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Abstract 

Air quality monitoring is one of several important tasks carried out in the area of environmental 

science and engineering. Accordingly, the development of air quality predictive models can be 

very useful as such models can provide early warnings of pollution levels increasing to 

unsatisfactory levels. The literature review conducted within the research context of this thesis 

revealed that only a limited number of widely used machine learning algorithms have been 

employed for the modelling of the concentrations of atmospheric gases such as ozone, nitrogen 

oxides etc. Despite this observation the research and technology area of machine learning has 

recently advanced significantly with the introduction of ensemble learning techniques, 

convolutional and deep neural networks etc. Given these observations the research presented in 

this thesis aims to investigate the effective use of ensemble learning algorithms with optimised 

algorithmic settings and the appropriate choice of base layer algorithms to create effective and 

efficient models for the prediction and forecasting of specifically, ground level ozone (O3).  

Three main research contributions have been made by this thesis in the application area of 

modelling O3 concentrations. As the first contribution, the performance of several ensemble 

learning (Homogeneous and Heterogonous) algorithms were investigated and compared with all 

popular and widely used single base learning algorithms. The results have showed impressive 

prediction performance improvement obtainable by using meta learning (Bagging, Stacking, and 

Voting) algorithms. The performances of the three investigated meta learning algorithms were 

similar in nature giving an average 0.91 correlation coefficient, in prediction accuracy. Thus as a 

second contribution, the effective use of feature selection and parameter based optimisation was 

carried out in conjunction with the application of Multilayer Perceptron, Support Vector Machines, 

Random Forest and Bagging based learning techniques providing significant improvements in 

prediction accuracy. The third contribution of research presented in this thesis includes the 

univariate and multivariate forecasting of ozone concentrations based of optimised Ensemble 

Learning algorithms. The results reported supersedes the accuracy levels reported in forecasting 

Ozone concentration variations based on widely used, single base learning algorithms.  

In summary the research conducted within this thesis bridges an existing research gap in big data 

analytics related to environment pollution modelling, prediction and forecasting where present 

research is largely limited to using standard learning algorithms such as Artificial Neural Networks 

and Support Vector Machines often available within popular commercial software packages.  

 

Eman Al-Abri, October 2016 
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CHAPTER 1  

 

                                         An Overview 

1.1. Introduction 

In recent years, the environmental risks caused by exposure to ground level ozone (O3) 

from both stationary and mobile sources have increased annually. Ozone is a 

transboundary air pollutant that can be formed by photochemical reactions between 

anthropogenic nitrogen oxides (NOx) and volatile organic compounds (VOCs) in the 

presence of sunlight [1]. There are several sources which produce the particles that react 

to form ozone. Example of these sources are oil refining, printing, and motor vehicle exhaust. 

In addition exhaust emissions from motor vehicles are considered to be one of the major sources 

of pollution   where it produces 70% of nitrogen oxides ( main chemical to form ozone) and 50% 

of the organic chemicals ( e.g. benzene, toluene and xylene)[2] that are normally present in 

the atmosphere of urban regional. When O3 is formed, depending on meteorological 

conditions, it remains suspended in the lower atmosphere for hours to days and can 

endanger local and regional receptors. Several studies that analyse the effects of 

meteorological conditions on the formation and transport of O3 have been listed in the 

work of [3]. Further, statistically significant relationships have been identified between 

elevated concentrations of O3 and environmental risks [4]–[7]. 

 

The existing research on modelling atmospheric O3 concentration for air pollution 

prediction makes use of widely employed traditional machine learning algorithms such 

as, Artificial Neural Networks (ANN) and Support Vector Machines (SVM). Although 

there are more advanced and novel data mining techniques, such as Ensemble Learning 

approaches, only few attempts have utilised them to predict the ozone concentration; 

these include the work of [8]–[10]. On the other hand, ensemble learning algorithms 

have been successfully used in statistical approaches and machine learning used in other 

application fields. Based on the literature review, the use of ensemble learning 
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techniques has been found to enhance the accuracy of the predictive models obtained 

compared to single base learning approaches such as ANN and SVM. However, these 

studies have also been limited to making use of a few selected ensemble classifiers 

namely Bagging, Stacking, Voting and Random forest, with no comparisons between the 

use of different techniques or investigations of scientific rigour. It is also known that the 

classification approach that works best is dependent on the data and the application 

domain. Hence a significant research gap exists in the investigation of the best prediction 

models for atmospheric ozone as no detailed and rigourous investigations have been 

carried out. 

Therefore, the research proposed in Chapter 5 and Chapter 6 of this thesis aims to find 

the most accurate machine learning algorithms and models that can be used to predict 

ground level ozone concentrations, given a multitude of meteorological parameters and 

concentrations of gases that are known to create ozone by decomposition due to natural 

causes, e.g., NOx. We describe such a prediction approach a spatial prediction approach 

as no time-dependent data, for e.g. concentration of ozone at given times of the day, is 

considered. Instead the time at which ozone concentration is recorded, is completely 

ignored and only a concentration value and the parameters that have known to cause 

such a value is considered for modelling. A comprehensive investigation was carried out 

comparing the performance of several machine learning techniques. In the research 

proposed, multiple predictive models were built using 13 single based algorithms and 

four ensemble learning algorithms using the WEKA (Waikato Environment for 

Knowledge Analysis) toolkit [11]. In addition, a comparative analysis was performed to 

determine the algorithm that produced the best performance.  

Further to the above, the research presented in Chapter 7 of this thesis also investigates 

time-series analysis of ground level ozone concentrations. In time series analysis both 

univariate and multivariate approaches are investigated with the use of both popular but 

simple machine learning algorithms (e.g., NN and SVM) and more advanced Ensemble 

Learning algorithms, such as Random Forests and Bagging. The analysis considered 

above is forecasting future values ozone concentrations based either only on the past 

ozone concentration values (this is univariate analysis) or together with also other 
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parameters that are known to have a direct impact on formation of ozone such as 

meteorological parameters and gases of known concentrations.  

Two different experimental datasets (i.e. regression data) are used to support the 

investigations carried out in this thesis. The first dataset was obtained from Sohar 

University, Oman, which used a DOAS instrument (see Chapter 3) to gather the 

environmental data as well as concentrations of other gases known to cause ozone. The 

second, more comprehensive dataset was obtained from UK‟s biggest air quality dataset 

produced and made available by DEFRA. Details of the two datasets and their pre-

processing are discussed in detail in Chapter 4.  

Figure 1.1 illustrates a generic system for modeling the ground level ozone 

concentration. The system consists of three main stages namely, data collection, data 

preparation (data preprocessing) and modelling using machine learning algorithm.  The 

data preprocessing stage consists of several steps which can be briefly listed as below:  

1. Collect raw data 

2. Remove missing values and outliers  

3. Transform data if needed to suitable formats 

4. Select features/attributes that best describes the data 

5. Use data in creating the model  
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For the implementation of the machine learning algorithms used in the spatial and time-

series prediction of ozone concentrations in this thesis, the popular data mining tool 

WEKA [12], is used. In addition to the implementation of a large number of popular and 

advanced machine learning algorithms, the software also implements data cleaning, 

feature selection, validation performance measurement tools. Throughout the research 

conducted and presented in this thesis such additional tools have been identified and 

used to support the rigourous investigations carried out within this thesis. 

Figure 1.1:  Generic System of Ozone Modelling 
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1.2. Research Motivation 

The motivation for the research conducted within the context and scope of this thesis 

was derived from a comprehensive literature review conducted on atmospheric air 

quality prediction, modelling and monitoring that identified gaps in knowledge and 

associated research. The literature review conducted revealed that the existing research 

on air pollution measurement and analysis was largely limited to using traditional 

machine learning techniques (ANNs and SVMs) and statistical approaches. Only a few 

attempts have been made to utilise state-of-the-art machine learning approaches. Such 

studies have been limited in scope and rigour, and does not clearly conclude and 

recommend the best approaches to be used for a given dataset and type of analysis that is 

being carried out. Therefore, the research presented within the context of the work 

presented in this thesis studies and examines rigourously the ability of several ensemble 

learning methods to model, predict and forecast, ground level ozone concentrations. 

Whilst rigorously comparing and contrasting the performance of a large number of 

machine learning algorithms in modelling, prediction and forecasting of ground level 

ozone concentration, the research conducted within this thesis gives a particular 

emphasis to the use of Ensemble Learning approaches. This particular aspect of 

investigation has been motivated by the research conducted by [13] who presented an 

empirical study about ensemble learning and explained why ensemble learning 

algorithms often perform better than any of the single classifiers in any general 

application area. Three fundamental reasons for constructing a good ensemble were 

discussed by Dietterich [13]:  

(1) Statistical: ensemble algorithms can solve the problem of having a relatively large 

number of attributes compared to the number of instances in the dataset. 

(2) Computational: in ensemble techniques the full input dataset is divided into smaller 

datasets allowing the search to avoid the so called local minima problem. In contrast a 

single base classifiers may risk getting stuck at a local minima due to the full dataset 

being considered as one.  
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(3) Representational: the mechanism of taking the sum of weighted functions in the 

ensemble methods can expand the space which it represents, while the single classifiers 

are limited by one representative function. However, it is noted that this can be provided 

by some other single classifiers, such as neural networks and decision trees, if they have 

been given enough training data.    

Dietterich [13] also compared the three most common ensemble methods: Bagging, 

AdaBoost and Randomised Tree approaches. The results showed that adaBoost gives the 

best result in a noise free data set, while the performances of Bagging and Randomised 

Tree are very similar. However, randomisation has shown better result than Bagging in 

cases of very large datasets. For the purpose of deep analysis, the author added 20% 

artificial noise to his dataset. Hence, the performances of Bagging and adaBoost 

changed. The results showed the superiority of Bagging when compared to the under-

performance of adaBoost and randomisation. This research and the associated 

observations have motivated the research conducted in this thesis which particularly 

focuses on Bagging, as an Ensemble Learning algorithm for the modelling, prediction 

and forecasting of ground level ozone concentrations. 

 

1.3. Aim and Objectives 

The research presented in this thesis aims to investigate the most effective and accurate 

modelling, prediction and forecasting approaches for the determination of ground level 

ozone concentration, using state-of-the-art machine learning algorithms, in particular, 

ensemble learning algorithms. 

The following are the key objectives of the proposed work: 

 To investigate the used of popular single base learning algorithms and 

ensemble learning algorithms in time series modelling and forecasting of 

ground level ozone concentrations. 

 Examine the effective use of parameter based optimisation of learning 

algorithms to optimise the performance of time series modelling and 

forecasting approaches. 
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1.4. Contributions of Research 

The research conducted within the remit of this thesis has resulted in the following 

original contributions to the area of atmospheric air quality modelling, prediction and 

forecasting: 

1. Chapter 5 carries out a comprehensive investigation into the use of a 

significant number of machine learning algorithms for the modelling and 

prediction of ground level ozone concentrations based on meteorological 

parameters and concentrations of other gases known to cause ozone via 

degradation, due to natural phenomena. The performance of 16 different 

single base learning algorithms ware compared against a number of key 

ensemble learning algorithms including Bagging, Voting and Stacking used 

under default model parameter settings. The experiment‟s results have shown 

the ability of ensemble learning algorithms to significantly improve the 

prediction accuracy.  

The research outcomes of this work has been submitted as a journal paper to 

the Big Data Research Journal, Elsevier under a title “The Use of Meta-

Learning Ensemble Algorithms for the Prediction of Ground-Level Ozone”.  

2. Chapter 6 carries out a detailed investigation into the performance 

optimisation of the machine learning algorithms recommended in Chapter 5 

to perform best under their default parameter settings and non-optimised 

procedural operation. In particular parameter based fine tuning / optimisation 

of the popular single learner algorithms MLP (Multi-Layer Perceptron) and 

SMOreg (Support Vector Machine), single layer Ensemble Learning 

algorithm, Random Forest and multi-layer Ensemble Algorithms, Bagging 

has been investigated. The approaches that can be used to provide optimal 

performance of the advanced Ensemble Learning algorithms have been 

recommended. In addition, the use of feature/attribute/input, 

selection/reduction approaches to improve the performance accuracy of 

algorithms investigated, have been proposed and investigated in detail.  
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The original research outcomes and contributions of Chapter 6 has been 

published as a conference paper “Al Abri, E.S., Edirisinghe, E.A. and 

Nawadha, A., 2015. Modelling ground-level ozone concentration using 

ensemble learning algorithms. Proceedings of the International Conference 

on Data Mining (DMIN), 27th-30th July 2015, Las Vegas, USA, pp.148-154”.  

3. Chapter 7 carries out a detailed investigation into the use of popular single 

base learning algorithms and ensemble learning algorithms for time-series 

forecasting of ground level ozone concentrations. Both univariate and 

multivariate forecasting options have been considered. A number of 

conditions that can affect the forecasting performance of different machine 

learning algorithms have been investigated and recommendations are made 

for obtaining optimal performance from the investigated algorithms. The 

original contributions of this chapter will be submitted as a conference paper 

to 13th International Conference on Machine Learning and Data Mining 

MLDM 2017. 

1.5. Thesis Overview 

For clarity of presentation, the thesis has been organised into eight chapters, as described 

below: 

Chapter 1 provides an overview of the context of the research, identifies the research 

gaps and briefly presents the fundamental research focus of this thesis. The chapter also 

highlights the main contributions of the thesis and a chapter overview.  

Chapter 2 reviews the existing literature on air quality monitoring and the work 

presented in literature that uses machine learning techniques for predictive modelling in 

areas outside environmental air pollution monitoring. The chapter concludes with a 

critical analysis of current literature, thus identifying research gaps in the subject area.   

Chapter 3 focuses on providing background knowledge related to the research 

presented in this report. The chapter includes a brief description of the DOAS instrument 

that was used to gather one of the two datasets used in the experiments. The chapter also 

presents various machine learning algorithms that will be used for modelling Ozone 
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concentration in the forthcoming chapters and the evaluation criteria that will be used for 

the comparison of algorithmic performances. Furthermore, data pre-processing/cleaning 

filters used for data conditioning prior to modelling is also discussed.  

Chapter 4 presents the two datasets used in the research conducted, namely the Sohar, 

Oman dataset and the DEFRA, UK dataset.  

Chapter 5 investigates the use of a comprehensive set of single base learning 

algorithms and ensemble learning algorithms in the prediction of ground level Ozone 

concentrations, based on meteorological parameters and concentrations of other gasses 

known to impact the formation of ozone due to natural phenomena. The investigations 

are limited to identifying the best algorithms for further detailed investigation in Chapter 

6. 

Chapter 6 investigates the use of Ensemble Learning algorithm, Bagging and Random 

Forest in detail for modelling and prediction of ground level ozone concentration, 

making use of the popular single base learning algorithms such as Neural Networks and 

Support Vector Machines as the base layer algorithm. Parameter based optimisation of 

such algorithms and the use of feature/attribute reduction algorithms to further improve 

performance is also investigated in detail. 

Chapter 7 investigated the use of machine learning algorithms in the univariate and 

multivariate forecasting of ozone concentrations in the atmosphere. The investigations 

have been limited to making use of the best performing single base learning algorithms 

and ensemble learning algorithms.  

Finally, Chapter 8 concludes the research presented in this thesis, summarising the 

work carried out, making overall conclusions and identifying future directions for 

research and development.  
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  CHAPTER 2

    Literature Review 

2.1. Introduction  

Air quality monitoring is one of several crucial tasks carried out in the area of 

environmental science and engineering. Accordingly, the development of air quality 

predictive models can be very useful as such models can provide early warnings of 

pollution levels increasing to unsatisfactory levels. Such models can also be used to 

determine the causes and sources of pollution when combined with other 

data/information.  

During recent decades, the harmful effects of air pollution on the environment and 

human health have been clearly noticed. Therefore, predictive models that can help 

monitor atmospheric pollution is required. In building such models, numerous attempts 

presented in literature have employed common data mining techniques as statistical 

tools. Due to the complexity and the non-linearity of air quality data, as first proved by 

[14], environmental researchers have popularly used Artificial Neural Network (ANN) 

and Support Vector Machine (SVM) algorithms for modelling atmospheric ozone 

concentration. These algorithms (ANN and SVM) have shown promising results 

compared with simple tree structured classification algorithms such as, CART, J48, and 

M5Rule. However, there exist more recent and advanced machine learning techniques 

that have not been used and investigated in the area of air quality modelling and 

prediction. These techniques are Bagging, Boosting, Staking, Voting and Random 

Forest, which are a family of ensemble learning algorithms. These ensemble learning 

algorithms have been experimented within areas that are beyond air quality 

management, where they have been shown to outperform the traditional, more popular 

algorithms, such as ANN and SVM approaches. On other hand, modelling air quality  

has been examined using ensemble techniques as statistical approaches in [15]–[18]. 

These researches had proved the ability of ensemble technique to outperform the single 

base techniques.  However, the investigation of statistical approaches is beyond the 
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discussion research context of this thesis as machine learning based approaches have 

been proven to outperform statistical approaches, significantly.  Therefore, in this 

research, an intensive investigation is carried out on the performance of a comprehensive 

set of data mining techniques (single based and ensemble learning) to build predictive 

models for atmospheric ozone concentration. Although existing literature has few 

examples of the recent algorithms being investigated for modelling atmospheric 

pollution, such research is limited to testing one or two of the approaches, without any 

comprehensive, in-depth analysis as to explaining their performance.  

This chapter provides an in-depth literature review of existing work on the use of 

machine learning based approaches for atmospheric air pollution modelling and 

prediction in general (see Section 2.2) and in areas outside, such as in bioinformatics and 

marketing.  

For clarity of presentation this chapter has been divided into several sections; each 

will introduce existing literature on using machine learning algorithms in different fields 

of study. Section 2.2 provides information about the data mining techniques that have 

been used to predict the ozone concentration level in the atmospheric pollution 

monitoring area, and is followed by Section 2.3, which presents the use of ensemble 

methods to build predictive models in other application areas. Finally, Section 2.4 

summarises the chapter, making recommendations regarding the need of 

comprehensively investigating the use of ensemble classifiers in the modelling of 

atmospheric ozone concentrations. 

2.2. Monitoring Atmospheric Air Quality 

Almost all recent studies in atmospheric air quality prediction and modelling have 

employed an ANN to build a predictive model. The reason goes back to the proven 

properties of typical atmospheric ozone concentration datasets. These datasets have been 

described by [19] as very complex and show non-linear relations between the factors 

which effect the production of ozone. Abdul-Wahab and Al-Alawi [20] proved that an 

Artificial Neural Network (ANN) model can handle this complexity. Therefore, most 

researchers in this area have limited their studies to the use of ANN and SVM. The 
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literature below presents several studies in which ANN and SVM have been used. It is 

noted here that only a few attempted to employ different machine learning algorithms 

and carried out comparisons with ANNs. In addition the sensitivity analysis of the model 

was illustrated in some of the research along with using machine learning within air 

quality forecasting. 

2.2.1. Literature Review  

A Rigorous Inter-Comparison of Ground-Level Ozone Predictions[21].  

The paper presented a comprehensive study by comparing the performance of 15 

statistical techniques for ozone concentration forecasting in Europe. These 

techniques were examined using 10 different datasets containing different 

meteorological and emission conditions. A Neural Network was amongst these 

techniques, and was studied and compared with the rest of the statistical tools. 

However, the main focus was on statistical tools only. The paper concluded that a 

satisfactory result was obtained only by the methods which could handle non-linear 

data. Thus the Neural Network was proven to perform best. The research 

demonstrated the ability of Neural Networks to work on non-linear datasets. 

Consequently, the authors of most of the papers in this section cited this study as the 

reason for using Neural Networks in their research. 

 

Systematic Approach for the Prediction of Ground-Level Air Pollution (around 

an Industrial Port) Using an Artificial Neural Network [22].  

The study conducted in this thesis was carried out in the City of Sohar, Oman, 

where part of the data for the proposed research was gathered. The study proposed 

to develop models for daily predictions of CO, PM10, NO, NO2, NOx, SO2, H2S, 

and O3. The training of the prediction models was based on the Multilayer 

Perceptron method with the Back-Propagation algorithm, and showed very high 

concurrence between the actual and predicted concentrations. In addition, the 

research investigated the MLP model‟s sensitivity to variation of epochs cycle (trial 

and error technique adopted to try different adjustments).   
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Forecast of Air Quality Based on Ozone by Decision Trees and Neural 

Networks [23]. 

In this research the Authors concluded that the Multilayer Perceptron Neural 

Network and algorithms such as Random Forest are capable of predicting O3 with a 

similar accuracy. These algorithms will be used in this study with additional 

attributes such as BTX and solar radiation. Further the use of Support Vector 

Machines and Bayesian Networks were also considered.  

 

Prediction of Missing Data for Ozone Concentrations Using Support Vector 

Machines and Radial Basis Neural Networks [24]  

The paper studied ozone concentration data in two seasons (summer and winter) 

to forecast the ozone level. The work proposed used Support Vector Machines 

(SVM) and Artificial Neural Networks (ANN) to predict the ozone level in two 

phases: in an hourly basis and one on a weekly basis. The data which was used in 

the experiment was obtained from the Republic of Macedonia, during the year of 

2005. Clean data was selected from the dataset for 10 days in a row for two months 

(August and December). In addition, the experiment focused only on four input 

parameters, nitrogen dioxide (NO2), ozone (O3), temperature and humidity. They 

used the WEKA package to build three different models. The first two models used 

a Support Vector Machine with two different kernels (Polynomial and Gaussian) 

and the third model used a Artificial Neural Network (ANN) with Radial Basis 

Function (RBF). The experiments demonstrated that the results provided by SVM 

with both kernels were better than when using ANN. In conclusion, the author 

recommended a further study with more meteorological variables. 

 

Neural Networks for Analysing the Relevance of Input Variables in the 

Prediction of Tropospheric Ozone Concentration [25]. 

This study employed a Neural Network to build a prediction model for ozone 

concentration levels and obtained the relationships between the relevant variables. 
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This experiment included more input variables than the above study: two vehicle 

emissions (NO and NO2) and five meteorological variables (temperature, wind 

speed, relative humidity, solar irradiation and pressure). Furthermore, a sensitive 

analysis to determine the relevance of the input variables was carried out in this 

work. The results showed the complexity, non-linearity and time dependency of the 

ozone concentration prediction mechanism. 

 

Prediction of Ozone Concentration in Tropospheric Levels Using Artificial 

Neural Networks and Support Vector Machines at Rio de Janeiro, Brazil [26]. 

The paper aimed to analyses the behaviour of the input variables of the air quality 

monitoring dataset. In addition, the implantation of non-linear regression methods, 

SVM and ANN, were used to build a predictive model for ozone concentration. Both 

techniques used three different datasets created for the purpose of this study. These 

databases varied based on season, pollution source, and weather conditions. 

However, the first two datasets were taken from different places, while the third was 

produced by merging the first two sets. Hence, an indication of a dependent 

relationship between ozone concentration and other pollutants and meteorological 

conditions was obvious in the results. Moreover, the study examined and showed the 

non-linear relationship between ozone and other input factors. In addition, the 

resulting predictive model using SVM and ANN was found to be very consistent 

with actual observations.      

 

Assessment and Prediction of Tropospheric Ozone Concentration Levels Using 

Artificial Neural Networks [20].  

The research employed a ANN to predict the ozone concentration level in an 

urban area using pollution and meteorological measurements. The relationship 

between ozone and other ambient air measurements was studied as well. In the work 

proposed the authors focused on a summer dataset, as the ozone concentration is 

very high during that period. Therefore, three models were developed for different 

investigations, with different input variables. The first two models investigated the 
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factors which control the ozone concentration. However, the first model focuses on a 

24 hour period, while the second model looked at the daylight period, when the 

highest ozone concentration was recorded. Moreover, the third model predicted the 

daily maximum ozone concentration level. The experiment confirmed the conclusion 

of other researchers, i.e. that the ozone concentration is high during the summer 

season. In addition, the results showed the dependent relation between ozone and 

other input variables (air pollution and meteorological variables). The study also 

shows the ability of a ANN method to predict and model the ozone concentration.   

 

Hourly Ozone Prediction for a 24-H Horizon Using Neural Networks [27].  

The paper aimed to verify the presence of non-linear dynamics in the ozone 

concentration time series. They presented a study of hourly ozone prediction for 24 

hours per day of a whole year. Therefore, two ANN structures (dynamic and static 

models) were adopted to build the model. The dynamic model of ANN is represented 

by a cascade 24 Multilayer Perceptron (each with its own output). In other words, the 

output of the previous flow will be fed as an input of the next one. On the other hand, 

the static approach has only one layer with 24 outputs. The authors have used the 

ANN to implement the experiment based on previous studies which have used and 

proven the ability of ANN to predict the Ozone concentrations. For dynamic model 

the model used the previous forecasting ozone along with past 24 hour  (24 lagged 

variables) of meteorological parameter and NO2, while the static used only the past 

24h of meteorological parameter and NO2. The result showed both model have a 

comparable result which indicate there is no dynamic nonlinear relation on ozone 

time series.   In addition, the author employed sensitivity analysis to test the 

generalization ability of the two architectures (static and dynamic model). After the 

inclusion of an optimisation procedure to the two models, the research has 

introduced the perturbation to input values of the test set from 10 to 40% while the 

training set was kept as the original. Moreover, another examination has been 

applied when the same perturbation amount was introduced to training the set while 

fixing the test set. The results of the test have shown that small changes in the input 

impact the output. 
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Learning Machines: Rationale and Application in Ground-Level Ozone 

Prediction [28].  

The paper aimed to produce a study which could be considered a benchmark for 

further research into atmospheric air quality prediction. They presented the use of 

MLP with different methods to predict the ozone level. MLP suffers from two main 

problems, i.e. over-fitting and local minima; a number of researchers have 

subsequently tried to overcome these problems. Lu et al. [29] applied Practical 

Swarm Optimisation (PSO), while [30] tried MLP with automatic relevance 

determination. However, no studies have successfully addressed the two problems 

simultaneously. Therefore,[28]  proposed the use of SVM to address the MLP 

problems mentioned above. In this study, SVM performance was examined and 

compared against MLP. The result illustrated that the MLP is better in the sense of 

risk immunisation, while the SVM was better that the MLP on structural issues. 

 

Multiple Linear Regression And Artificial Neural Networks Based on Principal 

Components to Predict Ozone Concentrations [31]. 

The research conducted a study to build a model to predict the hourly ozone 

concentration. The study employed the feedforward ANN and multiple linear 

regression with and without Principle Components (PC) as input. Principle 

Component Analysis (PCA) was used to transfer and reduce the number of 

predictive variables to new input variables, i.e. a set of Principle Components. In 

addition, the study investigated the influence of each environmental factor on ozone 

concentration using statistical analysis. The authors compared the model designed 

with PC against the original variables. The result showed the ability of Principle 

Components to improve the prediction of the model. Besides this, PC can reduce the 

data complexity and co-linearity of the dataset. 
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Forecast Urban Air Pollution in Mexico City by Using Support Vector 

Machines: A Kernel Performance Approach [32].  

The paper used SVMs to model the concentrations of air pollutants in the city of 

Mexico. The study utilised several kernels (Gaussian, polynomial and Spline) and 

compared their performances against each other. The SVM model provided good 

accuracy in modelling the concentration of the gases ozone, nitrogen dioxide and 

PM10.  They concluded that SVM with a Gaussian kernel provides better 

performance than the others. However, when using SVM, the Gaussian kernel may 

not be satisfactory in reality due to its high computational cost. 

 

Development and Evaluation of Data Mining Models for Air Quality Prediction 

in Athens, Greece [33]. 

The authors examined the performance of multiple data mining algorithms for 

modelling air quality. The experiment was implemented using the best known 

software package for machine learning (WEKA). 84 different models were built 

from almost all the algorithms implemented in the software. Different statistical tests 

and indexes were used to evaluate the models. The best performances in 

classification were obtained from J48, LMT, OneR, Decision Table and REPTree. 

These algorithms fall under the Tree and Rule categories. In addition, the best 

algorithms under a regression model are M5P, REPTree, and M5Rule. Meanwhile, 

the worst results were obtained from the models based on SMOreg and linear 

regression. However, this work did not consider any of the ensemble classification 

algorithms which were not implemented within WEKA as the time the study was 

conducted.  

 

Identifying Pollution Sources and Predicting Urban Air Quality Using 

Ensemble Learning Methods [9]. 

The paper conducted one of the few atmospheric environment studies that 

considered the use of ensemble learning (Bagging and Boosting) for constructing an 

air quality model. These models were utilised to differentiate air quality during the 



Chapter 2 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           18 

different seasons and predict an air quality index. In addition, the study used PCA to 

identify the main and relevant air pollution sources. Hence, the experiments 

illustrated a noticeable enhancement in the accuracy of ensemble learning, compared 

to SVM. Moreover, the PCA identified fuel combustion and vehicular emission as 

major air pollution sources in the city where the study was carried out. 

 

Forecasting Summertime Surface-Level Ozone Concentrations in the Lower 

Fraser Valley of British Columbia: An Ensemble Neural Network Approach 

[10] 

Another study that attempted to compare the ensemble methods and the single 

base learners was presented in this paper. The study built a predictive model to find 

the maximum average ozone concentration in daylight hours during the summer 

season. The developed models initially used Multilayer Perceptron (MLP) and 

Multiple Linear Regression (MLR). To support the experiment, data was taken from 

10 different stations for a period of five years. However, both methods suffered from 

instability and over-fitting problem. Therefore, use of Bagging (one of the ensemble 

learning techniques) was proposed to improve the stability and accuracy of the 

designed model.  Later, a comparison between bagged MLP (Bagging with MLP as 

base classifier) and bagged MLR was carried out and compared against the 

individual models of MLP and MLR. The result showed the ability of Bagging to 

improve the stability and accuracy of MLP. On the other hand, the result of Bagging 

was disappointing when using the MLR model. However, bagged MLP 

outperformed bagged MLR in all the stations. 

 

Assessment of Adding Value of Traffic Information and other Attributes as 

Part of its Classifiers in a Data Mining Tool Set for Predicting Surface Ozone 

Levels [8] 

This paper utilizes the Sohar dataset which has been employed in this research (see 

Chapter 4), however, the aims was to examine the effect of traffic information on 

ozone predication. Several prediction models  were contrasted and compared to 

model the ozone concentration. These models included the single base algorithms 
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(M5P, REPTree, Kstar, M5Rule, IBK, SMOreg, MLP, Decision Table, LWL, 

Decision Stump, and RBFNetwork) and ensemble learning algorithms (Bagging, 

Random Subspace, Regression by Discretization, and Addictive Regression). The 

results indicated that Bagging was the best classifier based on the values of 

evaluation indexes (CC, MAE, RMSE, RAE, and RRSE). In addition, the paper 

extended the research to optimise the parameters of two models (Bagging and M5P). 

However, the results shown that no significant improvement of the accuracy is 

obtainable.   More experiments on Bagging employed during the day time and using 

traffic information and compared it without this information. The results showed 

improvement in the productive model of ozone. 

 

Effective 1-Day Ahead Prediction of Hourly Surface Ozone Concentrations in 

Eastern Spain Using Linear Models and Neural Networks [34] 

The paper used ANNs in forecasting the ozone concentration, 1 day ahead. The 

authors used data over a 4 years period. The paper aims to use the past and 

previously predicted values of the inputs to forecast the ozone concentration for one 

day a head.  The authors used the autoregressive moving average with exogenous 

input (ARMAX), MLP, and finite impulse response (FIR) Neural Network. The 

paper used an approach for forecasting the hourly ozone that differs from the 

previous study (where they used the future information of the covariates in order to 

predict future of ozone) in two aspects (1) they have used the past information of 

meteorological parameters and ozone as inputs to the model, and not using the 

currant values of the variables. (2) used the previous forecasted ozone concentrations 

to predict the current ozone concentration.  The authors employed the lag 

information as an input to the model. 

 

 

Urban Air Pollution Monitoring System with Forecasting Models [35] 

Another recent paper has tested three different classification algorithms, SVM, 

M5P and ANN, for forecasting polluted gases O3, NO2 and SO2. The paper has built 
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two types of models for each gas: (1) Univariate model where the model was built 

using the target gas only, (2) Multivariate model where other features of gases and 

meteorological parameters are employed. The paper has used different lag variables 

(8 and 24) to forecast 1, 8, 12, and 24 hours ahead. The results have indicated the 

M5P outperform SVM and ANN for all the gases in all the forecasting steps they 

have tested. The paper did not study the use of ensemble learning algorithms for 

forecasting ozone concentrations. 

 

Neural Network Modelling and Prediction of Hourly NOx And NO2 

Concentrations in Urban Air in London [36] 

This paper aimed at building forecasting models for hourly observation of NOx 

and NO2 concentrations using MLP. The model was compared with a linear 

regression based model (LR). The results have indicated the power of the MLP to 

deal with complex patterns.  Different MLP models and LR models were constructed 

using different inputs. Some of these models have introduced the historical 

information of (NOX/NO2) with two different lagged variables (lag-1 or lag-24). The 

results indicted the use of lag-1 is not practical for forecasting, while the lag-24 

provided some reasonable predicted episodes. Furthermore, the tests have shown that 

using lagged variables, improves the model performance.  

 

Hybrid Model for Urban Air Pollution Forecasting: A Stochastic Spatio-

Temporal Approach [37] 

The paper employed a ANN to concentrate the PM10 forecasting model using the 

lagged variables and meteorological parameters. The input parameters to the model 

were the previous day mean of NO, NO2, CO and PM10 concentration, mean of 

meteorological parameters for previous day, and PM10 concentration of the current 

day.  A correlation analysis (backward stepwise regression) adopted to determine the 

parameters that has the most significant impact to the PM10 forecasting model. 

These analyses enabled the optimisation of the ANN model. 
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Multilayer Perceptron and Regression Modelling to Forecast Hourly Nitrogen 

Dioxide Concentrations [38] 

The paper presented forecasting models for NO2 using MLP and multiple 

regression (MLR) models that predicted 24 hours ahead.  The authors have used 

hourly data of NO2 concentration, meteorological parameters and a linear 

presentation of the daily and weekly periodic (sine and cosine of each information) 

values. Both selected learning models were optimised. Several models were 

constructed using different input parameters employed by both learning algorithms. 

The Seasonality (t+24), sine and cosine of daily and weekly cycles, were used as an 

inputs for some of the models. The result showed that a good forecasting model can 

be achieved using MLP. Furthermore, the best MLP model was obtained when the 

input parameter used meteorological values, traffic information, seasonality t+24, 

NOt and (NO2)t concentrations, while the best MLR model was obtained when using 

meteorological values, traffic information, and (NO2)t concentrations. 

 

Forecasting Seasonal Time Series with Neural Networks: A Sensitivity Analysis 

of Architecture Parameters [39] 

The paper aimed to investigate use of MLP in building a forecasting model within 

different seasonal and trend components. The paper discussed the best MLP 

architecture to build the forecasting model (OPTIMAL Model) and examined the 

sensitivity of different MLP to forecast seasonal dataset.  The MLP topology was 

tested in respect to input node, number of layers and activation function. The authors 

have focused on altering the investigated parameters, while keeping the other 

parameters set to its generic architecture. The result has shown that the variation of 

the input and the MLP parameters were impacting on the model‟s performance. 
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Linear and Nonlinear Modeling Approaches for Urban Air Quality Prediction 

[40]  

The paper aimed at predicting the air quality and examined the sensitivity of the 

input variables by observing the effectiveness of eliminating some of the inputs.  

Three different types of the ANN models were investigated, namely, the multilayer 

perceptron network (MLPN), radial-basis function network (RBFN) and the 

generalized regression neural network (GRNN). These models were used to 

construct models for RSPM, NO2, and SO2, a predictive model for air quality using 

meteorological and urban air quality datasets.  Hence, for sensitivity analysis the 

study tested and compared all possible combinations of the input variables that 

contain groups of one, two, three, four, and five variables. The performance of these 

tests analysed with an optimal GRNN structure (since the GRNN models 

outperformed MLPN and RBFN models). The analysis of sensitivity of the models 

(RSMP, SO2, and NO2) indicated which of the input groups, were performing the 

best in each model. 

 

Establishing Multiple Regression Models for Ozone Sensitivity Analysis to 

Temperature Variation in Taiwan[41]  

The paper studied the sensitivity of the concentration of ground level ozone to 

temperature changes in Taiwan. Multiple regression models were built using an 

hourly dataset including ozone, PM10, temperature, relative humidity, wind speed, 

wind direction, and rainfall.  Data were analysed from 2000-2009, where the data 

from 2000-2009 were used for descriptive statistics and data 2004-2009 were utilised 

to construct the model.  A dataset of 2070 records for surface ozone concentration 

has been tested for its sensitivity to temperature by replacing the original value with 

different values of temperatures ±1 C, ±2 and ±5. The indictors of this test (ozone 

sensitivity to temperature) were the 75th percentile (yearly maximum) and number of 

ozone exceedance. In addition, a sensitivity analysis was also carried to the 2030 

predicated data. The paper concluded there are a positive correlation between ozone 

sensitivity and temperature variation. Hence the paper focused on future 
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temperatures and the analyses applied to 2030 predicated data results has indicated 

that ozone sensitively was strongly associated with ozone seasons. A result which 

agrees with the findings of other existing studies. 

 

Exploring the Utility of the Random Forest Method for Forecasting Ozone 

Pollution in SYDNEY [42] 

This paper examined the performance of the random forest in forecasting the 

ground level ozone pollution. The performance of Random Forecast was compared 

with single tree (CART) classifier. The paper has developed two classification 

models each using decision tree (CART). In addition, the Random Forest has 

implemented to go through two phase of modelling to get better accuracy. In the first 

phase a classic random forest classifier was applied to the training set and to build 

the forecasting model. Phase two employed the random forest classifier but using a 

new training set from the phase one‟s forecasting model. This training set consists of 

all instances which are incorrectly classified. This idea was adopted due to the use of 

the boosting strategy to boost the result. The paper concluded that results of using 

Random Forest outperformed the single decision tree in general. 

2.2.2. Research Gap  

For the last 10 years, atmospheric researchers have used ANNs or SVMs as 

statistical tools to assist them in monitoring air quality. The preference for these 

tools is based on the experiments and conclusions of previous research in this 

area. Meanwhile, there are more advanced techniques in machine learning 

(ensemble learning) which have demonstrated their ability for more efficient 

prediction in other areas. Unfortunately, only a few researchers have attempted to 

use these techniques, namely [8], [9], and [10]  (discussed in the above section). 

A comprehensive investigation into the use of ensemble learning methods with 

different combinations of base classifiers has not been found in literature. This 

will be a key focus of the research conducted and presented within this thesis. 
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Section 2.3 presents existing studies in other application areas (i.e. outside 

machine learning), which have successfully employed the ensemble learning 

algorithms, obtaining better results in prediction ability.  

2.3. Use of Ensemble Learning Algorithms in Other Areas 

Section 2.2 provided an insight into studies of air quality modelling focused 

mainly on modelling, prediction and forecasting of ozone concentration. These 

studies used available statistical and machine learning tools to build the desired 

models. Looking at the nature of data related to air quality, atmospheric researchers 

have used ANN and SVM algorithms in their design and implementation of models. 

The reason for this comes from the fact that both of the algorithms are known for 

their ability to model non-linear datasets, e.g. atmospheric and/or ground level ozone 

concentration. On the other hand, machine learning now has more advanced 

techniques (e.g., ensemble learning technique) which have the ability to work with 

massive and complex datasets. However, ensemble learning algorithms have not 

been employed widely and rigorously in the modelling and prediction of ozone 

concentrations. Therefore, this section reviews the use of ensemble methods in areas 

outside that of atmospheric pollution monitoring.  

2.3.1. Literature Review  

A Review of Ensemble Methods in Bioinformatics[43] 

Yang et al. [43] presented a review of ensemble methods in the area of 

bioinformatics. This paper discussed the application of the ensemble methods in 

three topics in bioinformatics: (1) Classification of gene expression microarray 

data and MS-based proteomics data; (2) Gene-gene interaction identification, and 

(3) The prediction of regulatory elements of DNA and protein sequences. In all 

three applications, the authors demonstrated that the ensemble methods are more 

accurate than the single base methods. The study concluded that ensemble 

learning in general can achieve higher accuracy and stability than single base 
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algorithms.   

Ensemble machine learning on gene expression data for cancer classification. [44] 

Tan and Gilbert [44] studied the use of ensemble learning (Bagging and 

Boosting) to classify a cancer from gene expression data. The performance of 

ensemble learning was compared with a single algorithm, C4.5 Decision Tree. 

The improvement obtainable from ensemble learning algorithms was obvious. 

The study concluded that the ensemble learning techniques often perform better 

than single algorithms in classification tasks. 

A study in the area of medical data analysis by [45] compared the 

performance of Bagging with 12 other learning algorithms. These algorithms are 

the most commonly used in real-world applications: Support Vector Machine, 

Neural Network learner–MLP, Naïve Bayes learner (NB), K-nearest-neighbors 

(KNN), PART, DecisionTable, OneR, C4.5 DecisionTree, J48, DecisionStump, 

RandomTree, REPTree, and Naïve-Bayes-Tree. The study used eight imbalanced 

medical datasets and different statistical tests for the evaluation of models. The 

result of comparing Bagging with a single algorithm did not show a significantly 

better result than some of the single learners, such NB, SVM, KNN, 

DecisionTable and DecisionStump. On the other hand, Bagging statistically 

performed much better than the remaining single learning algorithms, such as 

J48, RandomTree, OneR, MLP, and PART. 

 

Bankruptcy forecasting: An empirical comparison of AdaBoost and neural 

networks [46] 

The paper presented another comparison study. The study compared adaBoost 

(an ensemble method) and ANN in accurately predicting the corporate failure of 

European firms. The results showed that the ensemble method adaBoost 

outperformed the accuracy of ANN. In addition, adaBoost reduced the 

generalisation error by 30%, compared to the error produced by ANN.  

Prediction of Oil Prices Using Bagging and Random Subspace [47] 



Chapter 2 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           26 

Gabralla and Abraham [47] presented a comparative study between several 

single based learning and ensemble learning (Bagging and Random Subspace) 

algorithms. The paper aimed to find the most accurate model to predict oil prices. 

Bagging and Random Subspace were examined using six different base 

classifiers, namely: Multilayer Perceptron (MLP), Isotonic Regression, 

Sequential Minimal Optimisation for Regression (SMOreg), Multilayer 

Perceptron Regressor (MLP Regressor), Extra Tree and Reduce Error Pruning 

Tree (REPTree). Each of these six models was utilised individually to construct a 

prediction model. Hence, the results were compared with the corresponding 

Bagging and Random Subspace algorithms. The experiments showed that the 

ensemble methods enhanced prediction accuracy except for MLP, with Random 

Subspace achieving the best results of the adapted techniques.  

 

An ensemble method for predicting biochemical oxygen demand in river water 

using data mining techniques. [48]  

A study proposed by [48] employed Bagging to predict the biochemical 

oxygen demands in river water. The authors proposed a model that used Bagging 

with K-star and compared it with seven other models. These models were ANN, 

Bagging with ANN, SMOreg, Bagging with SMOreg, Multivariate Regression, 

Regression by Discretization, and K-star. The experiments showed the 

improvement obtainable in accuracy when Bagging was employed. 

 

Prediction of full load electrical power output of a base load operated 

combined cycle power plant using machine learning methods. [49] 

 In the field of Electrical Power and Energy Systems, the paper presented a 

comprehensive study using most of the machine learning methods. The paper 

aimed to build a prediction model for a thermodynamic system. 15 predictive 

models were built and compared using several classifiers, namely Simple Linear 

Regression, Linear Regression, Least Median Square, Multilayer Perceptron, 
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Radial Based Function Neural Network, Pace Regression, Support Vector Poly 

Kernel Regression (SMOreg), IBK, Kstar, LWL, Additive Regression, Bagging 

with REPTree, M5P, and finally REPTree. As shown by the results of the 

experiments, Bagging provided the highest prediction accuracy.  

The above works indicate that several attempts have already been made in 

areas beyond air quality prediction in the use of ensemble classifiers. This work 

has shown that ensemble classifiers outperform the corresponding single 

classifiers and that the ultimate answer to the question, which classifier works 

best, depends on the dataset. It is clear that different datasets, in particular from 

different application domains, are statistically different and this has a high impact 

on the variability of results. 

2.4. Summary & Conclusion 

As discussed in this chapter, several studies in the field of environmental science and 

engineering have focused their interest on constructing a model to deal with air pollution 

problems. Based on literature above, it can be seen that the methods used by 

environmental researchers to solve the problem have been rather limited. The majority of 

environmental researchers tend to use Artificial Neural Networks (ANN) and Support 

Vector machines (SVM) to model and predict ozone concentration [25], [28], [31], [32], 

[50]. However, some other researchers have attempted to apply ensemble learning 

(bagged ANN) and compared the performance with that of the single base learning 

algorithms, such as the work of [9] and[10]. Both [9] and [10] have proven that the use 

of Bagging shows improvement over the performance of single models. In the area of 

forecasting ozone concentrations into the future, the focus has been once again mainly 

the use of single learning algorithms.  

On the other hand, several researches in other research areas such as bioinformatics, 

medicine and marketing, have successfully used ensemble learning methods to build 

predictive models [51]–[53] Despite the above conclusion, the use of ensemble learning 

for predicting ozone concentration was limited to few attempt of using ANNs. A 

comprehensive and rigorous study of using various ensemble learning algorithms, such 
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as, Random Forests, Bagging, Voting, Stacking etc. does not exists either within or 

outside the area of air pollution monitoring.   

From the literature review above, a lack of research into utilising ensemble learning 

to predict ozone concentration was identified. In addition, an absence of a complete 

comparison between all machine learning methods for monitoring air quality was 

noticed. Therefore, in this work a comprehensive study has been conducted to examine 

the performance of ensemble methods against other 13 single based algorithms. The 

study will be conducted on an ozone concentration dataset using two different datasets 

and a predictive/forecasting model will be built. Moreover, a comprehensive analysis of 

the use of the Bagging classifier versus the other ensemble classifiers and all single 

classifiers will be carried out. Therefore, the proposed work can be used as a key 

reference for modelling air quality monitoring in the future. 
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  CHAPTER 3

Research Background  

 

 

3.1. Introduction  

This chapter presents the background of research, on which the work presented in this 

thesis is built on. Theoretical explanations of the algorithms behind the machine learning 

techniques used, approaches used for data collection and techniques/metrics used for 

data analysis and evaluation will be defined and explained in detail as appropriate. In 

addition, the use of different filters and packages employed within the WEKA toolkit 

[12] are presented.  

For clarity of presentation this chapter is divided into several sections. Section 3.2 

presents the DOAS (OPSIS) instrument that was used by Sohar University, Oman, to 

gather the air quality data used in the experiments of Chapter 5 and Chapter 6. Section 

3.3 demonstrate the different between machine learning and statistical models. Section 

3.4 presents general information about the use of machine learning in data modelling and 

specific information about the particular learning algorithms used in modelling ground 

level ozone concentrations, in Chapters 5, 6 and 7. Section 3.5 presents the ten-fold 

cross-validation approach used in all experiments to validate the performance of the 

proposed models and Section 3.6 presents the validation metrics used. Section 3.7 

presents the feature selection filters used and the optimisation algorithms used in 

adjusting the parameters of the training algorithms for optimal performance. Finally, 

Section 3.8 summarises the research background covered in this chapter.  

3.2. DOAS (OPSIS) Instrument 

A Differential Optical Absorption System (DOAS) [54] is used to measure the 

concentration of several gaseous species in the troposphere simultaneously. The system 
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records and evaluates the characteristic differential absorption of UV/Visible light 

source transfer, over a path of several kilometres. The DOAS technique is based on 

Beer-Lambert‟s absorption law, which is explained as follows: “The quantity of light 

absorbed by a substance dissolved in a fully transmitting solvent is directly proportional 

to the concentration of the substance and the path length of the light through the 

solution”[55]. Since the absorption spectrum property of each gas is unique, the 

concentration of each gas can be identified separately at the same time. 

The DOAS technique is based on two main parts. The first part is responsible for 

sending a beam of light from a special source through a particular path. The light which 

is sent contains light of the visible spectrum, ultraviolet and infrared wavelengths. The 

second part is a receiver, which receives the light sent by the first part (the emitter). The 

receiver will transfer the light through an optical fibre to an analyser, as illustrated in 

Figure 3.1. 

The analyser includes a computer, associated control circuits and a high-quality 

spectrometer. The spectrometer will use the optical grating to split the light into narrow 

wavelength bands. Subsequently, the light is transformed into electronic signals so that 

the computer can evaluate and analyse the light losses due to molecular absorption along 

the path. After several computer calculations, the instrument will produce a monitoring 

database, which includes the gaseous concentrations, with a high level of accuracy [54]. 
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Figure 3.1: UV DOAS Technique [54] 

 

The DOAS used by Sohar University, Oman that provided data for the experiments 

conducted in thesis in Chapters, 5 and 6, measures the concentrations of eight gases, 

namely SO2, NO2, O3, benzene and (o-,m-,p)-xylene ( refer to Table 3.1) .  



Chapter 3 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           32 

Table 3.1: Sample of the dataset provided by OPSIS (Sohar University) 

 

3.3. Machine Learning V.S Statistic Analysis  

A statistical model aims to develop a model that explains the data, while, machine 

learning develops a method to solve a problem. According to Witten et al. (2011, p.28-

29) [11] there is no significant difference of principle between the two models. The 

concern of statistical is more toward the hypothesis testing. In contrast machine learning 

is more about developing the process to search for possible hypotheses 

3.4. Machine Learning Techniques  

Machine learning (ML) is the process of learning useful information from a large set 

of data, i.e., “big data”. This learning process leads to developing the capability to make 

intelligent decisions or predicting upcoming/future data. Therefore, ML has the ability to 

develop methods or tools that can be used to discover unseen patterns from given (i.e. 

seen) data to solve a particular task or problem. Subsequently, the built model can be 
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used to predict new data or information. Figure 3.2 illustrates the general process of 

machine learning. 

 

Figure 3.2: The Machine Learning Process (Supervised Learning) 
 

It is worth mentioning that data mining tasks can be categorised into two types: (1) 

classification tasks, where the target class to be predicted is nominal and (2) regression 

tasks, where the target class is numeric (the work of this thesis). Not all the learning 

algorithms can handle the two categories [11].    

A large number of machine learning algorithms have been proposed in literature. In 

general, these techniques can be divided into two categories: single learner algorithms 

and ensemble learner algorithms or meta learner algorithms. Figure 3.3 illustrates the 

main difference between the two methods. The details of each type are discussed in the 

subsections below.  
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Figure 3.3:The processes of machine learning: Single Base Learner and Ensemble Learner algorithms 

 

3.4.1. Single Base Learner Algorithms 

A single base learning classifier is one of the machine learning techniques which 

follow the basic rules of machine learning. These techniques take the whole set of 

training data and apply only one of the ML algorithms to build a predictive model. As 

shown in Figure 3.3, the process of building the model is clearly implemented in a 

linear manner. 

Below is a brief description of each of the single learner algorithms used in this 

thesis. The algorithms have been divided into several categories according to their 

functionality.    

3.4.1.1. Function Based Approaches 

 SimpleLinearRegression[11]: SLR generates a regression model which 

minimises the sum of squared error or residual.  It attempts to map the training 
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data points to the target variable through a linear relation. Formally, given 

training data X and their corresponding target values y, Linear Regression 

solves for a set of weights w that minimises the squared error on training data 

(wX-y)
2
. 

 LinearRegression[11]: It is similar to the SLR algorithm defined above except 

in this algorithm the use of Akaike Information Criterion (AIC)[56] for model 

selection has been implemented. AIC is measuring the quality of each model 

relatively to others for giving dataset.   

 

 MultilayerPerceptron[11]: MLP is an implementation of Artificial Neural 

Networks (ANN) using Back-Propagation. MLP is used to modify the weight 

of hidden nodes based on their individual contributions to the final prediction. 

In addition, each of the nodes in the network uses a sigmoid function.  

 

 SMOreg [57]: SMOreg is an implementation of a Support Vector Machine 

(SVM) for a regression task. Basic idea of support vector machines is to find 

optimal hyperplanes for linearly separable patterns. SVM uses different kernel 

functions to extend the patterns that are not linearly separable by transforming 

the original data into a new space.  

3.4.1.2. Tree based approaches 

DecisionTree takes the training set and represents the data as a tree structure 

(node and branches). A tree node represents a test of an attribute (question); each 

branch indicates an outcome of the test, and the last node, which is called the 

leaf, contains the class label. The constructed tree is used to classify any new 

data to its class. The new data will go through the tree from the first node (root) 

up to a leaf. 

The root must hold the feature which best divides the dataset. Choosing the root 

is one of the critical issues in a DecisionTree design. A number of measurements 

are used to identify the best feature, for example Information Gain, Gain Ratio, 

and Gini index [11].   



Chapter 3 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           36 

 

 M5P [58]: M5P is a tree-based regression approach. It builds a tree similar to 

in other tree-based models. However, its leaf node contains a regression 

model, rather than values, such as in other tree-based models. M5P normally 

generates smaller trees than regression trees and thus can be learned more 

efficiently and can handle higher dimensionality. 

 

 DecisionStump [59]: This is a one level decision tree. The algorithm makes a 

decision from one value of the input feature. However, this algorithm is often 

used as a base classifier for other meta learning (ensemble learning) 

algorithms (see Section 3.2.2). 

 

 RandomTree [60]: The RandomTree algorithm randomly samples the features 

at each node of the tree without performing pruning.  

 

 REPTree [11]: REPTree is a regression tree that utilises information gain as 

the splitting criteria. The tree is pruned with reduced-error pruning and the 

values of numeric attributes are sorted once only. 

 

3.4.1.3. Rule Based Approaches  

 DecisionTable [61]: DecisionTable is one of the simplest classification 

approaches used in supervised learning. It is based on a matrix/table that 

contains features and instances from the training dataset. Therefore, the 

algorithm will take any new instance and search the entire table for a match (it 

could have multiple matches). If no matches are found, the best matching class 

of the dataset is returned. Otherwise, the best matching class out of the 

matching instances found is returned. 

 

 M5Rules [62]: is a tree model that is similar to M5P (see above). The 

difference from M5P is that M5Rules creates a decision list for regression 
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problems using the separate and conquer [63] approach. In each iteration, an 

M5 Tree model is built, and the best leaf is selected to be made into a rule. 

The model produces a rule set that is as accurate, but smaller, than that of a 

tree based model (see Section 3.4.1.2).  

3.4.1.4. Lazy Approaches  

 Lazy.IBK [59]: IBK is a K-nearest-neighbour classifier. The algorithm tends 

to store the entire training sample before building the classifier. Once a new 

sample (data) is received, the algorithm will build the classifier. Hence, IBK 

uses a distance measure to locate the K closest instances to the new sample of 

data from within the training set. Then it uses these selected K instances to 

build the model. This algorithm can work for both regression and 

classification models. 

 

 Lazy.LWL [64]: LWL is a Locally Weighted Learning algorithm. The weight 

is assigned using an instance-based method. Then the classifier model will be 

built from the weighted instances. This algorithm can carry out classifications 

using, for example, the Naive Bayes approach, or conduct regression by 

adopting linear regression. 

 

 Lazy.KStar [65]: KStar is a similarity-based model. For each instance to be 

predicted, it searches in the training set for the most similar instance. The 

prediction is determined by this most similar instance. It uses an entropy-

based distance function, which makes it different from other similarity-based 

models.  

3.4.2. Ensemble Learner Algorithms  

Ensemble learning is an approach that uses multiple learning algorithms to build a 

single model. The idea is similar to a committee meeting, in which each of the 

members has an opinion on solving the matter they discuss. Different ideas can be 
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combined or a single thought can be agreed upon. In either case, at the end the 

chairman will call for a vote and the majority will win. This is exactly what happens 

when using ensemble techniques, but each has a different way of voting and taking 

the decision.  

Another general definition, presented by [51], is as follows : “Ensemble learning is 

a process that uses a set of models, each of them obtained by applying a learning 

process to a given problem. This set of models (ensemble) is integrated in some way 

to obtain the final prediction.”  

 The ensemble learning approaches are split into two main categories, namely 

homogenous (using a same base learning algorithm on different distributions) and 

heterogeneous (using different multiple learning algorithms). Learning algorithms in 

both categories aim to improve the performance of a model by reducing the variance 

and the bias of the dataset. Hence, an ensemble can be used to solve both 

classification and regression tasks [11]. The main focus of all ensemble methods (i.e. 

Bagging, Boosting) is to overcome the problems associated with weak predictors 

[66].  

 

To obtain an ensemble learning method, three main steps have to be implemented, 

regardless of the type of the task [51]: 

1. Ensemble Generation: this step is used to generate several samples, of which 

each will build a model using a single base learning algorithm.  

2. Ensemble Pruning: this step will eliminate some of the models which have 

been generated in the first step. The purpose of this step is to reduce the size of 

the tree without affecting the accuracy. Ensemble pruning was introduced by 

[67]. 

3. Ensemble Integration: uses a voting or averaging strategy to combine the 

models and this strategy is used to predict any new cases. 
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Figure 3.4: Ensemble Learning Hierarchy 

 

Figure 3.4 demonstrates the hierarchy of ensemble learning classifiers. The 

following is a summary of the methods that is  used in this thesis, with a 

graphical illustration of the basic homogeneous methods (see Figure 3.5): 

 

Figure 3.5:Fundamental concepts of the three basic homogeneous methods [42] 

 

In the research presented in this thesis the most common ensemble learning 

algorithms, namely Bagging, Random Forest, Random Subspace, Addictive 

regression, Voting and Stacking are used to model the ground level ozone 

concentration. General explanations of each method with the view of 
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understanding their performance on the test dataset to be investigated are as 

follows:    

 

3.4.2.1. Bagging[68]  

Bootstrap aggregation (Bagging) is a common type of ensemble learning 

approach. It is based on the manipulation of a given training data set [44]. 

Bagging resamples the original input data by using the bootstrap method, 

randomly but with replacement (some data elements can be selected repeatedly, 

while others may not). The data included in each sample are different from each 

other; however, the sizes of these samples are equal. A separate classification 

model is developed from each sample using one single learning algorithm. 

Subsequently, the outputs of different models are integrated into a single 

prediction model. It uses either the weighted vote or the average vote, depending 

on the type of task (i.e. a classification task or regression task respectively). 

Witten [11] stated that the ultimate model that results from Bagging often 

performs better than a single model that acts on the entire input dataset and never 

gets worse. The disadvantage of this method is that it does not work with a stable 

learning algorithm, e.g. a K-nearest-neighbour algorithm, where small changes 

do not affect the accuracy.  

3.4.2.2. Random Forest [69][70]:  

This is one of the Bagging tools. The Random Forest approach performs well in 

datasets which have more attributes than instances. Furthermore, the Random 

Forest approach performs better than Bagging due to the extra randomness 

present in the process of building the model. In other words, Random Forest is 

different to Bagging in the way that it splits the node of a tree. Instead of looking 

for the best point to split the node among the whole set of variables, Random 

Forest randomly picks sub-features to search for.   
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3.4.2.3. Random Subspace [71] 

This is another tool of Bagging, which uses the same principle of sampling the 

training set. However, Random Subspace samples the training set based on 

features instead of the instances which Bagging uses. Random Subspace is more 

effective when the dataset contains a significant amount of duplication in the 

data features. In addition, it can operate efficiently when the dataset contains 

fewer instances than features.  

3.4.2.4. Additive Regression [72]  

Additive regression (Boosting) is a meta classifier that combines multiple linear 

regression models to enhance the performance. In each iteration, a model is 

created to fit the residuals from the previous model, in other words the current 

model usually depends on the performance of the previous model. During 

prediction, all outputs of the models will be added up to produce the final 

prediction result.  

3.4.2.5. Voting [11] 

Voting adopts the same mechanism used in Bagging except that it combines 

multiple models obtained using different learning algorithms to build the desired 

final model. The output of each classifier can then be averaged to produce the 

final model.  

 

3.4.2.6. Stacking [73] 

Stacking is an extended version of voting. It takes multiple classifiers which are 

trained using the original dataset. This process is called first level learning. 

Subsequently a new training dataset is produced from combining the output of 
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each individual classifier of the first stage to feed into a second level learning 

algorithm, named the meta classifier. The meta classifier is a single classifier 

which finds the best way to combine the outputs of first level to produce the 

optimal output.  

3.5. K- fold Cross Validation [74] 

K-fold cross validation is one of the several options that can be used to evaluate 

predictive models. This idea was initially introduced by Seymour Gerisser in 1993[75].  

Subsequently a number of statistical researchers have used and further developed the 

theory of cross validation.  Several studies such as [74] have proven that K-fold cross 

validation  can reduce the error  and provide a better approximations of generalization. 

However, it is computationally expensive as it trains and tests in every point.   

In the proposed research the 10 fold cross validation has been used. The original dataset 

is randomly divided into K-different folds (K=10 equal size partitions, D1, D2,……DK) 

where the training and testing process will perform K times. In each iteration „i‟, the 

portion Di will be held as the test set, while the remaining data portions will be used as 

the training set. At the end of each iteration, a model will be produced and the average of 

the prediction results obtained from the K different partitions, will be taken as the final 

result.  This approach will reduce the variance of the model. 

3.6. The Validation Metrics 

In order to evaluate the accuracy of the prediction models, four objective metrics have 

been used, namely the Correlation Coefficient(CC), Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE) and Relative Absolute Error(RAE). These are metrics 

popularly used to compare accuracy in modelling O3 (i.e. a single parameter) 

concentrations. All of the matrices are aimed to calculate distance between the estimated 

value and the actual/true value. The four metrics can be defined as follows: 
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3.6.1. Correlation Coefficient (CC)  

Determines the linear relationship between input variables (X) and target 

variables (Y). It takes values between -1 and 1. The Correlation Coefficient is 

defined as follows:       

      
   (    )(    ) 

    
 

where    and    are respectively the standard deviation and the mean of X, 

while E represents the expectation. In addition,    and    are defined similarly 

for Y. A positive value of Correlation Coefficient means that the two variables 

move in the same direction with respect to their means. A negative value means 

they move in opposite directions with respect to their means. A value close to 0 

means the two variables have little linear dependency (see Figure 3.6). This 

means, for the predictions of the proposed work in this thesis, the Correlation 

Coefficient should be maintained close to 1 as much as possible, as this would 

facilitate training accurate models. 

 

Figure 3.6: Liner correlation : the interpretation of different values [76] 

 

3.6.2. Mean Absolute Error (MAE)  

MAE refers to the sum of individual absolute errors normalised by the number of 

samples. The individual error is defined by the difference between ground truth 

and predicted value for a sample. Mean Absolute Error is given by the following 

equation.  
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where    is the predicted value,    is the ground truth, n is the total number of 

samples and | | is the notation used to calculate the absolute value of a term 

within. This kind of measurement is more tolerant to large errors, the reason is 

because the error is not squared compared to for e.g., RMSE [77]. 

3.6.3. Root Mean Squared Error (RMSE) 

Root Mean Squared Error is a modification of the mean absolute value, with the 

absolute value of an individual error term replaced with a square. Its definition is 

given as follows: 
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MAE and RMSE are both measuring the average difference between the 

predicated and actual value [78]. However, RMSE is the most commonly used to 

measure the goodness-of-fit. RMSE gives more attention to the large errors due 

to its square term [77].   

3.6.4. Relative Absolute Error (RAE) 

RAE is a calculation of the variance of a model where the units are not important 

when comparing between models. The previous two measurements (MAE and 

RMSE) depend on the scale of data, and thus RAE can be very helpful when 

comparing different data with different scale.  
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Where  ̅ is the mean value of y.  
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3.7. Filters and Optimisers in WEKA 

WEKA toolkit provides several filters for different proposes that can be used to optimise 

the results obtained by a selected machine learning algorithm. The research proposed in 

this thesis has used some of these filters to help improve the accuracy and the 

performance of the models generated. Two types of filters have been used and are thus 

described below. They are, feature/attribute selection filters and parameter based 

learning algorithm optimising filters: 

3.7.1. Feature Selection Filters [11][79] 

Feature selection or attribute selection plays an important role in removing 

redundant features from being used in creating a model. Hence only the most 

relevant features will be selected for the purpose of modelling. This results in 

many advantages that are described below. It is noted that feature selection filters 

operate differently to wrapper filters as they evaluate the significance of 

attributes independently of any learning algorithms by focusing on general data 

characteristics and relationships. 

The advantages of performing attribute selection on data are: 

 Reduces Overfitting: Less redundant data means less opportunity to make 

decisions based on noise. 

 Improves Accuracy: Less misleading data means that the modelling 

accuracy may improve. 

 Reduces Training Time: Less number of attributes means that the amount 

of data used in the model generation will be reduced, which means that the 

algorithms can train faster. 

 

They are several attribute selection filters which can work in conjunction with 

either classification tasks, regression tasks or both types.  These filters usually 

use different methods to come up with the final decision on selected attributes 

[80].  
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There are two categories of filters implemented within the software package 

which employed in this thesis. Filters, (1) which evaluate a subset of the 

attributes and those (2) which evaluate individual attributes. Each of the attribute 

selection filters use an attribute evaluator and a search method that follows. 

Following are general explanations of Attribute Evaluators and Search Methods 

implemented and this used in the proposed research.  

1) Attribute Evaluator: This filter weighs each subset of attributes and assigns 

a numeric value, which monitors the search process. The evaluations could 

be measured by building a model and assessing the accuracy of the model. 

Some of attribute evaluation methods are listed below: 

 CfsSubsetEval: Individually evaluates the ability of each attribute and 

assign high scores to the features that are highly correlated to the class 

attribute, but have low correlation to the other features in the dataset.   

 ReliefFAttributeEval: This filter is used with the ranker search method 

which generates a rank list. It randomly picks an instance from the 

original dataset and then finds its nearest neighbours, from the same and 

opposite classes. The values of attributes for each of the instances 

(sampled and the nearest neighbours) will be compared and the score of 

each attribute will be updated relatively.  

 Principal Component Analysis (PCA): This is a filter which transfers 

the data by changing the attributes and combining them into a new form. 

This filter usually requires the use of Ranker search method.  

2) Search Method:  The search method refers to the method in which the 

attribute selector searches through a possible subset of features. There are 

different approaches to search namely, BestFirst, GreedyStepWise, and 

Ranker methods. Each method uses a different approach to building the list 

of the attributes and provides a weight for each attribute.  
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3.7.2. Parameter Based Llearning Algorithm Optimisers   

All learning algorithms consist of a number of parameters and often the selection 

of the values of these parameters that will ensure that the learning algorithm will 

work optimally is a challenge. 

In the proposed research one of the parameter based optimisation filters, 

“CVParameterSelection” has been utilised to find the optimal parameters for the 

selected classifier. However, this type of the filter works only for the single base 

learner (i.e. it cannot work for meta learner classifier) algorithms and cannot thus 

be used for optimising ensemble learning algorithms. The algorithm requires the 

user to provide with ranges for each of the parameters associated with a learning 

algorithm. Then the filter attempts to find the optimal setting of the parameters 

by trying out model creation using several combinations of parameters within the 

range specified. The software package utilized, also offers other types of 

parameters optimisation algorithms namely Grid search, MultiSearch and Auto-

WEKA. Details of each of these methods are presented in [81]. Within the 

research context of this thesis the method CVParameterSelection has been used, 

due to its simplicity and ease of use.     

3.8. Summary  

This chapter has presented detailed information about the background of systems, 

methods and algorithms used within this thesis to support the research conducted in the 

modelling, prediction and forecasting of ground level ozone concentrations. The chapter 

presented the apparatus used to measure the various concentrations of gases considered 

in the modelling of ground level ozone, the machine learning algorithms used for 

learning and creating the models, the filters used to pre-process data, optimise the 

learning algorithms and also the metrics used in the evaluation of the performance of the 

machine learning algorithms.  

It is assumed that the vital background information presented in this chapter will help 

readers better understand the usage of various apparatus, techniques, algorithms and 
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systems, proposed in the contributory chapters of this thesis, i.e. Chapters 5, 6, and 7 

without having to refer to additional literature. However, readers interested in more 

details are referred to the original publications and references where appropriate.   
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                                                                                                    CHAPTER 4

Data Collection and Representation 

 

The experiments conducted within the research scope of this thesis were based on 

two datasets (i.e. regression data), one obtained from Sohar University, Oman and 

the other obtained from Department for Environment Food & Rural Affairs 

(DEFRA), UK. The dataset from Sohar University was collected over a short period 

of time and is complemented by the presence of numerous environmental parameters 

that are required for the modelling of ground level ozone concentrations. However, 

this dataset consists of many data recording errors and missing values (clear 

identified errors). The dataset obtained from DEFRA, UK, has been recorded over a 

longer period of time and is ideal for time series prediction and/or forecasting of 

ground level ozone.  

With the two datasets used in the experiments, two different techniques were 

employed for missing value and outlier removal. Since the Sohar data set was not 

used for time dependent series analysis the cleaning process employed removed the 

whole record, as reducing the number of records do not have a significant impact on 

obtainable model accuracy. However when using the DEFRA dataset as it was used 

for time series analyses in which the number of records used has an impact on the 

obtainable model accuracy, the imputation method [82] was used to fill missing 

values. 

For clarity of presentation this chapter is divided into three sections. Section 4.1 

introduces the Sohar University dataset and its preparation process for modelling and 

prediction of ground level ozone. Section 4.2, presents the DEFRA dataset and the 

pre-processing techniques used for its preparation for modelling and prediction of 

ground level ozone. Finally, section 4.4 concludes the chapter providing a summary.  



Chapter 4 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           50 

4.1 Sohar University Dataset  

4.1.1 The Sampling Site and Data Gathering 

 Measurements were recorded across the Sohar Highway (SHW), Oman, in front 

of the main entrance to the Sohar University (SU) with a Differential Optical 

Absorption System (DOAS) instrument (see Section 3.2) that was professionally 

installed (see Figure 4.1 for an aerial view of the installation of the system). The 

light beam travels a round-trip of 477 meters from A, which is located on the 

roof of a main administrative office building of SU, to B, where a reflector (or 

receiver) is installed on the top of a mosque minaret, as illustrated in Figure 4.1. 

The SHW has two lanes in each direction and an additional two single 

carriageway roads, in parallel, on both sides, bringing the total number of lanes 

to eight. Additionally, there is the SU car park, marked as C, where vehicular 

traffic may be present and thus may result in higher levels of ground level O3 

concentrations. The reflected light beam across SHW is captured at A and 

transferred by an optical fibre to the DOAS instrument, where a spectrometer 

splits the light into narrow wavelength bands using an optical grating. 

Subsequently, these bands are processed and evaluated to obtain the best 

estimation of the concentration of the monitored gases in the light path. In order 

to capture the rapid variations of the concentrations of gases present in the space 

of the monitoring path, evaluations of light captured by the DOAS instrument is 

performed every 30 seconds for the measurement of the concentrations of O3, 

NO2, and SO2 gases and every one minute for measurement of the concentration 

of BTX.  Additionally, the meteorological parameters, including wind speed and 

direction, relative humidity, pressure, temperature, precipitation, global solar 

radiation etc., are separately measured by sensors located on the roof of the SU 

building at A. The height from ground level was approximately 12 metres.  
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Figure 4.1: Sampling path of the DOAS instrument installed on the premises of Sohar 

University, Oman; A = light emitter location, B = reflector location and C = car park 

 

The dataset used for the experiments in Chapters 5 and 6 were captured by the 

Sohar University DOAS system during 2013/2014 at a sampling rate of one 

hour. However, due to a technical fault in the system, the dataset collected 

during the specified period is not continuous. Nonetheless, a sufficiently large 

dataset was gathered to make the experiments conducted in Chapters 5 and 6, 

statistically relevant.  

 

The Sohar University dataset contains a total of 6,744 instances, spread across 

the years 2013-2014, as detailed in Table 4.1. Note that there is a substantial data 

collection gap between 23
rd

 of August 2013 to the 2
nd

 of March 2014, during 

which time the DOAS system was non-operational due to an essential 

maintenance repair.  

 

Table 4.1: Sohar University, Dataset Description 

D
a
ta

se
t 

2013 2014 Total 

number 

of 

records 

Start 

Date 

End 

Date 

No. of 

Rec. 

Start 

Date 

End 

Date 

No. of 

Rec. 

1
st
 

April 

2013 

23
rd 

Aug. 

2013 

3480 

1
st
 

March 

2014 

14
th 

July 

2014 

3264 6744 
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4.1.2 Dataset Representation 

The Sohar University dataset is a sequence of measurements presented in a time 

series. The measurements include concentration values of eight gases measured 

in µgm
-3

 and readings of six environmental parameters. Table 4.2 lists the 14 

attributes of each measured data value with their descriptive statistics.  

 
 

 
Table 4.2: Attributes of the Sohar University Dataset 

2013-2014 Unit Min Max 
Standard 

deviation 
Mean 

Sulphur Dioxide 

(SO2) 

 

µgm
-3

 1.61 15.11 2.33 4.96 

Nitrogen 

Dioxide (NO2) 
µgm

-3
 0.02 83.99 16.65 18.24 

Ozone (O3) µgm
-3

 0.85 139.50 24.25 43.25 

Benzene (C6H6) µgm
-3

 0.05 19.56 4.17 6.13 

Toluene (C7H8) 

 
µgm

-3
 0.73 47.14 7.77 15.16 

p-Xylene 

(C8H10(p)) 

 

µgm
-3

 0.10 8.75 1.18 3.30 

m-Xylene 

(C8H10(m)) 
µgm

-3
 0.69 5.44 0.52 2.44 

o-Xylene 

(C8H10(o)) 
µgm

-3
 0.80 58.15 6.91 29.56 

Temperature 

 
ºC 16.19 45.06 3.53 31.10 

Relative 

Humidity 
% 8.47 93.57 19.33 64.38 

Pressure kPa 98.94 102.89 0.56 
100.1

9 

Global 

Radiation 
W/m

2
 -2.75 1120.24 247.95 

201.1

3 

Wind speed m/s 0.31 6.266 1.02 1.77 

Wind Direction 
degree 0.11 359.99 91.50 

137.5

2 
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4.1.3 Data Pre-processing 

The original dataset was subjected to two data pre-processing operations, i.e., 

removal of missing values and outliers, and data transformations. 

4.1.3.1 Removal of Missing Values and Outliers:  

Data cleaning operations listed under preprocessing algorithms previously were 

utilised for the removal of missing values and outliers. The two filters 

interquartileRange (filters -> unsupervised -> instances -> interquartileRange) 

and removeWithValues (filters -> unsupervised -> instances -> 

removeWithValues) were used to clean the input raw data recorded by the 

DOAS system. Once the data is cleaned as above the dataset should typically be 

ready for modelling.  

4.1.3.2 Data Transformations:  

Since the wind direction is originally measured as an angle from the north in a 

clockwise direction, with values ranging from 0-360 degrees,  the originally 

recorded wind related data will have to be re-represented to avoid 0 and 360 

degree directions being considered as different. In order to deal with this issue, 

the Wind Speed (WS) and Wind Direction (WD) have been combined and 

divided into two orthogonal compenents,  

u = WS  cos (WD)                    (4.1) 

v = WS sin (WD) 

The (u,v) parameters replace (WS, WD) in the modelling process.              

  

4.2 DEFRA Dataset  

The dataset used for the purpose of time series analysis and forecasting of ground 

level ozone concentrations (see Chapter 7) was obtained from the Department 

for Environment Food & Rural Affairs (DEFRA), UK, available at https://uk-

air.defra.gov.uk/.  It contains data from approximately 300 environment monitoring 

sites spread cross the UK aimed at monitoring air quality. The stations are organised 

https://uk-air.defra.gov.uk/
https://uk-air.defra.gov.uk/
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into a network of sites which gather air quality and other environment related 

information mostly using different methods.  Each networked station records 

different pollutant parameters, which mainly depends on the purpose of the 

monitoring station and the equipment/methods used for data gathering. Hourly 

measured ozone concentrations are usually monitored and recorded at each station.  

For the studies carried out in Chapter 7 data gathered in a monitoring station in 

London, London Marylebone Road, was selected using a random selection process if 

the station to be scrutinised. This data consists of continuous records from August 

2010 to April 2016. Each record consists of concentrations of six gases, namely 

ozone (O3), nitrogen oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx ) 

sulphur dioxide (SO2), and carbon monoxide (CO), and three meteorological 

parameters namely wind direction (WD), wind speed  (WS) and temperature (T). The 

total number of records collected for the said period was 50208 (see Table 4.3).  

 

Table 4.3: Statistical presentation of DEFRA dataset 

Attribute Missing 

values(h) 

Missing 

values in 

Percentage 

Min Max Mean StdDev 

CO 1508 3% -0.291 5.782 0.571 0.316 

No 1240 2% -0.031 852.342 138.66 114.897 

NO2 1240 2% 4 304 91.537 43.095 

NOx 1240 2% 8 1466.964 303.944 214.156 

WD 1797 4% 0 360 197.54 96.903 

WS 1797 4% 0 13.1 3.678 1.756 

T 1797 4% -10.4 32.8 10.078 6.098 

O3 5010 10% -0.93 492.14 15.8 14.607 

SO2 3602 7% -0.865 48 7.768 5.534 

Total 

number of 

records 

     50208 

 

  

4.2.1 Data Pre-processing 

The original set of 50208 data instances require cleaning in the form of removal of 

missing values and outliers. Further some data features require transformation, prior 
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to the data being used for modelling and prediction of ground level ozone 

concentrations.  

4.2.1.1 Missing Value and Outlier Removal 

The Imputation Method [82] was used for filling missing values.  The imputation 

method fills missing values via the application of interpolation algorithms, based 

on data captured at the same time, the day before and after. In the experiments 

conducted in this research by adopting the above data cleaning strategy, the 

number of data instances that were finally available for modelling, became the 

originally expected number of records. It is noted that the number of data 

instances sued in modelling plays a key part in the model accuracy. 

4.2.1.2  Data Transformations  

For the reasons described in Section 4.1.3.2, the Wind Speed (WS) and Wind 

Direction (WD) have been combined and divided into two orthogonal 

compenents as in Equation 4.1 (refer to Section 4.1.3))  

4.3 Summary 

The machine learning based approaches proposed for the prediction of ground level 

ozone both spatially (without the consideration of time, but with respect to attributes 

known to create ozone) in Chapters 5-6 and temporarily (forecasting with respect to 

time) in Chapter 7 have used two different datasets. Whilst the former uses a dataset 

recorded during a short period of time in the city of Sohar, Oman, the latter uses a 

dataset recovered from a particular area of London, UK, provided by the DEFRA, 

UK. A close analysis of both datasets showed that the data needed cleaning and then 

some mathematical transformations to ensure that they can be effectively used in 

constructing accurate prediction and forecasting models. This chapter has proposed 

the methods that are needed for the removal of missing values and outliers and also 

proposed appropriate data transformations for certain given attributes.  
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  CHAPTER 5

Modelling Atmospheric Ozone Concentration Levels 

 

The aim of this chapter is to investigate the performance of meta learning ensemble 

algorithms in the prediction of ground level ozone (O3) based on the concentration of 

other atmospheric gases and meteorological parameters that have an impact on the 

formation of ground level ozone. It is noted that in this chapter, the dependence of 

ozone concentration on time, is not considered. Nevertheless, time dependence is 

investigated in detail in Chapter 7.  

5.1 Introduction  

Most of the historical and recent studies in air pollution modelling, monitoring and 

analysis have employed standard non-linear classifiers, mainly either Artificial 

Neural Networks (ANN) or Support Vector Machines (SVM) to model the 

atmospheric ozone concentration based on supervised learning. Some recent studies 

in environmental modelling have analysed the use of a broad variety of learning 

algorithms, but such studies have been limited to analysing data with standard 

software packages, using the default settings of model parameters. In application 

areas outside environmental pollution monitoring, some attempts have been made on 

using ensemble learning algorithms for data modelling and prediction giving 

improved prediction results. However, even these studies have been limited by the 

number of different algorithms investigated and the constraints under which they 

have been applied. To our best knowledge ensemble methods have not been applied 

and investigated comprehensively in the prediction of O3. Therefore, in this chapter a 

comprehensive investigation is carried out on the performance of three different meta 

learning ensemble approaches, namely, Bagging, Voting, and Stacking to build 

models for the prediction of ozone concentration in the city of Sohar, Oman. 

Moreover, the results of ensemble learners are compared with the performance 

results of a significant number of popular learning algorithms used in the literature 

and investigated within the research context of thesis and presented in Chapter 3.  
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The prediction of ground level ozone concentration is based on the concentrations of 

seven gases (nitrogen dioxide (NO2), sulphur dioxide (SO2), and BTX (benzene, 

toluene, o-,m-,p-xylene) and six meteorological parameters (ambient temperature 

(T), air pressure (P), wind speed (WS), wind direction (WD), solar radiation (SR), 

and relative humidity (RH)).     

The dataset considered in this work was obtained from Sohar University, Oman, 

which used a DOAS instrument [54] (see Chapter 3) to gather environmental data 

within the premises of the university campus, in the city of Sohar, Oman. The dataset 

includes concentrations of eight gases and six meteorological parameters as defined 

above.  

The modelling results presented in this chapter show an impressive prediction 

performance improvement obtainable by using meta learning algorithms (i.e., 

Bagging, Voting, and Stacking) as compared to the traditionally used learning 

algorithms. The performance accuracy of these different meta learning methods were 

approximately the same giving an average of 0.91 correlation coefficient in 

prediction accuracy though they demonstrated a significant increased accuracy over 

the traditional methods. 

For clarity of presentation the chapter has been divided into several sections. Section 

5.2 presents the motivation behind the proposed research. Section 5.3 provides a 

summary of the experimental methodology and Section 5.4 presents details of 

experimental settings adopted. Section 5.5 presents the design details of the various 

experiments conducted to compare the prediction accuracy of ground level ozone 

when different ensemble learning algorithms are used. Section 5.6 presents the 

experimental results and a detailed analysis of the results. Finally, Section 5.7 

summarises the investigations conducted and make conclusions based on the analysis 

presented in Section 5.6.  

5.2 Motivation  

A number of studies in the field of environmental science and engineering have 

focused their interest on constructing models to predict the concentrations of gases 

that result in air pollution. The majority of environmental researchers tend to use 

Artificial Neural Networks (ANN) and Support Vector machines (SVM) to predict 
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ozone concentration[20],[24],[26],[27]. Although there are more advanced and recent 

data mining / machine learning techniques, such as Ensemble Learning approaches 

[11], only few attempts have investigated their use in predicting atmospheric or 

ground level ozone concentration[8]–[10]. However the investigations of [8]–[10] 

were limited in the fact that only the ensemble classifier Bagging was used adopting 

only the default single classifier RepTree as the base classifier of the ensemble 

algorithm, as implemented within the data mining software package, WEKA. Our 

detailed investigations revealed that in the field of air pollution monitoring, no 

attempt has been made to test other ensemble classifiers, select the best base 

classifier or to optimise the performance of the base classifier of the ensemble of 

classifiers based on various possible parameter selections, all of which can lead to 

significant improvements in prediction accuracies. On the other hand, several 

attempts have been made in areas beyond air quality prediction in the use of 

ensemble classifiers, such as in bioinformatics, medicine and marketing, to build 

more efficient predictive models [83]–[86]. This work has shown that ensemble 

classifiers outperform the corresponding single classifiers and that the ultimate 

answer to the question, which classifier works best, depends on the dataset. It is clear 

that different datasets, in particular from different application domains, are 

statistically different and this has a high impact on the variability of results 

obtainable from different classifiers.  

From the review of literature conducted and summarised above, a lack of research 

into effectively utilising Ensemble learning algorithms to predict ozone concentration 

was identified. Therefore, the research proposed in this chapter aims to find accurate 

models that can be used to predict ground level ozone concentrations, given a 

multitude of environmental parameters and the concentrations of gasses that are 

known to result in the creation of ozone. An investigation is carried out comparing 

the performance of several machine learning techniques. Multiple predictive models 

were built using popular single classifiers used for regression (e.g. Multilayer 

Perceptron (MLP) and Support Vector Machines) and selected ensemble learning 

algorithms (homogeneous and heterogeneous), (refer to Figure 5.1). In all 

experiments the data mining software tool, WEKA (Waikato Environment for 

Knowledge Analysis) is used as implementations of the learning algorithms.  
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5.3 Proposed Approach    

The proposed approach adopts standard data mining procedure that involves data 

pre-processing prior to data modelling using machine learning. WEKA (version 

3.7.11) is a toolkit that supports open source software implementation and operation 

of a large number of options for both data pre-processing and modelling. 

The aim of this section is the analysis of the performance of the most efficient 

ensemble learning algorithms in the prediction of O3. For this purpose, the author has 

compared the performance of ensemble learning algorithms with the performance of 

those single classifiers that have been popularly used in literature. It is noted that the 

focus of this chapter is to investigate the use of the most popular homogeneous 

approach, Bagging and the two heterogeneous approaches, Voting and Stacking 

(refer to Chapter 3 for illustration of different classification of ensemble learning 

algorithms).  

                                                    

In order to evaluate the performance of the Ensemble Learning Algorithms and 

compare them with single learning algorithms, two key sets of experiments were 

designed, implemented and tested. They are detailed in the following sections. 

Initially, training phases based on different classification algorithms for predicting 

O3 concentration were performed. Subsequently, the prediction performance of 

different algorithms, were examined using ten-fold cross validation (see Section 3.5). 

Various evaluation metrics have been utilised to analyse the results. It should be 

noted the key focus of the research conducted is not time-series analysis of O3 

concentration (i.e. predicting how O3 concentration changes with time) but how to 

predict O3 concentration based on the concentrations of the primary pollutant gases 

and the environmental parameters that are likely have an impact. In particular, when 

O3 creation is assumed to be due to the production of primary pollutant nitrogen 

dioxide, generated by vehicular traffic in this area, the time dependent analysis is not 

essentially useful. 

 

Since the experts have proven that there is no single machine learning algorithm can 

be applicable to all types of data, the first group of experiments was implemented by 

adopting all the applicable algorithms provided in WEKA.  
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5.4 Experiment Settings 

Two WEKA working environments were used, i.e., the Explorer and the 

Experimenter [12], each used for different purposes. In our experiments, 16 machine 

learning algorithms implemented within WEKA have been used for testing and 

performance comparison, with their default parameter settings being used and using 

ten-fold cross validation to evaluate individual models (Table 5.2 lists all the 

classifiers). Furthermore, rigorous studies of the use of meta learning classifiers 

(Bagging, Stacking, and Voting) were carried out by testing it with different base 

classifiers. The accuracy of the model was evaluated using four widely used 

evaluation measurements: Correlation Coefficient (CC), Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) and Relative Absolute Error (RAE) (see 

Chapter 3). 

 In the data captured by the DOAS (see Section 3.2), missing values are recorded as -

999. A careful analysis of the captured data also revealed that there are also 

measurement outliers, which would have resulted from temporary sensor 

malfunctioning instances due to dust, high temperatures and overheating. Therefore, 

the data has been pre-processed (outlier removal and data transformation) using the 

procedure explained in Chapter 4. After the data cleaning procedure, only 

approximately 62% (4,173 out of 6,744 instances) of the original dataset were 

utilised in the modelling phase. 

5.5 Experimental Design  

The experiments are conducted and presented in two groups for the purpose of 

clarity. 

Group 1: Investigation on the use of single learner algorithms vs homogenous 

ensemble learning algorithms (Bagging, Random Forest, Random Subspace, and 

Additive Regression) for the prediction of ground level ozone. 

The experiments in this group were broadly divided into two categories. In the first 

category sixteen models were constructed to include thirteen single base classifiers 

and the homogeneous ensemble classifiers, Random Forest, Random Subspace and 

Additive Regression. In the second category, all of the models in Category 1 were 

used as the base classifier of a Bagging meta classifier. In each category, the 
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performance of the above mentioned sixteen different learning algorithms were 

investigated, divided into five different algorithm categorisations, depending on their 

functionality: These include Function based (Linear Regression, Multilayer 

Perceptron, Simple Linear Regression, and SMOreg), Lazy approaches (IBK, Kstar, 

and LWL), meta classifiers (Additive Regression, and Random Subspace), Rule 

based (DecisionTable, and M5Rule) and Tree based (Decision Stump ,M5P, Random 

Forest, Random Tree, and REPTree) classifiers. The prediction accuracy results of 

each model were evaluated using the metrics mentioned in Section 5.4, (See Table 

5.2).   

It is noted that the experiments in Group 1 is divided into two sub-groups for clarity 

of presentation, according to the corresponding WEKA experimental environment 

being used (i.e. WEKA‟s Explorer and Experimenter working environments). Table 

5.1 summarises the two sub-groups, which are numbered accordingly for clarity of 

referencing.  

 

Table 5.1 : Group 1 Experiments Description 

Experiment Description WEKA Environment 

Division 1 Compare the accuracy of 16 

classifiers, individually and as base 

classifiers in Bagging ensemble 

learning 

Explorer 

Division 2 Evaluate multiple models resulting 

from different classifiers  

Experimenter 

 

Group 2: Investigation of the use of heterogeneous ensemble learning algorithms 

(Voting and Stacking) for the prediction of ground level ozone. 

Stacking and Voting have been categorised as heterogeneous ensemble learning 

approaches as both methods make use of multiple single base classifiers. In particular 

Stacking has an extended layer. This extra layer (named Layer 1) is fed with the 

output of the first layer and uses a single base classifier to produce the desired final 

model.  
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In this group the experiments were designed and categorised to compare the 

performance of the various models described above, under different paradigms.  The 

experiments were broadly divided into two sub-groups, namely, those that use Voting 

and those that use Stacking. For Voting and the Layer 0 of Stacking the author have 

used the same combination of single base learning algorithms. For the Layer 1 of 

stacking a number of additional single base learning algorithms have been used.  

In order to rigorously compare the performance of different combinations of 

single base classifiers within heterogeneous ensemble learning algorithms, the 

following criteria were used in selecting the constituent single base classifiers of 

Layer 0 (Refer to Table 5.4):  

 All three experiments used either 3 or 5 algorithms as they were amongst the 

most accurate, when used as single base learning algorithms as demonstrated 

by the Group 1 experiments. Note that in Experiment 2, all three algorithms 

consist of tree base learning algorithms (Experiments 1, 2, and 3). 

 This experiment repeats Experiment 2, with the addition of two further 

algorithms from the tree base category of learning algorithms. The aim is to 

determine the effect of adding a further number of learning algorithms of the 

same type on the ensemble‟s accuracy (Experiment 4). 

 This experiment contains one classifier from each separate category of 

learning algorithms as defined in WEKA software (Experiment 5 and 6). 

 Contains a combination of algorithms that resulted in the worst performance 

accuracy, when tested as single base classifiers in Group 1 (Experiment 7).  

 Contains a combination of algorithms that resulted in the best and worst 

performance accuracy, when tested as single base classifiers in Group 1 

(Experiment 8). 

 

As Stacking contains an additional layer of learning algorithms,  termed as the 

Layer 1 classifiers, our experiments used the single base learning algorithm that 

performed the best, i.e. Random Forest, the one which is algorithmically simplest, i.e. 

Linear Regression and few further selected classifiers, have been used as the Layer 1 

classifier.  

For improved clarity,  
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Figure 5.1 illustrates a block diagram that explains the general structure of 

experiments designed and presented above, within Group 1 and Group 2 of 

experiments.  

 

Experimental Design 

Heterogeneous ensemble 
learning 

Multiple single based 
algorithms

First layer Second Layer

Homogeneous ensemble 
learning
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Dataset

Single  
Regression 
Algorithm
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Subspace(usi

ng default 
only)

Voting

Stacking
(Level 0)

One 
algorithm

1 2 N

Stacking
(Level 1)

One 
alg.

Prediction 
Model

Additive 
Regression 

(using 
default only)

Prediction 
Model

Prediction 
Model

Group 1 Experiments Group 2 Experiments

 

Figure 5.1: Categorisation of Experimental Designs 

 

5.6 Results and Discussion  

The results can be presented and analysed within the two experimental groups, as 

follows. 

5.6.1 Group 1   

Table 5.2 tabulates the results of the experiments carried out within Group 1. The 

purpose of the experiments within this group was to comprehensively compare the 

performance of various single base learning algorithms against those of four 



Chapter 5 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           64 

homogeneous ensemble learning algorithms, namely Random Forest, Random 

Subspace, Bagging and Additive Regression.   

 

It can be observed that there is a significant improvement in the prediction 

accuracy of O3 concentration, when homogeneous ensemble learning algorithms 

are adopted.  In particular, comparing the experiments of Section 1 with those of 

Section 2 reveals the ability of Bagging to improve prediction accuracy, as 

depicted by a noticeable reduction in the MAE and RMSE (see Table 5.2), as 

compared to using the relevant single base classifier by itself.  

In addition, the accuracy of prediction performance of homogeneous ensemble 

learning algorithms (with the exception of Additive Regression), offer better 

 

Table 5.2: Results of  Group 1 Experiments 

Algorithm 
Section 1: Without Bagging  Section 2: Using Bagging 

CC MAE RMSE RAE  CC MAE RMSE RAE 

E
n

se
m

b
le

 C
la

ss
if

ie
r Random 

Forest 
0.91 7.52 10.32 40.16 %  0.92 7.08 9.75 37.81% 

Random 

Subspace 

with 

REPTree 

0.90 8.15 11.29 43.50 %  0.91 7.71 10.66 41.15% 

Additive 

Regression 
0.81 10.96 14.24 58.53 %  0.84 10.04 13.26 53.63% 

S
in

g
le

 B
a
se

 C
la

ss
if

ie
r 

M5Rules 0.89 8.15 11.29 43.52 %  0.89 8.05 11.07 43.01% 

M5P 0.89 7.92 11.02 42.28 %  0.90 7.70 10.62 41.12% 

REPTree 0.86 8.96 12.48 47.84%  0.90 7.52 10.41 40.16% 

Multilayer 

Perceptron 
0.85 9.81 12.95 52.38 %  0.90 7.64 10.45 40.79% 

Lazy.IBK 0.85 9.23 13.16 49.30 %  0.89 7.92 11.27 42.29% 

Lazy. 

KStar 
0.86 8.56 12.50 45.70 %  0.87 8.14 11.86 43.47% 

Linear  

Regression 
0.84 9.67 13.22 51.65 %  0.84 9.68 13.22 51.68% 

SMOreg 0.84 9.51 13.38 50.80 %  0.84 9.51 13.38 50.79% 

Random 

Tree 
0.82 10.40 14.71 55.54 %  0.91 7.47 10.20 39.89% 

Decision 

Table 
0.79 10.95 14.91 58.45 %  0.78 11.17 15.65 59.62% 

Lazy.LWL 0.69 13.48 17.70 71.98 %  0.73 12.88 17.03 68.8% 

Simple 

Linear  

Regression 

0.58 14.89 19.79 79.49 %  0.63 14.27 18.98 76.18% 

Decision 

Stump 
0.55 15.60 20.28 83.32 %  0.59 15.04 19.67 80.30% 
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prediction accuracy when compared with performance of the single base learning 

algorithms widely used in literature.  

It is further noted that when Bagging is used with Additive Regression as the base 

classifier, the performance is improved as compared to when Additive Regression 

is used on its own. This illustrates the superior and reliable performance of the 

ensemble algorithm adopted within Bagging. The performance accuracy of 

Additive Regression as compared directly with Random Forest and Random 

Subspace, is worse. i.e. a model that ensembles different simple Linear Regression 

models as against the two, more accurate tree based, non-linear models, Random 

Forest and Random Subspace.  

Overall when the prediction accuracies of Group 1 experiments are considered 

(see Table 5.2), the best overall performance is indicated by Random Forest, 

either used as homogenous ensemble classifier on its own (CC=0.91, compare 

results of Section 1 of Table 5.2) or as the base classifier of the ensemble learning 

algorithm, Bagging (CC=0.92, compare results of Section 2 of Table 5.2). 

Moreover, the experiments in Group 1 further revealed that bagged Random 

Subspace and Random Tree performed as accurate as Random Forest, when used 

independently of Bagging. This result confirms the conclusion of [87] who 

showed that combining Bagging and Random Subspace has a comparable 

performance to Random Forest.   

In the literature, the Multilayer Perceptron (MLP) (i.e. Artificial Neural 

Networks) is the most common learning algorithm used to predict atmospheric 

ozone concentration. According to [88],  Bagging can be used as a solution to the 

local minima related and the over fitting problems from which MLP suffers. 

Therefore, applying ensemble methods such as Bagging to an MLP should 

enhance the accuracy of the MLP in general. Table 5.2 compares the accuracy of 

the MLP when used as a single base learning algorithm to the performance of the 

bagged MLP and reveals a 5% increase in accuracy.  

It is observed that the SMOreg is the only base classifier that was not been 

affected when Bagging was applied, with the Correlation Coefficient remaining 

unchanged at 0.84. This similarity is due to the stability of the SVM 

algorithms[89],[90]. However, [91] shows that bagged SVM can perform better 
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for some dataset, although it can give equivalent results to single SVM for other 

dataset.  

In addition to the above experiments, evaluations of the predicted models results 

were further examined, to evaluate the performance of multiple classifiers, which 

the Explorer environment cannot provide. The results of the previous experiments 

did not provide the statistical significance of the improvements. Therefore, 

WEKA‟s Experimenter environment was utilised to obtain this additional 

information. A statistical test (Paired T-Tester [92] corrected) was used to 

calculate the statistical significance between the different predictive models. The 

performance of the classifiers were examined using 10 fold cross validation and 

were compared using the Correlation Coefficient. In addition, the confidence 

interval between the classifiers was set to 5% (a default setting). Selected 

algorithms used for experiments in Group 1 (see Table 5.2 ) were examined in this 

experiment. The focus was on comparing the influence of ensemble learning on 

the most widely used classifiers in the study area (MLP, SVM). Table 5.3 

demonstrates the three experiments implemented for the evaluation. 

 

The results of the experiments are shown in Table 5.3. Note that the characters, v 

or *, appears beside the results to indicate the level of significance. Since the first 

classifier is based on the comparison, none of the characters will be displayed. 

The character “v” beside a figure indicates that the result is significantly better 

than the baseline classifier (first classifier in the test). Meanwhile, the character 

“*” indicates a poor result compared to the baseline classifier. However, an 

indicator is absent if the test cannot say it is either better or worse.   

Experiment A examined four different classifiers from Section 1 of the previous 

experiment (Group 1). The best and worst classifiers were identified, as well as 

the two most widely used classifiers in literature when modelling the ozone 

concentration (MLP and SMOreg). The results of the evaluation illustrated that 

the accuracy of Random Forest is significantly better than that of the other 

classifiers.  

This result supports the conclusion of the Group 1 experiments. On other hand, 

Experiment B evaluated four classifiers, which were, the two most accurate in 
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each of Sections 1 and 2 of the Group 1 experiments. The results indicate that the 

performance of bagged Random Forest is significantly better than the rest.  

Since some studies, such as [87], have stated that Random Forest as the best 

performing ensemble classifier, combining Bagging and Random Forest can 

produce a powerful result, as shown in this experiment. 

In Experiment C, the evaluation was focused on ensemble learning and the most 

frequently used single based learning algorithms in predicting ozone 

concentrations, which are Multiyear Perceptron and Support Vector Machine 

(SMOreg). The results, as illustrated in Table 5.3, show that MLP and SMOreg 

have significantly worst prediction result when compared with ensemble 

techniques. Furthermore, bagged Random Forest has significantly better 

prediction accuracy. 

 

Table 5.3: Result of Evaluation Experiments 

Experiment Description Classifier Result 

E
x

p
er

im
e
n

t 
A

 

Evaluate four different 

classifiers from Section 1 in 

Group 1 experiments 

Random Forest 0.91 

M5Rule 0.89* 

Decision Stump 0.55* 

Multilayer Perceptron 0.89* 

SVM for regression 

(SMOreg) 
0.84* 

E
x

p
er

im
e
n

t 
B

 Evaluate the best two 

classifiers resulting from the 

Group 1 experiments 

 

Random Forest 0.91 

Random Subspace 0.90 

Bagging with Random 

Forest 
0.92v 

Bagging with Random  

Subspace 0.91 

E
x

p
er

im
e
n

t 
C

 

Evaluate the most used 

classifiers in predicting ozone 

construction with three 

different ensemble methods 

Random Forest 0.91 

Bagging with Random 

Forest 
0.92v 

Bagging with Multilayer 

Perceptron 
0.90 

Random Subspace 0.90 

Multilayer Perceptron 0.89* 

SVM for regression 

(SMOreg) 
0.84* 
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5.6.2 Group 2   

This group of experiments was designed to investigate the performance of 

heterogeneous ensemble learning algorithms in the modelling of O3 

concentrations.  The results of the Group 1 experiments revealed that 

homogeneous ensemble learning approaches outperformed the single base 

learners.  Specifically the Group 2 experiments use heterogeneous ensemble 

learning algorithms, Voting and Stacking. Since there is no rule in specifying how 

many base classifiers should be considered when applying both approaches [93], 

the Group 2 experiments test the use of combinations of three, four, five and six 

single base learning algorithms ( illustration of  Group 2 criteria can be found 

Section 5.5) .  
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When comparing the performance accuracy obtained using voting with 

different ensembles of single base learning algorithms it was revealed by 

experiments 1-6 that the use of learning algorithms that performed amongst the 

 

Table 5.4: Results Of Group 2 Experiments 

Based 
Classifiers 

Voting Stacking 

CC MAE RMSE RAE 
Meta  

Classifier 
CC MAE RMSE RAE 

1 
Random Forest, 

M5Rules, 

RandomSubspace  
0.91 7.33 10.14 39.16% 

Random Forest 0.89 7.92 10.90 42.27% 

M5P 0.91 7.15 9.85 38.19 % 

Bagging 0.91 7.36 10.19 39.31 % 

Linear  

Regression 
0.91 7.15 9.84 38.16 % 

Decision Table 0.90 7.65 10.48 40.85 % 

2 

Random Forest,  

M5Rules, 

MLP, 

 

0.91 7.56 10.31 40.39% 

Random Forest 0.90 7.85 10.72 41.89 % 

Linear  

Regression 
0.91 7.14 9.80 38.11 % 

Decision Table 0.90 7.62 10.42 40.69 % 

RandomTree 0.84 10.20 13.80 54.49 % 

3 

Random Forest,  

M5P, 

M5Rule, 

KStar,  

Liner Regression,   

 

0.91 7.23 10.09 38.62% 

Random Forest 0.91 7.42 10.20 39.65 % 

Linear  

Regression 
0.92 6.83 9.51 36.49 % 

Decision Table 0.91 7.51 10.28 40.08 % 

REP Tree 0.90 7.51 10.41 40.12 % 

MLP 0.90 8.09 10.74 43.21 % 

4 

Random Forest,  

M5P, 

Random Tree, 

M5Rules, 

MLP, 

 

0.91 7.38 10.12 39.38% 

Random Forest 0.90 7.65 10.48 40.83 % 

Linear  

Regression 
0.92 7.07 9.73 37.75 % 

Decision Table 0.91 7.53 10.29 40.18 % 

Random Tree 0.84 10.09 13.89 53.89 % 

5 

Decision Table, 

REPTree, 

KStar,  

Liner Regression,   

 

0.90 7.73 10.72 41.27%  

Random Forest 0.90 7.65 10.74 40.86 % 

Linear  

Regression 
0.90 7.35 10.37 39.26 % 

LWL 0.78 11.79 15.25 62.94 % 

MLP 0.87 9.14 12.12 48.81 % 

6 

Random Forest  

M5Rule 

RandomSubspace 

MLP 

KStar 

 

0.91 7.38 10.23 39.42% 

Linear  

Regression 
0.92 6.82 9.48 36.42 % 

MLP 0.90 8.25 10.88 44.06 % 

REPTree 0.91 7.44 10.23 39.72 % 

IBK 0.85 9.73 13.33   51.97 % 

7 

Decision stump,  

simple linear 

regression,  

LWL,  

Decision Table 

0.79 12.06 16.03 64.38% 

Random Forest 0.86 9.18 12.49 48.99 % 

Linear  

Regression 
0.81 10.44 14.11 55.75 % 

Kstar 0.85 9.54 12.99 50.92 % 

M5Rule 0.85 9.37 12.63 50.04 % 

8 

Random Forest,  

M5Rule, 

Decision Stump 

simple linear 

regression, 

LWL, 

MLP, 

 

0.88 9.42 12.73 50.32% 

Random Forest 0.90 7.64 10.50 40.81 % 

Linear  

Regression 
0.91 7.13 9.79 38.09 % 

SMOreg 0.91 7.12 9.80 38.02 % 

IBK 0.84 10.03 13.68 53.56 % 

M5P 0.91 7.13 9.79 38.06 % 
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best when used as single learning algorithms in Group 1 experiments, gave a 

clearly enhanced accuracy as compared with when a mixture of best and worst 

single learners was used in the voting ensemble (Experiments 7 and 8). As long 

as the best single learners are utilised in the learning ensemble, there is no 

conclusive evidence to prove that either an increase of the number of classifiers 

(Experiments 1, 2 against 3,4), use of classifiers from the same group (e.g. only 

tree base classifiers in Experiments 2 and 4) or a mixed group of single learning 

algorithms (Experiments 5 & 6 of Group 2) will result in an overall performance 

enhancement. However, when the ensemble includes a mixture of good and poor 

classifiers, the higher the number of algorithms in the ensemble, better would be 

the overall performance (compare Experiment 7 and 8).   

In the Group 2 experiments, Stacking used the same base learning 

algorithms at Layer 0 used in Voting (see Table 5.4). As, the meta classifier (i.e. 

Layer 1 learning algorithms) Stacking uses a further single base classifier from 

those experimented in Group 1.  When comparing the overall accuracy figures 

obtained for Stacking as tabulated in Table 5.4, it is revealed that the use of 

Linear Regression as the meta classifier gives the best ultimate accuracy figures 

for Stacking. It clearly improves the accuracy obtained by the ensemble of 

classifiers used at Layer 0. This observation is in line with the observations made 

in studies of [94] and [93]. [93] showed that as most of the learning is completed 

in Layer 0, a simple learning algorithm such as Linear Regression will perform 

best in finally concatenating the learning experience of Layer 0 within Layer 1.  

One further interesting observation is revealed when comparing the results 

of Experiments 7 and 8. Comparing the learning algorithms used in the Layer 0 

ensemble of the two experiments it is seen that Experiment 7 does not involve 

the best single learning algorithm (from Group 1 results), Random Forest. 

Further Experiment 8 contains two additional learning algorithms as compared to 

Experiment 7. Although, in both cases, the use of Linear Regression as the meta 

classifier has improved the overall accuracy, in Experiment 7, when Random 

Forest is used as the meta classifier, it outperforms the Linear Regression model. 

Given that Random Forest was not a part of the Layer 0 ensemble, this proves its 

impact when it is then used as the meta classifier. In fact, in Experiment 7, 

Linear Regression performs worst as compared to all other meta classifiers 
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experimented against. This concludes that the use of a simple learning algorithm 

such as Linear Regression as the meta classifier in Stacking is only justified if 

the Layer 0 ensemble contains a collection of best single base learning 

algorithms.  

 

 
 

(a) Random Forest 

 
 

(b) Bagged Random Forest 

 
 

(c) MLP 

 
 

(d) Bagged MLP 

Figure 5.2 (Part 1): Prediction Scatter Graphs 
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(e) Voting  (Exp7) 

 
 

(f) Voting (Exp3) 

 
(g) Stacking Exp4 with Linear Regression(Layer 1) 

 
 

(h) Stacking Exp8 with IBK(Layer 1) 

Figure 5.2 (Part 2): Prediction Scatter Graphs 

 

 

Figure 5.2 illustrates the use of prediction scatter graphs to visualize the impact of 

using the three ensemble learning approaches, Bagging, Voting and Stacking.     

Comparing results in (a) and (b) (and (c) and (d)) of Figure 5.2 shows the impact of 

using Bagging to decrease the scatter of points, especially at lower ranges of ozone 

concentrations where the density is high. Thus Voting increases prediction accuracy. 

A comparison of (b) against (d) reveals the ability of Random Forest to reduce scatter 

(i.e. increase prediction accuracy) against MLP.  

A comparison of (e) against (f) of Figure 5.2 reveals the impact of using the best 

single learning algorithms in the learning algorithm ensemble of voting. Figure (e) 

depicts the results of Experiment 7 that uses a combination of best and worst single 

classifiers shows a significantly high amount of point scatter.  
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Comparing the results of (g) against (h) of Figure 5.2 reveals the ability of 

simple learning algorithms such as Linear Regression to improve overall prediction 

accuracy in stacking when used as the meta classifier. The figures illustrate that 

Linear Regression creates less scatter of points as against IBK.  

5.7 Conclusion  

This chapter has presented an investigation on the use of three meta learning 

algorithms (Bagging, Voting and Stacking) to predicate ground level ozone. The 

prediction was based on concentrations of seven gases (NO2, SO2, and BTX 

(benzene, toluene, o-,m-,p-xylene) and six meteorological parameters (ambient 

temperature, air pressure, wind speed, wind direction, global radiation, and relative 

humidity). The use of several widely used single base classifiers have been 

experimented and compared with the use of the three ensemble classifiers. The 

results have shown significant improvement in the model accuracy when the meta 

learning ensemble classifiers were used. The highest prediction accuracy in terms of 

correlation coefficient was obtained when the ensemble learning meta classifier, 

Bagging, was used with Random Forest and the base classifier and when ensemble 

classifier Stacking was used with Linear Regression as the Layer 1 classifier.  

The work presented in this chapter proposes invaluable, novel and more efficient 

learning approaches to the air pollution prediction research community, who have 

traditionally used popular single base learning algorithms such as neural networks 

and linear regression.  
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  CHAPTER 6

Optimising the use of Bagging in Modelling Ground  

                 Level Ozone Concentration 

 

It is noted that all machine learning algorithms consist of a number of algorithmic 

parameters/settings that can be adjusted to obtain the optimum performance of the 

learning algorithms utilised. In the experiments conducted in Chapter 5, in order to 

leave the investigations in their simplest format, a decision was made to always use 

the default parameters of the tested algorithms as defined by the WEKA toolkit. 

Further feature selection/reduction, i.e. minimization of the number of attributes that 

models the concentration of atmospheric ozone, may lead to increased prediction 

accuracy. Although the above two aspects were not investigated within Chapter 5, it 

concluded that in general, Ensemble Learning Algorithms, outperformed the more 

commonly used single learning algorithms, such as the support vector machines and 

neural networks. In particular the performance of the Ensemble Learning Algorithms, 

Random Forests, and Bagging were investigated in detail and shown to produce 

encouraging levels of performance accuracy.  

6.1.  Research Motivation & Overview 

In order to further investigate the optimal use of Ensemble Learning algorithm, 

Bagging, in the prediction of ground level ozone, this chapter carries out the fine 

tuning of the said algorithm by the use of model parameter based optimisation 

techniques. The use of a number of different feature reduction/filtering approaches 

is investigated in detail. The use of Bagging is investigated in detail using the base 

learning algorithms, Random Forest (classified as a homogeneous ensemble 

learning algorithm and proven in Chapter 5 to be one of the most efficient learning 

algorithms) and the popular single learning algorithms, Support Vector Machines 

and Artificial Neural Networks. The investigations conducted in this chapter provide 

conclusive evidence that such optimisations result in further improvement of the 

basic models investigated and recommended in Chapter 5.  
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Using a parameter based optimisation strategy similar to that proposed for 

Bagging in this chapter it is be possible to optimise the performance of the two 

layer, heterogeneous ensemble learning algorithms, Voting and Stacking, 

investigated in detail in Chapter 5. However, such studies are not the focus of this 

chapter. 

In addition, research presented in this chapter investigates the impact of using 

attribute selection/reduction when using all algorithms investigated in detail, 

namely, Random Forests, Support Vector Machines, Artificial Neural Networks 

(ANN), bagged Random Forests, bagged Support Vector Machines and bagged 

ANN. 

    For clarity of presentation this chapter is divided into several sections. Apart from 

this section which provided the motivation behind the research to be presented, 

Section 6.2 presents the methodology of research conducted. Section 6.3 illustrates 

the modelling procedure of ozone concentration. On the other hand, Section 6.4 

provides the experimental results and a detailed analysis of the results. Finally, 

Section 6.5 concludes with an insight into future research.     

6.2. Experimental Methodology 

Figure 6.1 illustrates how experiments conducted in Chapter 5 are related to the 

experiments to be conducted under the research remit of this chapter. A selected set 

of classifiers tested under default settings of algorithmic parameters in Chapter 5 and 

using all input attributes for modelling, i.e. the six selected classifiers 

(MLP,SMOreg, RF, bagged MLP, bagged SMOreg, and bagged RF) are optimised 

based feature selection/reduction algorithms and parameter based optimisation 

techniques. Four attribute filters namely, CFS- Best First, CFS – Greedy Stepwise, 

Relief Attribute Evaluation and Principle Component Analysis (refer to Section 3.7.1 

for more detail) implemented within WEKA data mining toolkit are used for 

feature/attribute selection. Further for optimal parameter selection within each of the 

tested models, the algorithm „CVParameterSelection‟ (see Section 3.7.2) as 

implemented in WEKA has been used.   
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6.3. Modelling the Ozone Concentration   

Although the performance of a large number of other classifiers and classifier 

combinations were investigated in a preliminary study, the detailed analysis of the 

performance of only the six algorithms mentioned above i.e. the SVM, ANN and 

Random Forest when used with and without Bagging, is presented in this chapter. 

The accuracy of the algorithms is evaluated using two widely used evaluation 

metrics, Correlation Coefficient and Mean Absolute Error (see Section 3.6 of Chapter 

3). 

  

 

 

Figure 6.1: Experimental Methodology 

 

Selected Classifier  
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To present a fair performance comparison between the classifiers, optimal 

parameters for each classifier are determined using the CVParameterSelection 

algorithm prior to conducting detailed modelling. The Explorer experimental GUI 

environment of WEKA was used to construct individual classifier models using their 

optimal parameters settings. The performance of the six different classifiers are 

analysed and compared, using the same dataset (see Section 4.1) using the Explorer. 

Tenfold cross validation was used to minimize the effects of chance in dividing the 

dataset to test and training sub-sets. 

6.4. Experimental Results and Analyses 

Experiments were conducted to analyse and compare the performance of the six 

classifiers: MLP (WEKA‟s ANN implementation), SMOreg (WEKA‟s SVM 

implementation), Random Forest (RF), bagged MLP, bagged SMOreg and bagged 

RF as stated above. Further detailed experiments were also conducted to determine 

the potential impact of feature reduction / selection and in the selection of classifier 

parameters in optimising classifiers, in the overall accuracy obtainable from each of 

the six evaluated classifiers. It is noted that the original readings recorded for wind 

direction was a measure in the range 0-360 degrees. In order to compensate for the 

fact that 0 and 360 degree readings mean the same, this study has combined wind 

direction (WD) with wind speed (WS) to replace them with two orthogonal 

components WS*cos(WD) and WS*sin(WD).   

It is noted that all of the classifiers investigated (i.e. regardless of whether the 

classifier is of the single classifier type or the ensemble classifier type) consist of a 

number of input parameters that may have a vital impact on the accuracy of 

predictions obtainable. Although WEKA provides default parameter values for each 

classifier, our preliminary experiments suggested that these values do not result in 

optimised prediction. Therefore, it was vital to select a set of parameters which 

provide optimal prediction accuracy. For this purpose the use of WEKA‟s 

CVParameterSelection filter has been made. Table 6.1 tabulates the prediction 

accuracy obtainable via each approach in terms of correlation coefficient. The results 

indicate that the optimal parameter selection has a positive impact only when use the 

single classifiers MLP (i.e. ANN) and SMOreg (i.e. SVM). When using ensemble 
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classifiers Random Forest and Bagging, the optimal parameter selection algorithm 

has no impact, indicated by the accuracy figures that remain unchanged. It is noted 

that even though the CVParameterSelection filter changes some parameters in its 

attempt to optimise the accuracy, no change is indicated in comparison to the 

accuracy obtainable using default settings. For ease of comparison of results 

presented in Table 6.1.  

 

Table 6.1: Experiments results for parameter based optimisation of the classifiers 

Classifier Name Default settings  
Correlation 

Coefficient  
Optimal Parameters  

Correlation 

Coefficient 

Bagged 

RandomForest  

Bagging: 

bag size percent 

(P)=100 

Number of 

iteration(I)=10 

Seed (S)=1 

num-slots =1 

 

Random Forest: 

NumTree (I)=10 

NumFeature (K)=0 

 

0.92 Bagging: 

bag size percent (P)=100 

Number of 

iteration(I)=10 

Seed (S)=1 

num-slots =1 

 

Random Forest: 

 NumTree (I)=20 

    NumFeature (K)=0 

0.92 

Random Forest  NumTree (I)=10 

NumFeature (K)=0 

0.91 NumTree (I)=20 

NumFeature (K)=0 

0.92 

Bagged MLP Bagging: 

bag size percent 

(P)=100 

Number of 

iteration(I)=10 

Seed (S)=1 

num-slots =1 

 

MLP: 

Learning Rate (L)=0.3 

Momentum /(M)=0.2 

Hidden layer= a 

(attribute/class)/2 

0.90 Bagging: 

bag size percent (P)=100 

Number of 

iteration(I)=10 

Seed (S)=1 

    num-slots =1 

 

MLP: 

Learning Rate(L)=0.1 

Momentum (M)=0.1 

Hidden layer= 5  

0.90 

MLP Learning Rate (L)=0.3 

Momentum /(M)=0.2 

Hidden layer= a 

(attribute/class)/2 

0.85 Learning Rate(L)=0.1 

Momentum (M)=0.1 

Hidden layer= 5  

 

0.88 

SMOreg C:1.0 

Kernal: polyKernel    

0.84 C:1.0 

Kernel: 

NormalizedPolyKernel 

0.89 

 

Bagged SMOreg Bagging: 

bag size percent 

(P)=100 

Number of 

iteration(I)=10 

Seed (S)=1 

num-slots =1 

 

SMOreg: 

C:1.0 

Kernal: polyKernel 

0.84 Bagging: 

bag size percent (P)=100 

Number of 

iteration(I)=10 

Seed (S)=1 

num-slots =1 

 

SMOreg: 

C:1.0 

Kernal: 

NormalizedPolyKernel 

0.89 
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Table 6.2 summarises overall prediction accuracies obtainable by each classifier 

presented in terms of the Correlation Coefficient and Mean Absolute Error with both 

using the default parameter settings of WEKA and with optimised parameter settings.  

 

Figure 6.2 illustrates graphs representing the actual ozone concentration versus the 

predicted ozone concentrations. The graphs illustrate the better prediction capability 

of Bagged Random Forest classification approach as compared to the others. Data 

points lie closer to the line of approximation (less spread) than in the other graphs 

indicating a better overall prediction accuracy. 

 

Table 6.2: Summary of Results –Parameter Based Optimisation 

 Default Parameter Optimising Parameter 

Classifier 
Correlation 

Coefficient 

Mean 

Absolute 

Error 

Correlation 

Coefficient 

Mean 

Absolute 

Error 

Bagged Random 

Forest 
0.92 7.08 0.92 7.05 

Random Forest 0.91 7.52 0.92 7.16 

Bagged MLP 0.90 7.64 0.91 7.27 

MLP 0.85 9.81 0.88 8.51 

SMOreg 0.84 9.54 0.89 8.05 

Bagged SMOreg 0.84 9.54 0.89 8.04 
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Figure 6.2: Scatter Plots of the actual and predicted Ozone for 6 Models 
 

Table 6.3 tabulates the accuracy values obtained when using four different 

attribute filtering approaches implemented within WEKA, namely, CFS Subset 

Evaluator, with Best First and Greedy Stepwise search, Relief Attribute 

Evaluator and Principle Component Analysis (for detail refer to Chapter 3). The 

results indicate that no improvement of accuracy is achieved in comparison with 

using all attributes. This work also investigated the impact of removing wind 
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direction from being considered, taking only the wind speed into account (from 

the original data recorded). It was seen that the wind direction has negligible 

impact on the ozone concentration prediction accuracy. This is justifiable as the 

measurements for ozone was done across the road, i.e. at its source, as it was 

vehicular traffic that was suspected to create the ozone from the nitrogen dioxide 

emissions from the vehicles.  

 

 

 

Due to the prediction algorithm adopted by Bagging (see Section 3.4.2) it 

resolves the data over-fitting problem associated with most classifiers, in this 

case with MLP and SVM in particular. This is the reason for the significantly 

better prediction accuracies obtainable from using the Ensemble Classifier 

Bagging as against the accuracies obtainable from the traditional single 

classifiers commonly used in predicting ozone, ANN and SVM. In addition, 

there is no substantial improvement obtainable when using feature selection for 

Random Forest. This is due to fact that RF algorithm (see section 3.4.2) uses a 

approach of feature selection when it builds the model. This inherent feature 

selection negates the need of any feature selection outside the algorithm‟s 

operation.  

6.5. Conclusion  

The chapter has compared the performance of six selected machine learning 

algorithms in predicting the ground level atmospheric ozone concentrations. The 

prediction was based on concentrations of seven gases (NO2, SO2, and BTX 

Table 6.3: Results of applying feature/attribute selection 

 
MLP SMOreg 

Random 

Forest 

Bagged 

MLP 

Bagged 

SMOReg 

Bagged 

RandomForest 

CFS-Best First 0.82 (-3) 0.82 (-2) 0.89 (-3) 087  (-3) 0.82 (-2) 0.90  (-2) 

CFS-Greedy 

Stepwise 

0.81 (-4) 0.82 (-2) 0.88 (-4) 0.86 (-4) 0.82 (-2) 0.90  (-2)  

Relief Att. Eval. 0.83 (-2) 0.83 (-1) 0.91 (-1) 0.89 (-1) 0.83 (-1) 0.92  ( 0) 

PCA 0.84 (-1) 0.83 (-1) 0.87 (-5) 0.89 (-1) 0.83 (-1) 0.89  (-3) 

Using All 

Attributes 
0.85 0.84 0.92 0.90  0.84 0.92 
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(benzene, toluene, o-,m-,p-xylene) and six meteorological parameters (ambient 

temperature, air pressure, wind speed, wind direction, global radiation, and 

relative humidity). Results prove the ability of ensemble learning algorithms, 

Random Forests and Bagging to perform significantly better than the most 

widely used learning algorithms in literature for the prediction of ozone 

concentrations, namely the Artificial Neural Networks and Support Vector 

Machines. In addition, the results show bagged with Random Forest gives the 

best performance for the dataset for which the  investigation was carried out and 

the parameters were adopted are listed in Table 6.1. Specifically, the research 

presented in this chapter used parameter based optimisation techniques for the 

optimum parameter selection for each algorithm experimented and investigated 

the possible use of attribute/feature reduction techniques that were both expected 

to improve prediction accuracy. However, the experimental results and the 

detailed analysis revealed that only marginal improvements can be gained by 

adopting the above techniques.  
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  CHAPTER 7

Application of Time Series Analysis in Forecasting  

          Ground Level Ozone Concentration  

 

7.1 Introduction 

In contrast to the investigations carried out in Chapters 5 and 6, this chapter 

investigates the time dependent analysis of variations and trends of ozone 

concentration, commonly named in literature as „time series analysis‟. For practical 

relevance of the results produce the focus is to predict 24 hours (i.e. a day) ahead. 

Two types of time series analysis are conducted, namely, univariate time series 

analysis and multi-variate time series analysis. Univariate time series analysis refers 

to forecasting future ozone concentrations based only on known, measured, previous 

ozone concentrations whereas the multivariate forecasting refers to the prediction of 

future ozone concentrations based both on the past, measured concentrations of 

ozone, concentrations of other gases and meteorological parameters that are known 

to have an impact on ozone formation. As the latter approach is likely to provide 

more accurate predictions a comparison of the performance of both algorithms has 

been presented. 

Forecasting future concentrations of ozone either based on univariate or multivariate 

analysis requires the use of historical data of significant time-duration so as to 

different long term and short term trends and variations can be accurately captured 

and used in the predictions. Therefore, for this purpose the Sohar University 

environmental dataset (see Chapter 4) used in Chapters 5 and 6 was deemed to be 

unsuitable due to the fact that the data was gathered during a relatively short period 

of time and had missing values that resulted in a significant fraction of data being 

removed from being considered. Thus the DEFRA database (see Chapter 4) is used 

for this research and analysis.  

For the purpose of experimentation and analysis the Time Series Forecasting (TSF) 

Toolkit of WEKA [95] was used, that provides access to software implementations 

that have the flexibility to be adjusted and changed according to analysis preferences. 

Instead of carrying out a comprehensive analysis using a wide range of machine 



Chapter 7 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           84 

learning algorithms, as in the research conducted in Chapter 5, a limited number of 

candidate machine learning algorithms that were proven to perform optimally in 

spatial forecasting of ground level ozone in Chapter 6, are investigated in this 

chapter. The performance of ensemble learning algorithms (Bagging and Random 

Forest (RF)) has been examined and compared with popular approaches used in 

literature for time series analysis, i.e., MLP and SVM for regression (SMOreg). It is 

noted that research conducted to date and presented in literature has not investigated 

the use of ensemble learning approaches in time-series analysis. Therefore, the 

research conducted within the scope of this chapter has a relevance and significance 

and contributes positively to the state-of-art.  

For clarity of presentation this chapter is organized as follows: Section 7.2 presents 

the general concepts/terminology related to time series data analysis and modelling, 

followed by the presentation of methodology research adopted in this chapter in 

Section 7.3. Sections 7.4 – 7.6 present the experimental results and a comprehensive 

analysis of the results. Finally, Section 7.7 summarises and concludes the research 

conducted.     

7.2 Time Series Analysis 

Time series analysis and forecasting models have been widely used in research in 

many application areas during the last decade. The main aim of time series analysis is 

to study the historical behaviour of a collected dataset in order to use such behaviour 

to develop a forecasting model which can provide the means for obtaining 

information about the future (i.e. understanding the past can help to model the 

future), in advance. Such advance notice for example of ground level ozone 

concentrations can help in providing general public with timely warnings for excess 

or dangerous levels of ozone concentrations.   

7.2.1 Time Series Data 

A time series dataset is defined as a set of data measured/captured periodically 

(e.g., hourly, daily, monthly, or yearly) and can be continuous or discrete in 

value. Hence, the data is time dependence and the ordering of data elements is 

important. In addition, a time series dataset could be either univariate, which 

contain records of a single variable; or multivariate where the record contains 

more than one variable.  
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In general time series data can demonstrate Trends and Cyclical, Seasonal 

variations  [96]. These terms can be defined as follows.  

Trend:  time series data either increase or decrease over a period of time. 

Cyclical: time series data can fluctuate over a long period of time, typically in 

excess of one year. The data will exhibit an increase and decrease in value 

during the period. 

Seasonal: The structure of the data can repeat itself in similar patterns over a fix 

periodic time, e.g. monthly, or yearly.  

Figure 7.1 illustrate a plot of ozone concentration over two, five month periods, 

in 2010 and 2015, respectively. The data for the plots have been obtained from 

the DEFRA dataset. The plot indicates the presence of seasonal and cyclical 

changes (see Figure 7.2), but not trends.      

 

Figure 7.1: Ozone concentration variations for year 2010 and 2015 
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Figure 7.2: Hourly average Ozone concentrations in months, August (summer) and 

December (winter) in 2010 and 2015) 
 

A dataset used in time series modeling is different as compared to the datasets 

used in spatial data modelling / data mining due to the fact that a time series 

dataset has “natural temporal ordering”. Thereforein order to make use of the 

machine learning algorithms implemented within WEKA for forecasting, the 

input data has to be transformed into a non-time dependent format [97],[98]. 

Several transformation processers have been adopted to transform a time-

dependent dataset into a non-time-dependent dataset. In this work the use of 

the concept of time lagged variables in order to achieve time independence is 

made. This is the concept adopted by WEKA‟s TSF toolkit.  
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7.2.2 Lagged Variables   

In [99] the authors have summarised and presented different methods for pre-

processing a time series dataset.  One such popular method is by introducing 

lagged variables to the dataset. Since there are no general rules that specify as 

to how lagged variable are obtained [34], different approaches to lagged 

variable preparation has been used in different application domains and by 

different researchers. In the proposed work, the approach used by WEKA for 

lagged variable preparation has adopted .  

The process of lagged variable preparation can be explained as follows: 

A lagged variable is obtained by shifting the target variables Xt by N steps on 

time space. Where lag N indicate that Xt  is holding information of Xt-n (see 

Figure 7.3). 

 

Figure 7.3: Lagged variable creation 

 

Figure 7.4 plots the autocorrelation coefficient [100] of a sample of data 

depicting the variation of ozone concentration with respect to time at different 

lags ranging between 1 hour to 24 hours. The graph clearly shows that 

autocorrelation coefficient drops to approximately 0.5 at a lag of 13hours and 



Chapter 7 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           88 

increases above 0.5 at approximately 21 hours. This demonstrates that for 

most practical cases considering lags from 1-12 hours and just 24 hours will 

be a sufficient and accurate selection. In the research conducted in this 

chapter the lags of 1-12 and 24 hours have been used.  

Therefor the new fields are added to the original dataset to represent the lag  

(in this work 13 new fields are included in the dataset). This process will 

allow the introduction of the historic values at each point in the dataset.     

 

Figure 7.4: Plots of autocorrelation 
 

7.3 Methodology  

Within the context of the proposed research several experiments are conducted to 

model 1-day ahead (i.e. 24 hours ahead at an interval of one hour) forecasting ozone 

concentration making use of a number of different learning algorithms.  The WEKA 

time series analysis and forecasting toolkit (TSF) is adopted to carry out the 

forecasting of ozone concentrations. It is noted that WEKA‟s TSF toolkit is a flexible 

and powerful tool that can be used for forecasting more efficiently as compared to 

using other known forecasting models that are based on statistical approaches (e.g. 

ARMA and ARIMA [100],[101]). In Section 7.2 it was explained how the TSF 

package automatically handles the temporal ordering of the input data without 
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recourse to a time-stamp, by introducing inputs as lagged variables to the modelling 

process. These lagged inputs will be used by several different learning algorithms to 

model the trends and seasonality of the input dataset and hence to forecast the ozone 

concentrations 24 hours ahead.  

The experimental procedure adopted for time series forecasting making use of the 

WEKA TSF toolkit is illustrated in Figure 7.5. The forecasting is conducted on the 

DEFRA dataset (see Section 4.2, Chapter 4) and is fed into the WEKA TSF toolkit 

(the Forecaster) as the input.  In forecasting ozone concentration using the WEKA 

TSF toolkit, several important parameter selections have to be carried out before the 

forecaster can start modeling. They are as follows:  

(1) Select the target variable as the ozone concentration. 

(2) Decide on the number of steps which are required to forecasted as 24, i.e. 24 

hrs / 1-day ahead at an interval of one hour. 

(3) Select the period as an „hour‟. 

(4) Select the level of confidence to be used (95% in proposed experiments).   

(5) Select the window size to be used that determines how many past, known 

ozone concentrations are used for modelling the ozone concentration value to 

be predicted. (e.g. window size = 24).   

(6) Select the learning algorithm to be used in creating the model. 

(7) Select the evaluation rule to be adopted. 

 

In multivariate forecasting an additional step has to be performed to overlay the 

historical meteorological parameter values and concentrations of other gases.  

 

Note from the above parameter selections that when conducting forecasting, the 

ozone concentration is selected to be the target and Date and the Time has been 

selected as the time stamp. A total of 24, hourly steps of the ozone concentrations 

into the future are to be forecasted at 95% confidence. The input data has been 

lagged by 1-12 hrs and 24 hrs for modelling due to the explanations given with 

respect to the autocorrelation plots depicted in Figure 7.2 above. The input data has 

been split as 90% for training and 10% for testing. Note that the evaluation of the 

results is conducted both within the training set itself and also outside the training set, 
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i.e. within the test set. The latter approach provides a more practical evaluation 

scenario.  

 

TSF package

DEFRA 

Datasets

Data-

Transform

ation 

Window 

Size 

Lag creation 

Forecasting 

Model 

Data Pre-

processing

(Interpolation 

method) 

Number of 

steps to 

future 

focecast

Training 

Dataset

90%

Testing 

dataset 

10%

Evaluation  
Result 

Analysis

 

Figure 7.5: The experimental procedure adopted by WEKA TFS toolkit 

 

Several important steps in the forecasting process adopted can be detailed as follows: 

7.3.1 Data Pre-processing: 

It was observed that the input target data, i.e. the historic and known ozone 

concentrations had several gaps, i.e. missing values. An interpolation approach 

(see Section 4.2) implemented within the WEKA TSF package was used as a 

pre-processing stage for data cleaning.   

7.3.2 Data Transformation 

As discussed in Section 7.2, the input dataset is transformed to eliminate the 

temporal ordering by creating time lagged inputs. This transformation is handled 

within the WEKA TFS toolkit, automatically. Subsequently the time lags to be 

included in the forecasting process (in the experiments conducted, 1-12 and 24 

as explained in Section 7.2) and the window size to be used, should be decided. 

It is noted that one of the most important factors in the creation of a forecasting 

model is to select a time window for the model. This window size refers to the 
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period of training utilised by the forecasting model. Using a narrow window size 

may not provide sufficient training data for model creation. On other hand, using 

a wider window size will increase the complexity of the model training process 

and increase the chances of using irrelevant inputs [102] in training. For the 

purpose of the proposed research, the window size selected is 24 while the 

lagged inputs considered in the modelling was, lag1 to lag12 and lag24. 

 

7.3.3 Forecasting Models  

Six learning algorithms were selected to build the forecasting models using the 

WEKA TSF toolkit. These algorithms include MLP, SMOreg, Random Forest, 

bagged MLP, bagged SMOreg and bagged Random Forest. The models were 

built using the methodology discussed earlier in this section. The forecasted 

results are evaluated using two evaluation matrics, the MAE and RAE.  

Different experiments have been conducted to find out the learning algorithms 

that provide the most accurate forecasting of ozone concentrations, 24 hours 

ahead. Both univariate and multivariate forecasting is conducted. In univariate 

forecasting, future values of ozone concentrations are predicted based on past 

ozone concentration data only. However in multivariate analysis the impact of 

other parameters that are known to have an impact on the formation of ozone 

such as the concentrations of gases such as SO2, NO, NO2, NOx, and 

meteorological parameters such as temp, and wind direction/speed are 

considered in the forecasting of ozone concentrations.   

The latest version of the WEKA (version 3.8.0) has been employed to carry out 

all the experiments; the six selected algorithms were examined using their 

default parameter settings, with the data set divided as 90% for training and 10% 

testing.  

 

7.4 Experiments Results and Analysis 

As mentioned previously six different machine learning algorithms are used for 

forecasting.  They include MLP, SMOreg, RF, bagged MLP, bagged SMOreg, and 

bagged RF. All the learning algorithms were operated with their default settings (see 
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Table 7.1). The experiments were conducted on two datasets; the first set being the 

entire dataset of ozone concentrations gathered from DEFRA, between 2010 and 

2016. Second dataset is a sample of the full DEFRA dataset representing data 

gathered during a continues period of time (approximately 7 months), without any 

missing values. Both univariate and multivariate forecasting is carried out for the 

prediction of ozone concentrations.  

Table 7.1: Default Settings for the Classifier Parameters 

Classifier  Default values  

MLP Momentum= 0.2 

LearningRate=0.3 

Trainingtime =500 

hiddenLayers=(attribs+ classes) / 2  *in this experiment 15 

normalizeAttributes= True 

validationThreshold=20 

SMOreg The complexity parameter C = 1.0 

Kernal=PolyKernel 

filterType= Normalize Training data 

regOptimizer (The learning algorithm)=RegSMOImproved 

RF bagSizePercent= 100 

numIterations =100 

maxDepth = 0 ( unlimited) 

numFeatures = 0, which is equal to int(log_2(#predictors) + 1) is used. 

Bagging bagSizePercent= 100 

numIterations =10 

 

Two evaluation metrics, the Mean Absolute Error (MAE) and Relative Absolute 

Error (RAE), have been considered in this work to compare the performance of the 

six forecasting models.  In all experiments conducted, 90% of the dataset is used for 

training and 10% is used for testing.   

 

7.5 Experiment 1: Univariate Models 

In this experiment only ozone concentration data is considered in building the 

forecasting models. The entire dataset was used and the six different classifiers were 
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experimented. It is noted that this study have selected the MLP (Multilayer 

Perceptron is a ANN implementation) and the SMOreg (this is a SVM 

implementation) as they are the most widely used single classifiers used in literature. 

Further it is noted that the author has selected the Random Forests (RF) for 

performance analysis and comparison as it is the simplest form of an ensemble 

classifier. As the main ensemble learning technique, Bagging (see Section 3.4.2.1) is 

used. In using Bagging our experiments revealed that the bag size has a significant 

impact on forecasting accuracy. Therefore, additional experiments (see Section 7.5.1) 

are conducted to determine the optimal number of bags to be used in the forecasting 

experiments. Bagging is used with the MLP, SMOreg and RF as the base classifier, 

providing three additional classifiers for the forecasting tasks.   

     

7.5.1 Number of Bags Optimising for Bagged MLP 

The number of bags to be used in the application of Bagging is a factor that 

needs careful selection. The optimal number of bags to be used depends on the 

dataset being investigated.  Four different experiments were conducted with 

bag numbers= 3, 5, 10* and 15 (note: * indicates WEKAs default number of 

bags) to find the best bag size when using bagged MLP. The performance of 

bagged MLP was investigated when evaluations were done against data from 

the training set and the test set, respectively. Figure 7.6 plots of MAE vs the 24 

hourly (24 step ahead)  with graph (a) indicating the results when evaluations 

were done using data within the training set and graph (b) indicating the results 

when the evaluations were done using data outside the training set. A careful 

analysis of the graph (a) illustrates that when evaluations are done using data 

within the training set both bag sizes 3 and 15 provides the lowest MAE values 

for all future forecasts. However, graph (b) illustrates that the bag size 3 is not 

suitable when evaluations are done against the separated, 10% of data. This 

indicates that the input dataset should be divided into a higher number of bags 

for different models to be created using the base MLP classifier. The bag 

number 15 gives the best results. 

Within the research context of this thesis the optimal bag number to be used 

was investigated.  When the base classifier is the SMOreg or RF and found that 

a bag number of 15 remains the optimal number. Therefore for all experiments 
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conducted a bag number of 15 was used. For a different dataset this value could 

be different and requires the repetition of the experimental procedure described 

above to determine a new optimal bag number.  Although the investigation 

carried out above was focused on the creation of a univariate forecasting model, 

the detailed investigations when using a multivariate forecasting procedure also 

confirmed the same number of optimal bag numbers.  

 

Figure 7.6: MAE of each univariate forecasted hourly ozone concentration for different 

number of bags for bagged MLP :(a) Result for training set,(b) Result for Test set. 
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7.5.2 Performance of Univariate Forecasting Models 

Figure 7.7 illustrates the forecasting accuracy of all six models experimented, 

namely the MLP, SMOreg, RF, bagged MLP, bagged SMOreg and bagged RF. 

Figure 7.7 (a) illustrates the evaluation of results against the training set and 

Figure 7.7 (b) illustrates the evaluation of results when tested on the separate 

test set. As expected the accuracy decreases with time, i.e. further the future 

time for which the ozone concentration is predicted, the error will increase.  

 

Figure 7.7: Univariate Forecasting – Performance of six classifiers measured in MAE when evaluation 

is done within the training set (a) and within a separate test set (b). 
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Note that the MLP, both when used as a single classifier and used as the base 

classifier of Bagging (bagged MLP), performs worst. Note that in our 

experiments 15 number of hidden layers was used in MLP and 15 bags were 

used in Bagging. In the case of testing on separate test data, the error 

continuously increased with time for both MLP and bagged MLP. This is not 

the case when the performances of the other four classifiers are considered. It 

is noted that Bagging marginally improves the results of modelling when used 

in conjunction with a MLP. 

SMOreg and bagged SMOreg performed identically at all times suggesting 

that Bagging has no impact when used with the SMOreg as the base 

classifier, suggesting SMOreg‟s stability as a classifier [91].   

The best overall results when testing was done within the training set were 

obtained with Random Forest (RF), itself an ensemble classifier. Using 

bagged RF marginally improved the forecasting performance (figure 7.7(b)). 

The best results when testing on an external test set was obtained by the 

SMOreg/bagged SMOreg, which were marginally better than the RF/bagged 

RF. 

Figure 7.8 presents the performance accuracy in terms of the Relative 

Absolute Error. Predictions where the RAE is less than 100% indicates a 

useful prediction. However if the RAE value is above hundred, it means that 

rather than forecasting better accuracy results will be obtained by simply 

taking the prediction to be identical to the ozone concentration the previous 

day, same time. 

 



Chapter 7 

 

 

Modelling Atmospheric Ozone Concentration Using Machine Learning Algorithms           97 

 

Figure 7.8: Univariate Forecasting – Performance of six classifiers measured in RAE when 

evaluation is done within the training set (a) and within a separate test set (b). 

 

 

Table 7.2 includes a screenshot of the actual results displayed by WEKA 

when bagged MLP was used. The screenshot is provided to provide the reader 
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Table7.2: Screenshot of the bagged MLP Results 

 

 

7.6 Experiments 2: Multivariate Model 

Univariate forecasting only makes use of the past ozone concentration data for the 

prediction of future ozone concentration. The section provides experimental results 

when multivariate forecasting is used for the forecasting of ozone concentrations. 

Multivariate approach takes into consideration other factors that affects the formation 

of ozone at a given time, for example temperature, wind speed etc., and 

concentrations of other gases such as NOx‟s that are the gases that decompose to 

create ozone. In the analysis conducted only used ozone concentration as a lagged 

variable. This way the future values of external parameters such as wind speed etc., 

are not taken into account in predicting future values of ozone, but only their past 

values are considered to ensure that the forecasting is done more accurately. 

Therefore one would expect multivariate forecasting to produce more accurate results 

as compared to univariate forecasting.  

Two datasets were used in the proposed experiments for conducting multivariate 

forecasting namely the whole DEFRA dataset that spans over 5 years and a short 7 

months (Dec 2012-Auguest 2013) sample dataset, from the full dataset. The two 
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datasets are used to determine the impact of missing data (regardless of the fact that 

missing values have been filled or not) on the accuracy of forecasting. Note that 

whilst the large dataset consists of missing values, the short dataset does not. The 

short dataset included 5687 instances, which were from approximately 237 days. 

7.6.1 Multivariate Forecasting Based on the Short Dataset 

Preliminary experiments with multivariate forecasting demonstrated that the 

optimal bag size to be used for Bagging remains at 15 as an increase beyond 15 

only marginally increases accuracy (see Figure 7.9). As in the case of 

experiments conducted for univariate forecasting 90% of the dataset was used 

for training and 10% was reserved for testing.  

 

Figure 7.9: MAE of each multivariate forecasted hourly ozone concentration for different 

number of bags, for bagged MLP :(a) Result for training set,(b) Result for Test set. 
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Figure 7.10 illustrates the performance of the six multivariate models 

measured in terms of MAE at hourly intervals, when the evaluation is done 

within the training set (see Figure 7.10 (a)) and when the evaluation is done 

on a separate test set (see Figure 7.10 (b)). It shows that different machine 

learning algorithms perform best under different conditions. When evaluated 

within the training set, the best performance is given by RF closely followed 

by bagged RF. When evaluated on a separate test set, the best performance is 

indicated by bagged MLP closely followed by MLP. RF and bagged RF 

performs sub optimally when evaluated on a separate test dataset.  

 

 

Figure 7.10: Short Dataset: Performance of multivariate forecasting with six different classifiers 

measured in terms of MAE, (a) when evaluated within the training set and (b) when evaluated within a 

separate test set 
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Figure 7.11 illustrates the performance accuracy of the above mentioned 

multivariate models, measured in terms of the relative absolute error. It is 

seen that forecasted values have a better accuracy as compared to direct 

replacement from the previous day‟s values, for all machine learning 

algorithms other than when using SMOreg when evaluated within the training 

test. However when evaluated on a separate test set it is only SMOreg that 

gives meaningful predictions better than direct replacements, at all hourly 

intervals within the 24 hour period.  
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Figure 7.11: Short Dataset: Performance of multivariate forecasting with six different 

classifiers measured in terms of RAE, (a) when evaluated within the training set and (b) 

when evaluated within a separate test set. 

 

7.6.2 Multivariate Forecasting Based on the Full Dataset 

Figure 7.12 illustrates the performance of the six machine learning algorithms 

when used in multivariate forecasting, measured in terms of the MAE. Figure 

7.12 (a) illustrates the results when evaluated within the training set and 7.12 

(b) illustrates the results when evaluated within a separate test set (i.e. within 

the 10% of the original dataset set aside for independent testing). Both figures 

indicate that RF and bagged RF performs best.  
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Figure 7.12: Multivariate Model (6 years‟ period) - MAE results for 6 classifiers (a) 

Training, (b) Testing 

 

Figure 7.13 illustrates the above performances in terms of the RAE. When 

evaluated within the training set all forecasted values are better than a possible 

direct replacement from the previous 24hour period as discussed in Section 
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Figure 7.13: Multivariate Model (6 years‟ period) - RAE results for 6 classifiers (a) Training, 

(b) Testing 

 

7.7 Conclusion  
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for time series prediction of ground level ozone concentrations. Both univariate and 

multivariate forecasting was conducted using six machine learning algorithms 

namely MLP, SVM (SMOreg), RF, bagged MLP, bagged SVM and bagged RF. The 

models were developed based on a clean, short dataset of approximately 7 months 

long and a long term dataset spanning approximately five years, with filled missing 

values. 90% of a considered dataset was used for model building and the evaluations 

were done on the part of the dataset used for training (i.e. model building) and also 

on the separated out 10% dataset. It was found that the suitability of different 

algorithms for forecasting varied depending on the size of the dataset, whether used 

for univariate or multivariate forecasting, where the evaluations were carried out 

(within the training set or the separated out test set). 

It can be concluded that multivariate forecasting is far more accurate than univariate 

forecasting. This is expected as in multivariate forecasting, in addition to exploiting 

the univariate properties of the target variable (ozone concentration), the proposed 

approach also considers the impact on other parameters that directly impact the target 

variable such as concentrations of gases such as NOx which is the gas that 

decomposes due to natural phenomena, creating ozone, and on meteorological 

parameters such as temperature, solar radiation and wind speed etc. Thus more 

accurate predictions to the future can be performed using multivariate forecasting. 

The experiments conducted also revealed that when using the bagged MLP for 

forecasting, it is important that the correct number of bags is decided. If not the 

impact of Bagging on MLP can be either marginal or even detrimental. For the 

dataset used in the proposed experiments 15 bags were found to be an optimal 

number.  

Bagged versions of the machine learning algorithms MLP, SMOreg and RF generally 

performed better than the single classifier versions. It is also observed that in general 

when the model created is tested on a new dataset, the forecasting errors noticeably 

increases.  Further when the training dataset is smaller (i.e. over a shorter period of 

time), the model created is less accurate as long term „trends‟ are not learnt.  

Overall the best performance was indicated by RF and bagged RF. This is due to the 

fact that RF itself is an ensemble learning algorithm as compared to the single 
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classifier learning algorithms MLP and SMOreg. When RF is used as the base 

classifier of Bagging, the results are further improved.  

Finally, it can be concluded that both univariate and multivariate forecasting of 

ground level ozone concentrations can be carried out successfully, in particular by 

ensemble learning algorithms.   
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                                                                                                                    CHAPTER 8

Conclusion and Future Work 

 

The research presented in this thesis investigated the use of a comprehensive number 

of machine learning algorithms in the modelling, prediction and forecasting of 

ground level ozone. Within the literature review conducted within the research found 

that in the area of Environmental Pollution analysis, the modelling and prediction 

techniques widely used are the more popular, traditional, learning algorithms that are 

based on, Artificial Neural Networks, Support Vector Machines etc. Instead of using 

such single Learning Algorithms the use of ensemble learning algorithms (meta 

learning algorithms) promises more accurate modelling of complex data and hence 

can result in better prediction accuracies. The purpose of the research conducted in 

this thesis was to investigate this observation in detail. To this effect the predication 

and forecasting of the ground level ozone using ensemble learning approaches has 

been examined using two different data sets, the Sohar dataset provided by Sohar 

University, Sultanate of Oman and DEFRA dataset provided by the Department for 

Environment Food & Rural Affairs, UK. The Sohar dataset has been used to model 

spatial relationships between the ozone concentration and concentrations of other 

gases known to create ozone and a number of meteorological parameters. The models 

created thus were used to predict ozone concentration variations that occur due to 

variations of the abovementioned concentrations and parameters. On the other hand 

the DEFRA dataset has been used to conduct a time-series analysis, forecasting 

ozone concentrations based both on univariate and multivariate analysis.  

The three main contributions of the thesis were presented in Chapters 5,6, and 7, 

where the key focus was to model ground level ozone concentration using machine 

learning approaches. The thesis has been organized to present each contribution in a 

separate chapter. The first contribution, Chapter 5, presented a comprehensive 

investigation into employing the state of the art machine learning techniques, single 

base classifiers and meta learning classifiers in the modelling and prediction of 
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ground level ozone concentration, based on concentrations of other common 

pollutants and environmental parameters. The research presented proves the 

superiority of three meta learning classifiers, namely, Bagging, Stacking and Voting, 

over widely used single classifiers such as Artificial Neural Networks, Support 

Vector Machines etc., in the prediction of atmospheric pollution.  In the second 

contributory chapter, Chapter 6, the use of the ensemble learning algorithm Bagging 

was investigated in detail. To enhance the performance of the ensemble learning 

algorithm, Bagging, further, feature/attribute selection and model parameter 

optimisations were carried out. The results proved the ability of such additional 

adjustments to further improve the accuracy of prediction already provided by the 

ensemble learning algorithms. The third contributory chapter focused on time series 

analysis and forecasting of ozone concentrations, 24 hours to the future at hourly 

intervals. Both univariate and multivariate forecasting was conducted. The 

multivariate forecasting provided significantly improved levels of accuracy as 

compared to univariate analysis. Out of the machine learning algorithms investigated, 

RF and Bagging with RF provided best results under most experimental conditions. 

Detailed analysis and conclusions of this research were provided in Chapter 7. 

Overall the research conducted in this thesis concludes that ensemble learning 

algorithms provide superior performance in modelling ozone concentration variations 

and can be used to effectively predict ozone concentrations based on parameters and 

concentration of other gases known to impact ozone formation and forecast ozone 

concentrations of the future, 24 hrs ahead, using both univariate and multivariate 

analysis. The performance accuracy obtained by ensemble learning algorithms are 

much better than the level of accuracy obtained by the popularly and widely used 

machine learning algorithms in atmospheric pollution modelling and prediction, i.e. 

Neural Networks and Support Vector machines. Therefore, it is recommended that 

these approaches are used in future to replace the standard approaches used widely in 

literature. 

8.1.  Future Work 

This research has comprehensively investigated modelling ozone concentration using 

the state of art machine learning algorithms and compared them with using ensemble 
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learning algorithms. The research has provided an intensive analysis of modeling and 

forecasting. However, one outstanding issue where it is possible to extend this 

research further is the sensitivity analysis of the algorithms. Sensitivity analysis can 

be carried out using partial derivative methods to examine the sensitivity of learning 

algorithms to input. There have been several studies which reviews the sensitivity 

analysis and its different objectives. [103],[104] have presented a review of sensitive 

analysis in the area of environment pollution monitoring.   Most of the sensitivity 

analysis approaches presented in literature shared the concept of varying one 

parameter at a time while the other parameters are maintained fixed. However, some 

other studies in environmental modelling have looked on the relationship between the 

independent variables and the dependent variables and how it affects the model 

performance.  As future research it can be proposed to carry out sensitivity analysis 

of algorithms that performed best, giving the ability to compare and contrast the 

performance of algorithms more accurately. However this will need a significant 

amount of effort which was beyond the scope of research conducted within this 

thesis. 

Further it is recommended that the use of convolutional neural networks and deep 

learning be investigated. These are machine learning approaches have recently being 

used in a wide set of application areas producing excellent results.  
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conference or journal papers. The details could be found in below sections: 

I. Conference Published  

Al Abri, E.S., Edirisinghe, E.A. and Nawadha, A., 2015. Modelling ground-

level ozone concentration using ensemble learning algorithms. Proceedings of 

the International Conference on Data Mining (DMIN), 27th-30th July 2015, 

Las Vegas, USA, pp.148-154. 

II. Journal Paper under Review  

Al Abri, E.S., Edirisinghe, E.A., Nawadha,A., and Dawson, C.W., The Use of 

Meta-Learning Ensemble Algorithms for the Prediction of Ground-Level 

Ozone, submitted to Big Data Research, Elsevier , May 2016 

III. Conference Paper will be Submitted  

Al Abri, E.S., Edirisinghe, E.A., and Dawson, C.W., Ability of ensemble 

learning to forecast ground level ozone concentration, will be submitted to 
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