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Abstract 
 

 The compliant nature of soft fingers allows for safe and dexterous manipulation of 

objects by humans in an unstructured environment. A soft prosthetic finger design with 

tactile sensing capabilities for texture discrimination and subsequent sensory stimulation 

has the potential to create a more natural experience for an amputee. In this work, a 

pneumatically actuated soft biomimetic finger is integrated with a textile neuromorphic 

tactile sensor array for a texture discrimination task.  

 The tactile sensor outputs were converted into neuromorphic spike trains, which 

emulate the firing pattern of biological mechanoreceptors. Spike-based features from each 

taxel compressed the information and were then used as inputs for the support vector 

machine (SVM) classifier to differentiate the textures. Our soft biomimetic finger with 

neuromorphic encoding was able to achieve an average overall classification accuracy of 

99.57% over sixteen independent parameters when tested on thirteen standardized textured 

surfaces. The sixteen parameters were the combination of four angles of flexion of the soft 

finger and four speeds of palpation. To aid in the perception of more natural objects and 

their manipulation, subjects were provided with transcutaneous electrical nerve stimulation 
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(TENS) to convey a subset of four textures with varied textural information. Three able-

bodied subjects successfully distinguished two or three textures with the applied stimuli.  

 This work paves the way for a more human-like prosthesis through a soft 

biomimetic finger with texture discrimination capabilities using neuromorphic techniques 

that provides sensory feedback; furthermore, texture feedback has the potential to enhance 

the user experience when interacting with their surroundings. Additionally, this work 

showed that an inexpensive, soft biomimetic finger combined with a flexible tactile sensor 

array can potentially help users perceive their environment better. 

 

Primary Reader and Advisor: Nitish V. Thakor, PhD 

Secondary Reader: Marlis Gonzalez-Fernandez, MD, PhD 
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Chapter 1  

1 Introduction 
 

Interest in soft robotics has grown over the past couple of decades largely due to 

their compliant structure that tends to be more biomimetic and suitable for tasks like 

delicate object handling and palpation. Currently, soft robots have been adapted to a variety 

of areas such as locomotion, minimally invasive surgery, and orthoses [1]–[4]. A variety 

of soft orthoses have been developed for hand, elbow, and ankle rehabilitation as well as 

for suction liners, prostheses, and human augmentation systems [5]–[9]. Since soft robots 

have the potential to mimic organisms and interface with human bodies, there is an 

increasing trend towards the development of biomimetic robotic grippers and prostheses 

[8], [10]–[18]. While these designs have a great grasping capacity, most soft fingers have 

limited dexterity and sensing capabilities. A few soft fingers have independent, 

interphalangeal actuation producing more than one degree of freedom [15], [19]. However, 

none have incorporated texture sensing and sensory feedback capabilities. This study 

attempts to address this need. 
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The compliant nature of soft robots gives them an advantage over rigid continuum 

robots because the soft manipulator allows for a more conforming grasp when 

manipulating objects of diverse sizes, shapes, and texture. Additionally, most soft robots 

are under-actuated, meaning the degrees of freedom (DOF) do not necessarily correspond 

to the number of joints. This allows soft robots to have increased complexity and movement 

without adding additional components [20]. Soft robots are either built using compliant 

materials such as silicone, polymer, rubber, or combined soft and rigid materials creating 

endo- or exoskeletons with soft actuators [10], [18], [21]. Due to the prevalence of flexible 

materials and multiple extruders, many soft robots are 3D-printed without any need for 

assembly, further reducing the costs [8]. Soft robotic actuators range from pulley systems, 

pneumatics, to hydraulics [20]. Pneumatic actuators are most common because air is 

lightweight, omnipresent, and minimally viscous. Given these benefits, this study designed 

a pneumatically actuated biomimetic finger that is fabricated from silicone and fabric. 

When subjects receive static and dynamic sensory cues during tactile sensing, they 

can understand and dynamically interact with their surroundings. Static cues can be 

obtained instantaneously, with a few studies incorporating these cues, such as temperature, 

curvature, and force, into their soft robots [16], [17], [22], [23]. Processing dynamic cues, 

such as texture, is more complex as it requires spatial and temporal information. The 

identification of surface texture is a desirable capability using tactile sensing and feedback 

as an aid to surgeons during minimally invasive surgery [24], [25]. Additionally, tactile 

sensing has been shown to help prosthesis users with handling everyday objects [26], [27]. 

This idea of texture recognition was proposed by our group in preliminary studies with soft 
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robots, particularly in prosthetic applications [28], [29]. Various tactile sensors made from 

multiple materials have been used for texture discrimination tasks in previous studies [30]–

[41]. Several studies tested their sensor and texture discrimination methods on sets of 2-15 

grated textures [30]–[36]; while fewer studies used a smaller subset of natural textures 

[37]–[41]. While these sensors perform fairly well at texture discrimination tasks, they do 

not use a flexible, textile sensor that is easily incorporable into the soft biomimetic finger. 

Additionally, most of these sensors do not neuromorphically encode sensory information 

for texture discrimination. 

Neuromorphic encoding is a method to mimic the response of mechanoreceptors 

found in human skin that transduce tactile information as a neural spike train code. To 

model biomimetic tactile sensing, encoding, and feedback for our system, it is desirable to 

understand and model these tactile receptors.  This process is inspired by the behavior of 

neurons in transmitting and processing information. Neuromorphic encoding of the spike 

train and its subsequent processing is more computationally efficient at encoding spatial 

and temporal information than standard analog data [33], [37], [42], [43]. Additionally, 

neuromorphic encoding allows for easier integration with neuroprostheses as the 

biomimetic spiking activity can be delivered directly to the skin or afferent nerves to elicit 

more natural sensory perception [44], [45]. Such tactile feedback, mimicking the skin 

receptors and sensory nerve's code, has the potential to reduce the learning time required 

for the brain to adapt to using the neuroprosthesis [43]. Neuromorphic encoding and spike-

based decoding have been used for texture discrimination tasks in previous studies [30], 

[37], [46], [47]. However, this study combines the benefits of the soft biomimetic finger 
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with the integrated flexible, textile tactile sensor and uses neuromorphic encoding with 

support vector machine (SVM), while also providing users with sensory feedback. 

The goal of this work is to demonstrate the texture discrimination capabilities of a 

novel soft biomimetic finger that is pneumatically actuated and lays the foundation for a 

prosthetic finger with palpation and sensory feedback capabilities. The work presented here 

builds on our preliminary studies, where we first presented the prototype design of a soft 

finger and the use of tactile sensors [28], [29]. Now, in this work, we fully investigate the 

effects of palpation speed and actuation on texture discrimination using the soft finger and 

explore the use of sensory feedback (Figure 1.1). This thesis first reviews recent 

developments in soft robotic prosthesis and texture recognition in prostheses. Then, the 

comprehensive design of the soft biomimetic finger and the textile tactile sensor array is 

presented. The tactile sensor response is encoded in a biomimetic manner, mimicking the 

properties of skin tactile receptors. Then, we test the texture discrimination performance 

with the SVM classifier and convey the classified texture information to the user using 

sensory feedback. Finally, the continuing work and future directions are discussed. Our 

work represents several transformative steps leading to a novel soft biomimetic finger 

design with a flexible sensor and capability to palpate textures and subsequently provide 

sensory feedback. 
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Figure 1.1: Overview of the texture discrimination method using the soft biomimetic 
finger. (A) Texture palpation using the soft finger with the tactile sensor. (B) The sensor 
response is neuromorphically encoded using the Izhikevich neuron model, to mimic slowly 
adapting (SA-1) neuron spiking patterns. (C) The spike-based features, average inter-spike 
interval (ISI) and mean spike rate, are used as inputs for SVM to classify the textures. (D) 
Sensory feedback is then provided to the user through transcutaneous electrical stimulation 
(TENS).   
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Chapter 2  

2 Review of Soft Robotic Prosthesis 
 

 Robots have impacted the way humanity interacts with its environment. Interest in 

soft robotics has grown over the past couple of decades largely due to their compliant 

structure that tends to be more biomimetic and suitable for tasks like delicate object 

handling and palpation. Currently, soft robots have been adapted to a variety of areas such 

as locomotion, minimally invasive surgery, rehabilitation, and prostheses. Marine-inspired 

soft robots have been built to navigate aquatic environments [48], [49]. In minimally 

invasive surgery, soft robots have been used to provide visual aid and palpate for 

abnormalities in occluded areas [1]–[4]. A variety of soft orthoses have been developed for 

hand, elbow, and ankle rehabilitation at home, as well as suction liners, 3D printable 

prosthetics, and even human augmentation systems [5]–[9]. 

 The following section focuses on reviewing soft robots based on their construction 

and material followed by their sensing capabilities. There has been significant work done 

on reviewing actuation methods in soft robots [21], [50], [51]. Therefore, this review 
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chapter will not focus on the different types of actuation. The soft robot that was fabricated 

and used in this project is a pneumatically actuated soft finger composed mainly of silicone. 

Further details about the soft biomimetic finger are provided in Chapter 4.1. 

2.1 Construction and Material 

 The structure and function of soft robots depend highly on their construction and 

materials. Many materials can be used to create functional soft robots, where the method 

of actuation is often tied to the material choice. The properties of the material such as 

tensile strength, durability, and response time are important, especially when looking at 

certain actuation methods. The most used materials are Silicone, 3D printed material, 

Hydrogels, and Electroactive polymers (EAP), which are discussed in the following 

sections. 

2.1.1 Silicone 

 Most soft robots are constructed from silicone due to its versatility and low cost. 

Silicone can be molded and formed into multiple structures and has been widely used 

widely commercially [52]. They can be used to create pneumatic actuators, robotic 

grippers, and buckling linear actuators [28], [53]–[63]. However, soft robots constructed 

from silicone do not have the longevity and resilience provided by rigid materials. 

Additionally, the drawback of a lot of compliance is that soft robots using silicone tend to 

buckle and produce limited force when grasping objects, depending on the actuation 

method.  
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Figure 2.1: Soft biomimetic finger fabricated mainly using silicone [63]. 

2.1.2 3D printed material 

 3D printed soft robots benefit from being easily mass-produced by using relatively 

cheap materials. They can be fabricated with various 3D printing methods such as Fused 

Deposition Modeling (FDM), Digital Mask Projection Stereolithography (DMP-SL), 

Selective Laser Sintering (SLS), and Digital Light Projector (DLP) [22], [50], [64]–[69]. 

These soft robots tend to have a high degree of freedom and can be used to construct 

pneumatic or fluidic actuators. Generally, the tensile strength of 3D printed soft robots 

tends to be low, which causes them to break easily. However, better 3D printers and newer 

advanced materials have been able to improve the 3D printed soft robot’s tensile strength 

[70]. 
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Figure 2.2: (a) Schematic of 3D printed soft robot from (b) STL file to (c) 3D printing 
using fused deposition modeling (FDM) [65]. 

2.1.3 Hydrogel 

 Hydrogels are a network polymer chains that are hydrophilic but highly absorbent. 

This allows them to hold large quantities of water and maintain their structure while being 

compliant. The swelling due to water absorption creates the actuation for bending. 

Hydrogels are easily customizable, have many degrees of freedom, and can be 

manufactured on a small scale [71]–[75]. However, hydrogel fabrication can be expensive, 

have low tensile strength, and be difficult to handle.  
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Figure 2.3: Schematic of the fabrication of the hydraulic hydrogel actuators [72].  

2.1.4 Active Polymers 

 Research into active polymers has grown, with Electroactive polymers (EAP) being 

the most common. When an electric field is applied to EAPs, they change in shape and/size 

[76]–[78]. They have large compliance and can provide many degrees of freedom (DOF). 

However, they are very inefficient because they require a high voltage to function and have 

slow response times.  

 

Figure 2.4: (A-a) Graphic demonstrating how electroactive polymers work; (A-b) voltage 
applied to EAP, which deforms the fingers; (A-c) when voltage is removed, the EAP 
returns to its original shape [78]. (B) Continuum robot arm inspired by cephalopods using 
EAPs [76]. 
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 Other active polymers such as sheet material, Polydimethylsiloxane (PDMS), and 

Nitinol are also being developed to construct soft robots. As with EAP, the shape of active 

polymers changes in response to an external stimulus but regain their original shape once 

the stimulus is removed. The sheet material can be heat bonded to create inflatable pouch 

actuators that can create linear or rotational motion [79]. PDMS is a silicone-based organic 

polymer that can be used to fabricate microscale actuators [80]. Smart material composites 

such as Nitinol, which is a shape memory metal alloy, have very elastic characteristics and 

can create discrete levels of stiffness [81]. 

 The construction and materials of soft robots are summarized in Table 2.1. 

Table 2.1: The construction and materials of soft robots. 

Material/Construction 

Purpose - 

Actuators Benefits Drawbacks 

Silicone [28], [52]–[63] 

Pneumatic 

actuators, 

Robotic 

grippers, and 

Buckling linear 

actuators 

Compliance, 

versatility, and low 

cost 

Short lifespan and 

buckling 

3D printed materials 

[22], [50], [64]–[70] 

Pneumatic and 

fluidic 

actuators 

Various 3D printing 

methods, a high 

degree of freedom, 

and low cost 

Low tensile 

strength 
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Hydrogels [71]–[75] 

Bending and 

fluidic 

actuators 

Easily 

customizable, many 

DOF, and small 

scale 

Expensive, low 

tensile strength, and 

difficult to handle 

Electroactive polymers 

[76]–[81] 

Continuum 

arms 

Large compliance, 

various stiffness 

levels, and many 

DOF 

High input 

voltage/temperature 

and slow response 

and recovery times 

 

2.2 Soft Robot Sensing 

 Since soft robots have the potential to mimic organisms and interface to human 

bodies, there is an increasing trend towards the development of biomimetic robotic grippers 

and prosthesis [8], [10]–[17]. Though these designs have exceptional grasp capabilities, 

most soft robots have limited dexterity and sensing capabilities. Sensors incorporated into 

soft robots prioritize flexibility and simple fabrication to minimize its effect on the 

actuation of the soft robots [79], [82]–[88]. Soft robot sensing is usually focused on either 

tactile sensing or curvature sensing. The sensing modality used by these sensors ranges 

from piezoresistive, magnetic, and optical. The following sections discuss each of these 

modalities. 
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2.2.1 Piezoresistive 

 Piezoresistive sensors exhibit a change in resistance when a force is applied. The 

sensors in soft robots are generally composed of composite materials such as polylactic 

acid-graphene (PLA-G) in thermoplastic polyurethane (TPU) or carbon black in an 

elastomer/fabric [63], [89], [90]. They can be 3D printed using FDM, can have a high 

sensitivity, and wide sensing range but can suffer from a high degree of hysteresis [89], 

[90]. These sensors are generally used for tactile sensing. 

 

Figure 2.5: Fabric-based piezoresistive tactile sensor [63].  

 Liquid metal embedded elastomers (LMEE) are elastomers with channels filled 

with a liquid metal that changes in resistance depending on the degree of deformation or 

stretch [91]. LMEEEs function as strain gauges but have significantly higher flexibility 

without fracturing. This allows them to actuate at the same level as the soft robot. 

Additionally, the microchannels can be laser engraved to create smaller and more precise 

channels. 
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Figure 2.6: Overview of a liquid metal embedded elastomer (LMEE) sensor that can be 
used to measure the curvature of a soft robot [91].  

 Semi-conductive polymers consist of conductive particles in a semiconductive 

matrix that decreases in resistance when there is curvature or force is applied. Therefore, 

they can be used to fabricate curvature and tactile sensors. These sensors can be fabricated 

using hydrogels, doping silicone with carbon powder, or 3D printing [56], [92]–[94]. The 

reliability of the sensor is highly dependent on the homogeneity of the carbon to silicone 

blend, while the ratio of the material determines the sensitivity and hysteresis [92]. 
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Figure 2.7: Schematic representation of the sensor with Carbon black doped silicone [90]. 

2.2.2  Magnetic 

 Hall Effect sensors measure the magnitude of a magnetic field. When a hall effect 

sensor is combined with an embedded magnet, accurate and rapid tactile and curvature 

sensing can occur. Additionally, they can have a high sensitivity reaching up to 75 Hz and 

a low degree of hysteresis [95]. These sensors have been embedded in a silicone mold to 

measure contact forces for object manipulation [95]–[97]. 
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Figure 2.8: Hall effect sensor with a magnet on a soft snake robot for sensing curvature 
[95]. (1) flexible substrate; (2) Hall effect IC; (3) magnet; (4) circuit paths and components.   

2.2.3 Optical 

 Fiber optic cables have been embedded within soft robots to measure the bending 

and stretching of the soft robot [13], [98]–[100]. These sensors use a fiber Bragg grating 

coating that reflects only particular wavelengths of light. Unlike electromagnetic sensors, 

these sensors are resistant to external interference. Additionally, the fiber optic cables are 

flexible and do not interfere with the soft robot [98]. However, image processing is required 

for tactile sensing. 

 

Figure 2.9: Stretchable optical waveguides in a soft robot to sense curvature and force 
[13].  
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Table 2.2: Summary of Sensing in soft robots.

Sensing 

Modality 
Material/Construction Purpose Description 

Piezoresistive 

Composite [63], [89], 

[90] 
Tactile 

3D printable, a high 

sensitivity, and wide 

sensing range; 

Can have high 

hysteresis 

Liquid metal [91] 
Strain and 

curvature 

Microchannel scale and 

linearity 

Conductive hydrogel 

[56], [92]–[94] 

Curvature and 

tactile 

Can be constructed 

with various materials; 

Reliability depends on 

the blend 

Magnetic 
Magnets and hall 

sensors [95]–[97] 

Curvature or 

tactile 

High sensitivity, rapid 

sensing, repeatable, and 

low hysteresis 

Optical 
Fiber optic cables [13], 

[98]–[100] 

Curvature or 

tactile 

Resistant to external 

interference and 

repeatable; tactile 

requires image 

processing 
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Chapter 3  

3 Review of Texture Recognition in 

Prosthesis 
 

 The natural sensory feedback loop is an intuitive process for healthy individuals. 

As afferent fibers are stimulated in response to grasping objects or through dexterous 

movements, an efferent motor response is used to adjust hand movements as needed. 

Amputees with conventional prostheses lose the ability to feel when or how an object is 

being grasped and thus cannot adequately modulate their prosthetic hand movements based 

on natural sensory stimulation. Replacement of this crucial loop starts with sensors that can 

detect various stimuli from the surrounding environment and the physical world. Object 

stiffness and texture can be used to improve the breadth of sensations replaced for amputees 

while improving grasping tasks. Upon receiving static and dynamic sensory cues, the user 

can understand and dynamically interact with their surroundings.  
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 Static cues can be obtained instantaneously and a few studies have incorporated 

these cues into their soft robots such as temperature, curvature, and force [16], [17], [22], 

[23]. Processing dynamic cues such as texture is more complex as it requires temporal 

information. As tactile sensing has been shown to help prosthesis users with handling 

everyday objects, studies have been exploring how to best mimic and replace subdermal 

receptors for improved grasping control in prosthesis [26], [27]. Many of the currently 

available texture sensing technologies for prosthesis and their performances at detecting a 

variety of surfaces are discussed in the following sections. Certain sections are taken from 

a review that was submitted to Annals in Biomedical Engineering, 2020 [101].   

3.1 Biological Tactile Sensing 

 The design of many prosthetic sensors has been directly inspired by the biological 

components that are aimed to be replaced. Prosthetic sensors should also mimic the 

biological characteristics of the skin, including signaling mechanisms [102]–[105], 

structure [38], and mechanical properties [103], [106], [107]. The human glabrous dermis 

layer contains four types of low threshold mechanoreceptors (LTMRs), categorized into 

slow-adapting (SA) and fast-adapting (FA), that measure mechanical stimuli, Shown in 

Figure 3.1. Among the four LTMRs, Merkel cells (SA1) and Ruffini endings (SA2) 

produce sustained signals throughout mechanical stimulation. This allows these receptors 

to measure static force and strain from prolonged contact. Meissner corpuscles (FA1) and 

Pacinian’s corpuscles (FA2) produce dynamic signals and are more involved in the 

detection of features of an object and vibration [108]. 
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Figure 3.1: Schematics of human glabrous skin mechanoreceptors and firing patterns. (A) 
Glabrous skin contains four types of LTMRs: FA1, FA2, SA1, and SA2. (B) In response 
to a tactile stimulus, the four LTMRs show different firing patterns. 

3.2 Prosthetic Tactile Sensing 

 Prosthetic sensors are used to detect external stimuli such as force and pressure at 

the fingertips of a prosthesis. Common electronic components that detect force and 

transduce the information directly to electrical signals are the most apparent and available 

solutions. These synthetic sensors are often adapted and modified to allow for more 

specificity and sensitivity at the range that would be common for human interaction. 
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Custom sensors that are designed based on biological components of the hand are referred 

to as biomimetic sensors. 

3.2.1 Synthetic Sensors 

 Synthetic sensors detect contact forces by measuring internal changes in resistance, 

capacitance, or inductance due to an externally applied force. The sensitivity and working 

range of these sensors can depend on which method of measuring the applied force is used. 

However, the working range can be improved by modifying the contact surface with more 

compressive materials such as synthetic polymers. While synthetic sensors aim to replace 

lost sensory information, the design strategy is not inspired by the lost biological skin or 

afferent fibers. Instead, this group of sensors leverages the availability and functionality of 

common electrical components that are manufactured on an industrial scale. 

3.2.1.1 Resistive Sensors 

 Resistive sensors are commonly used in tactile sensors for texture detection [35], 

[36], [38], [102], [109]–[114]. Micro-electromechanical systems (MEMS) have wide 

applications for creating highly sensitive tactile sensors that convert mechanical 

deformations into electrical resistance through multi-axial piezoresistive sensors. The 

deflection of these resistors, when scanning over surfaces, can define micro-structural 

differences as the sensor moves across the surface that is indicative of specific texture 

features. This method can detect pressure changes of fine weave patterns of paper textures 

[34], [110].  Other MEMS-based capacitance sensors with a linear array of four tactile 

sensors were able to detect surface patterns as small as 200 µm and could obtain 

characteristic frequencies that encode texture differences between smooth PDMS surfaces 
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and nylon. Distinct characteristic signals could be detected for each texture after the multi-

array sensor signals were fast Fourier transformed, exhibiting the capability of multi-array 

sensor configuration to capture both temporal and spatial information. This would enhance 

the potential for texture pattern detection significantly [41]. 

 Novel fingerprint-inspired single-walled nanotube (SWNTs) and PDMS composite 

piezoresistive sensors are flexible, able to discern a useful range of pressures during 

scanning movements (45–550 Pa), and can detect changes in resistance from 0–2,500 Pa. 

A double-sided, double-layered, interlocked pyramidal SWNT micro-structures can detect 

even minute changes in shear force. Even fine periodic texture patterns with 15 µm interval 

spacings were detected with discernable output signal changes. This feat highlights the 

SWNT’s high recovery rate after shear force, attributed to the pyramidal microstructure 

design. Minute differences in various fabric textures could easily be identified based on 

their output signals [38]. 

 

 



23 
 

 

Figure 3.2: Representations of the different synthetic sensors: (A) serpentine and (B) 
nanofiber elements of strain gauges in resistive sensors [115],  (C) pyramid microstructures 
in the PDMS layer to create a more sensitive capacitive sensor [116], (D) pore membrane 
in a piezoelectric sensor to create artificial ion channels [104], (E) inductor in an inductive 
sensor to create digital-frequency signals [117], (F) optical waveguides in optical sensors 
that can be embedded in prosthesis [118]. Red arrows indicate the directions of deformation 
that the sensors detect. 

 A composite of graphene flakes and polyurethane sponges have been integrated for 

use as an improved conductive graphene piezoresistive sensor [35]. However, the sponge 

material is slow to return to its original shape after deformation. Despite this extended time 

dependency, the signal acquisition still maintained low enough noise artifacts versus the 

actual signal to distinguish characteristic FFT peaks. The graphene composite allowed for 

distinguishable FFT characteristic signals for ridge (grooved surface structures) detection 

with a minimum of 200 µm separation on fabricated PET material [36].   
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3.2.1.2 Piezoelectric Sensors 

 Piezoelectric (PE) sensors measure applied force and strain by generating a voltage 

difference. PE sensors using PVDF have exhibited sensitivity to external input that 

produces distinguishable voltage signals [39], [112], [113], [119]. One of the main 

characteristics of PVDF is the ability to mix other chemical compounds into the structure 

of PVDF. The introduction of impurities dictates the “roughness” of the PVDF film and 

determines the piezoelectric sensitivity to external surfaces. A PVDF film was used to 

determine the differences in different weave fabrics. Detection and classification of 

different surface types were done by extracting features from the output frequency and 

classified through an unsupervised k-means clustering algorithm [39].  

 Flexible two-layered PVDF sensors showed enhanced sensitivity and higher 

resolution (0.43 µm), with capabilities to differentiate between texture signals of polished 

metal surfaces. The perpendicular orientation of the two PVDF films allowed for increased 

signal acquisition and the ability to sense vibrational differences between the two sensors 

during scanning. Despite the higher sensitivity PVDF sensor arrangement and the use of 

various machine learning algorithms,  the accuracy of classifying polished metal surfaces 

was much lower than that of fabric detection [39]. This could be attributed to the increased 

innate difficulty of sensing the minute sandpaper gratings between polished metals, which 

would even prove to be challenging for a human fingertip [31], [32].   

3.2.1.3 Capacitive Sensors 

 Capacitive sensors that measure changes in capacitive coupling across materials 

have been used in designs that allow for pressure detection, shear force sensing, and texture 
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recognition [41], [120].  Polymers such as PDMS have been used in mesa micro-structures 

to achieve flexible and sensitive sensors [116], [121], [122].  To increase capacitance 

sensitivity, the PDMS dielectric layer can incorporate different micro-structures such as 

pyramids and v-shaped grooves (Figure 3.2). Certain capacitive sensors measure applied 

force on the capacitive plates due to geometric changes in the capacitor [107], [123], [124]. 

MEMS-based capacitance sensors with a linear array of four tactile sensors were able to 

detect surface patterns as small as 200 µm and could obtain characteristic frequencies that 

encode texture differences between smooth PDMS surfaces and nylon. Distinct 

characteristic signals could be detected for each texture after the multi-array sensor signals 

were fast Fourier transformed, exhibiting the capability of multi-array sensor configuration 

to capture both temporal and spatial information. This would enhance the potential for 

texture pattern detection significantly [41]. 

3.2.2 Biomimetic Sensors 

 Piezoresistive sensors have been used in the design of organic prosthetic sensors 

that mimic the biological signaling activity of SA and or FA mechanoreceptors, forming a 

digital mechanoreceptor. The transduction from analog sensor reading to spiking signals 

was achieved either through an electronic circuit or a software model. An oscillating circuit 

that produced a periodic square wave was used to encode physical force stimuli into digital 

signals [102]. Pyramidal micro-structures were constructed from polyurethane elastomers 

with embedded carbon nano-tubules. This combination of piezoresistive sensors and 

organic oscillators enabled varying sensor output frequencies, which mimicked SA 
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mechanoreceptors. Increased sensitivity and working range of the sensor was achieved by 

reducing the effective Young’s modulus and concentrating the electric field. 

 Another sensor that was designed to mimicked the SA signaling mechanism uses 

conductive micro fluids encapsulated in polymer film to form a hemisphere  [103]. The 

volume of fluid and diameter of the hemisphere could be adjusted to control the sensitivity 

of this fluid-based resistive sensor. Normal forces and shear forces were detected by 

measuring the concurrent resistance changes, which showed a similar profile to SA skin 

receptors. The activity of FA receptors has been reproduced by a sensor design that used 

PVDF as the conductive piezoelectric material and PDMS as the coating [104]. Continuous 

electrical signals were converted into spike trains with variable frequency, based on a 

neuron model that describes the current change across FA mechanoreceptors. This 

conversion from the voltage output of the sensor to a spike train mimicked the FA receptor 

response (Figure 3.3). 

 

Figure 3.3: Analog changes in resistance of a sensor are converted to a digital spike train, 
which is similar to the firing pattern of FA mechanoreceptors. 
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 More recently in 2018, a self-powered piezoelectric sensor achieved properties of 

both SA and FA mechanoreceptors. To realize both SA and FA responses, this sensor needs 

to generate two types of voltage outputs, one corresponding to SA and the other FA, in 

response to pressure [105]. The sensor consists of a piezoelectric film made with gold and 

PVDF as well as an artificial ion channel made with an electrolyte (PANI solution) and a 

pore membrane. Applied pressure to the sensor deforms the piezoelectric film, allowing 

for the encoding of an FA response.  As contact is maintained, ion movement through the 

electrolyte in the membrane occurs, creating a sustained SA response. The sensor was 

demonstrated to identify mechanical stress and detect grasping events such as slipping 

objects. 

 Prosthetic sensors have also been designed based on the surface structure of 

fingerprints. A flexible tactile sensor has been developed with microscale pyramids on both 

the outer layer in contact with the object surface and between the inner layers of the sensing 

element (Figure  3.4) [38]. This sensor, with the outer pyramid layer inspired by shaped 

grooves of fingerprints, was made of single-walled carbon nanotubes (SWNTs), 

polyethylene, and PDMS. Two inner layers of SWNT formed pyramids that were 

organized into an interlocked layout, allowing for the sensor to detect changes in both 

normal and shear forces. The use of pyramidal structures allowed for high sensitivity, as 

the tip of the pyramid deforms more easily upon applied force than a smooth surface with 

more direct contact and rigidity. 
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Figure 3.4: Structural layout of sensors (right) that mimic different parts of the skin.  Outer 
pyramids mimic grooves on the skin surface and interlocking pyramids mimic the 
connection between the epidermis and dermis. 

 Biomimetic sensors have also sought to copy the compressive nature of skin along 

with its ability to stretch. Most tactile sensors described so far have used stretchable 

materials such as elastomers to mimic basic viscoelastic properties of the skin surface. 

However, the sensing elements themselves were underneath this skin layer. Flexible 

sensors can be manufactured to accommodate skin-like mechanical properties across the 

sensor itself. Silicon-based circuits can be pre-strained to provide sustained force detection 

in thin, deformable layers while under strain due to applied forces [125]. The same pre-

straining strategy was applied to develop a skin-mimicking, stretchable sensor using silicon 

nano-ribbons covering an entire artificial hand.  The local curvature of the ribbon is site-

specific and can be calibrated to conform with the curvatures of the prosthetic hand, thus 
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corresponding to the natural elasticity of the hand region. A greater curvature corresponds 

to heightened elasticity and lowers piezoresistive sensitivity [106]. 

 The extent of biomimicry in prosthetics is not limited to mechanical properties and 

sensory end organs. The premise of wound healing has also been explored in terms of 

prosthesis healing. Made of a dynamic, covalent thermoset doped with silver nanoparticles, 

a re-healable sensor was able to reform its original structure after external damage due to 

an abrasive cut. Application of a polymerization compound solution and heat allowed for 

covalent bond exchange reactions at the wound site, enabling the healing of the sensor 

surface [107]. Although the capacitance profile of the original, undamaged sensor was not 

completely retained after the healing process, it did allow for similar object detection. 

 The performance of tactile sensors and their different texture recognition 

techniques are summarized in Table 3.1. 

Table 3.1: Comparison of texture recognition techniques in recent works.  

Ref. Materials Textures Methods- Algorithms Accuracy 

[30], 

[32] 

2-layer 

PVDF 

8 graded ridged 

textures 

Discrete wavelet transform 

(DWT), kNN, SVM, ELM, 

VPd, van Rossum distance 

80–97% 

[31] 2-layer 

PVDF 

15 graded polished 

metals 

kNN, SVM, ELM 57–73% 
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[37] 
Silicon 

MEMS 

10 natural textures 

of which 5 are fabric 

Izhikevich neuron model, 

kNN, VPd 

68% - 

97% 

[33] Acrylic 

MEMS 

10 graded textures Izhikevich neuron model, 

ELM, mechano-neuro-

transduction 

92% 

[34] Silicon 

MEMS 

5 artificial Texture 

patterns 

Maximum Likelihood 53–61% 

[35], 

[36] 

Graphene 

Sponge 

2 PET gratings FFT NA 

[38] SWNTs/ 

PDMS 

2 Silk fabrics, and 5 

Braille letters 

FFT NA 

[39] PVDF 5 types of fabrics 

including silk, 

cotton, and wool 

RBF,  

k-means clustering 

96–100% 

[40] Multi-strain 

gauge, 

PVDF 

8 surfaces: carpets 

(2), sponge, tiles (2), 

vinyl, wood, fabric 

Decision Trees (Naïve 

Bayes, boosted tree) 

80–100% 
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[41] Silicon 

MEMS 

3 - Smooth PDMS 

surface, polycotton, 

nylon 

FFT NA 
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Chapter 4  

4 Texture Discrimination with a Soft 

Biomimetic Finger using a Flexible 

Neuromorphic Tactile Sensor Array that 

Provides Sensory Feedback 
 

 The following chapter was submitted as part of a journal article to Soft Robotics 

and has been recently accepted in August 2020 [126]. 

4.1 Design and Fabrication 

4.1.1 Sensor Array Design 

Sensors incorporated into soft robots prioritize flexibility and simple fabrication to 

minimize its effect on the robot’s actuation. The design of the flexible, textile tactile sensor 

array (Figure 4.1) was inspired by the mechanoreceptors found in the epidermis of the 
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human body [127]. This variation of a piezoresistive tactile sensor was easily integrated 

with the fingertip of the soft biomimetic finger, which was fabricated mainly from silicone 

and fabric. Additionally, the sensor does not interfere with the normal actuation of the soft 

biomimetic finger. The 3x3 tactile sensor array has 9 taxels, or sensing elements, to convey 

spatial information about the textures. This type of sensor can be easily scaled to cover a 

larger surface area with more taxels to provide additional spatial information.  

The tactile sensor was fabricated using conductive fabric traces (LessEMF, Latham, 

NY) and piezoresistive fabric (Eonyx, Pinole, CA), which transforms the force applied on 

the material into changes in resistance. The piezoresistive fabric is sandwiched between 

2mm perpendicular crossing strips of conductive fabric. This creates a 2x2 mm2 sensing 

surface area for each taxel. The conductive fabric traces are spaced 2.5 mm apart. A black, 

protective, elastic fabric encases the entire sensor array. Due to these low-cost materials, 

the textile tactile sensor benefits from a low manufacturing cost.  
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Figure 4.1: (A) Graphic of the flexible textile tactile sensor array. The 3x3 sensor array 
has 9 4 mm2 taxels (or sensing elements) spaced 2.5 mm apart. The tactile sensor array is 
integrated at the fingertip of the soft biomimetic finger. (B) The characterization curve of 
the tactile sensor (Force vs Voltage response) was created by placing 11 calibration 
weights, ranging from 10g to 1000g, onto the taxel using an end effector tip. Each weight 
was applied once per taxel. The characterization curve of the center taxel, taxel 5, is shown 
as it makes the most direct contact with the textures. The other taxels follow a similar curve 
with a consistent range of linear response.  

 The voltage response of the tactile sensor array was measured using an Arduino 

Mega 2560 microcontroller. Each common line of the sensor was connected in series with 

a 10 kΩ resistor, acting as a voltage divider. For this study, the exact value of the applied 

force is not necessary, as the texture discrimination method with neuromorphic encoding 

uses the relative forces measured across the textures. 
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4.1.2 Soft Biomimetic Finger Design 

The pneumatically actuated soft biomimetic finger has three joints with two 

independently controllable degrees of freedom, similar to a human finger (Figure 4.2). It 

was fabricated from Dragon SkinTM 10 Medium (Smooth-on, Macungie, PA, USA) 

silicone rubber and two inextensible materials, cotton fiber and cotton fabric.[28] The 

fracture strength for the silicone rubber, which is the measure of the material’s ability to 

resist failure during elongation, is 1000%. Dragon SkinTM rubbers have previously been 

used for applications from medical prosthetics to special skin effects [9], [128], [129]. 

Since the soft biomimetic finger was constructed from silicone and fabric, it has a low 

manufacturing cost and is very compliant. 

 Using the concept of hybrid fiber-reinforced actuators, the two inextensible 

materials behave as strain-limiting layers to reinforce the actuator and prevent radial 

expansion [130]. To create the air channels in the actuator, the silicone prepolymer was 

poured over carbon fiber rods, separated by a block of silicone, during the fabrication 

process. The carbon fiber rods serve as the template for the air cavity and the block of 

silicone separates the two air channels. Next, two layers of cotton fiber (0.1 mm thickness) 

were wound around the cured silicone inner bladder with a pitch of 0.4 mm to completely 

cover the inner bladders. Next, three strips of cotton fabric, one 20 mm and two 8 mm 

width strips, with a length of 96 mm were applied at specific intervals along the soft finger. 

The 20 mm strip was applied around the section of silicone between the two pneumatic 

channels to mimic the proximal phalange. The 8 mm strips were applied on the soft 

biomimetic finger at specific intervals to mimic the distal and intermediate phalanges of a 
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human finger. The sections of silicone not wrapped with these fabric strips are intended to 

create the metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal 

interphalangeal (DIP) joints (Figure 4.2). The fiber and fabric-reinforced inner section was 

then coated with a final layer of silicone. To seal the fingertip, a small silicone rod and 

silicone glue were added to the distal end of the soft finger. Finally, a strip of fabric, 100 

mm by 12 mm, was adhered to the palmar surface of the soft finger. This final strain-

limiting layer of fabric creates the directional curvature that mimics the human finger. 

Through this process, the pneumatically actuated soft biomimetic finger’s three joints with 

two degrees of freedom were created. 

 

Figure 4.2: (A) Isometric view of the soft biomimetic finger model. (B) Graphical cross-
section of the soft finger. 

The angle of flexion of the soft biomimetic finger is determined by the actuation 

pressure, with a linear relationship during the simultaneous actuation of both air channels 
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(Figure 4.3). The pneumatic setup (Figure 4.3C) used an air compressor and two 3-way 

direct-acting solenoid valves to regulate the airflow into the soft biomimetic finger. Each 

valve is connected to an air channel’s inlet and a pressure sensor (Honeywell 

ASDXACX100PAAA5). The pneumatic circuit is independently controlled by an Arduino 

microcontroller.   
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Figure 4.3: (A) Side view of the simultaneous actuation of both joints at varying pressures 
when mounted horizontally on the UR5 robot arm. (B) The angle of flexion of the soft 
biomimetic finger in response to the pneumatic actuation pressure. The angle of flexion is 
the degree to which the fingertip moved when the soft finger flexed during actuation 
compared to the 0° horizontal reference at the base of the soft finger. (C) Overview of the 
pneumatic setup used to actuate the soft finger. 
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4.1.3 Textured Plates Design 

A total of 13 textured plates were designed and 3D printed out of Polylactic acid 

(PLA) to assess the soft finger’s texture discrimination capability (Figure 4.4). These 

108x36 mm2 textured plates, with varying texture elements, were passively palpated by the 

soft biomimetic finger. The varied texture elements of the textured plates require both 

spatial and temporal information to accurately discriminate between the textures. The 

36x36 mm2 textured surface was centered along the plate to create an isolated surface for 

palpation. Each texture was raised 2.5 mm above the top plane of the textured plate. 

 

Figure 4.4: Textured plates designed to test the soft biomimetic finger’s ability to 
discriminate textures. The four main texture elements are hemispheres (B-D), sinusoidal 
waves (E-G), triangular ridges (H-J), and curved ridges (K-M). These texture elements 
were varied by 3, 4, or 6 rows and combined with the flat (A) texture created 13 total 
textured plates. The red arrow indicates the direction of palpation. 
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4.2 Methods 

 To test texture discrimination in this study (Figure 1.1), the soft finger passively 

palpated the 13 textured plates at four speeds and four actuated states. This resulted in 16 

total parameters being tested over the 13 textured plates to determine the texture 

discrimination ability of the soft finger at varying conditions.  

4.2.1 Experimental Procedure 

Consistent palpation of the textures required a robust testing method with a gripper 

that held the soft biomimetic finger without inhibiting its actuation. Thus, the soft finger’s 

MCP inlet was held by the gripper to allow normal actuation and was mounted to a UR5 

Robot arm (Universal Robots, Odense, Denmark) to palpate the textured plates. First, the 

soft biomimetic finger was brought down onto one side of the textured plate until the 

fingertip was between 10⁰ to 15º compared to the textured plate and applied a normal force 

of 1 N (Figure 4.5). The soft finger was held at this angle to achieve maximum surface 

contact of the sensor onto the texture. Then, the soft finger palpated the textured plates by 

being moved along the direction shown in Figure 4.4. Finally, the soft finger was moved 

back up and to the start position. A complete loop of the UR5 robot arm was considered 

one trial. Each of the 13 textures was palpated with 80 trials for all 16 parameters. The 

voltage response of each taxel was sampled by the Arduino Mega 2560 microcontroller at 

100 Hz and processed in MATLAB.  
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Figure 4.5: Overview of the different positions of the soft biomimetic finger in a trial with 
the positions numbered in chronological order. The soft finger was mounted on the UR5 
robot arm and is shown during passive palpation of textured plate G, while at 0 psi. The 
soft finger was held at 10 - 15º compared to the textured plate. In position (2), the soft 
biomimetic finger is brought down until it applies 1 N of force, measured on taxel 5. 

 To comprehensively test the texture discrimination capability of the soft 

biomimetic finger at different conditions, tests occurred at varying speeds of palpation and 

levels of actuation. To test the ability of the soft finger at varying speeds of palpation, the 

UR5 robot arm moved the soft finger at 23 mm/s, 44 mm/s, 64 mm/s, and 81 mm/s. The 

soft finger was also tested at varying pressure levels for simultaneous joint actuation: 0 psi, 

10 psi, 15 psi, and 18 psi. This changed the duration of each trial for the 16 parameters, 

which is shown in Table 4.1. Though the soft biomimetic finger could actuate up to 30 psi 

and create a larger bending angle, this was not feasible in this testing environment. Beyond 

18 psi, proper contact of the fingertip to the textures on the plates was not achievable. 

Table 4.1. Duration of a single trial for each parameter. 
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4.2.2 Neuromorphic Encoding 

 Neuromorphic encoding was used due to its computational efficiency in encoding 

information and its biological relevance for afferent nerve stimulation [33], [131], [132]. 

The encoding of spatial and temporal information is important when processing dynamic 

cues such as texture. The Izhikevich neuron model was used to mimic the mechanoreceptor 

activity of the tactile epithelial cells called Merkel cells [133]. To utilize the Izhikevich 

framework, the tactile response from each taxel was converted using the tonic spiking 

model. This model exhibits a steady-state spiking pattern after the initial onset and is used 

as the basis for the slowly adapting (SA-1) neuron spiking patterns (Figure 4.6). This 

neuromorphic encoding method has been used previously for similar applications [29], 

[33], [44], [46]. The Izhikevich neuron model uses equations (4.1), (4.2), and (4.3) to 

generate the spike train with injected current I, neuronal membrane voltage v, and recovery 

variable u, which represents the activation and inactivation of K+ and Na+ ionic channels 

[133].  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0.04𝑣𝑣2 + 5𝑣𝑣 + 140 − 𝑢𝑢 + 𝑘𝑘𝑘𝑘 (4.1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑏𝑏𝑣𝑣 − 𝑢𝑢)   (4.2) 

𝑖𝑖𝑖𝑖 𝑣𝑣 ≥ 30 𝑚𝑚𝑣𝑣, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 � 𝑣𝑣 ← 𝑐𝑐
 𝑢𝑢 ← 𝑢𝑢 + 𝑑𝑑   (4.3) 

 The voltage response of each taxel was normalized and a gain factor, k, of 75 was 

applied, which was best for classification. This normalized and amplified signal served 
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as the input current for the neuron spiking model. The Tonic Spiking model’s 

parameters are a = 0.02, b = 0.2, c = -65, and d = 8.  

 

Figure 4.6: Spiking response of a slowly adapting (SA1) neuron in response to a tactile 
stimulus. 

 For each texture and testing parameter, the spiking responses from the sensor array 

were segmented into windows corresponding to the duration of the loop based on each 

parameter (Table 4.1). These windows were converted offline into spike trains with the 

Izhikevich neuromorphic model. To compress the information and serve as the features for 

the classification algorithm, the average inter-spike interval and mean spike rate were 

calculated for each taxel in every trial window. The average inter-spike interval was 

calculated by measuring the time elapsed between spikes and averaging those values in 

each window. The mean spike rate was calculated by tallying the number of spikes in 100 

ms bins and dividing it by the bin length, followed by averaging those values in each 

window. 
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4.2.3 Classification Algorithms 

 To test the ability of the soft biomimetic finger to classify textures, the two features 

from each taxel in a window were used as inputs for SVM’s multiclass linear classification 

model. Specifically, the linear kernel of SVM from MATLAB was used because the 

assumptions of normal distribution and similar within-class variance were not required. A 

supervised learning algorithm was chosen because the identities of the textures were 

known. In our preliminary texture discrimination studies, this classification algorithm has 

been shown to classify textures well [29], [46]. 

 Eighteen features, 2 per taxel for each trial, from the compressed spiking 

information were used as the input for the classifier. To reduce the bias of the model, the 

k-fold cross validation procedure was done using the classical statistical methods [134], 

[135]. This procedure randomly splits the dataset into k groups. Then, a single group is 

taken out as the test data set and the remaining groups are used as the training data set. A 

model is first fit on the training data set and subsequently evaluated on the test data set. 

Finally, the evaluation score is retained and the same process is completed on the remaining 

groups. The final classification accuracy is the combination of the result from all groups. 

In this experiment, a k=4 was used on the 80 trials per texture plate, resulting in splits of 

75% training and 25% testing. 

4.2.4 Sensory Feedback 

 Upon classification of the textures, the textural information should then be 

conveyed to the user. To investigate whether a user would be able to differentiate different 

textures, transcutaneous electrical nerve stimulation (TENS) was used for sensory 
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stimulation. This technique has been used previously for conveying touch and pressure 

information to an amputee [44], [136]. As a demonstration of sensory feedback for textures, 

four stimulation conditions based on frequency and pulse width were tested. These four 

stimulation conditions represented a subset of four textures with varied textural information 

but did not directly correspond to those texture patterns. Three healthy able-bodied subjects 

participated in this study that was approved by the Johns Hopkins Medicine Institutional 

Review Board. Sensory mapping was first performed to obtain a stimulation site on the 

subject’s wrist that activated the referred sensation in their hand. During sensory mapping, 

a beryllium copper (BeCu) probe was connected to the isolated current stimulator (DS3, 

Digitimer Ltd., UK), which provided a monophasic current. A 5 mm disposable Ag/AgCl 

electrode (Norotrode 20, Myotronics, USA) was placed on the stimulation site for three 

psychophysical experiments.  

 To determine the stimulation frequency that separates discrete and continuous 

perception of sensation at the referred sensation site in the phantom hand, a discrete vs. 

continuous frequency detection experiment was conducted [136]. Two frequencies from 

this experiment were selected and designated as the low frequency (discrete) and high 

frequency (continuous) conditions. Then, to determine the minimum level of stimulation 

that is detectable by the subject, a stimulation detection experiment was subsequently 

conducted [136]. The pulse width of the stimulation was varied while the frequency was 

held constant at the previous discrete or continuous frequency value. From this experiment, 

two pulse widths were selected and designated as the low intensity and high-intensity 

conditions. For each experiment, the subject received 2 seconds of stimulation and verbally 
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indicated if they perceived the stimulation as discrete or continuous. The data was fitted 

with a psychometric function using a sigmoid as shown in equation (4.4), where 𝛼𝛼 is the 

detection threshold and 𝛽𝛽 is the discrimination sensitivity. 

1
1+𝑒𝑒−(𝑥𝑥−𝛼𝛼)/𝛽𝛽  (4.4) 

 Finally, a conditional discrimination experiment was conducted to investigate 

whether the subjects could differentiate one condition from another. The subjects were 

presented with two 2-second stimulations, with a 1-second interval. The subjects then 

reported whether they perceived the two stimulations as the same or different. Table 4.2 

shows the pulse width and frequency parameters used for the condition discrimination 

experiment for each subject (AB01, AB02, and AB03). 

 Table 4.2: Stimulation parameters for the condition discrimination experiment. 

 

4.3 Results and Discussion 

4.3.1 Neuromorphic Encoding 

 The voltage response from the tactile sensor was converted into spiking patterns by 

passing it through the neuromorphic model (Figure 4.7). Slowly adapting neurons 
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primarily respond to the amplitude of the injected current. Therefore, they spike throughout 

the presence of a texture, following the spatial features of that texture. As such, the spike 

train generated through passive palpation followed the spatial features of the textures. Due 

to the compliance of the soft biomimetic finger and flexible tactile sensor, the spatial 

features of the textured plates were accentuated and provided a distinct and reliable 

response to each texture. 

 

Figure 4.7: Spiking responses from a single taxel on the tactile sensor based on the voltage 
responses from Textures B, E, H, and K. The spiking responses shown were from the soft 
biomimetic finger when it palpated the textures at 23 mm/s and was actuated to 15 psi. 



48 
 

4.3.2 Classification Performance 

 The soft biomimetic finger was tested at 4 speeds of palpation and 4 levels of 

actuation. The goal was to test the soft biomimetic finger over the 16 parameters to 

characterize and show how accurately it was able to classify the textures. When run through 

the pipeline, the soft finger was able to reliably classify all 13 textures at each of the 

parameters. The overall classification accuracies of each parameter are shown in Table 4.3. 

The average of the overall classification accuracies for the parameters was 99.57%. 

Table 4.3: The overall classification accuracies of the soft biomimetic finger in each 
parameter. 

 

 The confusion matrix of one parameter, 23 mm/s and 15 psi actuation, is shown 

(Figure 4.8). Concurring with the overall accuracy of 99.62% of this parameter, the class 

accuracies do not drop less than 93.66%, with Texture G (6 Sinusoidal waves) being the 

only one that caused some confusion for the SVM classifier. The soft biomimetic finger 

benefits from its pliancy and the spatial integration of the taxels in the flexible tactile sensor 

array when discriminating textures. These results confirm the robust and high performing 

texture discrimination capability of the neuromorphic encoding algorithm. Next, we 

demonstrate the resultant sensory feedback to the user. 

  Palpation Speed (mm/s) 

A
ct

ua
te

d 
Pr

es
su

re
 (p

si
)  23 44 64 81 

0 98.65% 99.52% 99.90% 99.52% 
10 99.33% 99.62% 99.04% 99.81% 
15 99.62% 99.42% 99.42% 99.81% 
18 99.71% 100.00% 99.71% 100.00% 
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Figure 4.8: Confusion matrix showing the class accuracy of each texture when the soft 
biomimetic finger was actuated to 15 psi and palpated the textures at 23 mm/s. The soft 
biomimetic finger was able to successfully discriminate the textures at this parameter, 
achieving an overall classification accuracy of 99.62%. 

4.3.3 Sensory Feedback 

 Three able-bodied subjects participated in the stimulation psychophysical 

experiments. The results of the conditional discrimination experiment are shown in Figure 

4.9, where the rows represent the condition presented first and the columns represent the 

condition presented second. Subjects AB01 and AB02 were able to differentiate between 

three conditions, while subject AB03 was able to differentiate between two conditions. The 

ability to discriminate between stimulation frequencies or intensities varied among 

subjects. Subject AB01 had difficulty separating discrete versus continuous pattern at low 

stimulation intensity (Figure 4.9A). Subject AB02 had difficulty separating low versus 

high intensity for the continuous stimulation pattern (Figure 4.9B). Subject AB03, 
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however, could only determine the difference in discrete vs. continuous patterns, but not 

intensity (Figure 4.9C).  

 
Figure 4.9: Condition discrimination results for subjects AB01 (A), AB02 (B), and AB03 
(C). Each grid shows the percentage at which the subject was able to identify if the 
conditions presented were the same or different.  

 

4.3.4 Comparison between Rigid and Soft Fingers  

 The texture discrimination experiment was also run using the same tactile sensor 

array attached to the fingertip of the index finger on a Touch Bionics prosthetic hand. This 

was done to compare how well the soft finger was able to classify soft and hard textures 

compared to a rigid finger. For this comparison, another set of textured plates, identical to 

those shown in Figure 4.4, were fabricated out of Dragon SkinTM 10 silicone, referred to 

as soft textured plates. The soft biomimetic finger and rigid prosthetic finger passively 

palpated these soft textured plates and the original hard textured plates, with 40 trials for 

each of the 26 textures. 

 Overall, the soft finger performed on par with the rigid finger, with a slight 

improvement at discriminating the soft textures. The soft finger achieved an accuracy of 

98.65% for both soft and hard textures, while the rigid finger obtained an accuracy of 

98.27% for hard textures and 97.31% for soft textures. Although the differences are small, 
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the drop in performance of soft texture discrimination for the hard finger could indicate the 

benefit of the soft finger to discriminate soft textures. 

4.4 Discussion 

 A soft finger with a soft, compliant sensor and neuromorphic encoding attempts to 

mimic a human finger. Our study finds that this combination of features has many attributes 

of human fingers. The compliance of the soft finger would aid it in palpating softer 

materials. However, further exploration is needed to determine the relative benefits of our 

soft finger solution compared to the current hard finger design as the results from our 

limited study of textures between the two were comparable. Additionally, our study did not 

include objects of different curvature. Still, the benefits of the soft finger, such as suitability 

to handle delicate objects, could pave the way for a hybrid biomimetic or andromorphic 

finger solution, combining the advantages of both soft and hard materials. 

 Sensors incorporated into soft robots prioritize flexibility and simple fabrication to 

minimize its effect on the robot’s actuation. Therefore, the primary design constraint of our 

sensor is that it needs to be flexible and cannot interfere with the normal actuation of the 

soft biomimetic finger. Based on this, we created a novel flexible, textile tactile sensor for 

the soft biomimetic finger, with neuromorphic output that performed well at texture 

discrimination. 

 With the current selection of textures, the soft finger was able to classify the 

textures with a high level of accuracy. A texture database, which includes finer natural 

textures, would help validate and test this method further [37]. Decoding algorithms such 
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as Victor Purpura distance and van Rossum distance with spiking neural networks can also 

provide more information about the textures and improve classification performance [30], 

[37].  Additionally, the design of the flexible tactile sensor array with overlapping receptor 

fields allows the use of super-resolution. By involving spatial averages over the taxels in 

the sensor array, the ability to sense at a higher acuity is possible. This is a technique used 

to enhance the resolution of an imaging system [137]. The human body is also able to 

perceive textures regardless of the speed of palpation. This speed invariance could be 

achieved using a modified neuromorphic model and testing with a similar method. Finally, 

by using multiple soft biomimetic fingers in unison, grasping and manipulating objects 

with texture recognition, while providing sensory feedback is possible. 

 Since the subjects were only able to differentiate between a few conditions, static 

stimulation using TENS may not be enough to convey all the current textural information. 

However, dynamic stimulation of the user with the neuromorphic output could convey 

more information. Using these sensory feedback methods, a more natural perception of the 

environment can occur and ultimately aid in prosthetic embodiment. Additionally, this 

work will be useful in human-machine interactions, such as co-robotics, especially as 

robotic hands and human hands interact. 
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Chapter 5  

5 Continuing Work and Future Directions 
 

 This chapter summarizes the continuing work and future directions in which this 

work could potentially be taken forward. 

5.1 Soft Tissue Palpation 

 Tactile sensing by palpation (Figure 5.1) is still used for diagnosing the early 

formation of malignant tumors and lumps to detect lymph nodes, and breast cancer [138]. 

However, tactile sensing-based diagnosis needs trained clinicians to perform palpation 

procedures and the interpretation of the results is highly subjective due to the lack of any 

quantitative measurement. Therefore, to assist physicians in detecting lumps more 

efficiently, various imaging techniques such as x-rays, ultrasonic imaging, and computer 

tomography have been developed [139], [140]. Though these imaging techniques offer an 

enhanced diagnosis of lumps or tumors, each of these techniques has limitations, including 

the exposure to radiation, excessive costs, and complexity of machinery [141]. In some 

studies, it is reported that imaging-based diagnosis such as mammography missed the 
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breast cancer that was later detected by clinical breast examination by palpation [142], 

[143]. Additionally, in some cases, the early formation of cancerous tissue has been 

perceived through palpation but failed to appear through medical imaging due to its small 

size or the high-density of the surrounding tissue surrounding. Therefore, palpation-based 

diagnosis has its relevance even in the age of digital imaging-based diagnosis of tumors 

and lymph nodes.  

 

Figure 5.1: Different medical applications where palpation is used as a diagnostic tool. 
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 Most of the existing tactile sensing devices for palpation have focused on either 

improving the sensitivity, the spatial density of tactile sensors, or developing sophisticated 

algorithms to process the tactile signals for diagnosis. However, these studies did not 

consider the mechanically and neurophysiologically complex process of tactile sensing 

through palpation using a human finger. The human tactile system uses sensory 

information gathered from four different types of mechanoreceptors embedded in the skin: 

Meissner corpuscles, Merkel cell, Pacinian corpuscles, and Ruffini endings. 

5.1.1 Lymph node 

 This project aims to develop a bioinspired soft robotic palpation system for medical 

examination. Specifically, we want to address clinical palpation for lymph nodes in the 

human body. Lymph node palpation is an essential part of the evaluation for infectious 

diseases or cancer. Cervical lymph nodes are common sites for metastatic cancer in the 

neck and head cancer [144]. Although ultrasound assessment of cervical lymph nodes has 

been well established, palpation of cervical lymph nodes is still common in clinical practice 

[145]. However, palpation to gauge nodal hardness is considered inaccurate and carries 

substantial risks of misdiagnosis due to subjectivity in manual palpation [146]. Among 

other factors, the stiffness of the lymph node alone is enough for an accurate diagnosis of 

lymph node metastases [147]. Therefore, being able to quantitatively measure the relative 

or absolute stiffness of the lymph node can help the clinician make the right diagnosis. The 

goal of this research is to develop a bioinspired sensing and learning paradigm to estimate 

the mechanical properties of a nodule by palpation using a soft biomimetic finger with a 

sense of touch. The biomimetic tactile sensing can help us to quantitatively measure a 
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nodule’s stiffness. In addition to tissue stiffness, geometric parameters such as size and 

depth of the stiff region are important factors for the proper diagnosis of the lymph node. 

The combined knowledge of lymph node stiffness and geometry would aid in identifying 

infectious or cancerous lymph nodes (lymphoma) and help physicians select an appropriate 

treatment strategy. We propose a biomimetic tactile sensing framework to detect and 

quantify various parameters such as stiffness, size, and depth of an embedded hard nodule 

with a geometric representative of lymph node pathology (Figure 5.2). To achieve this, we 

use finite element modeling (FEM) analysis to model the complex interaction between the 

soft finger augmented with a flexible tactile sensor and an idealized skin model with an 

embedded nodule of varying parameters. The FEM analysis will be used to generate 

simulated tactile responses corresponding to the different size, hardness, and depth of the 

embedded nodules in the skin model. These simulated tactile responses will then be used 

as input training data to an SNN-based learning paradigm to map the simulated tactile 

response to the nodule parameters. Subsequently, the developed SNN model will be 

validated by the realistic phantom tissue with inclusions to emulate the lymph nodes. 

Finally, experiments on animal models can be carried out to further validate this method. 
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Figure 5.2: Proposed soft tissue palpation for lump detection using soft biomimetic finger 
and neuromorphic tactile sensing. (a) A soft finger with a fingertip tactile sensor attached 
to a robotic arm ready to palpate over the phantom tissue with the embedded hard nodule. 
(b) Modeling the complex mechanical interaction between soft finger and soft silicone 
phantom with the embedded hard nodule. (c) Spiking neural network architecture to mimic 
neurophysiological touch sensing and learning paradigm to classify different nodules. 

 For this project, the soft biomimetic finger using a flexible tactile sensor with some 

FEM analysis has been through some preliminary testing. The finished framework with 

complete experiments will be continued in the future. 

5.1.2 Wound Palpation 

 Conventional wound care uses standard rulers and visual inspection to diagnose 

wounds and judge the healing process. Doctors and health specialists base treatment 

decisions on the initial status of the wound and subsequently, the progress of the wound. 

The main characteristics of the structure of the wound that needs to be imaged are 

visualizing the depth, volume, and the viability of the injured tissue and surround tissue. 

Wound imaging is useful as a diagnostic tool and to monitor and document the quality of 
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the wound. This is especially true for pressure ulcers and chronic wounds. MRI and CT are 

modalities that are too cost-prohibitive to analyze all regional wounds. 

 Recent technologies are having wound assessment capabilities with 3D wound 

measurement and composition. InSight by WoundWorks® and Tissue Analytics® record, 

track, and analyze patient wounds based on photography [148], [149]. These technologies 

can use machine learning to analyze and approximate wound tissue composition. However, 

standard 3D photography does not provide information about the underlying tissue, which 

could be injured in closed wounds with deep tissue injuries [150]. 

 High-resolution ultrasound can provide visualization of the underlying tissue 

structure and vasculature for even deep tissue injuries. Current diagnostic ultrasound has 

promise but is not practical [150]. Recent advancements in ultrasound sensors arrays could 

create high sensitivity and resolution imaging of wounds to create a more practical wound 

assessment tool [151]–[155]. By adding other sensing modalities such as laser speckle 

contrast imaging and optical sensing, a more holistic characterization of the wound can 

occur. Laser speckle contrast imaging has been used in imaging for blood flow 

measurement for perfusion in tissues [156]. The standardization of measuring techniques 

in wound care using advanced imaging and sensing technologies can provide 

comprehensive information for wound diagnostics and management [150].  

 A proposed wound assessment tool can use multimodal sensing to diagnose, map, 

and predict the progression of wounds (Figure 5.3). An RGB camera, or thermal camera, 

will provide visual information about the wound such as its dimensions, tissue 

oxygenation, blood flow, and temperature. Tactile palpation will be used to inspect the 



59 
 

periwound through palpation to access the skin’s integrity. Palpation can also provide 

information on the moisture, temperature, texture, turgor, pulses, and mobility of the 

wound and its surrounding tissue. By converting the output from the camera and tactile 

sensor into event-based spikes, the information from the two sources can be combined and 

used in an SSN. The SSN can use the tactile and vision data over time to predict wound 

recovery time. 

 

Figure 5.3: Proposed wound assessment tool using event-based visual and tactile sensing. 

5.2 Embedded Multilayer Sensor 

 The goal of biomimetic tactile sensors is to mimic the mechanoreceptors in the skin. 

An alternative to merely increasing the spatial resolution of the sensor is creating a 

multilayer sensor, which can be used to ascertain essential information from an object or 

surface. By creating a multilayer tactile sensor, multiple neuromorphic encoding 

algorithms can be used to represent the varied mechanoreceptors. The current textile tactile 

sensor mimics only a single type of mechanoreceptor, Merkel cells. However, different 
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mechanoreceptors in the skin sense different distinct tactile information and are organized 

in different layers in the skin. A multilayer sensor allows for additional spatiotemporal 

information to be gathered from the object or surface.  

 A multilayer tactile sensor was designed using the 3x3 tactile sensor and an 

embedded 2x3 tactile sensor layer to mimic two types of mechanoreceptors found in human 

skin (Figure 5.4). The outer sensor layer has more taxels with smaller sensing areas (nine 

4 mm2 taxels) to mimic Merkel cells, while the embedded sensor layer is deeper and has 

fewer taxels with larger sensing areas (six 16mm2 taxels) to mimic Pacinian corpuscles. 

Each of the receptors encodes different haptic features to create a biomimetic tactile sensor 

with the potential to provide amputees a sense of touch. 

 

Figure 5.4: (A) Graphic depicting the mechanoreceptors in human skin. Merkel cells 
encode touch for coarse textures and Pacinian corpuscles encode vibration for finer 
textures. (B) multilayer tactile sensor attached to the soft biomimetic finger. 
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 The multilayer sensor has been fabricated and ready to be integrated with the soft 

biomimetic finger. Complete calibration and texture discrimination experiments will be 

completed in the future and the results will be submitted to a conference. 

5.3 Hybrid Soft Finger 

 Soft robots have many advantages over rigid robots due to their compliance. 

However, a completely soft finger with soft actuators cannot create the same level of force 

to grasp objects as its rigid counterpart. To create a biomimetic soft finger that can be 

incorporated into a prosthetic hand, a hybrid soft finger was designed. This hybrid soft 

biomimetic finger incorporates a rigid skeletal structure into the finger to improve its 

overall structural integrity and force output. The finger consists of three “Pneu-Nets” 

inspired pneumatic actuators with integrated air channels inside its strain-limiting bottom 

layer, as seen in Figure 5.5. These three actuators make up the actuation layer of the finger. 
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Figure 5.5: 3D model of the Hybrid soft biomimetic finger where the yellow represents 
the air tubes, green represents the 3D printed air channel adapters, red represents the TPU 
material, and Purple represents the PLA material. 

 The rigid “bone” layer consists of two different 3D printed materials, TPU in red 

and PLA in purple, as seen in Figure 5.6. TPU serves as a secondary strain limiting layer 

that allows the actuator to bend at the specified joint spots and the PLA parts are bonded 

to the actuators to transfer as much force as possible from the actuator inflation. 
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Figure 5.6: 3D model of the ‘bone” layer of the hybrid soft biomimetic finger. 

 To compare the force output of the hybrid soft finger to the current soft finger, the 

fingers were modeled and analyzed through FEM simulations Figure 5.7. The following 

figures are preliminary simulation results of the hybrid soft finger in ANSYS Discovery 

AIM. The complete simulation analysis, with a comparison to the current soft finger, and 

fabrication of the hybrid soft finger are continuing and will be completed in the future. 
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Figure 5.7: The Hybrid finger was simulated in ANSYS Discovery AIM. The finger was 
actuated at 15 psi in all three actuators and the stress was measured. Based on these results, 
no points of failure are noticeable in the model.   
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5.4 Pneumatic Actuation System 

 The current pneumatic setup (Fig. 5.8) for the soft biomimetic finger used an air 

compressor and two 3-way direct-acting solenoid valves to regulate the airflow into the 

soft biomimetic finger. Each valve is connected to an air channel’s inlet and a pressure 

sensor (Honeywell ASDXACX100PAAA5). The pneumatic circuit is independently 

controlled by an Arduino microcontroller.  However, this actuation method is an open 

system, where the compressor needs to be manually adjusted to achieve the desired 

pressure levels.  

 

Figure 5.8: Overview of the pneumatic setup used to actuate the soft finger. 

 The goal of the soft biomimetic finger project is to ultimately create a soft prosthetic 

hand that an amputee can use. To achieve this goal, the actuation system of the soft 

biomimetic finger needs to be improved. The requirements for this are listed below: 

1) Closed-loop actuation 
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2) Automatic release of air in fingers 

3) Control at least 10 channels for 5 fingers 

4) Portable actuation system 

5) Control board that can incorporate sensing and sensory feedback 

 Currently, the actuation system is designed to control a single soft finger. (1) The 

closed-loop control involves creating a connection between the pressure sensor and a 

pressure regulator. This will allow the soft fingers to actuate to the desired pressure and 

thus bending angle. At its first stage, the soft fingers will need to achieve the desired 

bending angle set by the manual control, using rotary switches. The next stage involves 

controlling the actuation of the soft finger through software, such as Arduino. This will 

streamline the actuation of the soft prosthetic hand by creating the pathway for other 

control methods such as Electromyography (EMG). EMG is the most common method of 

controlling myoelectric prosthesis and will allow an upper-limb amputee to control the soft 

prosthetic hand. (2) Once the fingers have been actuated, the air needs to be manually 

released by the compressor. Using pressure regulators with a release will not only allow 

the system to precisely actuate to a desired pressure but also release the air in the soft finger 

to go back to rest. (3) To control 5 fingers that each has 2 independently actuated fingers, 

the actuation system needs to be scaled up. Ideally, this will use a single compressor and a 

pressure regulator for each of the 10 inlets. (4) The current pneumatic actuation system 

uses large components, such as compressors and solenoid valves. However, for a prosthetic 

hand, the actuation system needs to be miniaturized. While a fully miniaturized system that 

can fit in a socket may not be possible yet, a more portable system can be created. (5) 
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Instead of having multiple microcontrollers for actuation, sensing, and sensory stimulation, 

a singular microcontroller would be ideal. Additionally, compressors are bulky and not 

suitable for a portable system. Small compressed air canisters could be used instead to 

actuate the prosthetic hand. These could be comparable to swapping out batteries. 

 The following proposed design (Figure 5.9) was created by Josiah Kim, an intern 

in the lab. This is a theoretical design that has not been built or tested. The pneumatic 

actuation system project will be continued in the Fall of 2020 by another intern, Arnav 

Gupta.  

 

Figure 5.9: Proposed design of a pneumatic actuation system for a soft prosthetic hand. 

 



68 
 

5.5 Soft Prosthetic Hand 

 The overall goal is to create a soft prosthetic hand that an amputee can use in their 

daily lives and perceive their environment better. This biomimetic prosthetic hand will be 

compliant, with rigid structural support. Additionally, it would be controlled by EMG or 

ultrasound and will provide an amputee with a sense of touch. Each of the fingertips will 

have flexible multilayer sensors, with the potential for tactile sensing throughout the hand. 

The sensor output would be neuromorphically encoded and directly provide feedback to 

the amputee through TENS. Once the soft prosthetic hand is designed and constructed, it 

can be tested with amputee subjects doing functional assessments. A completed soft 

prosthetic hand would be a unique upper limb prosthesis with the potential to reduce the 

gap between a healthy arm and prosthesis by allowing users to improve their sense of touch 

while perceiving and interacting with their environment. 

5.6 Multisensory Integration 

 The natural sensory feedback loop is an intuitive process for healthy individuals. 

Amputees with conventional prostheses lose the ability to feel when or how an object is 

being grasped and thus cannot adequately modulate their prosthetic hand movements based 

on natural sensory feedback [157], [158]. Replacement of this crucial loop starts with 

sensors that can detect various stimuli from the surrounding environment and the physical 

world. Tactile sensing of object stiffness and texture can be used to improve the breadth of 

sensations replaced for amputees while improving grasping tasks. Upon receiving static 

and dynamic sensory cues, the user can understand and dynamically interact with their 

surroundings [26], [27]. 
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 However, a single sensing modality is not sufficient to provide an amputee ample 

sensory information about their environment. To achieve human dexterity, the brain 

gathers information from multiple senses and integrates them to create a meaningful 

perceptual experience. This concept is known as multisensory integration and has been 

studied heavily in Neuroscience [159]–[162]. Concurrently, the approach of using multiple 

sensing modalities to improve object recognition and spatial mapping has been investigated 

for applications in robotics [163]–[171]. The valuable information obtained from multiple 

sensors can be merged to achieve a more accurate perception for amputees. 

 Though obtaining multimodal information through different sensors is not very 

complex, the challenge is trying to integrate all the varied information in a useful and 

efficient manner. The recent trend of deep learning, such as convolutional neural networks 

(CNN), and artificial intelligence (AI) have made this process more attainable [165], [172], 

[173]. Currently, the key issues with multimodal sensing are data synchronization and data 

fusion [174].  

 Tactile sensing can provide information about object texture and grasp, while vision 

can acquire information about object shape and location without contact. Therefore, the 

integration of visual and tactile information can be the most effective for coordinating a 

robotic arm or prosthesis for object manipulation [175]–[179]. Thus, the goal would be to 

use multisensory integration and AI to improve prosthesis for amputees. 



70 
 

5.7 High-density Sensor 

The mechanoreceptors in human skin have a high spatiotemporal resolution to 

effectively manipulate objects. To achieve similar spatial information of 

mechanoreceptors, many tactile sensors and e-skins have been created with high 

resolutions [33], [44], [106], [180], [181]. However, the difficulty is being able to achieve 

such a high resolution and process the information and process it effectively. As the number 

of sensors increases, the serial transmission of data can become a bottleneck and limit the 

spatiotemporal information needed to effectively manipulate objects [180]. This time-

divisional multiple access (TDMA) method is used by most tactile sensor arrays to transmit 

data, such as resistive row-column multiplexing [182]. Alternatively, event-based sensors 

using Address Event Representation (AER) or Asynchronously Coded Electronic Skin 

(ACES) only require signal transmission when necessary [180]. These protocols 

communicate with digital events containing the sensor value and address. By taking 

inspiration from the biological system and neuromorphically encoding multiple sensing 

elements, the information from a high-resolution sensor can be effectively used to provide 

an increased temporal resolution to discern transient events. Encoding temporal 

information is necessary because it provides crucial information when sensing fast-

changing events. This biologically inspired neuromorphic encoding method can be used to 

multiplex numerous tactile sensors while retaining the necessary spatiotemporal 

information for rapid tactile sensing (Figure 5.10). This event-based data can be used with 

spiking neural networks (SNN) or extreme machine learning (ELM) to create reliable and 

robust tactile representation [33]. 
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Figure 5.10: Neuromorphic approach for high-density touch sensing. From left to right: 
The fingertips and the palm of the prosthetic hand with the multilayer e-Dermis; An 
embedded flexible circuit (sensor readout) will acquire the data from the local sensor and 
convert it into neuromorphic spikes associated with the behavior of FA and SA taxels; A 
compressed sensing module will then encode tactile receptor inputs in space, depth profile, 
and timing. 

5.8 Super Resolution 

The design of the flexible tactile sensor array allows the ability to use super-

resolution. By involving spatial averages over the taxels in the sensor array, the ability to 

sense at a higher acuity is possible (Figure 5.11). This is a technique used to enhance the 

resolution of an imaging system [137]. Such an approach can discern the necessary spatial 

information with a lower resolution sensor. Additionally, palpation can achieve a higher 

resolution through spatio-temporal receptor fields. 
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Figure 5.11: Overlapping receptor fields in the tactile sensor can allow spatial details in 
the subfield to be resolved by a population code.  

5.9 Conclusion 

 Our word demonstrates the ability of the soft biomimetic finger to accurately 

differentiate textures with the added potential to provide users the ability to perceive their 

environment while interacting with it. The andromorphic nature of the soft biomimetic 

finger, with its softness, compliance, and neuromorphic mechanoreceptor-like spiking 

responses, make it best suited to bring robotic and prosthetic technology closer to a natural 

finger. 

 Furthermore, we showed that a novel soft, three-jointed biomimetic finger with 2 

DOF and the ability to discriminate textures using a flexible textile tactile sensor array can 

palpate textures and then convey classified texture information to the user using sensory 

feedback. At different independent speeds of palpation and levels of actuation parameters, 

the soft biomimetic finger was able to classify textures with very high accuracy. Thus, our 
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work demonstrates the soft finger with biomimetic tactile sensors and neuromorphic 

encoding can be used for palpation applications, especially texture discrimination tasks. 
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