32 research outputs found

    Fluidic haptic interface for mechano-tactile feedback

    Get PDF
    Notable advancements have been achieved in providing amputees with sensation through invasive and non-invasive haptic feedback systems such as mechano-, vibro-, electrotactile and hybrid systems. Purely mechanical-driven feedback approaches, however, have been little explored. In this paper, we now created a haptic feedback system that does not require any external power source (such as batteries) or other electronic components. The system is low-cost, lightweight, adaptable and robust against external impact (such as water). Hence, it will be sustainable in many aspects. We have made use of latest multimaterial 3D printing technology (Stratasys Objet500 Connex3) being able to fabricate a soft sensor and a mechano-tactile feedback actuator made of a rubber (TangoBlack Plus) and plastic (VeroClear) material. When forces are applied to the fingertip sensor, fluidic pressure inside the system acts on the membrane of the feedback actuator resulting in mechano-tactile sensation. We present the design, fabrication and validation of the proposed haptic feedback system. Our ∅7 mm feedback actuator is able to transmit a force range between 0.2 N (the median touch threshold) and 2.1 N (the maximum force transmitted by the feedback actuator at a 3 mm indentation) corresponding to force range exerted to the fingertip sensor of 1.2 − 18.49 N

    A Review of Cooperative Actuator and Sensor Systems Based on Dielectric Elastomer Transducers

    Get PDF
    This paper presents an overview of cooperative actuator and sensor systems based on dielectric elastomer (DE) transducers. A DE consists of a flexible capacitor made of a thin layer of soft dielectric material (e.g., acrylic, silicone) surrounded with a compliant electrode, which is able to work as an actuator or as a sensor. Features such as large deformation, high compliance, flexibility, energy efficiency, lightweight, self-sensing, and low cost make DE technology particularly attractive for the realization of mechatronic systems that are capable of performance not achievable with alternative technologies. If several DEs are arranged in an array-like configuration, new concepts of cooperative actuator/sensor systems can be enabled, in which novel applications and features are made possible by the synergistic operations among nearby elements. The goal of this paper is to review recent advances in the area of cooperative DE systems technology. After summarizing the basic operating principle of DE transducers, several applications of cooperative DE actuators and sensors from the recent literature are discussed, ranging from haptic interfaces and bio-inspired robots to micro-scale devices and tactile sensors. Finally, challenges and perspectives for the future development of cooperative DE systems are discussed

    Soft Embedded Sensors with Learning-based Calibration for Soft Robotics

    Get PDF
    In this thesis, a new class of soft embedded sensors was conceptualized and three novel sensors were designed, fabricated, and tested for small force range soft robotic applications. The proposed soft sensors were consisted of a gelatin-graphite composite with piezoresistive characteristics. Principally, the sensing elements of the proposed class of soft sensors were moldable into any shape and size; thus, were embeddable and scalable. The sensing elements were directly molded into soft flexural structures so as to be embedded in the flexures. For each sensor, first a mechano-electrical phenomenological model for the exhibited piezoresistivity was proposed and validated experimentally. Afterwards, the sensors were subjected to a series of external forces to obtain calibration data. Given the complexity of the piezoresistivity and intrinsic large deformation of the soft bodies and sensing element, learning-based calibration approach were investigated. To compensate for ratedependency and hysteresis effects on sensor readings in calibration, rate-dependent features were selected for learning-based calibrations. Consequently, the first sensor of this research, i.e., one degree-of-freedom (1-DoF) force sensor, exhibited a force range of 0.035-0.82 N force measurement range with a mean-absolute-error (MAE) of 3.7% and a resolution of 4% of full-range. The second sensor, i.e., 3-DoF had a measurement range of up to 0.3 N with an MAE of 0.005 N and a resolution of 0.003 N. The third sensor, 6-DoF force-torque sensor, had a force range of up to 110 mN with an MAE of 7.4±6.5 mN and resolution of 1 mN and a torque range of 6.8 mNm with an MAE of 0.24 mNm. Comparison with the state-of-the-art and functional requirements of intraluminal procedures showed that the the proposed sensors were fairly compatible with the requirement and showed improvement of the state of the art. The major contribution of this research was to propose a scalable sensing principle that could adapt its shape to the shape of the host body, e.g., flexural robots. Moreover, this research showed nonlinear learning-based calibration is a fitting solution to overcome limitations of the state-of-the-art in using soft elastomeric sensors

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Soft Biomimetic Finger with Tactile Sensing and Sensory Feedback Capabilities

    Get PDF
    The compliant nature of soft fingers allows for safe and dexterous manipulation of objects by humans in an unstructured environment. A soft prosthetic finger design with tactile sensing capabilities for texture discrimination and subsequent sensory stimulation has the potential to create a more natural experience for an amputee. In this work, a pneumatically actuated soft biomimetic finger is integrated with a textile neuromorphic tactile sensor array for a texture discrimination task. The tactile sensor outputs were converted into neuromorphic spike trains, which emulate the firing pattern of biological mechanoreceptors. Spike-based features from each taxel compressed the information and were then used as inputs for the support vector machine (SVM) classifier to differentiate the textures. Our soft biomimetic finger with neuromorphic encoding was able to achieve an average overall classification accuracy of 99.57% over sixteen independent parameters when tested on thirteen standardized textured surfaces. The sixteen parameters were the combination of four angles of flexion of the soft finger and four speeds of palpation. To aid in the perception of more natural objects and their manipulation, subjects were provided with transcutaneous electrical nerve stimulation (TENS) to convey a subset of four textures with varied textural information. Three able-bodied subjects successfully distinguished two or three textures with the applied stimuli. This work paves the way for a more human-like prosthesis through a soft biomimetic finger with texture discrimination capabilities using neuromorphic techniques that provides sensory feedback; furthermore, texture feedback has the potential to enhance the user experience when interacting with their surroundings. Additionally, this work showed that an inexpensive, soft biomimetic finger combined with a flexible tactile sensor array can potentially help users perceive their environment better

    Manos Robóticas Antropomórficas: una revisión

    Get PDF
    This paper presents a review on main topic regarding to anthropomorphic robotic hands developed in the last years, taking into account the more important mechatronics designs submit on the literature, and making a comparison between them. The next chapters deepen on level of anthropomorphism and dexterity in advanced actuated hands and upper limbs prostheses, as well as a brief overview on issues such as grasping, transmission mechanisms, sensory and actuator system, and also a short introduction on under-actuated robotic hands is reported.Este artículo presenta una revisión de los principales desarrollos que se han hecho en los últimos años en manos robóticas antropomórficas. Las primeras secciones tratan temas como el grado de antropomorfismo y de destreza en las manos robóticas más avanzadas, incluyendo una comparación entre ellas. También se abordan temas como la capacidad de agarre de los efectores finales, los mecanismos de trasmisión, el sistema actuador y sensórico, así como una breve introducción al tema de manos robóticas sub-actuadas. Dirección de correspondencia: Carrera 11 # 101-80, Bogotá (Colombia)

    Distributed Sensing and Stimulation Systems Towards Sense of Touch Restoration in Prosthetics

    Get PDF
    Modern prostheses aim at restoring the functional and aesthetic characteristics of the lost limb. To foster prosthesis embodiment and functionality, it is necessary to restitute both volitional control and sensory feedback. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing high-fidelity spatial information. To provide this type of feedback in prosthetics, it is necessary to sense tactile information from artificial skin placed on the prosthesis and transmit tactile feedback above the amputation in order to map the interaction between the prosthesis and the environment. This thesis proposes the integration of distributed sensing systems (e-skin) to acquire tactile sensation, and non-invasive multichannel electrotactile feedback and virtual reality to deliver high-bandwidth information to the user. Its core focus addresses the development and testing of close-loop sensory feedback human-machine interface, based on the latest distributed sensing and stimulation techniques for restoring the sense of touch in prosthetics. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives and the used methodology and contributions; as well as three studies distributed over stimulation system level and sensing system level. The first study presents the development of close-loop compensatory tracking system to evaluate the usability and effectiveness of electrotactile sensory feedback in enabling real-time close-loop control in prosthetics. It examines and compares the subject\u2019s adaptive performance and tolerance to random latencies while performing the dynamic control task (i.e. position control) and simultaneously receiving either visual feedback or electrotactile feedback for communicating the momentary tracking error. Moreover, it reported the minimum time delay needed for an abrupt impairment of users\u2019 performance. The experimental results have shown that electrotactile feedback performance is less prone to changes with longer delays. However, visual feedback drops faster than electrotactile with increased time delays. This is a good indication for the effectiveness of electrotactile feedback in enabling close- loop control in prosthetics, since some delays are inevitable. The second study describes the development of a novel non-invasive compact multichannel interface for electrotactile feedback, containing 24 pads electrode matrix, with fully programmable stimulation unit, that investigates the ability of able-bodied human subjects to localize the electrotactile stimulus delivered through the electrode matrix. Furthermore, it designed a novel dual parameter -modulation (interleaved frequency and intensity) and compared it to conventional stimulation (same frequency for all pads). In addition and for the first time, it compared the electrotactile stimulation to mechanical stimulation. More, it exposes the integration of virtual prosthesis with the developed system in order to achieve better user experience and object manipulation through mapping the acquired real-time collected tactile data and feedback it simultaneously to the user. The experimental results demonstrated that the proposed interleaved coding substantially improved the spatial localization compared to same-frequency stimulation. Furthermore, it showed that same-frequency stimulation was equivalent to mechanical stimulation, whereas the performance with dual-parameter modulation was significantly better. The third study presents the realization of a novel, flexible, screen- printed e-skin based on P(VDF-TrFE) piezoelectric polymers, that would cover the fingertips and the palm of the prosthetic hand (particularly the Michelangelo hand by Ottobock) and an assistive sensorized glove for stroke patients. Moreover, it developed a new validation methodology to examine the sensors behavior while being solicited. The characterization results showed compatibility between the expected (modeled) behavior of the electrical response of each sensor to measured mechanical (normal) force at the skin surface, which in turn proved the combination of both fabrication and assembly processes was successful. This paves the way to define a practical, simplified and reproducible characterization protocol for e-skin patches In conclusion, by adopting innovative methodologies in sensing and stimulation systems, this thesis advances the overall development of close-loop sensory feedback human-machine interface used for restoration of sense of touch in prosthetics. Moreover, this research could lead to high-bandwidth high-fidelity transmission of tactile information for modern dexterous prostheses that could ameliorate the end user experience and facilitate it acceptance in the daily life

    Tactile displays, design and evaluation

    Get PDF
    Fritschi M. Tactile displays, design and evaluation. Bielefeld: Universität Bielefeld; 2016.This thesis presents the design and development of several tactile displays, as well as their eventual integration into a framework of tactile and kinesthetic stimulation. As a basis for the design of novel devices, an extensive survey of existing actuator principles and existing realizations of tactile displays is complemented by neurobiological and psychophysical findings. The work is structured along three main goals: First, novel actuator concepts are explored whose performance can match the challenging capabilities of human tactile perception. Second, novel kinematic concepts for experimental platforms are investigated that target an almost unknown sub-modality of tactile perception: The perception of shear force. Third, a setup for integrated tactile-kinesthetic displays is realized, and a first study on the psychophysical correlation between the tactile and the kinesthetic portion of haptic information is conducted. The developed devices proved to exceed human tactile capabilities and have already been used to learn more about the human tactile sense

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin
    corecore