize the penalty and thereby increase the bandwidth allocation efficiency. 

Optimal allocation methods are described in references [52-55]. They include re-

allocation methods, greedy methods, preemption methods and measurement-based 

methods [52-55]. 

All the bandwidth partitioning methods described in the literature are meant for use in 

more stable (in terms of predictability of traffic pattern) wireline networks over long 

timescales. Traffic patterns are very dynamic in UMTS core networks. This is because 

users are expected to move about in the network, causing traffic patterns to change 

rapidly. Such methods would become too complex to employ in shorter timescales.  

 

3.3.3 Weighted Fair Queuing 

Weighted Fair Queuing (WFQ) [33] is a fair and bandwidth efficient way of 

provisioning bandwidth. In WFQ, bandwidth is shared in proportions according to a ratio 

of weights. Any excess bandwidth not used from any proportion is fairly re-distributed 

according to the ratio of the other proportions. In this way, there is absolutely no wastage 

of bandwidth. WFQ can theoretically achieve full utilization of link capacity when the 

incoming traffic rate is greater than the link capacity. Another advantage is that 
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bandwidth is inherently re-allocated without the need for extra mechanisms, unlike 

bandwidth partitioning methods. 

WFQ is capable of assuring bandwidth for each class, making it a good substitute to 

bandwidth partitioning. A minimum bandwidth according to the proportion allocated and 

the capacity of the link is assured. The proportion allocated is determined by the WFQ 

weight assigned in relation to the other classes. WFQ weights can be assigned to each 

class in the DiffServ framework to provide service differentiation [56]. The actual 

bandwidth provisioned to any class can be greater than or equal to the minimum assured 

as excess bandwidth unused by other classes may be re-allocated. 

In section 3.2, it was shown that the adjustment of the WFQ weights can change the 

QoS experienced. The only drawback to using WFQ is the inability to strictly guarantee 

QoS. This means that delay and loss bounds have to be loose. However, this is not so 

much of a problem for most applications, other than mission-critical applications. A 

loose, or correctly a probabilistic, bound may not be able to strictly guarantee QoS, but it 

can give an assurance on the percentage of traffic meeting the QoS bounds. Most users 

would not mind an occasional delay or loss, as long as most of the time they are getting 

good service. If mission-critical applications, such as real-time mobile medical equipment 

carried by paramedics, need to be provisioned for, then a combination of priority queuing 

and WFQ can be used [57]. 
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3.4 FORMULATION OF BANDWIDTH PROVISIONING OPTIMIZATION 

PROBLEM 
 

Based on the method of provisioning using weighted fair queuing, the bandwidth 

provisioning problem can be broadly formulated as follows: 

For all nodes, 

Given, 

)(, tx jEF , )(, tx jAF , )(, tx jBE  )(tx∈ , and jC  for all ∈j  all outgoing links from 

node 

where )(, tx jEF , )(, tx jAF  and )(, tx jBE  are the traffic rates of each DiffServ class 

(EF, AF and BE) entering the node destined to leave through link j , )(tx  is the set of 

all input traffic rates at every node, and jC  is the capacity of link j . 

Select, 

)(, tw jEF , )(, tw jAF , )(, tw jBE  )(ty x∈  

where )(, tw jEF , )(, tw jAF  and )(, tw jBE  are the weighted fair proportions of 

bandwidth for each class on link j  and )(ty x  is the set of all actions selected at every 

node based on the input )(tx . 

 

Such that, 

( ))(),(max tytxrr x
Yy∈=  

where Y  is the set of all possible actions and r  is the net revenue (gross revenue 

minus QoS penalties) earned depending on the pricing plan and SLA contracted, which 
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spell out the revenue earned for provisioning each class of service and the penalties paid 

out if any of the QoS requirements are breached. 

Constrained by, 

*EFEF ll < , *AFAF ll < , *BEBE ll < , *EFEF DD < , *AFAF DD < ,  

where l and D  are the actual loss and delay percentages and *l and *D are the loss 

and delay requirements. The loss requirement is given as the maximum percentage of 

packet loss tolerable and the delay requirement is stated as a bound on the percentage of 

packets that are allowed to exceed the end-to-end latency bound. 

Depending on the objective function, the solution space of the problem may vary with 

the tightness of the QoS constraints. Although a solution can be readily found through 

some approximate method when the objective function is to meet some loose QoS 

targets, a solution is not so easily found when the QoS constraints are tight and the 

objective is to maximize revenues from bandwidth usage. There are some constraints that 

may make the problem non-tractable. 

Firstly, the problem above is a continuous time problem. This means that at every 

time instant, there is a different optimization problem to solve due to the continuously 

changing traffic rates of each class. As the traffic entering each node is a random variable 

depending on time, the weights may have to be changed from time to time if any of the 

constraints are not met. A method of circumventing this is to discretize the time space 

into time intervals. This would lead to an approximation of the traffic rates and a set of 

weights to be used in each time interval. Unfortunately, selecting an appropriate time 

interval is a difficult task, as too long an interval would render the solution ineffective 

and too short an interval would become too computationally intensive. 
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Another problem confronting us in solving the bandwidth provisioning problem is the 

fact that traffic rates are random variables that have distributions that are not easily 

obtained. From the above formulation, we see that in order to set the weights, for time 

interval t , we have to know the traffic rates for time interval t  at the beginning of the 

interval. This would require a priori information on the traffic that has yet to arrive. This 

is a well-known problem of bandwidth provisioning, and much work has been done in 

trying to model, approximate or even predict traffic distributions. While traffic prediction 

and characterization methods are fairly advanced today, they still lack a way to balance 

multi-class traffic mix. Due to the lack of feedback from the network and exchange of 

state information between the flows, traffic predictors concentrate on individual flows, 

neglecting the need for load balancing between the flows, so as to achieve QoS all round. 

Lastly, in order to determine how much bandwidth to provision, the network topology 

and QoS mechanisms need to be considered. For example, the capacity of the links, the 

number of nodes and the buffer management schemes and settings, all need to be used in 

theoretical computations to achieve the desired QoS. This means that the behaviors of 

network mechanisms need to be well-understood with respect to changing traffic. 

Although the area of network theory has been well-researched [58,59], results often give 

loose bounds and are based on assumptions. 

From the former discussion, it can be seen that the bandwidth provisioning problem is 

a “hard” problem that cannot be solved precisely. Many of today’s networks that are 

deployed make use of a static provisioning method, where a conservative level is used to 

over-provision the network. Based on past history, the bandwidth is provisioned to 

balance QoS performance and bandwidth utilization. However, this is a very crude and 
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highly approximate method. Some form of adaptive bandwidth provisioning has to be 

used if bandwidth is to be used efficiently. 

A different approach has to be taken to circumvent the problems mentioned above. 

Feedback control is a means whereby the network is able to feedback how the current 

bandwidth provisioning is performing in terms of meeting QoS. By using an iterative 

method, a good approximate solution can be obtained through experience. Feedback 

control methods may be model-based or modeless. The modeless methods are appealing 

as the modeling of network mechanisms can be too cumbersome. Feedback control 

methods do not need to have any prior knowledge of the traffic, as methods can be made 

to be reactive or conservatively proactive. The methods proposed in this thesis solve the 

bandwidth provisioning problem through iterative optimal control using a reinforcement 

learning framework. We describe how reinforcement learning-based optimal control is 

able to solve the bandwidth provisioning problem and why it is a favorable method. 
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CHAPTER 4 

 

REINFORCEMENT LEARNING-BASED PROVISIONING 
 

4.1 INTRODUCTION 

 

The concept of learning is a very integral part of life. Right from the moment a 

child enters the world, he learns from the environment around him. This interaction 

with the environment allows him to learn new things and to do things in more 

efficient ways. For example, the child may first learn to pick up a fork and start to jab 

at objects on his plate, but gradually, he learns to use his fork for anchoring, twirling 

and mashing his food. This learning can only be a result of his exploration and 

cognitive ability to reason what ways are better than others. Each time he explores, 

the interactive environment gives him a feedback; perhaps by turning the fork he 

could get better results. The child then registers this as a positive feedback and would 

like to try something similar again. After repeated successful results from variations 

of turning the fork, the action of turning the fork to eventually get the spaghetti 

twirled is reinforced. This is a good example of how learning can help an agent (the 

learner) achieve optimal results in the long run without requiring any prior 

knowledge, understanding of the mechanics, or supervision from a learned agent. 

All learning examples share similar features. They involve the interaction between 

an active decision-making agent and its environment in which the agent seeks to 

achieve a goal despite uncertainty about its environment. The agent’s actions are 

permitted to affect the future state of the environment (the turning of the fork in the 

pool of spaghetti gets it around the fork), thereby affecting the options and 

opportunities available to the agent at later times. At the same time, the effects of 
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actions cannot be fully predicted, and so the agent must frequently monitor its 

environment and react appropriately. Lastly, all learning agents can use their 

experience to improve their performance over time. Though prior knowledge of the 

agent influences what is useful or easy to learn, the interaction with the environment 

is essential for adjusting behavior to exploit specific features of each task. 

 

4.2   REINFORCEMENT LEARNING THEORY 

 

Reinforcement learning [60] is the learning of a mapping from situations, 

presented to a learning agent from the environment, to actions, taken to influence the 

environment, so as to maximize the positive feedback received or achieve an optimal 

goal. Different from other forms of machine learning, the learner does not need to be 

directly told which actions to take but must instead discover the actions that yield the 

most reward by trying them. A reinforcement learning agent must be able to sense 

information pertinent to the state of its environment and must be able to take actions 

that affect the state. The agent must also have a goal defined in terms of how the 

environment behaves over time under the influence of its actions. These three aspects 

– sense, action and goal – are the fundamental blocks of all reinforcement learning 

algorithms. 

All reinforcement learning algorithms require a particular synergistic combination 

of search and memory. Search is required to find good actions, and memory is 

required to remember what actions worked well in what situations in the past. A 

dilemma that arises from this is that a tradeoff between exploration and exploitation 

exists. To obtain a lot of reward, a reinforcement learning agent must prefer actions 

that it has tried in the past and found to be effective in producing reward. But to 

discover which actions these are, it has to select actions that it has not tried before. 
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In the following, an exposition of the basic concepts of reinforcement learning 

theory is given. The concept of reinforcement learning was also developed at the same 

time by Bertsekas [61] and is known as Neuro-Dynamic Programming (NDP). The 

advantages of using reinforcement learning are then discussed and examples of how 

reinforcement learning has been applied effectively to some network control problems 

are described. 

 

4.2.1 Basic Concepts 

 

The reinforcement learning problem is framed as a problem of learning from 

interaction to achieve a goal. The learner and decision-maker is known as the agent. 

The entity it interacts with, comprising everything outside the agent, is called the 

environment. The agent and the environment interact continually with the agent 

selecting actions and the environment responding to those actions and presenting new 

situations to the agent. The environment also gives feedback about its state in terms of 

rewards or penalties, which the agent tries to maximize over time. 

The agent and environment interact in a sequence of discrete time steps, 

..3,2,1,0=t . At each time step, t , the agent receives some representation of the 

environment's state, Sst ∈ , where S  is the set of possible states. Based on the state, 

the agent then selects an action, ( )tt sAa ∈ , where ( )tsA  is the set of actions available 

in state ts . One time step later, in part as a consequence of its action, the agent 

receives a numerical reward, ℜ∈+1tr , and finds itself in a new state, 1+ts . Fig. 4.1 

shows the agent-environment interaction. 
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Figure 4.1: Reinforcement Learning Framework 

 

At each time step, the agent maps the state ts  to an action ta . This mapping is 

called the agent's policy and is denoted as tπ , where ( )ast ,π  is the mapping function 

that selects aat =  if sst = . Reinforcement learning methods modify the agent’s 

policy through its experience. The purpose or goal of the agent is formalized in terms 

of the reward, which passes from the environment to the agent. The reward is just a 

single number whose value varies from step to step. Informally, the agent's goal is to 

maximize the total amount of reward or minimize the total amount of penalty it 

receives over the long run. 

The framework is abstract and very flexible, allowing it be applied to many 

different problems in many different ways. This follows the inherent nature of 

reinforcement learning, which can be applied to any problem that fits the above 

framework. For example, the actions might be low-level controls such as the voltages 

applied to the motors of a robot arm, or high-level decisions such as whether to go for 

a movie or have lunch first. Similarly, the states can take a wide variety of forms. 

They can be completely determined by low-level sensations, such as direct sensor 

readings, or they can be more high-level and abstract, such as the mood of a person. 

In general, actions can be any decisions we want to learn how to make, and the state 
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representations can be anything we can know that might be useful in making them. 

The state and action representations vary greatly from application to application and 

affect the choice of algorithms chosen to solve them. There have been many 

reinforcement learning algorithms that have been developed to solve all kinds of 

problems [62]. Fittingly, reinforcement learning algorithms should be categorized by 

the problems rather than the methods. The simplest of problems are those that have a 

discrete number of state and actions. There are also those that have continuous state 

and action spaces. Algorithms that solve problems with continuous state spaces are 

known as connectionist algorithms. 

The use of a reward signal to formalize the idea of a goal is one of the most 

distinctive features of reinforcement learning. Although this way of formulating goals 

might at first appear limiting, in practice it has proven to be flexible and widely 

applicable. The best way to see this is to consider an example of how it is used 

naturally. In the same example of a child learning to use his fork, an evaluation 

(reward) is given each time the child attempts to do something with his fork. In 

learning how to twirl the spaghetti, the child may see no reward until he finally 

succeeds in twirling the spaghetti, when the satisfaction of accomplishing something 

is a positive reinforcement signal. A more intelligent child might be able to associate 

intermediate steps like having the spaghetti slip from the fork by turning the fork the 

wrong way with a negative signal or seeing more spaghetti get twirled as a positive 

sign to achieving a higher goal. 

We see that for an agent to learn something, rewards must be provided to it in 

such a way that in maximizing them the agent will also achieve its goals. It is critical 

that the rewards we set up for the agent’s feedback truly indicate what we want 
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accomplished. Therefore, the reward function used for evaluating action responses to 

a state is the key to proper learning. 

 

4.2.2 Advantages of Using Reinforcement Learning 

 

The main advantage of reinforcement learning is that the framework allows us to 

relate a wide range of state, action and reward representations in a manner that suits 

the problem’s abstraction and goals. This is advantageous in problems where the 

action may not directly affect the state in a deterministic manner, or where the goal of 

the problem may not have a known relation with the state or action. The 

reinforcement learning framework allows us the freedom to forgo complex analysis of 

state-action-goal relations and even to do away with any form of modeling if need be. 

In section 3.4, it was seen that the bandwidth provisioning problem is a hard problem 

involving continuous time, stochastic traffic patterns, and complex interactions of 

QoS mechanisms. This is the key motivation for selecting reinforcement learning 

algorithms to solve the bandwidth provisioning problem. 

The freedom of abstraction allows partial relations between state and actions. In 

other model-based methods, there needs to be complete state representation relating to 

the actions. The freedom of abstraction also allows optimization of objectives such as 

revenue, which is on a different management plane from control mechanisms. Finding 

closed-form relations for such abstractions is often difficult. Without the need for 

modeling, changes in objectives can easily be implemented in the reinforcement 

learning framework. 

Furthermore, reinforcement learning using associative (input-output mapping) and 

connectionist techniques, combines the advantage of pattern recognition through 

Neural Networks [63] and the ability to relate patterns to actions. The use of neural 
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networks also offers some degree of prediction, allowing actions to be taken for future 

states based on current patterns. Another advantage of connectionist techniques is that 

they are able to generalize learnt state-action policies. These advantages are ideal for 

the continuous nature of the bandwidth provisioning problem. 

 

4.2.3 Application of Reinforcement Learning in Network Control 

 

Reinforcement Learning (RL) is not new to the networking community. There 

have been much success in applying RL to network control problems like admission 

control, routing, flow control, channel allocation, adaptive marking and path 

selection. 

Marbach [64,65] first worked on the application of RL to call admission control 

and routing Integrated Services networks. The objective was to maximize revenue by 

controlling the number of calls admitted per unit time. Since the problem is too 

complex to allow for an exact solution, RL was naturally used. A feature-based state 

representation was used where the inputs were the number of calls of each class 

admitted on each link. The action was to decide whether to admit the call and on 

which route the call should traverse. Tong [66-67] followed up the work by including 

QoS constraints in a multimedia network. This placed constraints on the solution 

space. Q-Learning [68] was used to solve the problem. 

In the area of flow control, Atlasis [69] used RL to modify the leaky-bucket. Due 

to the statistical nature of burstiness, policing sources can be very complex. The LB-

SELA algorithm proposed makes use of RL to learn the behavior of the source, so that 

the leaky-bucket can be optimally tuned to result in better statistical gain and QoS 

guarantees. 
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RL has also been used to solve channel allocation problems in cellular networks. 

In Singh’s work [70], NDP was used to re-allocate channels such that the reused 

channels are sufficiently far apart. The aim was to minimize the number of blocked 

calls while having a high channel reuse. The problem had a very large state space and 

therefore was infeasible to be solved by dynamic programming methods. Previously, 

only heuristic methods that ignored the optimal control framework could be used. 

However, it was shown that the problem could be optimally solved using an NDP 

framework. Further works on dynamic channel allocation have since been done by 

Nie [71] and Senouci [72]. Senouci recently solved the problem under QoS 

constraints for call-blocking in multi-class cellular networks. He included call 

admission control in order to maintain QoS and changed the objective to maximizing 

revenues. 

In work that our group has done, RL successfully been applied to adaptive 

marking in DiffServ networks [73]. Q-Learning was used to re-mark the packets 

entering a DiffServ (DS) domain. The objective was to minimize transmission costs 

by re-marking a packet as a lower class. This however has to be done whilst QoS 

constraints were still met. RL was also applied to path selection in MPLS networks 

[74]. Paths were selected such that new call blocking due to insufficient bandwidth 

was minimized. It was shown that RL is able to allocate paths better than the 

commonly-used widest-shortest-path (WSP) method. 

All of the above works surveyed have applied RL to network control problems 

that have discrete solution spaces. A few have used function approximation to reduce 

intractable state spaces. However, none so far have used connectionist RL methods to 

solve network control problems with continuous state and action spaces. In reality, 

problems with continuous spaces are usually the problems that are intractable due to 
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the infinite number of states and actions possible. Heuristic methods are usually used 

to solve such problems, but they are often done without the notion of optimality. In 

this thesis, work is presented on the use of RL in continuous state-action spaces. It is 

hoped that this work would serve as a model for other network control problems in 

continuous space to be solved using continuous space RL. 

 

4.3 CONTINUOUS STATE-ACTION SPACE REINFORCEMENT 

LEARNING 
 

One of the fundamental requirements in reinforcement learning is that the 

information learnt can be stored. The problem in reality is that a wide class of control 

problems has states and actions that must be described using real-valued variables. In 

this class of problems, an agent must select an action from a continuous range of 

values after every fixed time interval while basing its decision using the currently 

perceived state, which is also one of infinitely many possible states. This poses a 

problem that is not seen in discrete spaces. In discrete spaces, RL algorithms often use 

a lookup table to store state and action variables [65]. However, this is not feasible in 

continuous spaces. 

Another problem is that every experience that the agent goes through is unique. 

This means that the agent must be able to generalize what it has learnt in the past and 

apply it to future situations that it will face. Connectionist RL algorithms should 

therefore be able to handle real-valued variables as inputs, precisely map the state-

action pairs to their assigned values, use memory resources efficiently, support 

learning without too much computational burden, and generalize the immediate 

outcome of specific state-action combinations to other regions of the state and action 

spaces. 
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A common approach that has been used to generalize continuous spaces it to 

quantize the state and action spaces into a finite number of cells and aggregate all 

states and actions within each cell [75]. This is one of the simplest forms of 

generalization in which all the states and actions within a cell have the same value. 

Thus, a lookup table can still be used. However, there is a compromise between the 

efficiency and accuracy of this class of tables that is difficult to resolve at design time. 

In order to achieve accuracy, the cell size should be small to provide enough 

resolution. But as the cell size gets smaller, the number of cells required to cover the 

entire state and action spaces grows exponentially, which causes the efficiency of the 

learning algorithm to deteriorate because more data is required for the approximation. 

Another better approach is to avoid the problems associated with quantizing the 

state space altogether by using other types of function approximators, such as neural 

networks, that do not rely on quantization and can be used to generalize across all 

states [76-78]. The approach however is limited to associating one function 

approximator to represent all the states and one specific action. This is insufficient 

when the action space is also continuous, though the action space can be quantized. 

The next sections introduce two types of algorithms that are able to generalize over 

both state and action spaces. These algorithms are used in the bandwidth provisioning 

algorithms that will be introduced later in the thesis. 

 

4.3.1 REINFORCE Algorithms 

 

A framework was proposed by Williams [79] in which stochastic learning 

automata units were used in multi-layer connectionist network. A class of learning 

algorithms called REINFORCE algorithms were derived, which enable parameter 

updates to be made in a way that stochastically hill-climbs a performance measure in 
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reinforcement learning problems. He further defined the stochastic semilinear unit, 

whose output iy  is drawn from some given probability distribution whose mass 

function has a single parameter ip , which is in turn computed as 

( )iii sfp = ,     (4.1) 

where if  is a differentiable squashing function i  is the iteration step number and 

∑==
j

jij
iTi

i xwxws ,   (4.2) 

the inner product of iw  and ix . ix  and ijw  are the inputs and weights on the input 

lines to this unit. The probability density function for iy  is expressed as 

( ) { }ii
i

ii
i xwyxwg ,Pr,, ξξ == ,   (4.3) 

emphasizing its dependence on the weights of the unit and its input vector. 

In a reinforcement learning problem, the objective of the learning system is to 

learn to respond to each input pattern Xxi ∈  with the action Yy x ∈ , where xy  is 

such that { } { }( )yxrEyxrE i
Yy

xi ,max, ∈= . In the REINFORCE algorithm, the original 

expected value of the reward { }xi yxrE ,  is transformed to { }WrE , where W , the 

weight matrix, gives the associative input-output mapping. Note that the use of 

expected values here takes into consideration the randomness of the inputs, outputs 

and reward. The task of the reinforcement learning system is then to search the space 

of all possible weights matrices W  for a point where { }WrE  is maximized. 

Williams defines the class of algorithms that are of the following form as 

REINFORCE algorithms. The learning algorithm updates the parameter ijw  at the end 

of each trial after receiving immediate reward r  as follows 

( ) ijijijij ebrw −=∆ α ,    (4.4) 
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where ijα  is a learning rate factor, ijb  is a reinforcement baseline, and 

ijiij wge ∂∂= ln  is called the characteristic eligibility of ijw . The reinforcement 

baseline ijb  is conditionally independent of iy , given W  and ix , and the rate factor 

ijα  is non-negative and depends at most on iw  and t .  

REINFORCE algorithms have the property (proven by Williams) that relates 

{ }WrEW∇ , the gradient in weight space of the performance measure { }WrE , to 

{ }WWE ∆ , the average update vector in weight space, in such a way that { }WWE ∆  

lies in a direction for which { }WrE  is increasing. This means that for each weight 

ijw , the quantity ( ) ijiij wgbr ∂∂− ln  represents an unbiased estimate of 

{ } ijwWrE ∂∂ . 

An extension of the single-parameter output distribution is to draw the output 

from a multi-parameter distribution. In particular, when the output is drawn from a 

Gaussian distribution, with parameters µ  and σ  individually controllable by separate 

weights, control over σ  is tantamount to control over the exploratory behavior. 

For such a Gaussian unit, the real-valued output y  has a density function g  given 

by 

( )
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The characteristic eligibility of µ  is then 

2
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∂ yg ,    (4.6) 
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and the characteristic eligibility of µ  is then 

( )
3

22ln
σ

σµ
σ

−−
=

∂
∂ yg ,   (4.7) 

A REINFORCE algorithm for this unit thus has the form 

( ) 2σ
µαµ µµ

−
−=∆

ybr    (4.8) 

and 

( ) ( )
3

22

σ
σµασ σσ

−−
−=∆

ybr ,   (4.9) 

where µα , µb , σα  and σb  are chosen appropriately. 

We see that equation (4.8) adjusts the bias of the output y  and equation (4.9) 

adjusts the amount of exploration away from µ . The terms ( )µbr −  and ( )σbr −  

indicate how good the last action was with respect to the reinforcement baselines µb  

and σb . 

Gaussian units are simple to use and are efficient in finding an optimal action. 

However, they lack the ability to respond to different input states, as µ  is not 

determined by x . Therefore, Gaussian units are only capable of reacting to changing 

states through the reinforcement signal r . This may be a good thing as a new state 

may not require much of a change in the action to achieve a high value of r . In fact, 

by choosing µ  to be independent of x , we can reduce the volatility of the system by 

slowing the response to changing states. This feature is especially useful when we use 

it to provision for the UMTS core network, where stability is more of an issue. In the 

next section, another algorithm is described that takes into consideration the input 

state when deciding the output action to take. This would enable faster response to 

changing states. 
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4.3.2 Stochastic Real-Valued Units 

 

The Stochastic Real-Valued (SRV) unit introduced by Gullapalli [60] is a 

variation of the REINFORCE algorithm. In fact, the SRV unit is actually an extension 

of the Gaussian unit. The SRV unit introduces a parameter θ  that relates the state x  

to the mean µ . The relation is represented by a simple inner product 

n
T

n xθµ = ,     (4.10) 

where n  is the iteration step number. 

Another difference between the SRV unit and the Gaussian unit described above 

is that σ  is not a parameter belonging to W . Gullapalli decided that σ  should be 

directly related to the baseline reinforcement r̂  through a squashing function 

( )nn rs ˆ=σ ,     (4.11) 

and that the baseline reinforcement should be related to the state x  by some 

parameter φ  through a simple inner product 

n
T

nn xr φ=ˆ ,     (4.12) 

However, this parameter is not updated according to the REINFORCE algorithm. 

Instead, the parameter φ  is updated using the LMS rule of Widrow and Hoff [81] 

given by 

( )( ) nnnnn xrxyr ˆ, −=∆ ρφ ,    (4.13) 

where 0>ρ  is a learning rate parameter. 

The update of the parameter θ  is similar to equation (4.8) and is given by 

( )( ) nnnnnn xyrr µσθ −−=∆ ˆ .   (4.14) 

Notice that the state nx  is now included in the update and that 3σαθ =  is used. 
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SRV units improve over Gaussian units by relating the current state observed and 

the bias µ  of the action taken. Furthermore, the amount of exploration is directly 

controlled by the baseline reinforcement and is not a parameter that needs to be learnt. 

This implies that as the baseline reinforcement becomes more favorable, the amount 

of exploration is proportionally limited. In Gullapalli’s algorithm, this is effective 

because reinforcements range between 0 and 1; 1 being the optimal reinforcement. 

However, in many cases the maximum reinforcement is unknown. Although the 

reinforcement baseline is learned using the LMS rule, it is difficult to gauge the actual 

goodness level. In the bandwidth provisioning algorithms that are to be presented later 

in the thesis, some portion of William’s REINFORCE algorithm is used to improve 

the SRV algorithm. 

 

 

4.4 REINFORCEMENT LEARNING FORMULATION OF BANDWIDTH 

PROVISIONING OPTIMIZATION PROBLEM 
 

In section 3.4, the bandwidth provisioning problem was formulated as an 

optimization problem. It was seen that the problem was hard to solve due to the 

continuous and random nature of its variables. The reinforcement learning framework 

allows us to “learn” the solution to hard problems through iterative improvements. 

The bandwidth provisioning problem is re-formulated in a reinforcement learning 

framework as follows: 
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At each node, 

Given, 

i
jEFx , , i

jAFx , , i
jBEx ,  ix∈ , for all ∈j  all outgoing links from node 

where i
jEFx , , i

jAFx ,  and i
jBEx ,  are the traffic rates of each class entering the 

node destined to leave through link j , and ix  is the set of all input traffic rates at 

every node for the thi  iteration. 

Select, 

i
jEFw , , i

jAFw , , i
jBEw ,  xy∈  

where i
jEFw , , i

jAFw ,  and i
jBEw ,  are the weighted fair proportions of 

bandwidth for each class on link j  and xy  is the set of all actions selected at 

every node based on the input ix . 

Such that, 

{ } { }( )yxrEyxrE i
Yy

xi ,max, ∈=     (4.15) 

where r  is the net revenue (gross revenue minus QoS penalties) earned 

depending on the pricing plan and SLA contracted, which spell out the revenue 

earned for provisioning each class of service and the penalties paid out if any of 

the QoS requirements are breached. 

The main difference between the RL-based formulation and the linear 

programming formulation is the approach taken. Whilst the linear programming 

formulation requires an optimal solution to be derived continuously at every time 

instance, the RL-based formulation (which is in fact a dynamic programming [61] 

formulation) is an iterative formulation that seeks a solution (policy) that achieves a 
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long term goal. The problem with the linear programming method is that it is 

intractable to determine the optimal solutions at every time instance. The advantage of 

the RL-based formulation is that a policy (one that achieves objective (4.15)) can be 

developed through reinforcement learning algorithms that would, in the long run, be 

close to optimal. This would circumvent the problems of continuous time, traffic 

predictability and complex analysis of network topology and QoS mechanisms, which 

render the original formulation intractable.  
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CHAPTER 5 

 

REINFORCEMENT LEARNING-BASED PROVISIONING FOR 

CORE BACKBONE NETWORK 
 

5.1 INTRODUCTION 

 

In this chapter, we discuss the provisioning of UMTS core backbone networks. 

The UMTS core backbone network has characteristics that are different from fixed 

backbone networks. Firstly, UMTS core backbone networks are managed by service 

providers, usually mobile telecommunications providers. Whereas, fixed backbone 

networks are managed by carriers. The main function of carrier networks is to 

transport data at high speeds point-to-point, either between two geographical locations 

or between two service provider networks. Service providers on the other hand 

operate a distributed network providing numerous multi-point heterogeneous 

connections to all their customers within their topologically large network. Therefore, 

the provisioning of high-speed fixed backbone networks has very different conditions 

when compared to the provisioning of UMTS core networks. 

Secondly, QoS management is critical in UMTS core networks due to multiple 

levels of services provided over a large and diverse topology, whereas, QoS 

management in fixed backbone networks is relatively straightforward, requiring 

guarantees only from point-to-point. Thirdly, traffic patterns in UMTS core networks 

are more diverse than in fixed backbone networks, which transport traffic that is 

highly aggregated and has longer timescales. Lastly, due to the transport of UMTS 

data and voice services over the network, traffic in UMTS core networks would have 

very different traffic patterns and requirements from that of current core networks of 

data service providers and mobile network operators. Such existing core networks 
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either carry only data traffic or only voice and circuit-switched data traffic. The 

provisioning of these types of networks is much less complex as compared to future 

converged networks. 

In the following section, current methods of adaptive provisioning are reviewed 

and reasons why they are inadequate for UMTS core networks are given. A solution 

that is capable of use in UMTS core networks is then proposed. 

 

5.2 CURRENT METHODS OF ADAPTIVE BANDWIDTH 

PROVISIONING 

 

There have been few bandwidth provisioning proposals in the literature 

specifically for UMTS core networks. However, the area of bandwidth provisioning 

for fixed networks has been long researched. Bandwidth provisioning methods 

include measurement-based admission control methods, adaptive control methods, 

methods that use traffic predictors and methods that solve the bandwidth resource 

problem through the use of pricing strategies. Some of the methods proposed are 

simply for estimating or predicting bandwidth requirements. Others are capable of 

provisioning for multiple classes in Integrated Services (IntServ) [82] networks or in 

DiffServ networks. The methods surveyed also have different QoS criteria. Some 

methods make use of cell-loss ratio (CLR) and blocking probability in the 

Asynchronous Transfer Mode (ATM) [83] and IntServ context, while other methods 

use latency and packet loss in the DiffServ framework. 
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5.2.1 Measurement-based Admission Control Methods 

 

Admission control is a means to control network congestion and maintain QoS. 

The decision to admit a flow is based on the effective bandwidth already utilized by 

admitted traffic. Due to multiplexing, the effective bandwidth utilization of an 

aggregated flow can be much lower when there is greater aggregation. The 

determination of the effective bandwidth is however a difficult task and has been 

studied by many researchers. The task is made all the more difficult when there are 

multiple classes of traffic and each class of traffic has QoS requirements that must be 

maintained. Measurement-based admission control methods have been popular due to 

its model-free approach. Jamin [84], Kelly [85] and Knightly [86] have all contributed 

significantly to the development of various methods for estimating the effective 

bandwidth. The algorithms have mainly been focused on IntServ networks.  

Jamin [87] has commented that measurement-based admission control methods, 

while being effective in improving bandwidth utilization while maintaining a 

reasonable service level, cannot guarantee any quantitative QoS level. Therefore, the 

use of such methods for provisioning bandwidth can only be used for loose QoS 

requirements. However, UMTS core networks are required to carry conversational 

and streaming classes of traffic, which have strict QoS demands. 

Lately, measurement-based admission control methods have also been developed 

for DiffServ networks and VoIP networks [88,89]. Oottamakorn [88] showed that by 

using effective envelopes and service curves, the delay bound can be guaranteed for 

an aggregate class. Although the use of service curves can provide guarantees, this is 

usually at the expense of some loss in utilization. Mase [89], on the other hand makes 

use of adaptive control to adapt a parameter that determines the level of admission 
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control. If a stricter level of QoS is required, the parameter can be made to be more 

conservative. Adaptive control is a much better means of achieving QoS. 

In general, the use of admission control methods to provision bandwidth leads to 

less than full utilization. This is because the effective bandwidth computation is 

always conservative, especially when strict QoS is required. Furthermore, traffic is 

assumed to be multiplexed. Without any class-based scheduling, bandwidth cannot be 

guaranteed.  

 

5.2.2 Adaptive Control Methods 

 

The use of adaptive control methods to adjust weighted fair proportions is a 

straightforward and effective way to maintain QoS. By using indicators such as the 

average queue length, traffic intensity and QoS feedback like cell loss ratio, delay and 

jitter, adaptive controllers can adjust weighted fair proportions to maintain these 

indicators within a required range, so that QoS requirements can be met. 

Various types of adaptive controllers can be used to different effects. 

Chandramathi [90] and Siripongwutikorn [91] have proposed the use of fuzzy 

controllers using QoS feedback and average queue length as inputs respectively. 

Fuzzy control makes use of some expert heuristics to control bandwidth provisioned. 

However, without pre-knowledge or experience of the network dynamics, it is 

difficult to establish the right utility functions to use. This is evidenced by the need to 

have various sets of functions for different networks as well as for different QoS 

requirements. Chou [92] presented an adaptive controller that makes use of a Genetic 

Algorithm (GA) to judge which bandwidth provisioning settings have been effective 

in achieving high utilization given a certain traffic load. A neural network was used to 
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adjust the parameters of the GA agent. The controller was used to minimize 

bandwidth changes while keeping utilization high and not for meeting QoS though. 

There are adaptive controllers that make use of more direct ways to control 

bandwidth provisions. Wang [93] in his paper describes a way controlling the level of 

provisioning using a similar principle to that of the well-known Random Early 

Detection [94] algorithm. The average queue length is used to determine whether 

thresholds have been exceeded. If they have, the bandwidth provisions are adjusted 

accordingly. The method was shown to be effective in improving QoS, but did not 

have the ability to maintain a target QoS level. In another work by Liao [95], an 

optimal control method was proposed that can achieve a targeted level of QoS, both in 

terms of delay and loss. Bandwidth provisions are adjusted based on the target traffic 

intensity as a target control value and the measured traffic intensity as a feedback 

signal. Whenever there is an overloaded or underloaded traffic condition, the 

weighted fair bandwidth proportions are adjusted. The delay requirement is met by 

limiting the queue length and the loss requirement is met by setting the target traffic 

intensity as a function of the loss requirement. Though this method was shown to be 

highly effective, bandwidth provisioning through control feedback methods is at best 

reactive in nature. If the convergence time is longer than the traffic fluctuation cycles, 

the controller may not be able to reach steady state each time. A method that is 

capable of proactively (rather than reactively) provisioning bandwidth is required. 

 

5.2.3 Traffic Prediction Methods 

 

A way of proactively provisioning bandwidth is to predict the traffic and decide 

how best to provision for future traffic such that QoS can be met and utilization can 

be maximized. We review some methods in the literature that are capable of 
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predicting multimedia traffic. However, it should be noted that even if traffic can be 

predicted, the task of provisioning traffic to maintain certain levels of QoS for all 

classes is a difficult one. This is due to the lack of good methods to load balance the 

different traffic classes during congested periods. (Load balancing, or sometimes 

known as traffic engineering, usually involves the task of re-routing portions of traffic 

to other routes). The need to provision the right “mix” (the proportion of bandwidth 

allocated to each class) of traffic on each link is a vital part of maintaining QoS levels 

in converged networks, such as UMTS core networks. Nonetheless, traffic prediction 

methods have been popular as it gives good foresight to network managers. 

Sahinoglu [96] has proposed the use of a novel wavelet-decomposed signal energy 

approach to characterize traffic arrival rates in order to predict near future behavior. 

The algorithm presented by the author however aims to improve average queue length 

and bandwidth utilization for a homogeneous link. Hence, the algorithm may not be 

effective on heterogeneous links. Moreover, the algorithm has no notion of QoS. 

Another prediction method based on FARIMA models was demonstrated by Ilow 

[97]. It was shown that the method was capable of predicting both short term and long 

term traffic patterns. 

A prediction method proposed by Gallardo [98] takes into account QoS. A 

modified leaky bucket is used together with their linear prediction algorithm to 

control the service rate of each class. In his paper, Gallardo challenged the 

effectiveness of effective bandwidth methods in maintaining QoS. He demonstrated 

his method in DiffServ networks and showed that his scheme was able to optimize 

network resources and thus minimize the probability of violating QoS contracts. 

Although such a method is effective, the application of rate control to provision 

bandwidth, although better than admission control in terms of bandwidth utilization, 
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is still not as effective as provisioning bandwidth through a weighted fair queuing 

scheduler. 

 

5.2.4 Pricing Methods 

 

Another way of provisioning bandwidth that is popular lately is through pricing. 

This method is a macro-level method, unlike micro-level methods that solve QoS 

provisioning solely at the network layer. For micro-level methods, the SLA is first 

negotiated at a business level, without much consultation at a network level. Once an 

agreement as been penned, the service provider then provisions his network to meet 

this SLA. Therefore, the SLA influences the provisioning, but not the other way 

around. What pricing methods do is to introduce the influence of provisioning on the 

SLA. This two-way method would involve major changes in business frameworks as 

market competition (through bidding) becomes a two-way affair. Service providers 

would be able to offer alternative levels of service on-the-fly depending on the 

network condition. This greatly departs from long term contractual agreements 

commonly seen today. Nonetheless, it is a probable and possibly viable way of 

provisioning bandwidth in the future. 

Semret’s work on pricing, provisioning and peering [99] is the pioneer in this 

field. Semret proposed the use of a decentralized auction-based approach to allocate 

bandwidth at the edges of DiffServ networks. To optimize the allocation of bandwidth 

and service levels, a game-theoretic method was used. In recent work, Malinowski 

[100] proposed a pricing method for flow control and Garg [101] introduced a three-

tier pricing model with penalties that allows customers to dynamically change their 

demands and encourage better utilization of resources. 
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Pricing models can be tiered according to different levels of service offered 

(SLA), because customers have different requirements are thus willing to pay 

differently. The use of multi-tiered pricing models to influence the provisioning of 

bandwidth for different classes is a good objective-based approach. By provisioning 

with relation to not only the QoS requirements contracted but also with relation to the 

pricing of services, a bandwidth provisioning policy that satisfies both customers and 

service providers can be achieved. This idea is used in the following solution that we 

propose. 

 

5.3 REINFORCEMENT LEARNING ADAPTIVE PROVISIONING BASED 

ON REVENUE MAXIMIZATION 
 

 

When a customer requires a mobile service to be provided to him, an SLA 

(service level agreement) is contracted between the customer and the mobile service 

provider. This contract binds various aspects of the level of service that the mobile 

service provider has to provide for the customer. The SLA would include details 

about the QoS specifications. These are found in the service level specifications (SLS) 

[29] portion of the SLA. The SLS specifies requirements that are pertinent to the 

service provided. Usually, the service provider offers several standard SLS for the 

mobile services they provide. 

In these SLS, delay requirements are specified in terms of an upper bound, where 

each packet is to have end-to-end delay less than the value specified. Throughput 

requirements are specified in terms of a lower bound, where the rate of traffic 

delivered measured at regular intervals is to be greater than the value specified. Packet 

loss requirements are specified in terms of the packet loss ratio. All these QoS 

requirements are what customers expect from the service provider. However, for most 
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applications that mobile customers would be using, like video streaming and web-

browsing, occasional service lapses can be tolerated to a certain level. Only mission-

critical applications like emergency retrieval of medical records require absolute 

guarantees. These services form a small percentage of traffic volume and can be 

provisioned separately using some priority-based scheme. For most of the other 

applications, customers would not mind paying lower prices for less-than-guaranteed 

services. This is especially attractive to the customer if he has a higher level of 

tolerance. 

 

5.3.1 Multi-tiered Pricing Strategy 

 

Since QoS is closely tied to the customer’s demands and a customer’s demands 

may be influenced by the price he is willing to pay, it is important to develop a pricing 

strategy that benefits both the customer and the service provider. There are a few 

ways of pricing a service, and the method of pricing is linked very much to the 

method of provisioning used. Often, users are charged a fixed price per month for 

unlimited time usage. This is sometimes backed by a bandwidth guarantee, as service 

providers may treat the service like a leased-line service. Service providers use 

bandwidth partitioning to provision for such services. This type of charging benefits 

users who have a high usage pattern, but for the majority, this unlimited level of 

service is not needed. For most of the time, the bandwidth is left idle. This also does 

not benefit the provider as the unused bandwidth can be used to generate more 

revenue. However, for such service provisioning, QoS is easily guaranteed as 

bandwidth is partitioned in a way that would usually be more than user’s need (partly 

due to the denominations that bandwidth is offered in). 
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Another way of charging users is by time usage. This is a good way of charging 

for circuit-switched services. In current 2nd Generation mobile networks and ATM-

based data networks, service providers can multiplex users based on erlang 

computations; the users are assumed to fully utilize the bandwidth for the time they 

are connected. Again, many customers do not require the full bandwidth when they 

are connected. Often the data traffic pattern is bursty and service providers make use 

of effective bandwidth methods to statistically multiplex a greater number of users. 

For such services, QoS may not be so easily guaranteed, but often it can be assured to 

a high level, if the multiplexing is done in a conservative way. However, being 

conservative would mean less bandwidth utilization. 

The best way of charging users (in an economic sense) is to do it based on data 

usage. Since packet-switched services came into the market, some service providers 

have offered such services. An amount is charged for each kilobyte of data 

transmitted. In this way, users are charged exactly for the amount of bandwidth used. 

This could mean great savings for users. Although high-usage customers could benefit 

from unlimited bandwidth services due to a flat fee, usage-based pricing may be 

competitively implemented in such a way that gives attractive rebates to high-usage 

customers. Thus, such usage-based pricing benefits both low and high usage 

customers. It also benefits service providers, because bandwidth utilization can be 

increased with greater aggregation. The drawback to this is that QoS is difficult to 

achieve. 

To solve this issue, a penalty-based approach is proposed. Penalty refunds are not 

new to service providers, who offer refunds for any QoS breeched in the SLA. 

Extending this concept, a service provider may offer to refund based on the amount of 

data transmitted that breeched the QoS contracted. The penalty may be valued at 
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double the price charged for transmitting the data. For example, if the price charged is 

$0.001 per kilobyte transmitted; then the penalty could be $0.002 per kilobyte of data 

that had QoS breeched. That means if during a transmission session, 10 packets of 10 

kilobytes out of 100 packets were dropped or delayed during transmission, then the 

amount charged would be $0.80. This approach acts as a disincentive for service 

providers to breech the service level contracted, while at the same time providing 

some room for occasional lapses, which the user may not mind as long as he is 

adequately compensated. 

The provisioning of multiple services on the same converged network requires a 

multi-tiered pricing model. As the level of QoS demanded increases, users should be 

made to pay higher rates. This would also be equally complimented by higher penalty 

rates, since a breech of such high value services would usually be less tolerable. For 

example, conversational and interactive classes of traffic that use the EF DiffServ 

class may be charged at a higher price, while streaming class traffic that use the AF 

class may be charged at a lower price. This has implications to the bandwidth 

provisioning strategy. An intelligent bandwidth provisioning scheme would take into 

account the pricing plan and SLS contracted, in order to maximize the revenue earned 

by the service provider. This may mean provisioning more for the AF class if it is 

more profitable than the EF class for example. The next section proposes such an 

intelligent bandwidth provisioning algorithm that is able to learn a policy that 

maximizes revenue. 

 

5.3.2 RLAP Algorithm 

 

The concept behind the proposed Reinforcement Learning-based Adaptive 

Provisioning (RLAP) scheme is that an SLS tied to the proposed multi-tier pricing 
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model described above can be used as a feedback mechanism to determine a policy 

that maximizes revenue. Reinforcement Learning (RL) can be used to adaptively 

adjust bandwidth provisioning for each DiffServ class of traffic. The reward function 

used to compute the reinforcement feedback is constructed as the amount of net 

revenue earned based on the pricing plan contracted. The RL agent adaptively adjusts 

weighted fair proportions in each DiffServ router at a regular interval based on the 

feedback of how much revenue was generated in the last interval. Since the 

provisioning based on current traffic conditions affects the QoS experienced and the 

revenue earned, the action-reward forms a closed-loop as illustrated in Fig. 5.1. 

 

Ingress
Router

RL Agent
(Bandwidth

Broker)

Egress
Router

Evaluation
(Revenue and
QoS penalties)

Action
(Provisioning

Settings)

Incoming
Traffic

Outgoing
TrafficProvisioned

Traffic

Environment
(Network)

 

Figure 5.1: Reinforcement Learning Loop in RLAP 

 

When RLAP is applied to the UMTS core backbone network, it can be used in the 

following scenarios to improve provisioning: 

1) Changing traffic conditions – due to changing traffic intensities of EF and AF 

traffic, EF and AF weights need to be adjusted accordingly. Under-

provisioning may lead to high delays and low throughput. On the other hand, 

over-provisioning may not be necessary when traffic intensity is low. 
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2) Strictness of SLS – depending on the delay and throughput bounds and the 

level of congestion in the network, weights can be changed to reflect how 

critical these bounds are. The lower the bound and the higher the traffic 

intensity, the greater should be the weight. 

3) Different pricing plans – by changing the reward function, weights can be 

changed in favor of the traffic that generates more revenue. If penalties are not 

severe, weights can be lowered to take advantage of revenue from other 

traffic, allowing the occasional penalties. 

To describe how RLAP can be implemented in a DiffServ network, a one-domain 

topology in Fig. 5.2 is used here as an example, and is made as simple as possible 

without loss of generality. Sources 0S  to 7S  have destinations 0D  to 7D  

respectively. 1R  and 2R  are ingress edge routers and 5R  and 6R  are egress edge 

routers. These routers could represent either GGSNs or SGSNs depending on the 

direction of traffic. 3R  and 4R  represent core routers in the UMTS core backbone 

network. While only a single direction is considered here, the scheme works similarly 

for bi-directional traffic. In general, traffic flows may enter from any edge router and 

exit through any other. 
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Figure 5.2: DiffServ Network Topology 

A bandwidth broker 1BB  is used as the centralized collection and decision-

making point. A similar framework to the Clearing House Architecture proposed by 

Chuah [102] is used. RLAP is used instead for determining bandwidth provisioning. 

RL agents can either be placed in each router, or housed in the bandwidth broker with 

separate logical agents for each router. We chose the latter, to be in line with the 

framework. This design also requires almost no modification to existing routers in the 

framework to implement RLAP. 

At regular intervals, 1BB  collects traffic measurements (in terms of number of 

bits) from all routers in the domain for computation of revenue. Concurrently, 

destination nodes report, via a system of accounting, any QoS violations in terms of 

amount of traffic delayed and number of intervals throughput was not met, to the 

bandwidth brokers along the paths of the flows (in a multi-domain case); 1BB  in our 

topology. 1BB  then makes decisions through the RL agents and sends the WFQ 

weight configurations to the respective routers. SLAs and pricing plans are stored in 



Chapter   5:      Reinforcement Learning-based Provisioning for Core Backbone Network 

 74

the database for computing the charges and penalties used as feedback to the RL 

agents. In a multi-domain scenario, bandwidth brokers may shift some of the 

functions up the hierarchy of bandwidth brokers. In return, decisions made are passed 

downwards towards the routers. 

In implementing REINFORCE Gaussian units in the RLAP scheme; we have set 

the output y  of the RL agent to be the WFQ weight settings that determine 

provisioning. The time step n  is the thn  time interval since the RL agent started; each 

time interval being of duration T . At the end of each interval, the cumulated reward 

r , based on the evaluation of the weight settings for traffic conditions over the 

interval, would be used as feedback to adaptively adjust µ  and σ  of the RL agent, 

which are used to determine the next weight settings. For RL agent iRL , iy , iµ  and 

iσ  are vectors with elements jiy , , ji,µ  and ji,σ  for each PHB aggregate j . 

For each agent iRL , the RLAP algorithm is as follows (omitting the subscript i  

for clarity): 

 

Initialize 0µ  and 0σ . 

At the end of every interval n ,   1≥n  

update  1ˆ)1(ˆ −−+= nnn rrr γγ  

))(ˆ(1 nnnnnn yrr µαµµ µ −−+=+  

and  
n

nnn
nnnn

y
rr

σ
σµ

ασσ σ

22

1
)(

)ˆ(
−−

−+=+  

Select  ),(~ nnn Ny σµ  

 



Chapter   5:      Reinforcement Learning-based Provisioning for Core Backbone Network 

 75

The choice of initial values for 0µ  and 0σ  is an important issue. The effect of the 

choice of different initial values for 0µ  is simulated and discussed in the next section. 

For all real practical cases, we suggest that the choice of 0µ  be based on any limited a 

priori information available; for example, traffic specifications given by the user and 

past traffic measurements may provide average and peak throughput information, 

which can be used as the initial provisioning values. 

The choice of 0σ  should be made such that a trade-off is struck between the 

smoothness of the exploration and the rate of convergence. Larger 0σ  values tend to 

provide better convergence to the global optimal solution; however, fluctuations in µ  

values may tend to be undesirably large. Smoothness of exploration is important 

during the real operation of the network. A possible way to solve this concern is to 

have a trial phase, where a large 0σ  may be used to train the RL agents, before actual 

(chargeable) network traffic is carried. We have not done this in our experiments and 

0σ  was set to a rather low value. This was done intentionally to demonstrate the 

capability of RLAP under situations where such trial periods are not possible and 

large fluctuations in network settings are undesirable. 

In any proposal that implements RL agents, convergence is always an important 

issue. In continuous RL methods, the assumption that the reward function has no 

discontinuity in the practical range and also be monotonic towards the global 

optimum must hold [77]. If not, such algorithms may be stuck in a local maximum. In 

our case, the pricing plan must have a monotonically increasing form, which is true 

for most cases. A related issue is the rate of convergence. In RLAP, this is controlled 

by the constants µα , σα  and γ . By adjusting their values, a trade-off is made 

between the rate of convergence and the fluctuation in action values. A smaller 
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constant would mean a slower rate of convergence, but a larger constant would 

increase the fluctuation in the WFQ settings. 

Another parameter to consider is time interval T . It should be set up to balance 

the trade-off between the adaptability of the scheme and the frequency of disruption 

caused by network re-configurations. We prefer a larger interval as it causes less 

disruption to the network and also allows RLAP to be less susceptible to traffic 

irregularities, due to the averaging of traffic and reward/penalty measurements over 

longer periods. 

 

5.3.3 Reward Function 

 

We have emphasized in section 4.2.1 the importance of setting up a reward 

function that accurately reflects our goals. The goal of RLAP is to maximize the 

revenue earned by the service provider. This is achieved by provisioning bandwidth 

for each class of users such that revenue earned from carrying traffic is maximized 

without incurring too much penalty from QoS violations. 

We make use of the proposed multi-tier pricing model as the reward function. 

Users are charge based on the amount of traffic carried on the network. As such, users 

pay only for what they use. A different price is charged for each service class and a 

penalty is imposed for each QoS criteria, contracted in the SLA, not met. 

The reward function computes the reward ir  for RL agent iRL  in the following 

way: 

∑ 
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For each PHB aggregate j , jc  is the charge per bit of traffic carried, jit ,  is the 

amount of traffic forwarded by router i , jil ,  is the number of packets loss at router i , 

jid ,  is the amount of traffic that passed through router i  not meeting delay QoS and 

jith ,  is the number of intervals not meeting throughput QoS for traffic that passed 

through router i . jlossp ,  is the penalty per packet loss, jdlyp ,  is the penalty per bit of 

PHB aggregate j  not meeting delay QoS and jthrp ,  is the penalty per interval of PHB 

aggregate j  not meeting throughput QoS. 

 

5.3.4 Simulation and Results 

 

5.3.4.1 Simulation Setup 

 

Using ns-2 [8] DiffServ extensions, the topology in Fig. 5.2 was set up to compare 

RLAP with static provisioning. We show that RLAP is able to improve even over 

commonly used over-provisioning methods (this requires the assumption that users 

are able to describe their usage, which is not always possible). Droptail queues were 

used for each class instead of the usual RIO (RED with In and Out packets) buffer 

management to separate the effects of RLAP from RIO. The buffer length for AF and 

BE traffic were set to 100, while the buffer length for EF traffic was set to 2 for the 

static provisioning case (as is the common practice to keep end-to-end delay low) and 

10 for our scheme. We show that RLAP is able to accommodate more packets in the 

buffer, and yet not hamper end-to-end delay by much. 

 

5.3.4.2 Traffic Characteristics 

 

In our simulations, traffic from all 3 PHB aggregates were generated on all links 

in the DiffServ domain. The links were made to carry close to full capacity most of 
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the time. Sources 0S  to 3S  have similar characteristics to sources 4S  to 7S  

respectively. Table 5.1 summarizes the characteristics of the traffic sources. 

 

TABLE 5.1: Characteristics of Traffic Sources 

Source Traffic Type Connection 
Inter-arrival Time (s) 

Connection 
Holding Time (s) 

ON Rate 
(kbps) 

S0 , S4 EF 1.875 30 64 

S1 , S5 BE 7.5 60 128 

S2 , S6 AF 4.5 30 300 

S3 , S7 BE 1.775 30 128 

 

0S  is an EF source that represents delay bounded traffic like VoIP traffic. 2S  is 

an AF source that represents loosely delay bounded, high throughput requirement, 

traffic like video traffic. Both are modeled as exponential ON-OFF sources with same 

ON (500ms) and OFF (500ms) times. 3S  is a BE source that represents non-bounded 

aggregated web traffic. It is modeled as a pareto ON-OFF source with the same ON 

and OFF times as the EF and AF traffic. These 3 sources run over UDP. The last 

source 1S  runs over TCP, and is a BE source that represents non-bounded high 

throughput traffic like FTP traffic. It is a CBR source that consumes any unused 

capacity on the link. This enables the link to be fully utilized most of the time. 

Sources 0S  to 7S  have destinations 0D  to 7D  respectively. The average amount of 

generated traffic towards each ingress router for EF and AF are 500 kbps and 1 Mbps 

respectively. BE traffic utilizes the remaining amount of capacity; about 1.5 Mbps. 

 

5.3.4.3 Experimental Details 

 

In the static provisioning case, we set up the WFQ weights to be static throughout 

each experiment lasting 20,000s. For the RLAP case, we set up the experiment to 
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initially begin with the same weights as in the static case. We also set 0µ  to be equal 

to the static setting. The RLAP scheme then kicks in after 1,500s, adjusting the WFQ 

weights in the routers adaptively and improving the policy in the RL agents through 

time. All simulations involving RLAP were run with 5 different random seeds. The 

mean and range is plotted wherever possible. For both cases, we measure performance 

only after an initial period of 5,000s for an additional 15,000s. The time-step interval 

T  chosen is 500s. The choice of µα , σα  and γ  used are 0.00005, 0.00001 and 0.2 

respectively. 

Table 5.2 shows the pricing plan used. The charge for EF and AF traffic is 10 and 

4 times the charge for BE traffic respectively. The penalties for packet losses and 

delayed EF traffic are double the charge. The penalties for AF traffic not meeting the 

delay or the throughput bound is equal to its charge, such that if AF traffic does not 

meet both requirements, it will be penalized double its charge. The delay requirements 

for EF and AF are 15 ms and 35 ms respectively, and the throughput requirement for 

AF is 200 kbps. 

 

TABLE 5.2: Pricing Plan 

cEF 0.0001 ploss,EF 0.2 pdly,EF 0.2 

cAF 0.00004 ploss,AF 0.08 pdly,AF 0.04 

cBE 0.00001 ploss,BE 0.02 pthr,AF 10 
 

 

 

TABLE 5.3: WFQ Weight Settings for Various Provisioning Strategies 

Provisioning Strategy WFQ Weight Settings (EF:AF:BE) 

Under-provisioning 1:2:3 

50% over-provisioning 3:4:5 

Over-provisioning 1:1:1 
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5.3.4.4 Comparison under Different Initial Provisioning 

 

In our first experiment, we compare how RLAP improves over various initial 

WFQ weight settings. Since RLAP only kicks in after 1,500s, the weights remain 

static for the initial period. After which, RLAP adjusts the weights from these initial 

values. We benchmarked RLAP against static provisioning, which maintains the 

WFQ weights throughout the experiment. For static provisioning, the different WFQ 

weight settings mean different provisioning strategies. Three strategies were tested. 

The under-provisioning strategy provisioned EF at the expected average traffic rate, 

i.e., 0.5 Mbps of bandwidth. The 50% over-provisioning strategy allocated 50% above 

the average EF traffic rate, i.e., 0.75 Mbps of bandwidth. The most commonly-used 

strategy, the over-provisioning strategy, which allocates EF with more than sufficient 

bandwidth to handle bursts, provisions EF traffic at twice the bandwidth. For all 3 

strategies, AF traffic was provisioned at the expected average AF traffic rate, i.e. 1.0 

Mbps, while BE was allocated the remaining of the capacity. It is to be noted that 

static provisioning settings can only be determined when the average or peak rate 

information is accurately available a priori. On the other hand, RLAP requires only 

an estimate as an initial point. For our experiment, the average rate of the traffic 

generated by simulation is assumed to be known in order to have a comparison. The 

initial weight settings are given in Table 5.3. 
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Figure 5.3: Average Throughput per Flow under Different 

 Initial Provisioning for Static Provisioning 
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Figure 5.4: Average Throughput per Flow under Different 

Initial Provisioning for RLAP 
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Figure 5.5: Average Delay under Different 

 Initial Provisioning for Static Provisioning 
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Figure 5.6: Average Delay under Different 

 Initial Provisioning for RLAP 
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Figure 5.7: Revenue Comparison under Different Initial Provisioning 
 

Fig. 5.3 and 5.4 show the average throughput comparisons and Fig. 5.5 and 5.6 

show the average delay comparisons across flows in each PHB for the various 

strategies. It can be seen that RLAP is able to find a policy that improves QoS for AF 

traffic and maintains QoS for EF traffic at the expense of QoS for BE traffic. This is 

despite having increased throughput for EF and AF traffic. We also observe that 

RLAP is able to adjust to this policy regardless of the initial weight settings. For the 

case of static provisioning, we see that as the initial level of EF provisioning 

increases, the average throughput and delay of each PHB aggregate changes. This 

shows the level of bias given to provisioning EF. The performance for RLAP 

however, is almost consistent. This clearly demonstrates the ability of the algorithm to 

find an optimum strategy regardless of the initial values used. 

Fig. 5.7 shows a chart of the improvement in revenue that RLAP makes over static 

provisioning. This is a key feature of RLAP; the ability to adapt provisioning based 

on a pricing plan and QoS requirements, such that long-term revenue is maximized. 
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The slight difference in levels of revenue for the RLAP case shows that though RLAP 

improves over static provisioning, the convergence to the optimal policy is slightly 

slower for the average and 50% over-provisioning cases. As with all adaptive 

algorithms, this is due to the need to converge from an initial point further away from 

the optimal point. Nonetheless, convergence is still achieved. 

 

5.3.4.5 Comparison under Changing Traffic Conditions 

 

In the second experiment, we set out to compare how RLAP improves over static 

provisioning over varying traffic conditions. EF traffic from 0S  and 4S  was halved 

after 10,000s and 15,000s respectively to cause the change. We used the peak-rate 

over-provisioning strategy for this experiment and the rest that follow since it is the 

common practice. Tables 5.4 and 5.5 summarize the results obtained and Fig. 5.8 

shows the gain in revenue of RLAP over static provisioning across time. We see that 

RLAP always performs better than the static provisioning case and that it is able to 

adapt well to the changes in traffic pattern at time 10,000s and 15,000s, evidenced by 

a drop followed by an increasing trend in gain in revenue. Increase in gain is observed 

despite more favorable conditions for the static provisioning (since there is relatively 

lighter priority traffic). We also see that the QoS performance is similarly good, as in 

the previous experiment. By plotting out all 5 runs in Fig. 5.8, we see a trend that 

regardless of the random seed used, the algorithm would still converge. During the 

initial period, there is high fluctuation due to learning and exploration. But after 

10,000s, all 5 runs converge. This trend is seen in other experiments as well. 
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Figure 5.8: Percentage Gain in Revenue of RLAP over Static Provisioning across 

Time 

 

TABLE 5.4: QoS and Revenue Achieved for Static Provisioning 

Traffic Type Throughput (bps) Delay (ms) Revenue 

EF 51,679 10.5 804,743 

AF 261,006 26.3 838,167 

BE 105,262 87.6 464,828 

 

TABLE 5.5: QoS and Revenue Achieved for RLAP 

Traffic Type Throughput (bps) Delay (ms) Revenue 

EF 59,171 12.2 1,147,587 

AF 273,094 18.7 1,159,049 

BE 103,048 106.3 439,558 
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Figure 5.9: Average Throughput Comparison under Different QoS Requirements 
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Figure 5.10: Average Delay Comparison under Different QoS Requirements 
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Figure 5.11: Revenue Comparison under Different QoS Requirements 

 

5.3.4.6 Comparison under Different QoS Requirements 

 

In our third experiment, we seek to demonstrate how RLAP performs when QoS 

requirements are changed. To alter the QoS requirements, we reduced the EF delay 

bound to 12ms in one case and the AF delay bound to 30ms in the other case to 

represent stricter EF and AF requirements respectively. Fig. 5.9 and 5.10 show a 

comparison of average throughput per flow and average delay across flows for each 

PHB between static provisioning and RLAP for both QoS cases. As the results do not 

change with QoS settings for the static provisioning case, the values for static 

provisioning in the figure are the same for the stricter EF and the stricter AF cases. 

Hence, we classify the static provisioning cases together under “static”. Note that the 

range markers may not be clear in each of the figures. This is attributed to the small 

variation in performance between the 5 runs. 

We see that RLAP learns a policy that improves the performance of AF QoS as 

AF QoS requirements becomes stricter. We recall that AF is provisioned at the 
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average rate initially. This is clearly not sufficient in this case, and under-provisioned 

AF traffic gets penalized heavily. As such, the effect of QoS requirements must be 

taken into account. It is also noted that in the case of stricter EF QoS requirements, 

RLAP does not see the need to improve the performance of EF QoS, due to the 

already good QoS performance. This means that not all adjustments to QoS 

requirements need to be taken into account equally. RLAP demonstrates here its 

capability to act accordingly. Fig. 5.11 shows the consequent improvements in 

revenue earned as a result of RLAP. 

 

 

5.3.4.7 Comparison under Different Pricing Plans 

 

In the final experiment, we seek to confirm that RLAP performs according to the 

pricing plan used; unlike most provisioning schemes proposed that do not consider 

this. To vary the pricing plan, we doubled EF revenue and penalties for one case and 

doubled AF revenue and penalties in the other case. Fig. 5.12 shows the improvement 

in revenue made between static provisioning and RLAP. 

We see that RLAP makes more significant improvements in net revenue earned 

than static provisioning when the pricing of EF and AF traffic carried is doubled. This 

shows clearly that RLAP adjusts weights according to the pricing plan as well. A 

larger gain in profits will encourage the RLAP scheme to increase provision of that 

component which is causing the good result. 

 



Chapter   5:      Reinforcement Learning-based Provisioning for Core Backbone Network 

 89

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

Original Incr EF Incr AF

R
ev

en
ue

Static

RLAP

 

Figure 5.12: Revenue Comparison under Different Pricing Plans 
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Figure 5.13: Percentage Gain in Revenue across Time for Increased EF Pricing Plan 
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Figure 5.14: Percentage Gain in Revenue across Time for Increased AF Pricing Plan 

 

Fig. 5.13 and 5.14 show the percentage gain in revenue across time of RLAP in 

comparison to static provisioning. We see that RLAP initially requires a learning 

phase where at times it fairs worse than the static provisioning. However, after about 

10,000s, RLAP begins to make significant improvements. In both figures, we see that 

there is a convergence. The fluctuations observed towards the latter part of the 

simulation are not due to non-convergence, as confirmed by decreasing σ  values. 

Rather, they are due to fluctuating traffic conditions. 

From all the results of the above experiments, one might be tempted to think that 

if we set out to provision EF and AF traffic at higher rates initially and left them 

static, we could achieve the same results as RLAP. Unfortunately, we could not have 

known how much to provision a priori, and if traffic conditions were to change or 

pricing plans and QoS requirements altered, we would not be able to determine the 

corresponding provisioning without complex analysis, which may require certain 
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assumptions. This is where RLAP provides a simple solution that is able to learn and 

adapt without supervision or expert analysis. 

 

 

5.4 REINFORCEMENT LEARNING DYNAMIC PROVISIONING BASED 

ON QUALITY OF SERVICE REQUIREMENTS 
 

 

While the RLAP scheme is economically efficient, many of the service providers 

would not like to charge by the traffic usage. There are many reasons for this. Firstly, 

the billing infrastructure to implement such a charging scheme can be quite complex 

and costly. There must also be external auditing done to ensure that the charges are 

correctly accrued, which is a difficult auditing task. Secondly, service providers prefer 

to offer fixed plans; for example, plans that charge an amount that includes pre-paid 

usage. This gives service providers a minimum level of commitment from customers. 

This is crucial in an environment where customer loyalty is hard to come by. 

An alternative scheme to RLAP is presented that is based on guaranteeing an 

assured level of service to customers. The scheme is compatible with current-day 

pricing plans and service level agreements [43]. 

 

5.4.1 Service Level Agreements 

 

In many of today’s standard SLA contracts, QoS requirements are backed by an 

assurance level. For example, a 99.9% assurance level for delay means that at least 

99.9% of the packets should experience end-to-end delay of less than the delay bound 

specified. In this way, the service provider can have some leeway for occasional 

service lapses that may be entirely unforeseen. The lower the assurance level, the 

easier it would be for the service provider to meet the requirements. This could also 

mean lower prices for the service. This is especially attractive to the customer if he 
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has a higher level of tolerance, for example, if he is using a non-mission-critical 

service like a video streaming service. 

However, such assurance levels are to be strictly adhered to. Customers 

understand that there may be occasional lapses, but if the frequency of QoS violations 

goes beyond the tolerance level that they have specified, the functioning of 

customers’ services would be severely hampered. Sometimes, this may lead to huge 

business losses if the customers are corporate clients. Therefore, in such 

arrangements, the service provider is obliged to keep the service level well within the 

limits, while still maintaining a high level of utilization (profitability). 

 

5.4.2 RLDP Algorithm 

 

The concept behind the proposed Reinforcement Learning-based Dynamic 

Provisioning (RLDP) scheme is quite different from the RLAP scheme. Here, the SLS 

is used to judge whether the frequency of QoS violations is beyond the assured level. 

The degree to which the assurance level is violated is used as the feedback mechanism 

to determine a policy that maintains the frequency of QoS violations below the 

assured level. The amount of penalty (not revenue) received at the end of each time 

interval determines how the RL agent adaptively adjusts weighted fair proportions in 

each DiffServ router at each interval. 

The same framework as that described for RLAP in section 5.3.2 is used (refer to 

Fig. 5.2). However, in the RLDP scheme, SRV units are used in place of Gaussian 

units. This is necessary because the objective here is to enforce QoS levels, which is 

different from maximizing revenue. The requirements of the objective are relatively 

stricter and necessitate a faster, more direct responding algorithm. The SRV algorithm 

directly relates the context experienced and the action to take. This means that 
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bandwidth provisions can directly respond to changing traffic conditions, without the 

need to respond only as a result of the reinforcement signal (as for the Gaussian unit). 

The SRV algorithm works by modifying parameters in a neural network (specifically 

a multi-layer perceptron network) that has traffic rates as the input (context) and WFQ 

weight settings as the output (action). Another difference is the bandwidth broker is 

used to compute penalties based on the SLS. A pricing plan is not needed for the 

computations. 

For each agent iRL , the RLAP algorithm is as follows (omitting the subscript i  

for clarity): 
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where, nx  is the vector of the traffic state observed at thn )1( −  time interval and ny  is 

the vector of WFQ weights to be set for the thn  time interval. nµ  is the mean used to 

set ny . nσ  is the variance used to set ny  and nθ  is the NN parameter relating nx  and 
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nµ . nr  is the penalty received for QoS violations in the thn  time interval and nr̂  is the 

cumulative penalty for QoS violations beyond assured levels. θα  is the step size for 

nθ  and σα  is the step size for nσ . 

The idea behind the RLDP algorithm is similar to the RLAP algorithm. 

Perturbation is added using a Gaussian unit. If the perturbation has caused the unit to 

receive a penalty that is less than the cumulative penalty, it would be desirable for the 

RL agent to shift nµ  closer to ny . To do that the NN parameters nθ  are adjusted in a 

negative gradient direction. This means that the adjustment should be in the opposite 

direction to ( )nn rr ˆ−  and toward ( )nny µ− . The nx  factor is used to scale the 

gradient according to the traffic state. Note that ny  and nµ  are three-dimensional 

vectors representing the three traffic classes (EF, AF and BE). nx  is a six-dimensional 

state, comprising of the average traffic proportions and the average buffer occupancy 

of the three classes. Thus, the NN parameter nθ  would be a 63×  matrix linking nx  to 

nµ . A measurement-based framework is used, where the average traffic proportions 

are computed as the proportion of traffic for a class with respect to the total traffic 

measured across each interval and are weighted averaged by a factor of 0.8. Similarly, 

the average buffer occupancy is measured across each interval. A simple Multi-layer 

Perceptron (MLP) network with 2 layers is used to represent the relation between the 

state and the action. The MLP network outputs a mean nµ  that lies in a range 

1011 ≤≤ nµ . This is to simplify the implementation of ny , which we set to be an 

integer between 1 and 100. 
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5.4.3 Penalty Function 

 

Since the objective of RLDP is to ensure that QoS assurance is maintained, the 

penalty function has been set up to penalize any QoS violation beyond the level 

assured (agreed upon in the SLA). 

The penalty function used in RLDP is given by 

  ∑ ×+×=
j

jijdlyjijloss dcexp(lcexp(r )])[ ,,,,    (5.2) 

For each traffic class j , jil ,  is the percentage of packets loss exceeding the packet 

loss requirement at router i  and all routers downstream from i , and jid ,  is the 

proportion of traffic above the tolerance level for delay that passed through router i  

not meeting the delay bound. jlossc ,  is the weight given to jil , , and jdlyc ,  is the weight 

given to jid , . 

The penalty function was designed with the following features. Firstly, the 

exponential function has an inherent momentum feature, in that the gradient gets 

steeper as QoS is violated by a greater extent. This would promote faster convergence 

toward better QoS. The gradient becomes less steep as it nears the QoS level required 

to promote more accurate convergence. When QoS is better than required, the 

gradient is negligible. This concavity stabilizes the algorithm within the solution 

space. Secondly, we included weights for each QoS component. These weights not 

only control the steepness of the function’s gradient, but also give relative importance 

to the QoS components. Therefore, if it is more crucial for EF class QoS requirements 

to be met, then the respective weights may be set higher with respect to the others. 

The service provider could set this based on the relative value of the service contracts. 

With feedback based on the extent that QoS is being met, RLDP is focused on 

maintaining SLA agreements. This is superior to methods that focus on achieving 
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relatively better QoS, but are unable to achieve specific QoS targets. RLDP also has 

the ability to load-balance when traffic is heavy, such that all classes co-operatively 

meet QoS requirements. This is because, if one class meets QoS at the expense of 

another, there would be a higher penalty, using the exponential penalty function. 

 

5.4.4 Simulation and Results 

 

5.4.4.1 Simulation Setup 

 

The topology in Fig. 5.15 was set up to compare bandwidth provisioning with and 

without RLDP. The set up is similar to Fig. 5.2 for the RLAP simulations. The only 

difference is that the link capacities have been changed to make every link a 

bottleneck link. This would require stringent bandwidth provisioning on all links in 

order to maintain QoS. 

 

5.4.4.2 Traffic Characteristics 

 

In the simulations, traffic from all 3 PHB aggregates were generated on all links in 

the DiffServ domain. The links were made to carry close to full capacity most of the 

time. The characteristics of sources 0S  to 7S  are given in Table 5.6. All sources 

continuously generate traffic flows that have exponential inter-arrival and holding 

times with mean values as given in the table. 
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Figure 5.15: DiffServ Network Topology for RLDP simulations 

 

 

TABLE 5.6: Characteristics of Traffic Sources 

Source Traffic Type Connection 
Inter-arrival Time (s) 

Connection 
Holding Time (s) 

ON Rate 
(kbps) 

S0 , S4 Exponential ON/OFF 3.75 60 32 

S1 , S5 CBR 12.0 60 128 

S2 , S6 Exponential ON/OFF 10.0 60 150 

S3 , S7 Pareto ON/OFF 3.0 30 128 

 

0S  and 4S  are EF sources that represent delay bounded traffic like VoIP traffic. 

2S  and 6S  are AF sources that represent loosely delay bounded, high throughput 

requirement, traffic like video traffic. 1S  and 5S  and 3S  and 7S  are BE sources that 

represent FTP traffic and non-bounded aggregated web traffic respectively. The 

average amount of generated traffic towards each ingress router for EF, AF and BE 

are 0.5 Mbps, 1 Mbps and 1.5 Mbps respectively. 
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5.4.4.3 Experimental Details 

 

In the experiments that follow, a comparison is made between provisioning with 

and without RLDP. Without RLDP, provisioning is essentially left static throughout 

each experiment lasting 20,000s. The long experiment time demonstrates how 

provisioning works on medium time scales. Another reason for the long simulation 

time is for various traffic conditions to be encountered during the course of 

simulation. For the experiment with RLDP, we set 0µ  to be equal to the static setting. 

The RLDP scheme only kicks in after 1,500s (the initial lag is to allow the traffic to 

build up in the network), adjusting the WFQ weights in the routers adaptively and 

improving the policy in the RL agents through time. The initial service weights for the 

3 classes of traffic were set to be equal. Though this initial setup overprovisions for 

EF and AF classes, it is shown that the amount of overprovisioning cannot be easily 

determined and should be dynamically adjusted. Note that a minimum service weight 

can be set if a throughput bound is required by the SLA. We however do not simulate 

this, as a minimum throughput requirement should be pre-provisioned and left static, 

while the remainder of the link capacity left to be dynamically provisioned. Droptail 

queues were used for each class to separate the effects of RLDP from buffer 

management. The buffer length for EF, AF and BE traffic were set to 5, 30 and 30 

respectively. The time-step interval T  chosen was 500s; a reasonably long interval. 

This interval was used for each change in bandwidth provisions as well as for traffic 

and QoS measurements to be taken. The initial values of 0θ  and 0σ  were set to 0 and 

40 respectively. By choosing 0θ  as zero, 0µ  is initialized to the value 51. The value 

of 0σ  was chosen quite large to encourage greater exploration at the beginning. The 

constants θα , σα  and γ  were set to 0.1, 1.0 and 0.8 respectively. 
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TABLE 5.7: QoS Achieved for Static Provisioning 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.29 0.003 

AF 9.0 10.7 

BE 1.2 - 

 

TABLE 5.8: QoS Achieved for RLDP 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.78 0.37 

AF 2.1 0.6 

BE 2.0 - 

 

5.4.4.4 Comparison between Static Provisioning and RLDP 

 

In the first experiment, we set out to compare provisioning with and without 

RLDP. The QoS requirements for EF and AF delay bounds were set to 20ms and 

60ms respectively. The tolerance on the percentage of packets delayed was set to 1% 

for EF and 5% for AF. The maximum packet loss for EF, AF and BE were set to be 

1%, 5% and 20% respectively. We set the weights in the penalty function in equation 

(5.2) to 5.0 for all constraints to give equal weighting. Tables 5.7 and 5.8 summarize 

the QoS achieved for the last 10,000s of the simulation. We see that for the case 

without RLDP, the AF traffic did not meet its QoS requirements for packet loss and 

delay. Clearly, this shows that the AF requirements are strict, and relatively more 

bandwidth share has to be given to AF to ensure that the requirements are met. We 

see that with RLDP, all 3 classes meet their requirements. This was achieved by 

trading off the QoS of EF and BE, but not to the extent of violating their 

requirements. 



Chapter   5:      Reinforcement Learning-based Provisioning for Core Backbone Network 

 100

 

 

Figure 5.16: Percentage of AF Packet Loss at 1000s time intervals 

 

Figure 5.17: Percentage of AF Packets Delayed at 1000s time intervals 

 

 
Figure 5.18: Penalty per time interval for 5R  
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Figure 5.19: Penalty per time interval for 6R  

 

Fig. 5.16 and 5.17 show the percentage of AF packets loss and delayed in 1000s 

time intervals. We see that the RLDP algorithm has learned a strategy that 

dynamically provisions such that the AF traffic is consistently able to meet its QoS 

requirements across time. This was done by increasing the bandwidth proportion of 

AF whenever AF traffic and average buffer occupancy was relatively high. Note that 

in the RLDP algorithm, the mean weight is dependent on the NN output that considers 

the traffic proportions and buffer occupancies of all 3 classes. The argument is that if 

the state of only one class is used, there would be no relation between classes. For 

example, without this relation, a state that has high AF and BE traffic would be no 

different from a state that has high AF but low BE; when in fact, the former case 

would require higher AF weight relative to BE. Fig. 5.18 and 5.19 show the 

improvement in penalty feedback across time for routers 5R  and 6R . This gives us an 

insight to how well the two sets of aggregate flows are meeting QoS as they exit the 

domain. We see that RLDP is able to minimize the penalty compared to static 

provisioning. We also see the improvement of the penalty across time. 
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TABLE 5.9: QoS Achieved for Static Provisioning 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.29 1.3 

AF 9.0 2.0 

BE 1.2 - 

 

TABLE 5.10: QoS Achieved for RLDP 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.11 0.9 

AF 5.3 0.6 

BE 1.6 - 

 

5.4.4.5 Comparison under Strict EF Requirements 

 

In our second experiment, we seek to demonstrate how RLDP performs when 

QoS requirements are changed. To alter the QoS requirements, we reduced the EF 

delay bound to 10ms and increased the AF delay bound to 90ms. The AF delay 

tolerance and packet loss requirements were increased to 10% and the EF packet loss 

requirement was reduced to 0.5%. This would relax the AF QoS requirements and 

make the EF QoS constraints active. This makes the solution space to the problem 

much smaller. To give more significance to the EF constraints, we also increased the 

EF weights in the penalty function to 10.0 and decreased the other weights to 1.0. 

Tables 5.9 and 5.10 summarize the end-to-end QoS achieved. We see that now, for 

the case without RLDP, the EF traffic is unable to meet its QoS requirements for 

delay, confirming that the EF requirements are the new constraint. However, with 

RLDP QoS is able to be met for all classes. 
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Figure 5.20: Penalty per time interval for 6R  

 

 
Figure 5.21: Penalty per time interval for 6R  from 10,000s 

 

Fig. 5.20 and 5.21 show the improvement in penalty across time for router 6R . 

We see in Fig. 5.20 that the QoS is very poor for RLDP before 10,000s. This can be 

attributed to exploration. Since the solution space is small, the learning process takes 

a longer time to converge. Though RLDP gets penalized heavily during its adaptation 

phase, these “bad” experiences are used to improve the policy. In fact, RLDP begins 

to perform better than the static provisioning after 10,000s, as seen in Fig. 5.21. If 

high penalties cannot be tolerated, then a smaller initial variance 0σ  has to be used, 
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incurring a trade-off in convergence speed if the initial policy is far from the optimal 

one. 

From all the results of the above experiments, one might be tempted to think that 

if we set out to provision EF and AF traffic at higher rates initially and left them 

static, we could achieve the same results as RLDP.  However, whether to provision 

more to EF or AF traffic, and by how much more, is still an issue. Furthermore, we 

could not have known how much to provision a priori, and if traffic conditions were 

to change or QoS requirements were to be altered, we would not be able to determine 

the corresponding provisioning without further analysis. This is where RLDP 

provides an intelligent solution that is able to learn and adapt without supervision or 

expert analysis. 
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CHAPTER 6 

 

REINFORCEMENT LEARNING-BASED PROVISIONING FOR 

RADIO ACCESS NETWORK 
 

6.1 INTRODUCTION 

 

In this chapter, we discuss the provisioning of UMTS radio access networks. The 

UMTS radio access network, known as the UMTS terrestrial radio access network 

(UTRAN), has characteristics that are different from the UMTS core backbone 

network discussed in the previous chapter. Firstly, radio access networks generally 

have a hierarchical topology and are much smaller in size. A SGSN typically serves a 

few radio access networks, which are individually controlled by a radio network 

controller (RNC) in each radio network subsystem (RNS). A RNS is a collection of a 

RNC and the base stations (node B) administered under it. A figure of the topology 

can be seen in chapter 2 (Fig. 2.1). 

Secondly, handoff (or mobility) patterns greatly influence the traffic pattern and 

mix. A handoff occurs when a mobile user moves from one base station’s radio 

coverage, called a cell, to another neighboring cell. Traffic from the user and traffic 

destined to the user stops being transmitted through the old base station, and is instead 

transmitted through the new base station. This can occur in an abrupt manner (hard 

handoff) or in a smooth and continuous manner (soft handoff), which is supported by 

UMTS networks. The transfer of “responsibility” from one base station to another is a 

complex process known as mobility management, and is achieved through the Mobile 

IP protocol [104,105]. Sometimes when a handoff occurs, it could be between base 

stations administered by different RNCs. When this happens, an inter-RNC handoff 

occurs at the same time as an inter-node B handoff takes place. This hierarchical 
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model of mobility management extends to inter-SGSN handoff as well when a user 

possibly moves between two areas served by different SGSNs. We consider traffic 

pattern changes due to inter-SGSN handoffs as less dynamic. Methods for 

provisioning UMTS core backbone networks, where inter-SGSN handoffs are 

handled, have already been discussed in the previous chapter. In this chapter, we 

consider the more dynamic nature of UTRANs. 

Lastly, at the access portion of the network, QoS management is more critical. In 

the upstream direction, smaller flows are aggregated into larger flows. The way traffic 

is aggregated, i.e. how much of the bandwidth proportion should be allocated to 

different classes of traffic, affects how QoS can be met. In the downstream direction, 

large capacity links are feeding into smaller capacity links and aggregated traffic 

flows are being distributed. Routers upstream should be aware of the congestion 

levels occurring downstream and appropriately regulate the traffic proportions of the 

various classes. Otherwise, QoS cannot be maintained no matter how routers 

downstream try to handle the traffic passed from negligent upstream routers. QoS 

management have been incorporated into the Mobile IP protocol by Das [106]. 

We see therefore that the provisioning methods for UMTS core networks cannot 

be applied directly to UTRANs, since the characteristics are quite different. Most of 

the methods in the literature treat bandwidth allocation in RANs in a different way 

from core networks. In fact, most of the methods borrow heavily from cellular 

network theory, with modifications to suit next-generation multimedia wireless 

networks. In the following section, a survey is done, covering the more prominent 

work. (There has been a lot of work done in this area). The reasons why such methods 

might be inadequate for UTRANs are given. A solution that handles bandwidth 

provisioning in a QoS-objective way is then proposed. 
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6.2 CURRENT METHODS OF QOS PROVISIONING WITH MOBILITY 

FACTORED 
 

The use of Mobile IP would enable users to move freely from one place to another 

and have seamless connection. Users should expect that the QoS level be maintained 

even as they roam around. Each time a user moves between cells, traffic paths migrate 

due to handoffs as shown in Fig. 6.1. If there is insufficient bandwidth along the new 

path to support the traffic being handed over, the user’s connection could either be 

blocked or degraded. If the action taken is to block the user’s connection, a more 

appropriate measure of QoS would then be the probability that his call is blocked; 

since QoS of all other existing calls is assured at the expense of call blocking. 

Traffic Source

RNC1 RNC2

SGSN

BS2

BS1

Old Path
New Path

Mobile
User

 

Figure 6.1: Mobile Handoff 

 

Most methods for QoS provisioning in cellular networks make use of call 

blocking to maintain QoS. QoS requirements such as delay, packet loss and 

throughput bounds are assumed to be maintained through appropriate reservation. For 

example, in Fig. 6.1, when the mobile user is in the former cell, bandwidth in the 

neighboring cells like the latter cell may be reserved in advanced before the handoff is 
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made. The task then is to ensure that the cell that the mobile user is moving to has 

sufficient bandwidth; otherwise the call would be blocked. This is a difficult task as 

there would be a need to balance between over-reserving, causing too much 

bandwidth to be wasted, and under-reserving, resulting in too high a call-blocking 

probability. 

Mitchell [107] in his paper has discussed the effects of mobility on bandwidth 

allocation strategies in multi-class cellular networks. He pointed out that bandwidth 

sharing between classes (as opposed to bandwidth partitioning) results in better 

utilization. Conversely, if bandwidth is reserved strictly on a per-flow basis so as to 

guarantee QoS, bandwidth utilization would be unnecessarily low. However, Mitchell 

also noted that the mobility rate of one class can cause QoS in other classes to be 

adversely affected. That means that some efficient way of bandwidth sharing that 

takes into consideration the traffic patterns should be used. But little work has been 

done to model UMTS traffic [108], possibly due to the lack of real-implementation 

experience. Thus, most methods use some form of ad-hoc method or predictive 

method to allocate bandwidth efficiently. 

 

6.2.1 Call Admission Control and Reservation-based Methods 

 

 Call admission control is closely tied to the method of bandwidth allocation or 

reservation. There are two types of call admission control in a cellular network – new 

call admission and handoff admission. A call is admitted only if there is enough spare 

capacity. Sometimes, there may be unused capacity, but it may be reserved for other 

users, causing the call to be dropped. Depending on the scheme used, handoff calls 

may be treated with higher priority as compared to new calls. Studies have shown that 

people tend to tolerate a dropped call in progress less than a new call being rejected. 
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Therefore, most methods proposed are more conservative in that they consider if the 

call can be sustained before admitting the call. The complex decision has to be based 

on a large number of factors such as the network congestion level, the mobility and 

the usage pattern of the user and other users, and the QoS required of the user. 

 Choi [109] surveys and compares a number of bandwidth reservation and 

admission control schemes. One class of schemes like his, Naghshineh’s [110] and 

Wu’s [111] aim to keep the handoff dropping probability below a target level by 

estimating handoff probabilities. Only admission control is used and no bandwidth is 

explicitly reserved. These schemes determine how admitting a call would affect 

handoff blocking by using historical mobility data. There are some other admission 

control schemes that make use of prediction methods to determine the handoff 

blocking probability [112-114]. 

Another class of schemes, like the ones proposed by Talukdar [115], Mahmoodian 

[116] and Yoon [117], make use of bandwidth reservation to reserve bandwidth in 

advanced, rather than just relying on admission control. The first two schemes 

however, reserve bandwidth on a per-connection basis. Per-connection reservation 

may guarantee better QoS but are not bandwidth efficient and are computational 

intensive. The third scheme makes reservations based on DiffServ classes. Oliviera 

[118] improves per-connection reservations by introducing a scheme that reserves 

bandwidth dynamically. Bandwidth reservations are adjusted reflecting network 

conditions, which helps conserve bandwidth when possible. 

There are schemes that make use of shared bandwidth reservation that have much 

higher utilization due to statistical multiplexing and are less computationally intensive 

as they may be time-driven rather than event-driven. The reservation may be done on 

a per-class basis. Misic [119] describes a dynamic way of computing the amount of 
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bandwidth to reserve by estimating the bandwidth reservation rate, which is 

dependent on the handoff arrival rate. Li [120] and Kim [121] also propose schemes 

that make use of local information to estimate the amount of bandwidth to reserve. 

Zhang [122] also proposes a scheme that adjusts bandwidth reservations using local 

information. His scheme however is based on a predicting the instantaneous handoff 

traffic demand, which is different from other schemes that model factors that impact 

the demand like handoff rates and mobility patterns. 

A third class of schemes combine admission control with dynamic reservation. 

These schemes aim to first adjust reservations to accommodate handoff calls; failing 

which the degradation of other calls may be considered to allow the handoff call in. If 

the degradation falls below a threshold level, call admission control can be used to 

block calls to prevent further degradation. Das [123] describes such a scheme. It is not 

enough to take into consideration the bandwidth utilization and call blocking 

probability, degradation performance as well as frequency of bandwidth reallocation 

are also important considerations. As such, Chou [124] proposed a scheme that 

combines admission control and adaptive bandwidth reservation that takes these 

factors into consideration. Though these are good performance measures, mobile 

users are more interested in concrete QoS measures like call blocking, latency and 

packet loss. To be able to quantify and optimize performance in these terms are 

important.  

 

6.2.2 Problems with Call Admission Control and Reservation-based Methods 

 

The previous section describes schemes that have certain similar characteristics. 

Firstly, they are concerned with bandwidth provisioning on the wireless portion of the 

network. There is not much concern about reservation along the new path after 
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handoff, which does not consist only of the wireless portion. As mentioned, when a 

handoff occurs, many links in the RAN are also affected, depending on the type of 

handoff. Only schemes described in references [106,107,115,116] consider handoffs 

in the Mobile IP context. Most of the schemes are based on cellular networks, and 

therefore cannot be applied to the rest of the RAN. 

Secondly, most of the schemes are based on per-flow reservation or call 

admission, including all of those that consider path provisioning. This is perhaps due 

to the evolution from circuit-switched networks. However, UMTS networks are to be 

based on packet-switching. This means that calls are no longer individually routed, 

but are multiplexed together into aggregate streams. Traffic is also no longer constant 

bit rate as in voice networks, but is variable bit rate due to higher percentage of traffic 

consisting of data in the future. Some of the schemes consider this and make use of 

multi-class aggregate reservation. While this is a more efficient way to guarantee 

QoS, it is plagued by similar problems as bandwidth partitioning methods described 

in earlier chapters of this thesis. Aggregate reservation is essentially partitioning a 

certain proportion of the link capacity for handoff calls. In fact, the bandwidth 

wastage is greater since there is provision for possible handoff traffic. Of course some 

schemes, like the one proposed by Lee [125], try to overcome such bandwidth 

wastage by letting lower priority traffic occupy the bandwidth first and allowing 

higher priority traffic to displace them later. However, the overheads of controlling 

the re-allocations are quite high. 

Thirdly, with DiffServ becoming the more dominant service model in UMTS than 

IntServ, many of the schemes would not be suitable as they do not consider DiffServ 

implementation. There have been works on DiffServ implementations of 3G in the 

wireless network. These include DiffServ implementations for enhanced GPRS [126], 
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CDMA [127] and Wireless LAN [128-130]. Sivalingam [131,132] has also done work 

on designing a framework for DiffServ to be used in mobile access networks. 

However, they have not addressed the issue of DiffServ in the RAN. Venken’s work 

[133] is one of the few that can be found that describes how DiffServ can be 

implemented in the UTRAN. His work does an analysis of how DiffServ IP-based 

UTRAN would perform as compared to an ATM-based UTRAN [134]. The 

conclusion is that an IP-based UTRAN can perform just as well. This gives the 

impetus for using DiffServ-IP, since IP is more widely used in the data networking 

domain. 

Lastly, the bandwidth reservation and call admission control schemes proposed in 

the literature do not consider pertinent QoS requirements that are observed in data 

networks, like latency, packet loss and throughput bounds. Instead, they focus on 

handoff blocking probability as the QoS requirement. This could be due to differences 

in paradigms used by researchers in the cellular network field and in the data 

networking field. While call QoS requirements are met by allocating a certain fixed 

channel bandwidth, data QoS requirements are quite different owing to the variable 

bit rate nature of data traffic. A fixed bandwidth allocation is not practical for data 

traffic, as discussed in earlier chapters, especially in the RAN, as there would usually 

be low bandwidth utilization and no gain from statistical multiplexing common in 

data networks. 

Therefore, in order to get the best of both worlds, multiplexing gains from flow 

aggregation (seen in data networks) should be considered together with handoff traffic 

provisioning (seen in cellular networks). A framework is now presented that 

provisions bandwidth in a class-based manner and dynamically adapts the amount 
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provisioned for each class on each link in the RAN based on QoS requirements 

contracted in the SLA and traffic conditions on the link as well as neighboring links. 

 

6.2.3 Aggregated Provisioning-based Method as a Solution 

 

In a DiffServ framework, users are assured a level of service based on the class of 

service they have contracted. The service model is such that users within the same 

class (usually having similar application requirements), are given the same treatment 

in the network. The service provider has to ensure that the treatment given to each 

class performs up to the standard contracted in the SLA. 

When DiffServ is to be used in the UMTS context, mobile users would expect the 

same level of service extended to them. However, due to the mobility of users, service 

providers would require more effort in ensuring that the performance still performs up 

to standard regardless of where the user roams around the wireless network. While an 

in-advance reservation-based method (reserving enough bandwidth in advance for the 

user to roam without loss of bandwidth) can be used to seamlessly provide the same 

experience to the user, it is both bandwidth-inefficient and complicated to implement. 

Although current mobile networks use the reservation-based system, to provision for 

calls, next-generation networks would need to provision for a wide range of services 

that have diverse requirements. 

We propose to use an extension of a provisioning method that most current-day 

fixed data networks implement. Bandwidth is provisioned for each class based on 

weighted fair proportions and all calls (“connections” in data network terminology) 

within the class completely share the bandwidth allocated. This is in line with IP-

based networks, where packet-switching aggregates packets from different 

connections. There is no partitioning of bandwidth, not even between classes. 
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Bandwidth between classes can be shared according to the weighted fair proportion. 

Since bandwidth provisioning in the IP-based UTRAN has no notion of individual 

flows, traffic is treated as an aggregated flow that is continuous and has variable bit 

rate. 

When a new connection or handoff is made, no admission control or reservation is 

required along any part of the path. The connection is always admitted, thus bringing 

about a very low blocking probability. There is no distinction between new and 

handoff connections; as there is no distinction of individual flows in the IP-based 

network. The new or handed-off connection consequently shares the bandwidth with 

the other connections in the same class. This may cause degradation in QoS, but the 

degradation would only be an issue if the QoS is below that which has been 

contracted. This can be ensured by the service provider by adjusting the weighted fair 

proportions such that the amount of bandwidth allocated is sufficient to support the 

aggregated traffic rate. The objective of the provisioning problem would then change 

from maintaining low blocking probability to maintaining high QoS, which are the 

performance measures directly stated in SLAs. 

The control of weighted fair proportions on every link is done through the 

implementation of WFQ in each router. Unlike reservation-based methods, the 

aggregate bandwidth proportions can be adjusted on a medium timescale (hundreds of 

seconds), rather than on a short timescale (seconds). Even in dynamic multi-class 

reservation-based methods, the bandwidth reserved for each class has to be adjusted 

on a short timescale. This is because a long interval will cause a trade-off in temporal 

poor bandwidth allocation. This problem was discussed by Chou [124]. 
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There are many advantages to this framework is summarized as follows, 

1) Zero blocking probability – since there is no need for admission control and 

bandwidth reservation, connections are by default always accepted. The new 

or handed-off connection shares the bandwidth with the other connections in 

the same class. There is no bandwidth guarantee in this case. If throughput 

guarantee is required, then the proportion provisioned has to be in absolute 

terms. 

2) Full utilization during congestion – in a reservation-based scheme, there is 

always bandwidth left unutilized. This is not the case with our framework as 

all bandwidth is shared using weighted fair queuing. 

3) Simple implementation – because there is no need for reservation or admission 

control decisions, there is no need for such signaling protocols. The only 

signaling needed by our framework is the network condition monitoring and 

the control of WFQ weight settings in the routers. This is done on a time-

interval basis, and a medium timescale (hundreds of seconds) is usually 

sufficient. 

We present now a method to adjust the bandwidth proportions for each class such 

that QoS can be met for all classes despite high user mobility. 

 

6.3 REINFORCEMENT LEARNING BANDWIDTH PROVISIONING 

BASED ON QUALITY OF SERVICE REQUIREMENTS 
 

 

In section 5.4, a reinforcement learning-based bandwidth provisioning scheme 

based on QoS requirements for UMTS core backbone networks was presented. The 

scheme intelligently adjusted WFQ weight settings based on the traffic intensities of 

each class of traffic. Each link was provisioned by RL agents implemented in the DS 
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domain’s bandwidth broker. The RL agents make use of a neural network to map the 

measured traffic intensities to the WFQ settings at each interval. The neural network 

parameters were trained using a reinforcement learning algorithm that considers the 

feedback on QoS. 

The Reinforcement Learning-based Dynamic Provisioning (RLDP) algorithm can 

be used in a similar way to provision links in the UMTS radio access network. The 

only problem is that in the access network, traffic patterns are more dynamic due to 

the continuously changing routes caused by mobile users moving from one location to 

another. Depending on the type of handoff – inter-node B or inter-RNC, traffic flows 

will migrate from one or more links to the neighboring links. To the bandwidth 

broker, only the net change in aggregate traffic is going to affect the QoS. For 

example, if 2 flows of 256 kbps moves from cell A to cell B, and another flow of 1 

Mbps moves from cell B to cell A, the net increase in traffic in cell A is 512 kbps and 

the net decrease in traffic in cell B is 512 kbps. Thus the bandwidth provisioning 

should not be based so much on the actual mobility pattern of users, but more on the 

nett handoff traffic rate, considering both incoming and outgoing users. 

By including the traffic rates of neighboring links into the context of the RL agent, 

the agent would be able to learn the relationship between the traffic intensity in the 

region (inclusive of own link and neighboring links) and the bandwidth to provision. 

Intuitively, there should be a positive correlation between the traffic intensity in the 

region and the amount of bandwidth provisioned. The relationship is in fact related to 

the probability distribution handoff traffic. Therefore, the RL agent is learning some 

function of the joint probability distribution of handoff traffic from the region. 
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6.3.1 RLBP Algorithm 

 

We now introduce the Reinforcement Learning-based Bandwidth Provisioning 

(RLBP) algorithm, which is the extension to the RLDP algorithm. To describe how 

RLBP can be implemented in a DiffServ UTRAN network, a one-domain topology in 

Fig. 6.2 is used here as an example, and is made as simple as possible without loss of 

generality. At the top of the hierarchical topology, the SGSN connects the UMTS core 

backbone network to the UTRAN and is an ingress edge router to the UTRAN 

DiffServ domain in the downstream direction. Radio network controllers 1RNC  and 

2RNC  are core routers and base stations 1BS  to 4BS  are egress edge routers that 

distribute data streams to the mobile nodes within their wireless coverage. In the 

upstream direction, 1BS  to 4BS  are ingress edge routers for traffic originating from 

mobile nodes and the SGSN serves as an egress router connecting the UTRAN to the 

UMTS core backbone network. Traffic can also flow from one mobile node to 

another. In this case, the base stations act as both ingress and egress routers for those 

flows. 
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Figure 6.2: UTRAN DiffServ Network Topology (in downstream direction) 

 

A bandwidth broker 1BB  is used as the centralized collection and decision-

making point. The function is similar to the one in the RLDP framework described in 

section 5.4.2. At regular intervals, 1BB  collects traffic measurements (in terms of 

number of bits) from all routers in the domain as context information. Concurrently, 

destination nodes and all routers report the last interval’s QoS, in terms of amount of 

traffic delayed and number of packets dropped, to the bandwidth brokers along the 

paths of the flows. 1BB  then makes decisions through the RL agents and sends the 

WFQ weight configurations to the respective routers. SLAs are stored in the database 

for computing the QoS penalties, which are used as feedback to the RL agents. 

The RLBP algorithm is essentially the same as the RLDP algorithm. The only 

difference that modifies it for use in the UTRAN is that the context x  used has been 

expanded to include not only the traffic rates for incoming flows of the router, but 

also the traffic rates of all incoming flows into neighboring links. For example, in Fig. 
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6.2, the link between 1RNC  and 1BS  has a 9-dimensional state space that includes the 

incoming traffic rates of each class of traffic (EF, AF and BE) from link SGSN-

1RNC , link 2BS - 1RNC  and neighboring link SGSN- 2RNC . This additional context 

information would enable the RL agent to consider the traffic that may be handed off 

from the neighboring links. The RL agent then learns implicitly the handoff traffic 

rate from each neighboring link for each class. This is the key feature of the RLBP 

algorithm. 

Another feature that was added is action replay. This is a feature of Reinforcement 

Learning that feeds historical states, actions and rewards to the RL agent. The RL 

agent then learns based on these data that have been stored in a table, as if it faced the 

same state and chose the same action as in the past. Action replay makes better use of 

past experiences. This is crucial in an environment where experience is costly. In 

‘live’ networks, bad experiences where QoS is severely violated can incur heavy 

penalties for the service provider, both in terms of costs as well as reputation. There 

needs to be a careful trade-off between faster learning and costly experiences. An RL 

agent learns best when it has a wide range of experiences, including bad ones. But a 

service provider may opt not to bear so much cost and restrict the learning range. This 

would inevitably lead to slower and perhaps less optimal learning, which may be 

suffice for the service provider. 
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For each agent iRL , the RLBP algorithm is as follows (omitting the subscript i  

for clarity): 
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where, nx  is the vector of the traffic state observed at thn )1( −  time interval and ny  is 

the vector of WFQ weights to be set for the thn  time interval. nµ  is the mean used to 

set ny . nσ  is the variance used to set ny  and nθ  is a Neural Network (NN) [63] 

parameter relating nx  and nµ . nr  is the penalty received for QoS violations in the thn  



Chapter   6:      Reinforcement Learning-based Provisioning for Radio Access Network 

 121

time interval and nr̂  is the cumulative penalty for QoS violations beyond assured 

levels. θα  is the step size for nθ  and σα  is the step size for nσ . 

nx  is a 9-dimensional state, comprising of the average traffic proportions of the 

three classes of traffic from the 2 incoming links as well as the neighboring link. 

Thus, the NN parameter nθ  would be a 93×  matrix linking nx  to 3-dimensional nµ . 

A measurement-based framework is used, where the average traffic proportions are 

computed as the proportion of traffic for a class with respect to the total traffic 

measured across each interval and are weighted averaged by a factor of 0.8. The 

Neural Network used to relate the state nx  and the action nµ  is a simple Multi-layer 

Perceptron (MLP) network [63] with 2 layers. The MLP network outputs a mean nµ  

that lies in a range 1011 ≤≤ nµ . This is to simplify the implementation of ny , which 

we set to be an integer between 1 and 100. 

 

6.3.2 Penalty Function 

 

The RLBP penalty function is similar to the one presented for RLDP in section 

5.4.3 is given by 

   ∑ ×+×=
j

jijdlyjijloss dcexp(lcexp(r )])[ ,,,,   (6.1) 

For each traffic class j , jil ,  is the percentage of packets loss exceeding the packet 

loss requirement at router i  and all routers downstream from i , and jid ,  is the 

proportion of traffic above the tolerance level for delay that passed through router i  

not meeting the delay bound. jlossc ,  is the weight given to jil , , and jdlyc ,  is the weight 

given to jid , . 
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Figure 6.3: UTRAN Simulation Network Topology 

 

 

6.3.3 Simulation and Results 

 

6.3.3.1 Simulation Setup 

 

ns-2 [8] DiffServ extensions were used for the simulation. The topology in Fig. 

6.3, which is an expanded version of the topology in Fig. 6.2, was set up. Through our 

simulations, we show that RLBP is able to improve on static provisioning and a 

measurement-based provisioning method. The setup involves 20 nodes, of which 16 

are mobile nodes MN . The fixed nodes FN  act as sources only and the mobile nodes 

act as both sources and destinations. Sources from fixed nodes 0FN  to 3FN  have 

destinations 0MN  to 3MN  (attached to 0BS ), 4MN  to 7MN  (attached to 1BS ), 8MN  
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to 11MN  (attached to 2BS ) and 12MN  to 15MN  (attached to 3BS ) respectively. 

Mobile nodes similarly send traffic to other mobile nodes attached to other base 

stations. The nodes attached to the SGSN are meant to represent an aggregate of 

traffic sources located beyond the UTRAN. The mobile nodes act as an aggregated 

source and destination as well; each node simulating all traffic of a certain class 

served by the base station. Thus, one mobile node may represent 20 EF class mobile 

users for example. The buffer lengths used for all routers are 5, 30 and 50 packets for 

EF, AF and BE respectively. These buffer lengths are chosen to be a reasonable trade-

off between queuing latency and buffer overflow. 

To simulate mobility, we do not actually move the mobile nodes. Since we are 

only concerned with how handoff traffic on new paths affect the provisioning, the 

mobility is simulated instead by shifting portions of traffic in the aggregated flow to 

neighboring cells with varying probabilities. This will cause a change in the route 

taken by that flow. For example, if a mobile source from 0MN  were to initially send 

traffic to destination 4MN , after a handoff, it could be sending traffic to destination 

8MN  or 12MN , which are located in neighboring cells. 

 

6.3.3.2 Traffic Characteristics 

 

In the following simulations, traffic from all 3 PHB aggregates was generated on 

all links in the DiffServ domain in both the downstream and upstream directions. The 

traffic load was chosen such that different links were congested at different time 

intervals. The intervals were made long enough to simulate sustained congestion due 

to mobile nodes congregating at particular cells. This is well known as the hotspot 

problem in cellular networks. Hotspots can be caused by everyday and yet unexpected 
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situations that are hard to predict, such as mobile users stuck with nowhere else to go 

during a sudden downpour. 

TABLE 6.1: Characteristics of Traffic Sources 

Source Connection 
Inter-arrival Time (s) 

Connection 
Holding Time (s) 

ON Rate (kbps) 

FN0  3.0 15 64 

FN1  2.5 15 128 

FN2 5.0 15 300 

FN3  1.25 15 128 

MN0 , MN4, MN8 , MN12 1.5 15 64 

MN1 , MN5, MN9 , MN13 2.5 15 128 

MN2 , MN6, MN10 , MN14 3.75 15 300 

MN3 , MN7, MN11 , MN15 1.25 15 128 

 

Table 6.1 gives the characteristics of the traffic sources used. Sources from 0MN  

to 3MN  have identical characteristics to sources from 4MN  to 7MN , 8MN  to 11MN  

and 12MN  to 15MN  respectively. 0FN  and 0MN  are EF sources that represent delay 

bounded traffic that are in the UMTS conversational and interactive classes. 2FN  and 

2MN  are AF sources that represent loosely delay bounded, high throughput traffic 

that are in the UMTS streaming class. Both EF and AF classes are modeled as 

exponential ON-OFF sources with same ON (500ms) and OFF (500ms) times. 3FN  

and 3MN  are BE sources that represent non-bounded aggregated web traffic in the 

UMTS background class. They are modeled as pareto ON-OFF sources with the same 

ON and OFF times as the EF and AF traffic. These 3 source types run over UDP. The 

last source type 1FN  and 1MN  run over TCP, and are BE sources that represent non-

bounded high throughput traffic like FTP traffic that are also under the UTMS 
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background class. They are CBR sources that consume any unused capacity on the 

link. 

 

 
Figure 6.4: Traffic Entering Link 1RNC - 1BS  

 
Figure 6.5: Traffic Entering Link 2RNC - 3BS  
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The average amount of traffic generated from the UMTS core backbone network 

for EF, AF and BE are 640 kbps, 1.8 Mbps and 6 Mbps respectively. The average 

amount of traffic generated from each cell by the mobile nodes for EF, AF and BE are 

960 kbps, 1.8 Mbps and 4.5 Mbps respectively. Fig. 6.4 and 6.5 shows the traffic 

patterns on links 1RNC - 1BS  and 2RNC - 3BS . The two traffic patterns are different 

due to the mobility pattern that was used for the experiments, which we describe in 

the next section. 

 

6.3.3.3 Mobility Model 

 

As mobile users move from one cell to another, the traffic originating from or 

destined to the mobile user that once flowed through a former path, now flows 

through a latter path as determined by the Mobile IP protocol. From an aggregate 

point of view, the aggregate flow of traffic on the former path is decreased and the 

aggregate flow of traffic on the latter path is increased. Since in our topology we have 

used a single mobile node to represent the aggregate of all mobile users of a class, the 

movement of the mobile user can be simulated by a change in source node to the 

respective mobile node attached to the latter cell’s base station. Similarly, a change in 

destination node is needed for all flows that were destined for the former mobile node. 

For example, when a mobile user makes a handoff from 1BS  to 2BS , the flow with 

source-destination pair { 0MN , 8MN } is changed to source-destination pair 

{ 4MN , 8MN }, and the flow with source-destination pair { 8MN , 0MN } is changed to 

source-destination pair { 8MN , 4MN }. 

The rate of handoffs and the direction of handoff (simulating the direction of 

movement of the mobile user) can be controlled with the use of probabilities. A low 
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probability of handoff results in a slow handoff rate and a congregation of mobile 

users is a result of having a higher probability of moving in a particular direction as 

compared to other directions. We have only simulated the changing of destination 

nodes and not the source nodes. However, the effects are similar. In the first 5000s, 

mobile nodes have a 0.5 probability of handing off and an equal probability of 

moving into any cell. In the second 5000s, mobile nodes congregate around 3BS  and 

4BS , causing links 2RNC - 3BS  and 2RNC - 4BS  to be congested. The probability of 

handoff is doubled and the probability of handoff in the direction of 3BS  and 4BS  is 

increased to 0.9. In the third 5000s, the mobile nodes disperse equally again, and in 

the last 5000s, the mobile nodes congregate again, this time around 1BS  and 2BS . 

 

6.3.3.4 Experimental Details 

 

In our experiments, 3 different schemes are compared – the static provisioning 

scheme, the measurement-based scheme and RLBP. For the static provisioning 

scheme, we set up the WFQ weights to be static and equal throughout each 

experiment lasting 20,000s. The equal WFQ weights setting is based on over-

provisioning EF and AF traffic by 100% and 50% over the average traffic rate that we 

used. (Note that this information is not available a priori in live networks). Abella 

[135] has written an argument for the use of over-provisioning over the use of 

DiffServ. For the measurement-based scheme and RLBP, we set up the experiment to 

initially begin with the same weights as in the static case. We also set 0µ  to be equal 

to the static setting (equal weights for all 3 classes). Both schemes then kick in after 

1,500s, adjusting the WFQ weights in the routers adaptively based on the incoming 

traffic rates of the routers’ links and the neighboring routers’ links that might handoff 

traffic to it. 
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The measurement-based scheme was used as a comparison to see how RLBP 

fared compared to a simple ad-hoc scheme. The scheme takes traffic intensity 

measurements in the same way as RLBP does, and computes the bandwidth 

provisions for the next time interval based on the measured interval. Both EF and AF 

classes of traffic are provisioned by taking the summation of traffic measured at the 

incoming links to the node as well as the incoming links of the neighboring nodes and 

multiplying by an over-provisioning factor. EF and AF traffic was over-provisioned 

by a factor of 2 and 1.5 respectively. BE traffic is provisioned by taking the remainder 

bandwidth after EF and AF are provisioned. This scheme is expected to be over-

conservative.  

All simulations involving RLBP were run with 3 different random seeds for the 

Gaussian unit and the results were averaged. The time-step interval T  chosen is 100s. 

γ  was chosen to be 0.2. But unlike the RLAP and RLDP schemes, we experimented 

with the use of a non-constant µα  and σα  for RLBP. µα  and σα  were chosen to be 

nr̂
01.0  and 

nr̂
1  respectively. The rationale for selecting a function that is inversely 

proportional to the baseline penalty is to increase the factors µα  and σα  as the RL 

agent improves the provisioning. Thus, the RL agent adapts more quickly when it is 

more confident that it is on the right track. This improves the rate of learning, while 

not sacrificing smooth changes in provisioning in the initial learning phase, where the 

RL agent is still infant and unsettled. 

 

6.3.3.5 Comparison between Static Provisioning, Measurement-based Dynamic 

Provisioning and RLBP 
 

In the first experiment, the three schemes are compared against each other. The 

QoS requirements for EF and AF delay bounds were set to 12ms and 20ms 
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respectively. The tolerance for percentage of packet delayed was set to 2% for EF and 

5% for AF. The maximum packet loss for EF, AF and BE were set to be 2%, 5% and 

20% respectively. The weights in the penalty function in equation (6.1) were set to 5.0 

for all constraints to give equal weighting. The following tables summarize the QoS 

achieved for the last 10,000s of the simulation. 

 

TABLE 6.2: QoS Achieved for Static Provisioning 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.01 1.1 

AF 6.5 8.2 

BE 7.8 - 
 

TABLE 6.3: QoS Achieved for Measurement-based Provisioning 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.35 2.3 

AF 0.57 0.9 

BE 12.0 - 
 

 

TABLE 6.4: QoS Achieved for RLBP 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.48 1.96 

AF 2.6 3.5 

BE 10.3 - 
 

 

We see that for static provisioning, the AF traffic did not meet the assured QoS 

level of 5% for packet loss and delay, while the measurement-based provisioning was 

able to. Because we have set AF requirements to be tight, relatively more bandwidth 

share has to be given to AF to ensure that the requirements are met; especially so to 

ensure that handoff traffic would not degrade the QoS experienced by the aggregate 
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below the assured level. Fig. 6.6 and 6.7 show the packet loss and delay QoS of AF 

traffic over the last 10,000s. 

We also observe that the measurement-based method was unable to meet the EF 

delay assurance level of 2%. This is despite over-provisioning for EF. In fact, the 

performance of AF traffic was overwhelmingly good. Therefore, we can conclude that 

it is not easy to determine the level of over-provisioning. Furthermore, provisioning 

should not only take into account the measured traffic, but also the relative tightness 

of the QoS requirements. RLBP has the ability to learn the optimal policy that takes 

these factors into account through appropriately designing the penalty function. 

Therefore, RLBP was able to meet the QoS requirements for all 3 classes. 

 

Figure 6.6: Percentage of AF Packet Loss at 1000s Intervals 
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Figure 6.7: Percentage of AF Packets Delayed at 1000s Intervals 

 

Figure 6.8: Penalty per 500s Interval for link 1RNC - 1BS  
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Figure 6.9: Penalty per 500s Interval for link 2RNC - 3BS  

 

Fig. 6.8 and 6.9 show the penalty feedback for RL agents administering links 

1RNC - 1BS  and 2RNC - 3BS  over the last 10,000s. The heavy penalty seen in Fig. 6.8 

in the last 5,000s is caused by the congregation of traffic during that interval. RLBP 

was able to perform relatively better during that interval.  In Fig. 6.9, we can see 

evidence that over a relatively longer period of similar traffic, RLBP is able to reduce 

the penalty to a near-optimal level. Therefore, is a service provider were to implement 

RLBP over a long period, in the long run, he would have a dynamic and automatic 

bandwidth provisioning system that requires little human intervention, other than to 

feed new data into the bandwidth broker’s database when new SLAs are signed. From 

the figures, it can be concluded that RLBP learnt a policy that was in between the 2 

extremes of static provisioning and measurement-based provisioning. The policy was 

able to balance the bandwidth provisions such that no class would suffer QoS 

violations. The process of tuning the bandwidth provisioning is similar to expert 
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learning. Other methods of provisioning are either limited by prior experience or tight 

traffic control at the edges, which offer lower bandwidth utilization in exchange for 

QoS guarantees. 

TABLE 6.5: QoS Achieved for Static Provisioning 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.01 0.01 

AF 6.5 4.5 

BE 7.8 - 
 

TABLE 6.6: QoS Achieved for Measurement-based Provisioning 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.35 0.11 

AF 0.57 0.23 

BE 12.0 - 
 

TABLE 6.7: QoS Achieved for RLBP 

Traffic Type Packet Loss (%) Delay (%) 

EF 0.92 0.51 

AF 9.2 5.9 

BE 5.8 - 
 

 

 

6.3.3.6 Comparison under Relaxed QoS Requirements 

 

In our second experiment, we seek to demonstrate how RLBP is able to adapt to a 

different set of QoS requirements through a change in the penalty function. EF and 

AF requirements are now relaxed. Instead, BE requirements are tightened, possibly to 

enable background traffic users to enjoy better latency response times. This would 

help balance customer satisfaction; something that may be overlooked by service 

providers eager to guarantee good service to high value customers. 
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The EF delay bound was set to 15ms, up from 12ms, and the AF delay bound was 

increased to 25ms, up from 20ms. The EF and AF delay tolerance and packet loss 

requirements were increased to 5% and 10% respectively and the BE packet loss 

requirement was reduced to 10%, down from 20%. These changes in QoS 

requirements are reflected in a corresponding change in the penalty function, which 

governs the learning process of the RL agent. The relative significance of each QoS 

requirement can be altered by changing the weights attached to each component in the 

function. The service provider could possibly decide the weights based on which 

customer market he deems to be more important. This is turn could be based on the 

pricing of services and the margin of profit. To give more significance to BE 

customer satisfaction, the BE packet loss weight was changed to 10.0, up from 5.0. 

The other weights remained unchanged and therefore are relatively less significant. 

Tables 6.5, 6.6 and 6.7 summarize the end-to-end QoS achieved for the three 

schemes. We see that with these new QoS requirements, static provisioning was able 

to meet all the requirements, while the measurement-based method was unable to 

meet the 10% assurance level for BE packet loss. This shows that the QoS 

requirements have been relaxed so much so that static over-provisioning is sufficient, 

and any degradation in QoS caused by handoffs can be tolerated under the new 

assurance levels. By being overly conservative in provisioning for handoff traffic, the 

measurement-based scheme compromised in QoS for BE traffic. Once again, it proves 

that it is difficult to determine the correct mix of bandwidth provisions. We see that 

the RLBP scheme is able to adapt and learn a new policy based on the new QoS 

requirements. Thus, it was able to satisfy all the requirements. Fig. 6.10 gives a closer 

look at the BE packet loss levels over the last 10,000s, and Fig. 6.11 and 6.12 show 
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the penalty levels for RL agents administering links 1RNC - 1BS  and 2RNC - 3BS  over 

the interval 5,000s to 20,000s. 

 

Figure 6.10: Percentage of BE Packet Loss at 1000s Intervals 

 

Figure 6.11: Penalty per 500s Interval for link 1RNC - 1BS  
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Figure 6.12: Penalty per 500s Interval for link 2RNC - 3BS  

 

Fig. 6.10 shows that RLBP was able to keep BE packet loss constantly under the 

assured 10% level, while still meeting QoS requirements for EF and AF traffic even 

in periods of heavy handoffs. Fig. 6.11 and 6.12 show even more evidence that RLBP 

does intelligent enough not to react in periods of heavy congestion, during the 

intervals 15,000s to 20,000s and 5,000s and 10,000s respectively, if it is not 

necessary. The RL agents judge this through the penalty feedback it receives at every 

interval. Since QoS is not violated, the agent determines that the there is not much 

adjustment to be made. 

From the results of the two contrasting experiments, we can conclude that the 

RLBP bandwidth provisioning scheme is intelligent enough to balance the amount of 

bandwidth provisioned to each class such that QoS assurance levels can be maintained 

in the face of heavy congestion due to handoff traffic. The scheme learns on its own 
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and improves over time. This replaces the need for expert administrators to adjust 

bandwidth provisioning controls or overly conservative traffic conditioners at the 

edge to curb traffic. The RLBP scheme is efficient and can be customized to the 

service provider’s requirements through the use of the penalty function. The 

construction of the penalty function together with the RL learning algorithm is the key 

to the success of the scheme.  
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CHAPTER 7 

 

CONCLUSION 
 

The work presented in this thesis was motivated by the need to develop a 

bandwidth provisioning scheme for the UMTS core network that is intelligent, 

efficient and objective at the same time. The provisioning of bandwidth in the UMTS 

core network is essential for end-to-end quality of service to be achieved in global 

converged networks. In order for service providers to offer a diversity of services 

ranging from video-conferencing via mobile phones, to video-streaming on in-vehicle 

entertainment systems, to m-commerce transactions on personal digital assistants, to 

data downloads on laptops, different levels of QoS have to be maintained. The 

different levels of QoS are achieved through the UMTS adoption of the Differentiated 

Services model. By implementing DiffServ on the IP-based UMTS core network, a 

diverse range of services can be provisioned in an aggregated manner that is efficient 

and scalable. Due to the nature of mobile services and the architecture of mobile 

networks, bandwidth provisioning in UMTS core networks is very different from that 

done in fixed backbone data networks. Thus, new methods of provisioning are 

required. 

The solution presented in this thesis comprises of two components that are meant 

to be implemented in the UMTS core backbone network and the UTRAN respectively 

in a concurrent manner. The need to use two different schemes comes about because 

of the different topology and traffic dynamism of the two network portions. The 

emphasis is different in each scheme that we present and provides the service provider 

flexibility in implementation. The work done in this thesis greatly fills in the gap for a 

simple, efficient and effective provisioning scheme for UMTS core networks. 
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7.1 CONTRIBUTION OF THESIS 

 

This thesis presents a scheme for bandwidth provisioning in IP-based DiffServ 

UMTS core networks. The algorithms used in the scheme are capable of provisioning 

bandwidth to objectively meet diverse QoS requirements contracted through SLAs 

between service providers and mobile service subscribers without sacrificing 

bandwidth efficiency. The scheme intelligently (without the need for expert 

knowledge) adjusts bandwidth proportions allocated to each service class on a time 

interval basis making it scalable and easy to implement. The intelligence is achieved 

through reinforcement learning agents, which are able to develop policies that map 

traffic conditions to respective bandwidth provisions through reward and penalty 

feedback. 

In chapter 3, adaptive bandwidth provisioning has been shown to be effective in 

attaining quality of service levels in terms of latency, packet loss and throughput. It 

was argued that weighted fair queuing provides the most bandwidth efficient method 

of provisioning bandwidth. Through the formulation of the bandwidth provisioning 

problem as an optimization problem, it was shown that bandwidth provisioning as a 

continuous time problem is a hard problem. Furthermore, the problem cannot be 

solved even after discretization due to the unpredictable nature of traffic. 

In chapter 4, the bandwidth provisioning problem was re-formulated as a 

reinforcement learning problem. In this way, the problem can be solved through an 

iterative method that progressively develops an approximately optimal solution. Due 

to the continuous nature of traffic parameters and bandwidth provision settings, a 

continuous state-action space reinforcement learning method was chosen. The use of a 

continuous state-action space reinforcement learning method is a pioneering work in 
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the field reinforcement learning for network control. This work is important in the 

sense that it provides guidance for other continuous space network control problems 

to be solved using reinforcement learning. 

In chapter 5, two schemes for bandwidth provisioning in UMTS core backbone 

networks are presented. The first scheme called Reinforcement Learning-based 

Adaptive Provisioning (RLAP) introduces a novel way of pricing services. A 3-tier 

usage-based pricing model is used to promote better utilization of bandwidth. The 

pricing model is attractive to both users as well as providers; as users pay for only 

what they use and providers can capitalize on greater traffic multiplexing. In the 

thesis, 3 tiers are used to differentiate 3 different user requirements. When combined 

with a penalty refund, providers are able to have some leeway in provisioning 

services. Users are also kept happy as a high service level is still maintained as service 

providers have to pay out penalties for breeches in QoS. RLAP makes use of this 

pricing plan to compute the reward feedback for the RL agents. The algorithm is 

based on REINFORCE Gaussian units and makes use of a gradient ascent iterative 

method. The aim of the RLAP scheme is to maximize revenue. 

The second scheme presented called Reinforcement Learning-based Dynamic 

Provisioning (RLDP) is different from RLAP as it aims to minimize QoS violations 

and to assure a level of QoS contracted in the SLA. Stochastic Real-Valued units are 

used in place of Gaussian units to provide better adaptation to traffic conditions, and 

average buffer occupancy ratio is included as part of the input to better control QoS. 

The scheme is independent of the pricing strategy and can be implemented based on 

SLAs commonly used by service providers. The bandwidth proportions of each class 

are balanced such that all the classes can meet the assured level of QoS. An 

exponential penalty function is used to discourage QoS violations and guide the RL 
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agents towards better QoS for all classes. In simulations, both schemes were superior 

to static over-provisioning schemes, which is not adaptable. The RLAP scheme was 

shown to be able to adapt to changing traffic conditions and the RLDP scheme was 

shown to be able to adapt to different sets of QoS requirements. Both RLAP and 

RLDP are also arguably better than other measurement-based admission control 

methods, adaptive control methods, traffic prediction methods and pricing methods, 

since they are more bandwidth efficient, able to balance various QoS classes to meet 

specific QoS targets, and do not require expert knowledge. 

Chapter 6 details a scheme for bandwidth provisioning in UTRANs. The scheme 

has a vastly different paradigm to commonly-used reservation-based methods. While 

reservation-based methods have to contend with handoff blocking and poor 

bandwidth utilization to assure QoS, a weighted fair queuing-based provisioning 

method offers effectively zero blocking and complete sharing of bandwidth. 

Bandwidth provisioning methods also focus on maintaining QoS in terms of latency 

and packet loss bounds, unlike reservation-based schemes, which focus on 

maintaining low handoff blocking probability. The change in paradigm is a much 

needed one as mobile networks move away from circuit-switched to packet-switched 

architectures (as the one in UMTS). The RLDP scheme is modified for use in the 

UTRAN. The changes are made to accommodate handoff traffic, which is a more 

pertinent issue in the UTRAN. The scheme called Reinforcement Learning-based 

Bandwidth Provisioning (RLBP) takes into consideration the traffic in neighboring 

links as part of the input. RLBP was shown to be able to adapt to different sets of QoS 

requirements. The static over-provisioning scheme was not able to adapt to the 

changing amount of handoff traffic. Both schemes also lack sensitivity to different 
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QoS requirements. It was shown that determining the right amount of over-

provisioning was a difficult task, which cannot be done using ad-hoc means. 

When the bandwidth provisioning scheme for the UMTS core backbone network 

is combined with the scheme for the UTRAN, end-to-end provisioning in the UMTS 

network can be achieved. The complete solution proposed enables service providers 

to objectively provision bandwidth to meet service level agreements and at the same 

time maximize bandwidth utilization for greater profitability. The solution is simple to 

implement through installation in a bandwidth manager and fits in well with DiffServ-

capable UMTS networks. The solution also provides flexibility for service providers 

to modify their pricing and QoS levels to suit customer demands while requiring little 

to be done at the network level, since the solution proposed has the inherent ability to 

learn and build new policies on-the-fly. 

 

7.2 RECOMMENDATION FOR FUTURE WORK 

 

The algorithms presented in this thesis are all novel and therefore can be further 

improved. One area of improvement is through the use of a more integrated learning 

environment. The reinforcement learning agents in the presented algorithms work in a 

distributed fashion. By having some form of collaborative learning, faster 

convergence and a more optimal solution can be achieved. 

Although bandwidth provisioning may be sufficient in providing QoS, an efficient 

buffer management scheme would enhance the control of QoS. Droptail queues have 

been used in our schemes, but a reinforcement learning-based RED (random early 

detection) [94] buffer management scheme that adaptively adjusts RED parameters 

would complete the QoS control problem in a DiffServ network. By controlling the 

RED parameters adaptively, the queue length can be managed so as to directly control 
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queuing delay and packet drop probabilities. Using such a scheme could effective 

provide QoS control at a packet level rather than at a flow level. 

Another area not explored in this thesis is the application of provisioning to Multi-

Protocol Label Switching (MPLS) networks [136]. The use of MPLS in 3G networks 

have been proposed [137,138] as a way to manage mobility and to provision for QoS. 

Instead of provisioning for aggregate classes, RL-based provisioning can be used to 

provision for label-switched paths (LSP). This is particularly useful in provisioning 

constraint-based routed LSPs (CR-LSP). 

As 3rd Generation implementation gets underway, researchers are looking towards 

designing 4th Generation (4G) mobile networks [139,140]. In 4G networks, various 

types of wireless access environment will be connected together in a coherent 

heterogeneous network. These include broadband wireless LAN environments, 

wireless personal area networks, wireless ad-hoc networks, wireless WAN and 

satellite networks. This would require very complex QoS management, which is a key 

component in the 4G framework. Where there are QoS resources to be managed, a 

reinforcement learning solution can be applied to intelligent provisioning in different 

kinds of environments. The advantage of using reinforcement learning-based 

solutions is that they are adaptable and can learn based on any parameters in the 

environment to achieve a whole range of goals. For example, an extension to this 

work could be done for provisioning of 4G core networks, where the edges of the core 

network are attached to various types of radio access networks, with different 

bandwidths, topology and access technologies. 
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