495 research outputs found

    MeDICINE: Rapid Prototyping of Production-Ready Network Services in Multi-PoP Environments

    Get PDF
    Virtualized network services consisting of multiple individual network functions are already today deployed across multiple sites, so called multi-PoP (points of presence) environ- ments. This allows to improve service performance by optimizing its placement in the network. But prototyping and testing of these complex distributed software systems becomes extremely challenging. The reason is that not only the network service as such has to be tested but also its integration with management and orchestration systems. Existing solutions, like simulators, basic network emulators, or local cloud testbeds, do not support all aspects of these tasks. To this end, we introduce MeDICINE, a novel NFV prototyping platform that is able to execute production-ready network func- tions, provided as software containers, in an emulated multi-PoP environment. These network functions can be controlled by any third-party management and orchestration system that connects to our platform through standard interfaces. Based on this, a developer can use our platform to prototype and test complex network services in a realistic environment running on his laptop.Comment: 6 pages, pre-prin

    MOLNs: A cloud platform for interactive, reproducible and scalable spatial stochastic computational experiments in systems biology using PyURDME

    Full text link
    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools, a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments

    Automated Dynamic Resource Provisioning and Monitoring in Virtualized Large-Scale Datacenter

    Get PDF
    Infrastructure as a Service (IaaS) is a pay-as-you go based cloud provision model which on demand outsources the physical servers, guest virtual machine (VM) instances, storage resources, and networking connections. This article reports the design and development of our proposed innovative symbiotic simulation based system to support the automated management of IaaS-based distributed virtualized data enter. To make the ideas work in practice, we have implemented an Open Stack based open source cloud computing platform. A smart benchmarking application "Cloud Rapid Experimentation and Analysis Tool (aka CBTool)" is utilized to mark the resource allocation potential of our test cloud system. The real-time benchmarking metrics of cloud are fed to a distributed multi-agent based intelligence middleware layer. To optimally control the dynamic operation of prototype data enter, we predefine some custom policies for VM provisioning and application performance profiling within a versatile cloud modeling and simulation toolkit "CloudSim". Both tools for our prototypes' implementation can scale up to thousands of VMs, therefore, our devised mechanism is highly scalable and flexibly be interpolated at large-scale level. Autonomic characteristics of agents aid in streamlining symbiosis among the simulation system and IaaS cloud in a closed feedback control loop. The practical worth and applicability of the multiagent-based technology lies in the fact that this technique is inherently scalable hence can efficiently be implemented within the complex cloud computing environment. To demonstrate the efficacy of our approach, we have deployed an intelligible lightweight representative scenario in the context of monitoring and provisioning virtual machines within the test-bed. Experimental results indicate notable improvement in the resource provision profile of virtualized data enter on incorporating our proposed strategy

    Automated Dynamic Resource Provisioning and Monitoring in Virtualized Large-Scale Datacenter

    Full text link

    Heterogeneity, High Performance Computing, Self-Organization and the Cloud

    Get PDF
    application; blueprints; self-management; self-organisation; resource management; supply chain; big data; PaaS; Saas; HPCaa
    corecore