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a b s t r a c t

There is a very extensive literature on the design and test of models of environmental pollution,
especially in the atmosphere. Current and recent models, however, are focused on explaining the
causes and their temporal relationships, but do not explore, in full detail, the performances of
pure forecasting models. We consider here three years of data that contain hourly nitrogen oxides
concentrations in the air; exposure to high concentrations of these pollutants has been indicated
as potential cause of numerous respiratory, circulatory, and even nervous diseases. Nitrogen oxides
concentrations are paired with meteorological and vehicle traffic data for each measure. We propose
a methodology based on exactness and robustness criteria to compare different pollutant forecasting
models and their characteristics. 1DCNN, GRU and LSTM deep learning models, along with Random
Forest, Lasso Regression and Support Vector Machines regression models, are analyzed with different
window sizes. As a result, our best models offer a 24-hours ahead, very reliable prediction of the
concentration of pollutants in the air in the considered area, which can be used to plan, and implement,
different kinds of interventions and measures to mitigate the effects on the population.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Contamination of the air, in particular in metropolitan ar-
as, is a very well-known problem. The ever-growing population
f cities and the increasing level of motorization contribute to
he ever-increasing traffic volume, and consequently, the ever-
ncreasing exhaust gases emissions. At the same time, the thick-
ning of city buildings reduces ventilation and increases the
orosity of surface, which ends up decreasing the effect of the
ind on the evacuation of contamination. Wrocław (Poland) is a
ity founded in the 10th century, and it counts, currently, 641,000
esidents. About 15 thousands of vehicles are estimated to move
n city streets every day [1]. Among the main contaminants
mitted by car engines are nitrogen oxides: NO2 and NO + NO2
usually denoted by NOx). The typical sources of air pollution
are well-known, but difficult to eliminate, at least completely.
Thus, most studies are focused on determining the impact of
factors that may modify the concentrations of contaminants in
the atmosphere such as transformation, retention or evacuation.
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E-mail address: fernan@um.es (F. Jiménez).
ttps://doi.org/10.1016/j.asoc.2021.107850
568-4946/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
To this end, models are created to describe the underlying phe-
nomena with more or less detail. Recognition of factors having
the highest effect on the concentration of contaminants in the
air gives the opportunity to try to manipulate these factors in
such a way as to ensure the most effective evacuation of such
pollutants, thereby shortening the time of exposition to their
effects and reducing the results of their action. The research on
the impacts of car traffic and of meteorological factors on the
concentrations of NO2 and NOx in the urban agglomeration air
gives us the opportunity to try manipulating such factors and
predicting the time and the conditions of maximal presence of
contaminants in the air. Contamination models, and in particular
early prediction models, can support designers for taking actions
towards the improvements the quality of the air [2]. In central
Europe, and in Poland in particular, this problem is of uttermost
importance: it is estimated that the economic cost of air pollution
in Poland is over 25 million euros per year, and that over 43
thousands people die prematurely in the country because of poor
air quality. Several models for air contamination exist in the
literature. The most basic approach is based on multidimensional
regression models [3]. The most relevant advantage of simple
regression models such as the linear one is having explainable
models that can be used to assess the amount of the impact of
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ach predictor on the value of the explaining variable. Moreover,
inear models can be extended to take into account polynomial
ffects of some variables [4], and the temporal aspects of the
hysical process can be also studied explicitly [5]. Highly non-
inear models, on the other hand, have the advantage of being
ore accurate, especially for long-term forecasting. Typical black-
ox models of this kind are neural networks, in several variants
see, e.g. [6]). Also, alternative approaches to pollutants prediction
nd explanation in the atmosphere include, for data from the area
f Wrocław [7], in which, in particular, the authors propose the
se of lagged variables to enhance the accuracy of the prediction
odels, and proved the importance of their role.
We present a methodology to evaluate and compare deep

earning models for multivariate time series forecasting, that
ncludes lagged transformations, hyper-parameter tuning, statis-
ical tests, multi-criteria decision making and h-step-ahead pre-
iction. In particular, we compare three deep learning techniques
nd three conventional regression techniques that is, random for-
st (RF) [8], least absolute shrinkage and selection operator (Lasso)
regression [9], and support vector machine (SVM) [10] against
each other on the data containing traffic values, meteorological
values, and pollution values in a highly trafficked street crossing
in Wrocław, from 2015 to 2017. We focus on the quality and
the performances of the prediction model, measured up to 24
hours-ahead prediction. Our data are collected from a very large
street crossing in Wrocław, that encompasses several traffic lanes,
located not far (about 30 m) from the measuring station, and
monitored by traffic cameras. The station is located on the sub-
urbs of the city, at 9.6 km from the airport. Contamination data
are recorded by the Provincial Environment Protection Inspec-
torate, and includes the values of NO2 and NOx taken every hour.
The traffic data are collected by the Traffic Public Transport Man-
agement Department of the Roads and City Maintenance Board in
Wrocław, and encompasses the hourly count of all types of vehi-
cles that pass through the intersection. The meteorological data
belong to the Institute of Meteorology and Water Management,
and include: air temperature, solar duration, wind speed, relative
humidity, air pressure, and ozone. Four datasets are considered:
those for NO2 prediction, with and without ozone values, and
those for NOx prediction, with and without ozone values. The
importance of these factors is largely discussed in the literature
(see, e.g., [11,12]). The main contributions of our work are:

• Although other authors have proposed similar studies, most
of them have focused on the prediction of particulate matter
with a diameter of less than 2.5 micrometers (PM2.5) and
with a diameter of less than 10 micrometers (PM10), and
only a few of them on the prediction of NO2 and NOx. We
focus our research on the prediction of NO2 and NOx.
• To the best of our knowledge, also, the role of O3 was never

systematically assessed in this context. In this study, we
consider the presence of O3 in the prediction of pollutants
NO2 and NOx.
• Furthermore, the studies carried out so far do not propose

specific methods for choosing the best prediction model
among many possibilities. Our work, is not only a complete
methodology to build deep learning and machine learn-
ing models for the forecast of contaminants NO2 and NOx
with and without O3, but also to compare these predic-
tion models. The proposed methodology considers sliding
window transformation with different window sizes chosen
appropriately in the context of the problem.
• A decision process based on statistical tests and multi-

criteria optimization is proposed for choosing the best model

in a prediction horizon of h-step-ahead.

2

• We propose metrics based on h-step-ahead predictions to
measure both exactness and robustness of forecasting mod-
els, and we propose a weighted additive function to ag-
gregate the precision and robustness criteria into a single
measure.
• It is the first time that a study of these characteristics has

been carried out in the city of Wrocław.

As a result of our study, we are able to select very reliable
models for 24-hour ahead prediction. Models such as the one we
propose are important as they allow us to identify the factors
having the greatest impact on pollution, and to quantify such
impact. This information is useful for decision-making, e.g. about
building construction and planning in an urban environment
(leaving ventilation channels facilitates the evacuation of pollu-
tants and reduces the exposure of residents to their unfavorable
effects). But forecasting the concentrations of pollutant for the
next few hours is also useful in order to warn residents against
potential dangers due to too high levels, which can and should
influence their behavior in order to reduce exposition by, for
example, refraining from walking or cycling in a particular area
at a particular time. In this sense, a 24-hours forecast horizon is
probably the most suitable choice, that balances the accuracy of
the prediction with the usefulness of an early warning to a small
community. Moreover, forecast horizons with lengths of the order
of hours are in fact in line with other, similar systems in the
literature (see, e.g., [13]).

The rest of the article is organized as follows. Section 2 presents
some related works published in the last 5 years; Section 3
describes the datasets used for this research; Section 4 presents
the proposed methodology for the building and comparison of
the models, as well as for the choice of the best model, and
shows the results obtained; Section 5 analyzes and discusses the
results; Section 6 draws conclusions and future work; finally,
Appendixes A to E show charts, diagrams and tables that reinforce
the exposition of the methodology and the results.

2. Related works

This section reviews the relevant work that has been published
in the last 5 years (from 2017 to 2021) in the field of time series
forecasting for air quality through deep learning or other machine
learning techniques.

2017 Articles:
Patra [14] uses multi-layer perceptron (MLP), support vector re-

gression (SVR) and autoregressive integrated moving average
(ARIMA) models for one month ahead prediction of CO and
NO2 with the public AirQuality database obtained from the UCI
Machine Learning Repository [15] with 390 instances of daily
averaged responses from a collection of 5 metal oxide chemical
sensors installed in an Air Quality Chemical Multisensor Device.
The author concludes that the best results, presented in terms
of root mean square error (RMSE), are obtained with MLP with an
rchitecture (4−8−1) for CO and with an architecture (10−2−1)

for NO2.
Kok et al. [16] propose a deep learning model based on Long

Short Term Memory (LSTM) [17] networks in order to make pre-
dictions for air pollution with the data from IoT smart city anal-
ysis. Network structure consists of an input layer, a hidden layer
with 24 LSTM units, and an output layer, with batch size of 50 and
100 epoch. The experiments used a database of 17568 instances
at five-minute intervals and the attributes of ozone, PM, carbon
monoxide, sulfur dioxide, nitrogen dioxide, longitude, latitude
and timestamp. Ozone and nitrogen dioxide are predicted and
the models are evaluated using hold-out at 70% training and 30%

testing, and the results are compared with SVM using RMSE and
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ean absolute error (MAE) metrics. Finally, the data is labeled
ccording to the daily values of the air quality index (AQI).
Fan et al. [18] develop a spatio-temporal framework incorpo-

ating deep recurrent neural networks (DRNN) along with inter-
polation algorithms to deal with missing values in time series
data. Proposed DRNN consists of LSTM layers and fully connected
layers. Data from northern China includes air quality of neigh-
boring stations, local air quality properties, local meteorological
properties and time and spatial properties. The model is able
to predict the future 1 ∼ 8 h PM2.5 concentration based on the
historical records from the past two days. Data is divided into 60%
for training, 20% for validation and the remaining 20% for testing.
Proposed deep learning method is compared with gradient boost-
ing decision tree and deep feedforward neural networks (DFNN).
Model performance is measured by RMSE, MAE and index of
agreement.

2018 Articles:
Lin et al. [19] propose the geo-context based diffusion convo-

lutional recurrent neural network (GC-DCRNN) for forecasting the
next 24-hour PM2.5 concentrations. The authors show the spatial
correlation of several monitoring stations through a graph, to dif-
fuse convolution to the following step, based on the similarity of
the relevant geographic features. GC-DCRNN apply the sequence
to sequence architecture [20] to conduct the multi-step-ahead
predictions. Two real-world databases are building (Los Angeles
and Beijing) with air quality, meteorological and OpenStreetMap
data. Authors evaluated the model by comparing the results with
linear regression (LR), vector autoregression and gradient boosting
machines by using the RMSE and MAE metrics.

Freeman et al. [21] use recurrent neural networks (RNN) with
LSTM to predict local 8-hour averaged ozone accumulations based
on hourly air monitoring station measurements. A pre-processing
phase was carried out for missing data imputation, outlier detec-
tion and feature selection with decision trees. Hourly air qual-
ity and meteorological data were collected using OPSIS differ-
ential optical absorption spectroscopy analyzers placed near a
local university in the State of Kuwait to train and forecast val-
ues up to three days. Feedforward neural network and ARIMA
were compared with the proposed method using RMSE and MAE
performance measures.

Bui et al. [22] propose an encoder–decoder model using RNN
with LSTM units for prediction of PM2.5 from time-series data of
air quality and meteorological information in South Korea. Study
reveals that using MAE loss function is more effective than mean
square error (MSE).

Athira et al. [23] use RNN, LSTM, and gated recurrent unit (GRU)
[24] for PM10 forecasting based on the time series from AirNet
data. The authors compare RNN, LSTM and GRU with 1–4 layer
architectures using MSE, RMSE andmean absolute percentage error
(MAPE) metrics, and they conclude that the performance of the
GRU network is slightly better than the RNN and LSTM networks.

Qi et al. [25] propose deep air learning, a model that integrates
feature selection plus spatio-temporal semi-supervised neural
network. Feature selection is performed in the input layer of a
neural network, and middle layers and output layer implement
spatio-temporal semi-supervised regression of labeled and un-
labeled data. The authors use actual data sources obtained in
Beijing in their experiments.

Sharma et al. [26] use a RNN-LSTM model for AQI estimation.
Sub-indices for each of the pollutants are aggregated to reach the
global AQI. Authors propose two diverse approaches to estimate
the AQI: RMSE of all sub-indices and Min/Max aggregation.

2019 Articles:
Du et al. [27] propose a deep air quality forecasting framework

(DAQFF) for PM forecasting. DAQFF include one-dimensional
2.5

3

convolutional neural networks (1DCNN) [28] and bi-directional
LSTM networks (Bi-LSTM). The experiments are performed on the
Beijing PM2.5 and Urban Air Quality datasets from the UCI Machine
Learning Repository, and the DAQFF results were compared with
SVR with different kernel, ARIMA, LSTM, GRU and RNN.

Lin et al. [29] study PM10 concentrations during a dust storm.
The proposed approach combines the data-driven machine learn-
ing (LSTM network) and physics-based model via data assimila-
tion and production applying a physics-based simulation model.

Masih [30] writes a review paper where 38 of the most impor-
tant studies in the area of environmental science and engineering,
which have used machine learning techniques, are examined.
The study reveals that when it comes to pollution estimation is
generally achieved by adopting approaches based on ensemble
learning and linear regression while forecasting tasks commonly
rely on neural networks and SVM.

Karimian et al. [31] use multiple additive regression trees
(MART), DFNN and LSTM for PM2.5 estimation with data pro-
vided by Tehran Air Quality Control Company. RMSE, MAE and
coefficient of determination (R2) are employed to evaluate the
models’ performances. The best results were obtained with LSTM
networks.

Tao et al. [32] propose a convolutional-based bidirectional GRU
ethod that combines the ability of feature extraction from con-

volutional neural networks (CNN) and the capability of time se-
ries forecasting from RNN for PM2.5 forecasting. In the compar-
isons, SVR, gradient boosting regressor (GBR), decision tree re-
gressor (DTR), simple RNN, LSTM, GRU and bidirectional GRU
were used, with performance metrics RMSE, MAE and symmetric
MAPE on the Beijing PM2.5 dataset from the UCI Machine Learning
Repository.

Sun et al. [33] propose a GRU model to predict PM2.5 con-
centrations using a dataset from Shenyang, China, with earth
contamination control, industry emissions and surface climatol-
ogy monitoring attributes along with monthly, daily and hourly
dummy variables. Multiple linear regression (MLR), RF, SVR, arti-
ficial neural network (ANN), and LSTM were compared with the
proposed GRU model using RMSE, MAE and MAPE performance
metrics.

Ameer et al. [34] use Apache Spark to fit the hyper-parameters
of four regression techniques. DTR, RF, GBR and ANN MLP were
applied for the prediction of PM2.5 in several large cities of China,
using RMSE and MAE as evaluation criteria. RF performed best
among the four regression algorithms.

2020 Articles:
Kaya and Gunduz [35] estimate PM10 with deep flexible sequen-

tial (DFS), a hybrid deep model including LSTM and CNN, with
MAE and RMSE metrics for 4, 12 and 24 window size in four
separate measurement stations of Istanbul, Turkey. DFS uses a
dropout layer for generalization.

Li et al. [36] integrate 1DCNN, LSTM and attention-based net-
work, for urban PM2.5 concentration prediction. The attention-
based layer weighs the prior feature states with the objective to
increase prediction accuracy. The authors use data from Taiyuan,
China, and the results are compared with the SVR, RF, MLP, simple
RNN, LSTM, and CNN–LSTM methods, using the RMSE, MAE and
R2 metrics.

Surakhi et al. [37] highlight some of the most relevant works
that propose ensemble models of different RNN versions, and
they introduce a framework for air quality time series forecasting
based on an ensemble of RNN.

Lin et al. [38] propose a neuro-fuzzy approach for air quality.
A four-layer fuzzy neural network is created from fuzzy clusters
selected automatically from training data. Then, a particle swarm
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ptimization and steepest descent backpropagation algorithms are
sed to optimize the parameters.

021 Articles:
Lin et al. [39] exploit a deep learning network architecture

RU to design various predictive models for air quality forecast-
ng that meet various spatial and temporal situations, and then
ropose a joint learning forecasting model, called Multiple Linear
egression based GRU, to integrate these predictive deep learning
odels. Data are collected from the years 2013–2019 using 67
onitoring stations in Taiwan. The results are compared to other
nsemble methods using MAE, RMSE absolute error less than 3.
Nath et al. [40] compare statistical (auto-regressive, Holt-
inters, seasonal ARIMA and Prophet) and deep learning (LSTM,

STM auto-encoder, Bi-LSTM, convolution LSTM) methods to pre-
ict PM2.5 and PM10 concentrations in the upcoming months.
ata was taken between 2016 and 2020 from a station at Vic-
oria Memorial Hall in Kolkata, India. The Holt–Winters statis-
ical model performed better for RMSE and MAE than the deep
earning models.

Heydari et al. [41] propose a hybrid method based on LSTM
ndmulti-verse optimization algorithm to predict and analyze NO2
nd SO2 production by Combined Cycle Power Plants in Kerman,
ran. Data includes information taken during five months of 2019.
he proposed model has been tested with RMSE, MAE and MAPE
nd obtains more stable results than other hybrid forecasting
ethods.
Du et al. [42] present a new hybrid deep learning architecture

ased on 1DCNN and Bi-LSTM that considers the spatio-temporal
eatures of the time series for PM2.5 prediction. Two different
atabases have been used, both with data from Beijing and with
ne-hour intervals. One of them taken from one monitoring sta-
ion between the years 2010 and 2014 and the other belonging
o 36 stations between 2014 and 2015. The RMSE and MAE
etrics show that the proposed model performs better than other
achine and deep learning techniques.
Tripathi and Pathak [43] studied different deep learning mod-

ls and their advantages and disadvantages when applied to air
uality prediction, both globally and in India. They also pro-
ose a framework for carrying out air pollution predictions and
escribe various public databases for conducting experiments.
inally, several metrics for the evaluation of the models created
re highlighted.
Finally, Wang et al. [44] recently proposed a model for pre-

icting PM2.5 concentrations combining Convolutional neural net-
orks and Dense-based Bidirectional GRU in order to obtain more
ccurate predictions.

. Wrocław air quality database

The air quality measuring station considered in this paper
s located within a wide street that features two lanes in each
irection, at the GPS coordinates 51.086390 North and 17.012076
ast (see Fig. 1). One of the most important street crossing in
rocław, with 14 traffic lanes, is located approximately 30 me-

ers from this station, and it is monitored by traffic cameras.
he station is located in the suburbs of the city, at 9.6kms from
he airport. Contamination data are recorded by the Provincial
nvironment Protection Inspectorate and includes the hourly NO2
nd NOx concentration values during three years, specifically,
rom 2015 to 2017. The traffic data belong to the Traffic Public
ransport Management Department of the Roads and City Main-
enance Board in Wrocław, and encompass the hourly count of
ars passing through the intersection. Public meteorological data
elong to the Institute of Meteorology and Water Management,
nd they include: air temperature, solar duration, wind speed,
elative humidity, air pressure, and ozone levels. For uniformity,
4

olar duration values have been normalized in the real interval
0, 1]. Associated to the communication station, there are two O3
sensors, located, respectively, at 9.5kms and at 4.97kms from the
intersection.

In this paper, we are interested, among others, establish the
statistical role of O3 in NO2 and NOx concentration. Concentra-
tions of NO2, NOx and O3 in the air are strongly related to each
other, especially in high concentrations. During daylight hours
NO2, NOx and O3 concentration are in a steady state, known as
photostationary state. This state results from the simultaneous
reactions: decomposition of NO2 (under the influence of photons)
into NO and atomic oxygen, and the oxidation reaction of O3 +
NO → NO2 + O2. The time needed to reach the state varies
rom several to several dozen minutes depending on the level
f pollution. At the same time, the oxidation reactions of NO2 to
O3 (with ozone) take place with NO3 being quickly photolyzed
ack to NO2. This means that the concentration of NOx (being the

sum of the concentration of all nitrogen oxides in the air) is less
dependent on the ozone concentration, while the concentration
of NO2 is very much influenced by the ozone occurring simulta-
neously in the air. The full dataset contains 26304 observations. In
the pre-processing phase, the instances with at least one missing
value (617 samples, 2.3%) have been deleted. Some basic statistic
indicators on the remaining 25687 instances are presented in
Table 1, along with the symbol used in the tests for each variable.

4. Materials and methods

This section describes the proposed methodology for the con-
struction of time series forecasting models for NO2 (with and
without O3) and NOx (with and without O3) concentrations, the
omparison of the models and the choice of the best model
onsidering 24-steps-ahead predictions. The main objective of
he proposed methodology is to compare different Deep Learn-
ng architectures with each other and with more conventional
achine learning methods. Among the different Deep Learning
rchitectures we choose:

• 1DCNN. This type of convolutional neural network uses a
one-dimensional convolution layer composed of 1 × 1 fil-
ters. This kind of filter only requires a single parameter for
each input, reducing the complexity of the model. This 1× 1
filter does not need any padding and the stride can be used
to control the dimension of the output space. Due to the
reduction of the number of parameters, 1D convolutional
layers are preferable in problems dealing with 1D signals.
• RNN. A RNN is a neural network that takes into account

previous states to predict future ones. Since its outputs
are connected to its inputs, a RNN processes inputs se-
quences iterating over their elements and maintaining a
state storing information on what the network has pro-
cessed so far. Among the different RNN architectures, we
choose the following:

– LSTM. An LSTM is a type of RNN made of LSTM cells. An
LSTM cell can control how much information from the
current state is stored and how much information from
previous states is used to process the current state. This
is possible thanks to internal gates which control the
information to be forwarded to the next state or to be
forgotten. This characteristic makes it possible for an
LSTM to learn long-term dependencies.

– GRU. As an LSTM a GRU neural network is an RNN
made of GRU cells. A GRU cell is similar to an LSTM cell
but, instead of using both cell state and hidden state to
transfer information, they only use the hidden state.
Due to de reduction of the number of internal gates,
GRU networks reduce the complexity of the model to
be learned.
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Fig. 1. An aerial view of the area of interest.
Table 1
Descriptive statistics. Data are collected hourly.
Variable Unit Mean St.Dev. Min Median Max

Air temperature ◦C 10.9 8.4 −15.7 10.1 37.7
Solar duration h 0.23 0.38 0 0 1
Wind speed m s−1 3.13 1.95 0 3.00 19
% Relative humidity – 74.9 17.3 20 79.0 100
Air pressure hPa 1003 8.5 906 1003 1028
Traffic – 2771 1795.0 30 3178 6713
O3 µm−3 46.11 30.96 0 42.55 188

NO2 µg m−3 50.4 23.2 1.7 49.4 231.6
NOx µg m−3 142.2 103.7 3.9 123.7 1728.0
t
b
T

4
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As said before, in the proposed methodology, not only Deep
earning models are compared. We have included the following
achine Learning models:

• RF. RF is a technique that combines ensemble techniques
with decision trees. Several trees are generated from differ-
ent bootstrapped samples of the original data. During each
tree building process, a random selection of features is used
at each split. All trees contribute equally to the output of
the model. It has been demonstrated that RF is more robust
than other similar approaches.
• SVM. SVM is a computationally efficient technique of learn-

ing the separating hyperplane that optimizes the generaliza-
tion bounds. Initially designed for linear separable problems,
they can be easily adapted to non-linear separable problems
using kernel method transformations.
• Lasso. Lasso Linear regression is a method for estimating a

linear model that constrained the sum of the absolute values
of the coefficients to be less than a certain constant. The
inclusion of this constraint may force some coefficients to be

exactly 0, producing more simple and interpretable models.

5

As can be seen, apart from including Deep Learning and
conventional models, we have also included a linear model,
Lasso Linear Regression, to compare its performance against other
non-linear ones. Our methodology also includes: sliding window
transformation, missing values imputation, hyper-parameter tun-
ing, evaluation, statistical test, multi-criteria decision making to
chose the best model, and finally, 1 to 24-steps-ahead predictions.
Fig. 2 graphically shows the proposed methodology. We have
applied the methodology independently for each of the NO2,
NOx, NO2 with O3 and NOx with O3 prediction problems. Each of
he steps of the proposed methodology is described separately
elow. We have used the Python packages Scikit-Learn, Keras and
ensorFlow [45] to implement the proposed methodology.

.1. Sliding window transformation and missing values imputation

Unlike the autoregressive methods [46], our methodology trans-
orms the dataset to eliminate the temporal order of the individ-
al instances by coding the time dependency through additional
nput variables, called lagged variables. Lagged variables allow the
iscovery of the possible relation existent between the past and
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Fig. 2. Flow diagram of the proposed methodology for air quality time series
forecasting.

present values of attributes in time series. To do this is necessary
a transformation to create a window over a specific period. This
transformation is called a sliding window transformation [47]. The
number of lagged attributes is the window size. In this way, we
can use any machine learning algorithm to model time series.
A simple option is to work with MLR, but all techniques able to
make predictions in regression problems can be used, from non-
linear methods such as SVM or RF, to deep learning architectures
based on neural networks.

Let D = {x1t , x
2
t , . . . , x

m
t , yt}, t ∈ T = {1, . . . , n} be a dataset

representing m input time series {xit : t ∈ T }, i = 1, . . . ,m, and
one output time series {yt : t ∈ T } of n observations (a total of
(m + 1) · n values). Let l be the window size (number of lagged
variables). The sliding window transformation process builds the
following dataset Dl composed of (l · (m+ l)+ 1) · n values:

Dl =
{
{x1t−1, x

1
t−2, . . . , x

1
t−l}, {x

2
t−1, x

2
t−2, . . . , x

2
t−l}, . . . ,

{xmt−1, x
m
t−2, . . . , x

m
t−l}, {yt−1, yt−2, . . . , yt−l}, yt

}
, t = 1, . . . , n

(1)
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Note that xit , i = 1, . . . ,m, and yt values with t ≤ 0 do not
exist and are therefore considered missing values. Since not all
machine learning algorithms used in this paper can deal with
missing values, in our methodology these values are imputed
after the sliding window transformation process. We apply the
mean substitution method which replaces all missing values for
numeric attributes in a dataset with the means from the training
data.

As can be seen from the flowchart in Fig. 2, the original
database is transformed using 4 different window sizes: 3, 6,
12 and 24. These window sizes represent observation periods of
3 h, 6 h, half a day and one day, respectively. Each of these four
databases is in turn divided into two databases, one with 70%
of the data (6132 first instances) and the other with 30% of the
data (2628 last instances). These databases have been called in
this paper with the names WS3-70, WS6-70, WS12-70, WS24-70,
WS3-30, WS6-30, WS12-30 and WS24-30. In this way, 70% of the
data is used throughout the methodology for the construction and
evaluation of the models, while 30% of the data remains unseen
throughout this process. Finally, this 30% of the data is used to
choose the best model and to make the 1 to 24-steps-ahead
predictions. We use multi-criteria decision process described in
Section 4.4 for this proposal.

4.2. Hyper-parameter tuning and deep learning architectures

As introduced in Section 4, the first step in the model training
process consists in finding the best hyper-parameter combination
for each model [48] and transformed training database. To this
end, a hyper-parameter grid search has been performed using
3-fold cross-validation as a resampling strategy. Table 2 summa-
rizes the search space for each parameter in RF, Lasso and SVM
with radial basis function (SVMRadial).

For deep learning methods, hyper-parameters grid search pro-
cess has been divided into two steps. Firstly, different values for
epochs and batch_size has been tested. We have tried {500, 1000}
for epoch and {32, 1533, 3066} for batch_size. Some works rec-
ommend using 32 as minimum for batch_size as it provides good
results [49]. Afterwards, batch_size is increased first up to a quar-
ter and, finally, up to half of the data in the training database.
Once the best configuration of the previous hyper-parameters
has been found, different configurations regarding deep learn-
ing architectures have been tested. Different hidden layers have
been added, but none of these extended configurations have per-
formed better than those achieved by single-layer configurations.
Different optimization algorithms [50] have been tested: Adam,
RMSProp and Stochastic Gradient Descent with Momentum, where
Adam achieves the best performance. Additionally, the following
activation functions [51] for the hidden layer have been tested:
rectified linear unit (ReLU) activation [52], logistic function (Sig-
moid) [53] and hyperbolic tangent [54]. Finally, ReLU has been
selected, as it provided the best results and is able to cope with
the vanishing gradient problem [55]. It has been decided to use
the identity or linear activation function in the output layer to
improve interpretability and also avoid the vanishing gradient
problem [56]. We have added a dropout layer on all tested archi-
tectures. Dropout is a technique used to prevent overfitting [57].
Dropout works by randomly setting the neurons to be disabled
in hidden layers. Ignoring these neurons, it is achieved that the
neural network changes in each new training, thus preventing
the overfitting of the model. Finally, MAE has been used as the
loss function and MAE, RMSE and correlation coefficient (CC) as
performance measures.
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Table 2
Hyper-parameters grid search values for machine learning methods.
Method Hyper-parameters

RF n_estimators = {100,500,1000}, min_samples_split = {2,5,10,15}, min_samples_leaf = {1,5,10}
Lasso alpha = {0.0001,0.001,0.01,0.1,1}
SVMRadial C = 2i , i ∈ N, i = [−5, 5], gamma = 2i , i ∈ N, i = [−15, 0]
Table 3
Performance and hyper-parameters of NO2 models ordered by CC from highest to lowest.
Model MAE RMSE CC Hyper-parameters

RF-WS24–70 6.634445 9.075517 0.922591 min_samples_leaf: 1, min_samples_split: 2, n_estimators: 1000
Lasso-WS24–70 6.725042 9.087141 0.922383 alpha: 0.01
GRU-WS24–70 6.653827 9.130571 0.921587 batch_size: 1533, epochs: 1000
LSTM-WS3–70 7.059550 9.706929 0.918909 batch_size: 3066, epochs: 1000
LSTM-WS24–70 6.766519 9.311406 0.918149 batch_size: 1533, epochs: 1000
RF-WS3–70 7.160109 9.775655 0.917787 min_samples_leaf: 5, min_samples_split: 10, n_estimators: 1000
GRU-WS6–70 7.128003 9.812574 0.917109 batch_size: 1533, epochs: 1000
1DCNN-WS3–70 7.192001 9.809654 0.917058 batch_size: 1533, epochs: 1000
RF-WS6–70 7.186975 9.818650 0.917044 min_samples_leaf: 5, min_samples_split: 5, n_estimators: 100
RF-WS12–70 7.177771 9.829456 0.916882 min_samples_leaf: 5, min_samples_split: 2, n_estimators: 1000
1DCNN-WS6–70 7.344162 9.863462 0.915944 batch_size: 32, epochs: 1000
LSTM-WS6–70 7.205291 9.932934 0.914896 batch_size: 1533, epochs: 1000
GRU-WS3–70 7.304130 9.985874 0.913965 batch_size: 32, epochs: 500
GRU-WS12–70 7.284027 10.026551 0.913258 batch_size: 1533, epochs: 1000
Lasso-WS12–70 7.477842 10.035184 0.913153 alpha: 0.01
LSTM-WS12–70 7.376607 10.126055 0.911204 batch_size: 1533, epochs: 1000
Lasso-WS6–70 7.564295 10.172861 0.910643 alpha: 0.01
1DCNN-WS24–70 7.430167 9.758709 0.909769 batch_size: 32, epochs: 1000
1DCNN-WS12–70 7.572490 10.209787 0.909511 batch_size: 32, epochs: 500
Lasso-WS3–70 7.633988 10.267745 0.908874 alpha: 0.01
SVMRadial-WS3–70 10.484122 14.956933 0.794976 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS6–70 13.965616 19.356197 0.619709 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS12–70 18.227391 23.791666 0.263528 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS24–70 19.166062 24.706402 −0.003140 C: 0.01, gamma: 3.0517578125e−05
Table 4
Performance and hyper-parameters of NOx models ordered by CC from highest to lowest.
Model MAE RMSE CC Hyper-parameters

GRU-WS3–70 21.859762 35.664969 0.913047 batch_size: 1533, epochs: 1000
GRU-WS6–70 22.048860 35.858617 0.912141 batch_size: 1533, epochs: 1000
LSTM-WS6–70 22.047705 35.972495 0.911462 batch_size: 1533, epochs: 1000
LSTM-WS3–70 22.105145 36.104703 0.910850 batch_size: 1533, epochs: 1000
1DCNN-WS3–70 22.761707 36.171371 0.910245 batch_size: 1533, epochs: 500
1DCNN-WS12–70 22.895998 36.275727 0.909818 batch_size: 1533, epochs: 1000
LSTM-WS12–70 22.434648 36.502489 0.908667 batch_size: 3066, epochs: 1000
GRU-WS24–70 22.716782 36.571653 0.908328 batch_size: 3066, epochs: 1000
GRU-WS12–70 23.201124 36.937790 0.906323 batch_size: 32, epochs: 1000
RF-WS12–70 22.995607 37.144906 0.905417 min_samples_leaf: 1, min_samples_split: 2, n_estimators: 500
RF-WS6–70 22.962943 37.300276 0.904414 min_samples_leaf: 1, min_samples_split: 2, n_estimators: 500
RF-WS3–70 23.135149 37.579219 0.902813 min_samples_leaf: 1, min_samples_split: 5, n_estimators: 1000
1DCNN-WS6–70 23.865844 37.624541 0.902441 batch_size: 32, epochs: 1000
RF-WS24–70 23.040165 37.758181 0.902157 min_samples_leaf: 5, min_samples_split: 10, n_estimators: 500
Lasso-WS24–70 24.869341 37.781958 0.901626 alpha: 1
LSTM-WS24–70 24.080405 37.802336 0.901575 batch_size: 32, epochs: 1000
1DCNN-WS24–70 24.880677 38.126577 0.899020 batch_size: 32, epochs: 500
Lasso-WS12–70 25.552197 38.517813 0.897582 alpha: 0.1
Lasso-WS6–70 25.956889 39.077441 0.894368 alpha: 0.1
Lasso-WS3–70 26.204132 39.458923 0.892119 alpha: 0.01
SVMRadial-WS3–70 32.895336 61.276628 0.715972 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS6–70 45.829883 74.740853 0.524520 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS12–70 61.248657 87.597625 0.087428 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS24–70 62.742814 88.776942 0.022558 C: 32, gamma: 3.0517578125e−05
4.3. Evaluation and statistical tests

Once best hyper-parameters have been found for every com-
ination of databases and methods, new models have been ob-
ained using stratified 10-fold cross-validation, which is repeated
times, as a sampling technique. Tables 3–6 shows the average
AE, RMSE, CC and hyper-parameters for each model, ordered by
C.
To check if there are statistically significant differences, a

tatistical pairwise paired t-test has been conducted for each
roblem and for each performance measure RMSE, MAE and
7

CC, with a confidence level of 95%. Parametric test has been

conducted since the size of samples (30 = 10 folds× 3 reps) let us

assume normality. In order to summarize t-test results, method-

database pairs have been ranked according to the difference

between wins and loses. Every time one method-database pair

tests statistically significantly better than another, it counts as a

win and otherwise as a loss. Tables from Tables 7 to 10 depicted

the ranking obtained in each problem.
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Table 5
Performance and hyper-parameters of NO2 with O3 models ordered by CC from highest to lowest.
Model MAE RMSE CC Hyper-parameters

GRU-WS3–70 7.036541 9.716180 0.918623 batch_size: 1533, epochs: 1000
1DCNN-WS3–70 7.171476 9.834825 0.916594 batch_size: 1533, epochs: 1000
LSTM-WS3–70 7.154402 9.852496 0.916264 batch_size: 1533, epochs: 500
RF-WS3–70 7.200979 9.880605 0.915686 min_samples_leaf: 5, min_samples_split: 2, n_estimators: 500
RF-WS6–70 7.226511 9.926008 0.914867 min_samples_leaf: 5, min_samples_split: 5, n_estimators: 500
RF-WS12–70 7.247562 9.971308 0.914063 min_samples_leaf: 5, min_samples_split: 5, n_estimators: 500
Lasso-WS24–70 7.386578 9.988309 0.913734 alpha: 0.1
GRU-WS6–70 7.232512 9.996398 0.913685 batch_size: 3066, epochs: 1000
RF-WS24–70 7.329057 10.094719 0.911830 min_samples_leaf: 5, min_samples_split: 15, n_estimators: 800
1DCNN-WS6–70 7.481373 10.129247 0.910728 batch_size: 32, epochs: 1000
Lasso-WS12–70 7.546281 10.154159 0.910693 alpha: 0.01
Lasso-WS6–70 7.604603 10.260399 0.908741 alpha: 0.01
LSTM-WS6–70 7.534118 10.338057 0.907076 batch_size: 32, epochs: 500
Lasso-WS3–70 7.678376 10.356508 0.906922 alpha: 0.01
GRU-WS24–70 7.533502 10.407644 0.905766 batch_size: 1533, epochs: 1000
GRU-WS12–70 7.640449 10.483229 0.904696 batch_size: 32, epochs: 500
LSTM-WS12–70 7.770967 10.551377 0.903394 batch_size: 32, epochs: 500
1DCNN-WS12–70 7.856826 10.537669 0.902676 batch_size: 32, epochs: 500
1DCNN-WS24–70 8.132444 10.749313 0.897938 batch_size: 32, epochs: 1000
LSTM-WS24–70 7.896917 10.929484 0.895798 batch_size: 3066, epochs: 1000
SVMRadial-WS3–70 10.598137 15.139070 0.788993 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS6–70 14.328548 19.696575 0.601244 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS12–70 18.483168 24.038023 0.221525 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS24–70 19.181352 24.699811 0.049601 C: 0.0625, gamma: 3.0517578125e−05
Table 6
Performance and hyper-parameters of NOx with O3 models ordered by CC from highest to lowest.
Model MAE RMSE CC Hyper-parameters

GRU-WS3–70 22.051294 36.251769 0.912018 batch_size: 1533, epochs: 1000
GRU-WS12–70 22.339752 36.296900 0.911635 batch_size: 1533, epochs: 1000
LSTM-WS3–70 22.211966 36.547515 0.910597 batch_size: 1533, epochs: 1000
1DCNN-WS3–70 22.911719 36.680775 0.909800 batch_size: 1533, epochs: 500
LSTM-WS6–70 22.474928 36.824969 0.909151 batch_size: 3066, epochs: 1000
1DCNN-WS12–70 23.303860 36.825414 0.908964 batch_size: 1533, epochs: 1000
LSTM-WS24–70 23.094044 37.225815 0.906859 batch_size: 1533, epochs: 1000
LSTM-WS12–70 22.885755 37.446433 0.905742 batch_size: 1533, epochs: 500
1DCNN-WS6–70 23.706456 37.457742 0.905183 batch_size: 32, epochs: 500
GRU-WS6–70 23.315139 37.634744 0.904687 batch_size: 32, epochs: 500
RF-WS12–70 23.316390 38.091950 0.902386 min_samples_leaf: 5, min_samples_split: 10, n_estimators: 500
RF-WS6–70 23.306556 38.137500 0.902225 min_samples_leaf: 5, min_samples_split: 10, n_estimators: 500
1DCNN-WS24–70 24.441732 38.139667 0.902019 batch_size: 1533, epochs: 1000
RF-WS3–70 23.400119 38.337070 0.901114 min_samples_leaf: 5, min_samples_split: 10, n_estimators: 500
RF-WS24–70 23.514021 38.430899 0.900549 min_samples_leaf: 5, min_samples_split: 2, n_estimators: 500
Lasso-WS24–70 25.276650 38.443912 0.900263 alpha: 1
GRU-WS24–70 24.227884 38.656657 0.899029 batch_size: 32, epochs: 500
Lasso-WS12–70 25.916057 39.025479 0.897070 alpha: 0.1
Lasso-WS6–70 26.244573 39.485531 0.894500 alpha: 0.1
Lasso-WS3–70 26.454786 39.925581 0.892012 alpha: 0.1
SVMRadial-WS3–70 33.992117 62.940586 0.702594 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS6–70 47.810985 76.793643 0.496416 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS24–70 63.253389 89.499384 0.148149 C: 32, gamma: 3.0517578125e−05
SVMRadial-WS12–70 62.333781 88.728847 0.083796 C: 32, gamma: 3.0517578125e−05
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4.4. Multi-criteria decision making

We have considered the 6 best models (a quarter of the total)
eparately identified in the wins — losses ranking tests for MAE,
MSE, and CC of the deep learning and machine learning models.
he union of these sets of prediction models is a set Φ =

φ1, . . . , φp} of p models. The next step in our methodology is
o compare the prediction models to choose the best. For this
urpose, we propose the multi-criteria decision-making process
escribed in Algorithm 1 and its workflow as shown in Fig. 3.
We consider two criteria to measure the goodness of the mod-

ls: exactness and robustness. The exactness of a model is cal-
ulated by the sum of the normalized RMSE, MAE and 1− CC
erformance measures in the h-step-ahead. We have used in the
xperiments h = 24. In the proposed methodology, the recursive
trategy, also known as iterated ormulti-stage strategy [58], is used
or obtaining the 1 to 24-steps-ahead predictions. In the recursive
trategy, only a single model is built for one step-ahead. Once the
8

odel is trained, different step-ahead predictions are produced
y using the model built using the predicted values as inputs
or subsequent steps. For the robustness criterion, we consider
hat a prediction model is robust when it does not present large
luctuations in the forecast of successive steps-ahead. To measure
his, the slopes of the lines (for the normalized RMSE, MAE, and
− CC performance measures) between each pair of successive
rediction points are added, and then the sum of these three
alues is calculated. Finally, the goodness of a prediction model is
alculated as the weighted sum of the exactness values for each
erformance measure, with the weights being the robustness
alues. The exactness and robustness criteria are evaluated in
old-out using 30% of the data.
Table 11 shows the prediction models that compete in the

ulti-criteria decision-making process for each of the prediction
roblems of NO2, NOx, NO2 with O3 and NOx with O3. The win-

ning prediction model in each problem have been marked in
bold. Figures from A.4 to A.6 graphically show the performance
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Table 7
Ranking of the NO2 models for MAE, RMSE and CC (from top to bottom) with 10-fold
cross-validation, 3 repetitions.
Model Wins Losses Wins−Losses

RF-WS24–70 21 0 21
GRU-WS24–70 20 0 20
LSTM-WS24–70 19 0 19
Lasso-WS24–70 20 1 19
LSTM-WS3–70 12 3 9
GRU-WS6–70 9 4 5
RF-WS3–70 8 4 4
RF-WS12–70 7 4 3
1DCNN-WS3–70 7 4 3
LSTM-WS6–70 7 4 3
RF-WS6–70 7 5 2
GRU-WS12–70 6 4 2
GRU-WS3–70 6 5 1
1DCNN-WS6–70 4 4 0
LSTM-WS12–70 4 5 −1
1DCNN-WS24–70 4 6 −2
1DCNN-WS12–70 4 7 −3
Lasso-WS12–70 6 11 −5
Lasso-WS6–70 5 14 −9
Lasso-WS3–70 4 15 −11
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

Lasso-WS24–70 20 0 20
RF-WS24–70 20 0 20
GRU-WS24–70 20 0 20
LSTM-WS24–70 14 0 14
LSTM-WS3–70 9 3 6
RF-WS3–70 7 3 4
RF-WS6–70 7 3 4
GRU-WS6–70 7 3 4
RF-WS12–70 7 4 3
1DCNN-WS3–70 6 3 3
LSTM-WS6–70 6 4 2
1DCNN-WS6–70 5 3 2
GRU-WS3–70 5 4 1
1DCNN-WS24–70 5 4 1
1DCNN-WS12–70 4 4 0
GRU-WS12–70 4 5 −1
LSTM-WS12–70 4 6 −2
Lasso-WS12–70 6 8 −2
Lasso-WS6–70 5 12 −7
Lasso-WS3–70 4 16 −12
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

RF-WS24–70 10 0 10
LSTM-WS3–70 9 0 9
Lasso-WS24–70 8 0 8
RF-WS3–70 7 0 7
RF-WS6–70 7 0 7
RF-WS12–70 7 0 7
GRU-WS24–70 7 0 7
GRU-WS6–70 7 0 7
1DCNN-WS3–70 6 0 6
LSTM-WS6–70 6 0 6
GRU-WS3–70 5 0 5
LSTM-WS24–70 4 0 4
1DCNN-WS12–70 4 0 4
1DCNN-WS6–70 4 0 4
GRU-WS12–70 4 2 2
1DCNN-WS24–70 4 3 1
LSTM-WS12–70 4 3 1
Lasso-WS12–70 6 6 0
Lasso-WS6–70 5 11 −6
Lasso-WS3–70 4 13 −9
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23
9
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Table 8
Ranking of the NOx models for MAE, RMSE and CC (from top to bottom) with 10-fold cross-validation, 3 repetitions.
Model Wins Losses Wins−Losses

LSTM-WS3–70 20 0 20
GRU-WS6–70 20 0 20
GRU-WS3–70 20 0 20
LSTM-WS6–70 20 0 20
LSTM-WS12–70 16 4 12
1DCNN-WS3–70 10 4 6
GRU-WS24–70 9 4 5
1DCNN-WS12–70 8 4 4
RF-WS12–70 9 5 4
RF-WS24–70 9 5 4
RF-WS3–70 8 5 3
RF-WS6–70 8 5 3
GRU-WS12–70 8 5 3
1DCNN-WS6–70 7 5 2
LSTM-WS24–70 7 9 −2
1DCNN-WS24–70 4 6 −2
Lasso-WS24–70 7 13 −6
Lasso-WS12–70 6 16 −10
Lasso-WS6–70 5 17 −12
Lasso-WS3–70 4 18 −14
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

GRU-WS6–70 14 0 14
GRU-WS3–70 14 0 14
LSTM-WS6–70 12 0 12
1DCNN-WS3–70 12 0 12
LSTM-WS3–70 10 0 10
1DCNN-WS12–70 10 0 10
GRU-WS24–70 7 0 7
LSTM-WS12–70 8 1 7
1DCNN-WS6–70 4 0 4
GRU-WS12–70 7 3 4
1DCNN-WS24–70 4 0 4
RF-WS6–70 7 3 4
LSTM-WS24–70 4 1 3
RF-WS12–70 7 4 3
RF-WS24–70 6 6 0
RF-WS3–70 6 6 0
Lasso-WS24–70 7 7 0
Lasso-WS12–70 6 12 −6
Lasso-WS6–70 5 15 −10
Lasso-WS3–70 4 16 −12
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

GRU-WS6–70 14 0 14
GRU-WS3–70 14 0 14
LSTM-WS6–70 12 0 12
1DCNN-WS3–70 12 0 12
LSTM-WS3–70 10 0 10
1DCNN-WS12–70 10 0 10
GRU-WS24–70 7 0 7
LSTM-WS12–70 8 1 7
1DCNN-WS6–70 4 0 4
GRU-WS12–70 7 3 4
1DCNN-WS24–70 4 0 4
RF-WS12–70 8 4 4
RF-WS6–70 7 3 4
LSTM-WS24–70 4 1 3
RF-WS3–70 6 6 0
Lasso-WS24–70 7 7 0
RF-WS24–70 6 7 −1
Lasso-WS12–70 6 12 −6
Lasso-WS6–70 5 15 −10
Lasso-WS3–70 4 16 −12
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23
measures in test set for each model considered in the multi-
criteria decision-making process in each problem and each one of
10
the 24-steps-ahead. Tables from Tables 12 to 15 show measures
performances for each one of the winning models for all the
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Table 9
Ranking of the NO2 with O3 models for MAE, RMSE and CC (from top to bottom) with 10-fold cross-validation, 3
repetitions.
Model Wins Losses Wins−Losses

GRU-WS3–70 20 0 20
LSTM-WS3–70 16 0 16
1DCNN-WS3–70 16 0 16
RF-WS3–70 16 1 15
RF-WS6–70 16 1 15
RF-WS12–70 16 1 15
GRU-WS6–70 14 1 13
1DCNN-WS6–70 4 0 4
Lasso-WS24–70 9 6 3
RF-WS24–70 9 6 3
Lasso-WS12–70 8 9 −1
LSTM-WS6–70 5 7 −2
1DCNN-WS12–70 4 7 −3
GRU-WS24–70 4 7 −3
GRU-WS12–70 4 7 −3
1DCNN-WS24–70 4 7 −3
Lasso-WS6–70 5 10 −5
LSTM-WS12–70 4 10 −6
LSTM-WS24–70 4 11 −7
Lasso-WS3–70 4 11 −7
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

GRU-WS3–70 18 0 18
RF-WS3–70 15 0 15
1DCNN-WS3–70 15 0 15
RF-WS6–70 14 0 14
LSTM-WS3–70 13 0 13
Lasso-WS24–70 11 1 10
RF-WS12–70 13 3 10
GRU-WS6–70 11 1 10
1DCNN-WS6–70 5 0 5
1DCNN-WS24–70 4 2 2
RF-WS24–70 7 5 2
Lasso-WS12–70 8 7 1
1DCNN-WS12–70 4 4 0
LSTM-WS6–70 5 7 −2
Lasso-WS6–70 6 9 −3
GRU-WS12–70 4 8 −4
GRU-WS24–70 4 8 −4
LSTM-WS12–70 4 10 −6
Lasso-WS3–70 5 11 −6
LSTM-WS24–70 4 14 −10
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

GRU-WS3–70 16 0 16
RF-WS3–70 14 0 14
RF-WS6–70 14 0 14
1DCNN-WS3–70 14 0 14
LSTM-WS3–70 13 0 13
Lasso-WS24–70 11 1 10
RF-WS12–70 13 3 10
GRU-WS6–70 10 0 10
1DCNN-WS6–70 5 0 5
1DCNN-WS24–70 4 0 4
RF-WS24–70 7 5 2
Lasso-WS12–70 8 7 1
1DCNN-WS12–70 4 3 1
LSTM-WS6–70 5 6 −1
Lasso-WS6–70 6 9 −3
GRU-WS12–70 4 8 −4
GRU-WS24–70 4 8 −4
LSTM-WS12–70 4 10 −6
Lasso-WS3–70 5 11 −6
LSTM-WS24–70 4 14 −10
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23
11
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Table 10
Ranking of the NOx with O3 models for MAE, RMSE and CC (from top to bottom) with 10-fold cross-validation, 3
repetitions.
Model Wins Losses Wins−Losses

GRU-WS3–70 21 0 21
LSTM-WS3–70 20 0 20
GRU-WS12–70 20 0 20
LSTM-WS6–70 16 1 15
1DCNN-WS3–70 12 3 9
LSTM-WS12–70 10 3 7
RF-WS12–70 10 4 6
GRU-WS6–70 9 3 6
LSTM-WS24–70 9 4 5
1DCNN-WS12–70 9 4 5
1DCNN-WS6–70 8 3 5
RF-WS3–70 9 5 4
RF-WS6–70 9 5 4
GRU-WS24–70 7 4 3
RF-WS24–70 9 7 2
1DCNN-WS24–70 8 13 −5
Lasso-WS24–70 7 15 −8
Lasso-WS12–70 6 17 −11
Lasso-WS6–70 4 18 −14
Lasso-WS3–70 4 18 −14
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

GRU-WS12–70 17 0 17
GRU-WS3–70 16 0 16
LSTM-WS3–70 14 0 14
1DCNN-WS3–70 14 0 14
LSTM-WS6–70 12 0 12
1DCNN-WS12–70 11 0 11
LSTM-WS24–70 10 1 9
1DCNN-WS6–70 6 0 6
LSTM-WS12–70 7 2 5
GRU-WS6–70 7 2 5
RF-WS3–70 5 4 1
RF-WS6–70 5 4 1
RF-WS12–70 6 5 1
Lasso-WS24–70 7 7 0
1DCNN-WS24–70 6 7 −1
RF-WS24–70 5 7 −2
GRU-WS24–70 4 7 −3
Lasso-WS12–70 6 10 −4
Lasso-WS6–70 5 13 −8
Lasso-WS3–70 4 18 −14
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS12–70 1 22 −21
SVMRadial-WS24–70 0 23 −23

GRU-WS12–70 17 0 17
GRU-WS3–70 16 0 16
LSTM-WS3–70 14 0 14
1DCNN-WS3–70 14 0 14
LSTM-WS6–70 12 0 12
1DCNN-WS12–70 11 0 11
LSTM-WS24–70 10 1 9
LSTM-WS12–70 7 2 5
1DCNN-WS6–70 5 0 5
GRU-WS6–70 7 2 5
RF-WS3–70 5 4 1
RF-WS6–70 5 4 1
RF-WS12–70 6 5 1
Lasso-WS24–70 7 7 0
1DCNN-WS24–70 6 7 −1
RF-WS24–70 5 7 −2
GRU-WS24–70 4 7 −3
Lasso-WS12–70 6 10 −4
Lasso-WS6–70 5 12 −7
Lasso-WS3–70 4 18 −14
SVMRadial-WS3–70 3 20 −17
SVMRadial-WS6–70 2 21 −19
SVMRadial-WS24–70 1 22 −21
SVMRadial-WS12–70 0 23 −23
12
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Table 11
Set Φ of the competing models in the multi-criteria decision-
making process and goodness obtained with the Algorithm 1.
NO2

Model Goodness

LSTM-WS24-70 1.277197
Lasso-WS24–70 1.368710
RF-WS24–70 1.554364
LSTM-WS3–70 1.729293
GRU-WS6–70 1.804245
GRU-WS24–70 1.845464
RF-WS3–70 1.961961
RF-WS12–70 2.037450
RF-WS6–70 2.183755

NOx

Model Goodness

GRU-WS3-70 2.161577
GRU-WS6–70 2.371751
1DCNN-WS3–70 2.442585
LSTM-WS3–70 2.530623
LSTM-WS6–70 2.619026
LSTM-WS12–70 2.742880
1DCNN-WS12–70 2.856967

NO2 with O3

Model Goodness

GRU-WS3-70 1.478954
LSTM-WS3–70 1.489350
Lasso-WS24–70 1.579511
1DCNN-WS3–70 1.634118
RF-WS3–70 2.138257
RF-WS12–70 2.222654
RF-WS6–70 2.288485

NOx with O3

Model Goodness

LSTM-WS3-70 2.068695
GRU-WS3–70 2.123610
LSTM-WS12–70 2.166866
1DCNN-WS3–70 2.212561
GRU-WS12–70 2.349709
1DCNN-WS12–70 2.550501
LSTM-WS6–70 2.863136
Table 12
Performance on training and test data, and differences test−training error of the LSTM-WS24 model for all 24-steps-ahead predictions in the NO2 problem.

Steps-ahead

1 2 3 4 5 6 7 8 9 10 11 12

Training

Instances 6129 6128 6127 6126 6125 6124 6123 6122 6121 6120 6119 6118
MAE 6.730 8.344 9.360 9.972 10.332 10.568 10.723 10.840 10.927 11.008 11.092 11.155
RMSE 9.341 11.694 13.064 13.843 14.314 14.608 14.806 14.955 15.078 15.196 15.307 15.394
CC 0.922 0.877 0.848 0.832 0.823 0.818 0.815 0.813 0.811 0.810 0.808 0.807

Test

Instances 2628 2627 2626 2625 2624 2623 2622 2621 2620 2619 2618 2617
MAE 6.267 7.666 8.445 8.902 9.167 9.320 9.409 9.470 9.510 9.536 9.569 9.598
RMSE 8.523 10.464 11.528 12.114 12.443 12.637 12.743 12.810 12.855 12.896 12.944 12.992
CC 0.923 0.883 0.857 0.843 0.835 0.830 0.828 0.826 0.825 0.824 0.823 0.822

Loss
MAE −0.463 −0.678 −0.915 −1.07 −1.165 −1.248 −1.314 −1.37 −1.417 −1.472 −1.523 −1.557
RMSE −0.818 −1.23 −1.536 −1.729 −1.871 −1.971 −2.063 −2.145 −2.223 −2.3 −2.363 −2.402
CC −0.001 −0.006 −0.009 −0.011 −0.012 −0.012 −0.013 −0.013 −0.014 −0.014 −0.015 −0.015

Steps-ahead

13 14 15 16 17 18 19 20 21 22 23 24

Training

Instances 6117 6116 6115 6114 6113 6112 6111 6110 6109 6108 6107 6106
MAE 11.211 11.264 11.323 11.388 11.453 11.504 11.544 11.575 11.606 11.642 11.699 11.801
RMSE 15.469 15.535 15.608 15.690 15.770 15.838 15.895 15.939 15.979 16.026 16.107 16.259
CC 0.806 0.805 0.805 0.804 0.803 0.802 0.801 0.801 0.800 0.800 0.799 0.796

Test

Instances 2616 2615 2614 2613 2612 2611 2610 2609 2608 2607 2606 2605
MAE 9.628 9.653 9.674 9.694 9.714 9.735 9.756 9.772 9.789 9.800 9.824 9.860
RMSE 13.036 13.075 13.110 13.146 13.181 13.209 13.232 13.251 13.269 13.288 13.321 13.383
CC 0.821 0.820 0.819 0.818 0.818 0.817 0.817 0.816 0.816 0.816 0.815 0.814

Loss
MAE −1.583 −1.611 −1.649 −1.694 −1.739 −1.769 −1.788 −1.803 −1.817 −1.842 −1.875 −1.941
RMSE −2.433 −2.46 −2.498 −2.544 −2.589 −2.629 −2.663 −2.688 −2.71 −2.738 −2.786 −2.876
CC −0.015 −0.015 −0.014 −0.014 −0.015 −0.015 −0.016 −0.015 −0.016 −0.016 −0.016 −0.018
13



R. Espinosa, J. Palma, F. Jiménez et al. Applied Soft Computing 113 (2021) 107850

T
P

f
a
f
t
t
m

able 13
erformance on training and test data, and differences test−training error of the GRU-WS3 model for all 24-steps-ahead predictions in the NO2 with O3 problem.

Steps-ahead

1 2 3 4 5 6 7 8 9 10 11 12

Training

Instances 6129 6128 6127 6126 6125 6124 6123 6122 6121 6120 6119 6118
MAE 6.807 8.506 9.437 10.073 10.432 10.680 10.828 10.933 11.017 11.093 11.175 11.229
RMSE 9.445 11.738 12.924 13.569 13.951 14.156 14.279 14.360 14.438 14.511 14.583 14.630
CC 0.924 0.880 0.852 0.836 0.826 0.820 0.817 0.815 0.812 0.810 0.808 0.807

Test

Instances 2628 2627 2626 2625 2624 2623 2622 2621 2620 2619 2618 2617
MAE 6.088 7.587 8.513 9.109 9.469 9.659 9.789 9.852 9.912 9.967 10.006 10.027
RMSE 8.594 10.725 12.010 12.837 13.331 13.619 13.794 13.920 14.016 14.097 14.137 14.153
CC 0.931 0.891 0.861 0.840 0.826 0.818 0.814 0.810 0.807 0.805 0.803 0.802

Loss
MAE −0.719 −0.919 −0.924 −0.964 −0.963 −1.021 −1.039 −1.081 −1.105 −1.126 −1.169 −1.202
RMSE −0.851 −1.013 −0.914 −0.732 −0.62 −0.537 −0.485 −0.44 −0.422 −0.414 −0.446 −0.477
CC −0.007 −0.011 −0.009 −0.004 0 0.002 0.003 0.005 0.005 0.005 0.005 0.005

Steps-ahead

13 14 15 16 17 18 19 20 21 22 23 24

Training

Instances 6117 6116 6115 6114 6113 6112 6111 6110 6109 6108 6107 6106
MAE 11.265 11.282 11.299 11.315 11.325 11.335 11.343 11.348 11.353 11.358 11.363 11.370
RMSE 14.659 14.673 14.689 14.706 14.717 14.726 14.735 14.742 14.748 14.753 14.758 14.765
CC 0.806 0.806 0.806 0.805 0.805 0.804 0.804 0.804 0.804 0.804 0.803 0.803

Test

Instances 2616 2615 2614 2613 2612 2611 2610 2609 2608 2607 2606 2605
MAE 10.009 10.022 10.042 10.057 10.065 10.074 10.082 10.086 10.090 10.094 10.100 10.106
RMSE 14.063 14.073 14.092 14.104 14.113 14.121 14.130 14.139 14.148 14.157 14.165 14.174
CC 0.802 0.801 0.800 0.799 0.799 0.798 0.798 0.798 0.798 0.797 0.797 0.797

Loss
MAE −1.256 −1.26 −1.257 −1.258 −1.26 −1.261 −1.261 −1.262 −1.263 −1.264 −1.263 −1.264
RMSE −0.596 −0.6 −0.597 −0.602 −0.604 −0.605 −0.605 −0.603 −0.6 −0.596 −0.593 −0.591
CC 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.006 0.006
Table 14
Performance on training and test data, and differences test−training error of the GRU-WS3 model for all 24-steps-ahead predictions in the NOx problem.

Steps-ahead

1 2 3 4 5 6 7 8 9 10 11 12

Training

Instances 6129 6128 6127 6126 6125 6124 6123 6122 6121 6120 6119 6118
MAE 6.730 8.344 9.360 9.972 10.332 10.568 10.723 10.840 10.927 11.008 11.092 11.155
RMSE 9.341 11.694 13.064 13.843 14.314 14.608 14.806 14.955 15.078 15.196 15.307 15.394
CC 0.922 0.877 0.848 0.832 0.823 0.818 0.815 0.813 0.811 0.810 0.808 0.807

Test

Instances 2628 2627 2626 2625 2624 2623 2622 2621 2620 2619 2618 2617
MAE 37.271 52.544 61.902 67.533 71.362 73.699 75.104 75.924 76.564 77.201 77.646 78.134
RMSE 75.834 104.220 119.080 126.997 131.627 134.625 136.233 136.704 137.022 137.538 137.993 138.520
CC 0.895 0.813 0.766 0.735 0.716 0.704 0.699 0.702 0.706 0.707 0.707 0.707

Loss
MAE 30.541 44.2 52.542 57.561 61.03 63.131 64.381 65.084 65.637 66.193 66.554 66.979
RMSE 66.493 92.526 106.016 113.154 117.313 120.017 121.427 121.749 121.944 122.342 122.686 123.126
CC 0.027 0.064 0.082 0.097 0.107 0.114 0.116 0.111 0.105 0.103 0.101 0.1

Steps-ahead

13 14 15 16 17 18 19 20 21 22 23 24

Training

Instances 6117 6116 6115 6114 6113 6112 6111 6110 6109 6108 6107 6106
MAE 11.211 11.264 11.323 11.388 11.453 11.504 11.544 11.575 11.606 11.642 11.699 11.801
RMSE 15.469 15.535 15.608 15.690 15.770 15.838 15.895 15.939 15.979 16.026 16.107 16.259
CC 0.806 0.805 0.805 0.804 0.803 0.802 0.801 0.801 0.800 0.800 0.799 0.796

Test

Instances 2616 2615 2614 2613 2612 2611 2610 2609 2608 2607 2606 2605
MAE 78.581 78.942 79.183 79.359 79.480 79.569 79.649 79.727 79.786 79.847 79.868 79.905
RMSE 139.041 139.471 139.751 139.895 139.967 140.027 140.093 140.151 140.196 140.235 140.260 140.293
CC 0.707 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706

Loss
MAE 67.37 67.678 67.86 67.971 68.027 68.065 68.105 68.152 68.18 68.205 68.169 68.104
RMSE 123.572 123.936 124.143 124.205 124.197 124.189 124.198 124.212 124.217 124.209 124.153 124.034
CC 0.099 0.099 0.099 0.098 0.097 0.096 0.095 0.095 0.094 0.094 0.093 0.09
24-steps-ahead predictions on test data. In order to observe the
overfitting of the models, the loss between the errors in the train
and test evaluation has also been shown in these tables. The same
information can be graphically seen in Figs. A.7 to A.9.

For a more thorough analysis, Figures from B.10 to B.13 show,
or each problem, a portion of the actual test database values
long with some of the step-ahead predictions. Finally, Figures
rom C.14 to C.17 show plots of the best deep learning architec-
ures chosen for each problem. As can be seen in these graphs, all
he deep learning models selected by the multi-criteria decision
aking process contain the following layers:
14
• An input layer that sends data to subsequent layers. The di-
mension of the input tensor is the tuple (timesteps, number
of features). Timesteps is the memory of the neural network
and it is always set to 1 in our deep learning models. The
number of features is 168 for LSTM-WS24 NO2 prediction
model, 21 for GRU-WS3 NOx prediction model, 27 for GRU-
WS3 NO2 with O3 prediction model, and 27 for LSTM-WS3
NOx with O3 prediction model.
• A GRU or LSTM hidden layer, depending on the case, with

256 neurons and ReLU activation.
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erformance on training and test data, and differences test−training error of the LSTM-WS3 model for all 24-steps-ahead predictions in the NOx with O3 problem.

Steps-ahead

1 2 3 4 5 6 7 8 9 10 11 12

Training

Instances 6129 6128 6127 6126 6125 6124 6123 6122 6121 6120 6119 6118
MAE 20.836 26.720 29.872 31.650 32.865 33.596 34.132 34.514 34.852 35.095 35.253 35.340
RMSE 33.848 44.750 50.158 52.859 54.320 55.039 55.553 55.928 56.340 56.673 56.850 56.953
CC 0.924 0.865 0.828 0.807 0.794 0.787 0.782 0.779 0.775 0.772 0.770 0.769

Test

Instances 2628 2627 2626 2625 2624 2623 2622 2621 2620 2619 2618 2617
MAE 34.426 47.866 55.525 59.927 62.553 63.785 64.390 64.931 65.409 65.788 66.021 66.083
RMSE 67.919 95.964 111.086 118.836 123.167 125.173 126.276 126.918 127.581 128.168 128.532 128.630
CC 0.908 0.821 0.768 0.738 0.722 0.719 0.718 0.719 0.718 0.717 0.715 0.714

Loss
MAE 13.59 21.146 25.653 28.277 29.688 30.189 30.258 30.417 30.557 30.693 30.768 30.743
RMSE 34.071 51.214 60.928 65.977 68.847 70.134 70.723 70.99 71.241 71.495 71.682 71.677
CC 0.016 0.044 0.06 0.069 0.072 0.068 0.064 0.06 0.057 0.055 0.055 0.055

Steps-ahead

13 14 15 16 17 18 19 20 21 22 23 24

Training

Instances 6117 6116 6115 6114 6113 6112 6111 6110 6109 6108 6107 6106
MAE 35.393 35.436 35.460 35.480 35.500 35.516 35.531 35.538 35.549 35.556 35.566 35.579
RMSE 57.023 57.062 57.085 57.096 57.109 57.121 57.134 57.143 57.152 57.160 57.167 57.176
CC 0.769 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.767 0.767

Test

Instances 2616 2615 2614 2613 2612 2611 2610 2609 2608 2607 2606 2605
MAE 65.876 65.812 65.813 65.768 65.746 65.729 65.746 65.755 65.763 65.766 65.766 65.740
RMSE 127.509 127.337 127.345 127.306 127.286 127.291 127.313 127.332 127.350 127.369 127.386 127.382
CC 0.715 0.715 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714

Loss
MAE 30.483 30.376 30.353 30.288 30.246 30.213 30.215 30.217 30.214 30.21 30.2 30.161
RMSE 70.486 70.275 70.26 70.21 70.177 70.17 70.179 70.189 70.198 70.209 70.219 70.206
CC 0.054 0.053 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.053 0.053
• A dropout hidden layer with a 0.2 probability of deactivating
a neuron.
• An output layer with an output neuron and a linear activa-

tion function.

5. Analysis of results and discussion

Several considerations can be drawn upon analysis of our
esults. Let us focus, first on Tables 3 through 6, which allow us
o asses how good the algorithms that we have used are able to
it the past pollution data. Three elements emerge very clearly: (i)
the absolute correlations that we have obtained in the best cases
are much better than those previously obtained on similar data
(see, e.g., [4,59]) and better than those previously obtained on the
same data [11]; (ii) the deep-learning technology (LSTM and GRU,
in particular) revealed themselves as very interesting candidates
for solving this problem, although, in same cases, more standard
technologies, such as RF, showed notable performances, and (iii)
the use of past values of independent variables, with windows
varying from 3 to 24 h, has positive consequences on the CC.
Moreover, counter-intuitively, our results show that adding O3
in the prediction variables do not increase, in general, the CC.
Finally, we can also observe that in predicting NO2 one has a
clear advantage in considering longer windows (up to 24 h), while
better predictions of NOx emerge with shorter windows (3 h).

Focusing on Tables 7 through 10, on the other hand, gives us
the possibility of establishing if there are statistically significant
differences among the several approaches and datasets. We can
indeed observe that LSTM and GRU networks, as well as RF, have a
clear advantage over all other approaches in all cases. Moreover, it
seems that in predicting NO2 without O3 longer windows of past
data are necessary, while in all other cases, even in predicting NO2
with O3, shorter windows show some advantage. One possible
explanation include observing that longer windows imply more
attributes, which, in turn, would require more training time to be
dealt with, at least in the deep-learning approaches.
15
Algorithm 1 Multi-criteria decision-making.

Require: Φ = {φ1, . . . , φp} {Set of p prediction models}
Require: WS3-30, WS6-30, WS12-30, WS24-30 {Test datasets}
Require: h {Number of steps-ahead}
1: RMSE i

j ← Normalized RMSE of φj on its corresponding test
dataset in the i-step-ahead, j = 1, . . . , p, i = 1, . . . , h

2: MAE i
j ← Normalized MAE of φj on its corresponding test

dataset in the i-step-ahead, j = 1, . . . , p, i = 1, . . . , h
3: CC i

j ← Normalized 1− CC of φj on its corresponding test
dataset in the i-step-ahead, j = 1, . . . , p, i = 1, . . . , h

4: eRMSEj ←
h∑

i=1

RMSE i
j , j = 1, . . . , p {Exactness for RMSE}

5: eMAEj ←
h∑

i=1

MAE i
j , j = 1, . . . , p {Exactness for MAE}

6: eCCj ←

h∑
i=1

CC i
j , j = 1, . . . , p {Exactness for CC}

7: rRMSEj ←
h−1∑
i=1

⏐⏐RMSE i+1
j − RMSE i

j

⏐⏐, j = 1, . . . , p {Robustness

for RMSE}

8: rMAEj ←
h−1∑
i=1

⏐⏐MAE i+1
j −MAE i

j

⏐⏐, j = 1, . . . , p {Robustness for

MAE}

9: rCCj ←

h−1∑
i=1

⏐⏐CC i+1
j − CC i

j

⏐⏐, j = 1, . . . , p {Robustness for CC}

10: Gj ← rRMSEj ·eRMSEj+ rMAEj ·eMAEj+ rCCj ·eCCj, j = 1, . . . , n
{Goodness}

11: φ∗ ← φmin | Gmin =
p

min
j=1
{Gj}

12: return φ∗
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Fig. 3. Multi-criteria decision making flow chart.
A different point of view comes from reading Table 11, in
hich we analyze the ability of the different approaches to pre-
ict future values. Observe that this is a different problem: while
itting a curve, we use past values of the predictors to predict
he present value of the pollution concentration; here, instead,
ast values of the predictors are used to predict future values of

the pollution concentration. Thus, as a line of principle, we prefer
good enough, robust models over very good, but not robust enough
ones. The goodness index, computed as explained above, formal-
izes this idea. Once again, the LSTM and the GRU approaches
resulted to be the most stable ones, offering good enough pre-
dictions, with low enough errors, even with at a 24 h horizon
in the future. Another surprising element is that models for NOx
predictions seem considerably more stable than models for NO2
prediction, both with and without O3. This is surprising as, both in
this work and in past work with similar data, NOx prediction has
always been more difficult than NO2 prediction. Looking at the
Tables 12 to 15, LSTM and GRU have little overfitting for problems
NO2 and NO2 with O3, while they show higher overfitting for
NOx and NOx with O3 problems. Finally, one can observe that
stability for higher numbers of steps-ahead is correlated with
smaller windows, and a 3-hours window seem to be the one that
works better.

Unlike previous work on similar data, here we focused on
exploring different prediction techniques using past and present
data, and instead of searching for explanatory models, we searched
for usable prediction models. A deep-learning network such as
a GRU or an LSTM, we proved, can be the ideal solution for an
integrated system that, paired with a continuous monitoring of
data, offers predictions up to 24 h ahead, and alerts in case of a
too high contamination concentration prediction. Such a type of
solutions seem to be quite common in the modern literature (see,
e.g., [60]).
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6. Conclusions and future work

Over the years, diverse factors such as the increase in the
number of industries or vehicles have led to a high level of
air pollution, becoming one of the most serious environmental
problems in the world. Toxic gases can affect both the health
of humans causing respiratory or cardiovascular problems and
ecosystems with the appearance of acid rain. Therefore, it is of
great interest to monitor these levels of air pollution. In this paper
we proposed a methodology to evaluate and compare deep learn-
ing models for multivariate time series forecasting, that includes
lagged transformations, hyper-parameter tuning, statistical tests,
multi-criteria decision making and h-step-ahead prediction. We
have designed an objective methodology to evaluate the goodness
of a prediction technique, and applied to the ones we tested.
We concluded that the deep-learning approach, and in particular
LSTM and GRU, with windows between 3 and 24 h, allow for a
very reliable 24-hours ahead prediction. Our results, that includes
prediction with correlation indexes in many cases greater than
0.9, are far better than those previously obtained with similar
data.

When comparing so many prediction models, as is the case
in our research, it is difficult to discern which one is the best,
as there are numerous performance measures to consider when
making the decision. In these cases, a multi-criteria decision mak-
ing process is required to obtain a single performance measure
associated with each model and thus obtain a total ranking of
all prediction models. The multi-criteria decision-making process
proposed in this work has allowed us to clearly choose GRU-WS3-
70, LSTM-WS3-70 and LSTM-WS24-70 deep learning models as
the best according to criteria of exactness and robustness, de-
pending on whether the problem target is NO2 or NOx (with and
without O ), improving the models 1DCNN.
3



R. Espinosa, J. Palma, F. Jiménez et al. Applied Soft Computing 113 (2021) 107850

Fig. A.4. MAE from 1 to 24-steps-ahead of the best models from each prediction problem.

Fig. A.5. RMSE from 1 to 24-steps-ahead of the best models from each prediction problem.

17
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Fig. A.6. CC from 1 to 24-steps-ahead of the best models from each prediction problem.

Fig. A.7. RMSE summary of the prediction models chosen with the proposed methodology.

18
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Fig. A.8. MAE summary of the prediction models chosen with the proposed methodology.

Fig. A.9. CC summary of the prediction models chosen with the proposed methodology.

19
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Fig. B.10. NO2 prediction with LSTM-WS24.
Fig. B.11. NOx prediction with GRU-WS3.
Fig. B.12. NO2 with O3 prediction with GRU-WS3.
Among future works, we want to include in the methodology

ifferent techniques to calculate step-ahead predictions. In this

aper, we have used the recursive technique. Other extensions

f the methodology will be focused on spatio-temporal models.

patio-temporal models will make it possible to approach pollu-

ion forecasting using the information provided by a network of
20
spatially distributed sensors. Furthermore, spatio-temporal mod-
els will allow us to capture patterns involving pollutants dynam-
ics.
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Appendix A. Performance of prediction models

See Figs. A.4–A.9.

Appendix B. Step-ahead predictions

See Figs. B.10–B.13.

Appendix C. Deep learning architectures

See Figs. C.14–C.17.

Appendix D. Organizational chart of tables and figures

See Fig. D.18.

Appendix E. Abbreviations

See Table E.16.
Fig. B.13. NOx with O3 prediction with LSTM-WS3.
Fig. C.14. Architecture of the LSTM-WS24 deep learning model for NO2 prediction.
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Fig. C.15. Architecture of the GRU-WS3 deep learning model for NOx prediction.

Fig. C.16. Architecture of the GRU-WS3 deep learning model for NO2 with O3 prediction.

Fig. C.17. Architecture of the LSTM-WS3 deep learning model for NOx with O3 prediction.

22
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Fig. D.18. Organizational chart of links between the phases of the methodology and its results.
Table E.16
Abbreviations.
Abbreviation Meaning

1DCNN One-Dimensional Convolutional Neural Networks
ANN Artificial Neural Network
AQI Air Quality Index
ARIMA Autoregressive Integrated Moving Average
Bi-LSTM Bi-directional LSTM
CC Correlation Coefficient
CNN Convolutional Neural Networks
CO Carbon monoxide
DAQFF Deep Air Quality Forecasting Framework

(continued on next page)
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Table E.16 (continued).
Abbreviation Meaning

DFNN Deep Feedforward Neural Network
DFS Deep Flexible Sequential
DRNN Deep Recurrent Neural Networks
DTR Decision Tree Regressor
GBR Gradient Boosting Regressor
GC-DCRNN Geo-Context based Diffusion Convolutional Recurrent Neural Network
GRU Gated Recurrent Unit
Lasso Least Absolute Shrinkage and Selection Operator
LR Linear Regression
LSTM Long Short Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MART Multiple Additive Regression Trees
MLP Multilayer Perceptron
MLR Multiple Linear Regression
MSE Mean Square Error
NO2 Nitrogen dioxide
NOx Generic term for the nitrogen oxides (NO and NO2)
O3 Ozone
PM10 Particulate Matter with a diameter of less than 10 micrometers
PM2.5 Particulate Matter with a diameter of less than 2.5 micrometers
R2 Coefficient of determination
ReLU Rectified Linear Unit
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Networks
SVM Support Vector Machine
SVMRadial Support Vector Machine with radial basis function
SVR Support Vector Regression
WS Window Size
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