2,120 research outputs found

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    A weather forecast model accuracy analysis and ECMWF enhancement proposal by neural network

    Get PDF
    This paper presents a neural network approach for weather forecast improvement. Predicted parameters, such as air temperature or precipitation, play a crucial role not only in the transportation sector but they also influence people's everyday activities. Numerical weather models require real measured data for the correct forecast run. This data is obtained from automatic weather stations by intelligent sensors. Sensor data collection and its processing is a necessity for finding the optimal weather conditions estimation. The European Centre for Medium-Range Weather Forecasts (ECMWF) model serves as the main base for medium-range predictions among the European countries. This model is capable of providing forecast up to 10 days with horizontal resolution of 9 km. Although ECMWF is currently the global weather system with the highest horizontal resolution, this resolution is still two times worse than the one offered by limited area (regional) numeric models (e.g., ALADIN that is used in many European and north African countries). They use global forecasting model and sensor-based weather monitoring network as the input parameters (global atmospheric situation at regional model geographic boundaries, description of atmospheric condition in numerical form), and because the analysed area is much smaller (typically one country), computing power allows them to use even higher resolution for key meteorological parameters prediction. However, the forecast data obtained from regional models are available only for a specific country, and end-users cannot find them all in one place. Furthermore, not all members provide open access to these data. Since the ECMWF model is commercial, several web services offer it free of charge. Additionally, because this model delivers forecast prediction for the whole of Europe (and for the whole world, too), this attitude is more user-friendly and attractive for potential customers. Therefore, the proposed novel hybrid method based on machine learning is capable of increasing ECMWF forecast outputs accuracy to the same level as limited area models provide, and it can deliver a more accurate forecast in real-time.Web of Science1923art. no. 514

    Modelling atmospheric ozone concentration using machine learning algorithms

    Get PDF
    Air quality monitoring is one of several important tasks carried out in the area of environmental science and engineering. Accordingly, the development of air quality predictive models can be very useful as such models can provide early warnings of pollution levels increasing to unsatisfactory levels. The literature review conducted within the research context of this thesis revealed that only a limited number of widely used machine learning algorithms have been employed for the modelling of the concentrations of atmospheric gases such as ozone, nitrogen oxides etc. Despite this observation the research and technology area of machine learning has recently advanced significantly with the introduction of ensemble learning techniques, convolutional and deep neural networks etc. Given these observations the research presented in this thesis aims to investigate the effective use of ensemble learning algorithms with optimised algorithmic settings and the appropriate choice of base layer algorithms to create effective and efficient models for the prediction and forecasting of specifically, ground level ozone (O3). Three main research contributions have been made by this thesis in the application area of modelling O3 concentrations. As the first contribution, the performance of several ensemble learning (Homogeneous and Heterogonous) algorithms were investigated and compared with all popular and widely used single base learning algorithms. The results have showed impressive prediction performance improvement obtainable by using meta learning (Bagging, Stacking, and Voting) algorithms. The performances of the three investigated meta learning algorithms were similar in nature giving an average 0.91 correlation coefficient, in prediction accuracy. Thus as a second contribution, the effective use of feature selection and parameter based optimisation was carried out in conjunction with the application of Multilayer Perceptron, Support Vector Machines, Random Forest and Bagging based learning techniques providing significant improvements in prediction accuracy. The third contribution of research presented in this thesis includes the univariate and multivariate forecasting of ozone concentrations based of optimised Ensemble Learning algorithms. The results reported supersedes the accuracy levels reported in forecasting Ozone concentration variations based on widely used, single base learning algorithms. In summary the research conducted within this thesis bridges an existing research gap in big data analytics related to environment pollution modelling, prediction and forecasting where present research is largely limited to using standard learning algorithms such as Artificial Neural Networks and Support Vector Machines often available within popular commercial software packages

    Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    Get PDF
    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value fo

    Comparison of artifical intelligence prediction techniques in NO and NO2 concentrations' forecast

    Get PDF
    To construct new technical devices, to permanently protect buildings and to reduce the expenses of various economic and business processes more and more accurate prediction techniques are needed. Almost all human activities encounter the hard problem of forecasting. Although several time series prediction methods have been developed, each of them has certain limitations. Most of them are designed rather for modeling complete time series than pointing out different prediction characteristics; furthermore, they can only be interpreted with difficulties. Artificial intelligence offers symbolic learning with decision trees, by means of which we can explore connections in past data and produce them in a readable format Decision trees can estimate intervals of future data. Recently, artificial neural networks were used to handle this problem. This method offered more precise forecast and more accurate fit of the function to the starting data. However, when applying this method, relationships in the data set examined were hidden. If we combine the methods mentioned above, we can get more precise decisions for the future data and we can also reveal the reasons. In either case, the efficiency of learning depends on a good choice of the learning algorithms' parameters. For this reason, parameters are selected by simulated annealing. The aim of this paper is to conpare die above mentioned prediction techniques in several hours forecast of NO and NO2 concentrations at a busy cross-road in Szeged (Hungary). For this object, meteorological parameters predicted with given error on their actual values were used

    A time series forecasting based multi-criteria methodology for air quality prediction

    Get PDF
    Abstract There is a very extensive literature on the design and test of models of environmental pollution, especially in the atmosphere. Current and recent models, however, are focused on explaining the causes and their temporal relationships, but do not explore, in full detail, the performances of pure forecasting models. We consider here three years of data that contain hourly nitrogen oxides concentrations in the air; exposure to high concentrations of these pollutants has been indicated as potential cause of numerous respiratory, circulatory, and even nervous diseases. Nitrogen oxides concentrations are paired with meteorological and vehicle traffic data for each measure. We propose a methodology based on exactness and robustness criteria to compare different pollutant forecasting models and their characteristics. 1DCNN, GRU and LSTM deep learning models, along with Random Forest, Lasso Regression and Support Vector Machines regression models, are analyzed with different window sizes. As a result, our best models offer a 24-hours ahead, very reliable prediction of the concentration of pollutants in the air in the considered area, which can be used to plan, and implement, different kinds of interventions and measures to mitigate the effects on the population

    The State-of-the-Art in Air Pollution Monitoring and Forecasting Systems using IoT, Big Data, and Machine Learning

    Full text link
    The quality of air is closely linked with the life quality of humans, plantations, and wildlife. It needs to be monitored and preserved continuously. Transportations, industries, construction sites, generators, fireworks, and waste burning have a major percentage in degrading the air quality. These sources are required to be used in a safe and controlled manner. Using traditional laboratory analysis or installing bulk and expensive models every few miles is no longer efficient. Smart devices are needed for collecting and analyzing air data. The quality of air depends on various factors, including location, traffic, and time. Recent researches are using machine learning algorithms, big data technologies, and the Internet of Things to propose a stable and efficient model for the stated purpose. This review paper focuses on studying and compiling recent research in this field and emphasizes the Data sources, Monitoring, and Forecasting models. The main objective of this paper is to provide the astuteness of the researches happening to improve the various aspects of air polluting models. Further, it casts light on the various research issues and challenges also.Comment: 30 pages, 11 figures, Wireless Personal Communications. Wireless Pers Commun (2023
    corecore